Abstract

The assessment of students’ metacognitive knowledge and skills about reading is critical in determining their ability to read academic texts and do so with comprehension. In this paper, we used induction trees to extract metacognitive knowledge about reading from a reading strategies dataset obtained from a group of 1636 undergraduate college students. Using a C4.5 algorithm, we constructed decision trees, which helped us classify participants into three groups based on their metacognitive strategy awareness levels consisting of global, problem-solving and support reading strategies. We extracted rules from these decision trees, and in order to evaluate accuracy of the extracted rules, we built a fuzzy inference system (FIS) with the extracted rules as a rule base and classified the test dataset with the FIS. The extracted rules are evaluated using measures such as the overall efficiency and Kappa coefficient.

Description

This article, originally published in the International Journal of Advanced Computer Science and Applications, is an open access article licensed under a Creative Commons Attribution 4.0 International License.

Publisher

International Journal of Advanced Computer Science and Applications

Date of publication

2016

Language

english

Persistent identifier

http://hdl.handle.net/10950/398

Document Type

Article

Publisher Citation

Christopher Taylor, Arun Kulkarni and Kouider Mokhtar, “Knowledge Extraction from Metacognitive Reading Strategies Data Using Induction Trees” International Journal of Advanced Computer Science and Applications(IJACSA), 7(6), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070634 - See more at: http://thesai.org/Publications/ViewPaper?Volume=7&Issue=6&Code=IJACSA&SerialNo=34#sthash.xmI8JX7j.dpuf

Share

COinS