Abstract
One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success.
This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures.
The aim of this thesis is to develop an accurate repositioning method with the use of motion capture technology. This will be a novel approach to creating a repositioning integrated system.
To develop a motion capture repositioning integrated system, a set of research tasks needed to be completed. A virtual prototype and a virtual platform were developed that quantified the dynamics of the C-Arm maneuvering. Next, a complete kinematic model of the C-Arm was developed. Third, a fully automatic robotic C-Arm prototype was designed and manufactured to serve as a replacement for the actual C-Arm. Finally, the robotic prototype, the virtual platform, and the kinematic model were all systematically integrated using Vicon motion capture system to perform the automatic repositioning of the C-Arm.
Testing of the newly developed repositioning system was completed with successful results.
Date of publication
Summer 7-22-2019
Document Type
Thesis
Language
english
Persistent identifier
http://hdl.handle.net/10950/1569
Committee members
Chung Hyun Goh, Fredericka Brown, X. Neil Dong
Degree
Masters of Science in Mechanical Engineering
Recommended Citation
Yazdanshenas, Alireza, "SYSTEM INTEGRATION OF C-ARM ROBOTIC PROTOTYPE USING MOTION CAPTURE GUIDANCE FOR ACCURATE REPOSITIONING" (2019). Mechanical Engineering Theses. Paper 6.
http://hdl.handle.net/10950/1569
Included in
Acoustics, Dynamics, and Controls Commons, Biomechanical Engineering Commons, Computer-Aided Engineering and Design Commons, Electro-Mechanical Systems Commons, Manufacturing Commons, Other Mechanical Engineering Commons, Surgical Procedures, Operative Commons, Systems and Integrative Engineering Commons