Abstract
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt’s formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients
Description
This article is originally published in Frontiers in Psychology as Open Access, here: https://doi.org/10.3389/fpsyg.2015.00949
Publisher
Frontiers
Date of publication
7-8-2015
Language
english
Persistent identifier
http://hdl.handle.net/10950/2332
Document Type
Article
Recommended Citation
Nimon, Kim; Zientek, Linda Reichwein; and Thompson, Bruce, "Investigating bias in squared structure coefficients" (2015). Human Resource Development Faculty Publications and Presentations. Paper 12.
http://hdl.handle.net/10950/2332
Publisher Citation
Nimon, K., Zientek, L. R., & Thompson, B. (2015). Investigating bias in squared structure coefficients. Frontiers in Psychology,. Frontiers in Psychology, 6(949), 1–10.