Document Type

Article

Publication Date

Fall 12-1-2018

Abstract

Anthropogenic alterations to bottomland forests in the United States that occurred post-European settlement likely negatively affected many avian species. The Prothonotary Warbler (Protonotaria citrea), a secondary cavity nester that breeds predominantly in these forests, has steadily declined over the past 60 years, and our ability to mitigate this trend is partially limited by a lack of basic biological data. Although much research has been devoted to Prothonotary Warblers, most studies have focused on local breeding populations that use nest boxes; we lack information about habitat selection behavior and demographic parameters of individuals that use natural cavities, which includes the vast majority of the global population. We studied warblers nesting both in boxes and natural cavities in central Arkansas, USA. We aimed to evaluate: (1) microhabitat features important for nest site selection, (2) relationships between these features and nest survival, and (3) demographic parameters of individuals breeding in natural cavities versus nest boxes. We hypothesized (1) selected nest site characteristics are associated with nest survival, and (2) natural cavities and nest boxes provide similar nest features related to clutch size and number fledged, but that predation protection differs. We found that warblers preferred nesting in dead trees with cavities that were higher and shallower than available random cavities, and that canopy cover within 5 m of nests was inversely related to nest survival. Demographic parameters did not differ between natural cavities and nest boxes; however, when excluding flooded nests, boxes experienced lower rates of nest depredation. We believe that forest management strategies that increase the number of suitable dead nest trees and restore the natural hydrology of these ecosystems would create and improve habitat for this iconic species. We advocate multiscale experimental canopy cover manipulation to explore the causal mechanism(s) of the relationship we found between canopy cover and nest survival.

Description

This article is under a Creative Commons Attribution-NonCommercial 4.0 International License. You may share and adapt the work for noncommercial purposes provided the original author and source are credited, you indicate whether any changes were made, and you include a link to the license.

Persistant Identifier

http://hdl.handle.net/10950/4549

Publisher

Avian Conservation & Ecology

Permanent Email Address

archivist@uttyler.edu

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.