Abstract

Dual-energy X-ray absorptiometry (DXA) is widely used for clinical assessment of bone mineral density (BMD). Recent evidence shows that DXA images may also contain microstructural information of trabecular bones. However, no current image processing techniques could aptly extract the information. Inspired by the success of deep learning techniques in medical image analyses, we hypothesized in this study that DXA image-based deep learning models could predict the major microstructural features of trabecular bone with a reasonable accuracy. To test the hypothesis, 1249 trabecular cubes (6 mm × 6 mm × 6 mm) were digitally dissected out from the reconstruction of seven human cadaveric proximal femurs using microCT scans. From each cube, simulated DXA images in designated projections were generated, and the histomorphometric parameters (i.e., BV/TV, BS, Tb.Th, DA, Conn. D, and SMI) of the cube were determined using Image J. Convolutional neural network (CNN) models were trained using the simulated DXA images to predict the histomorphometric parameters of trabecular bone cubes. The results exhibited that the CNN models achieved high fidelity in predicting these histomorphometric parameters (from R = 0.80 to R = 0.985), showing that the DL models exhibited the capability of predicting the microstructural features using DXA images. This study also showed that the number and resolution of input simulated DXA images had considerable impacts on the prediction accuracy of the DL models. These findings support the hypothesis of this study and indicate a high potential of using DXA images in prediction of osteoporotic bone fracture risk.

Description

Copyright: © 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Publisher

Elsevier

Date of publication

Summer 7-8-2020

Language

english

Persistent identifier

http://hdl.handle.net/10950/4326

Document Type

Article

Included in

Kinesiology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.