Abstract

When there are multiple lanes to choose from downstream of a turning movement, drivers should choose the innermost lane so that drivers at other approaches of the intersection may make concurrent turning movements in the outermost lane(s). However, human drivers do not always choose the innermost lane, which could lead to crashes with other vehicles. Therefore, predicting human driver behaviors is vital in reducing crashes, as the need to share the roadways with automated vehicles (AVs) continues to grow. In this research, various machine learning models have been used to predict the left turn destination lane choice of human-driven vehicles (HDVs) at urban intersections based on several quantifiable parameters. A total of 174 subject vehicles wer; extracted and analyzed in Los Angeles, California, and Atlanta, Georgia, using HDV trajectory data from the Next Generation SIMulation (NGSIM) database. Five machine learning techniques, namely binary logistic regression, k nearest neighbors, support vector machines, random forest, and adaptive neuro-fuzzy inference system, were applied to the extracted data to predict the lane choice behavior of drivers. The k nearest neighbors model showed the most promising results for the evaluated data with a correct decision score of over 93% for the unseen test data. This model may be programmed into: (i) AVs, in conjunction with sensors, to predict if an HDV is about to turn into the incorrect destination lane; and (ii) microscopic traffic simulation tools so that modelers can identify potential conflicts when HDVs do not select the appropriate destination lane. © 2023 Tongji University and Tongji University Press.

Description

Copyright 2023. Tongji University and Tongji University Press. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Publisher

Elsevier

Date of publication

12-20-2023

Language

english

Persistent identifier

http://hdl.handle.net/10950/4966

Document Type

Article

Share

COinS