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Abstract 

 

NANOMEDICAL APPLICATIONS IN ZEBRAFISH: CHARACTERIZING VLP HK97 
AS A CELL-SPECIFIC DELIVERY TOOL IN DANIO RERIO 

 
Bridget A. Fitzgerald 

Thesis Chair: Dr. Brent Bill 

The University of Texas at Tyler 
May 2019 

 
Virus Like Particles (VLPs) are self-assembling protein subunits which organize 

in vitro into hollow protein cages that mimic the structure of a viral capsid. VLPs possess 

valuable characteristics of the native virus including immunogenicity and a propensity for 

entrance into cells. However, they lack the viral genome and the ability to replicate, 

rendering them non-virulent. VLPs can be internally and externally modified utilizing 

genetic engineering and biochemical techniques. Applications of modified VLPs are vast 

in nanomedicine, and tissue-specific drug targeting is a desirable potential use for this 

technology. VLP HK97 is a well characterized VLP derived from a bacteriophage found 

in E.coli and has yet to be tested in the zebrafish model. Experiments show unmodified 

VLP HK97 is non-toxic at biologically relevant doses in zebrafish, making this particle a 

viable option for further study with the addition of cell penetrating peptides (CPPs). The 

addition of RGD onto the external surface of VLP HK97, a cell targeting peptide known 

to target integrin receptors, drastically decreased the amount of VLP tolerated by the 

zebrafish. Further localization experiments reveal that this may be due to increased 

localization into distinct cell subtypes in the zebrafish embryo. The modified particle also 

showed localization to known sites of integrin expression in larval zebrafish. These 



 vii  

experiments conclude that VLP HK97 is a viable candidate as a drug delivery platform. 

VLP HK97 is a viable platform for testing cell-specific targeting for drugs and other 

molecules in a  wide variety of zebrafish disease models.  
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Chapter 1 

 Introduction 

Site Selectivity in Pharmaceuticals 

 Selectivity refers to the degree to which a drug can reach its target site relative to other 

sites within the body1. Current efforts aim to design drugs with high site selectivity as this 

increases the drugs ability to enact change on the target tissue and also reduces harmful side 

effects caused by the drug. As site selectivity increases, a drug’s efficacy increases1. Lack of site 

selectivity is a prevalent issue within medical and pharmaceutical industries which leads to the 

persistence of disease and the prevalence of unwanted side effects for many patients.  

Detrimental issues due to a lack of site specificity is most obvious in the collection of 

cancer drugs currently used for treatment. Current chemotherapeutics and radiation therapies 

function by damaging nuclear DNA and initiating apoptosis2,3. This occurs more quickly in the 

faster dividing cancerous cells; however, healthy cells are also damaged as a result of using 

these. Lack of site selectivity in these treatments causes healthy cells to die leading to vast 

unsatisfactory side effects affecting every organ system in the body4. Current drug development 

aims to optimize site selectivity, providing more efficacious drugs and minimizing off target 

effects. Virus Like Particles (VLPs) provide a versatile platform for increasing site selectivity for 

a variety of pharmaceuticals.  

 

Virus-Like Particles (VLPs)  

Virus-like particles (VLPs) are comprised of small protein subunits derived from native 

viruses which are capable of assembling in vitro into hollow protein cages which mimic the 

structure of a viral capsid5. These proteins can be derived from a multitude of host sources 



 2  

including bacteria, yeast, and mammalian cell host systems with over 110 VLPs being 

constructed from these systems as of 20136-8. These particles possess valuable characteristics of 

the native viruses including immunogenic properties and a propensity for entrance into cells5,9. 

Properties include heightened B cell activation, cellular and humoral immune response, and the 

potential to trigger high antibody production in the host 7. In addition, these nanoscale protein 

cages are non-pathogenic as they lack viral DNA and the ability to replicate making them a safer 

alternative in vaccine production as well as a promising platform for other nanomedical 

applications10. VLPs can be constructed rapidly and with relative ease using heterologous 

expression systems. Subsequently, VLPs can be modified using gene fusion techniques and 

chemical coupling protocols which makes them a versatile platform for both vaccine-based 

approaches as well as a cell-specific delivery platform11.  

Original success with VLP based technologies arose first with their use in vaccinology. In 

the 1980s, the discovery of the Hepatitus B Vaccine (HBV) surface antigen was the first 

successful VLP-based commercial vaccine6-8. The success of VLP-based vaccines persisted in 

the 2000s with the Human Papillomavirus (HPV) vaccines, Gardasil and Ceravix, which was 

created utilizing the HPV L1 capsid protein7,12. Research in VLP-based vaccines continues to 

persist with current research evaluating their efficacy for preventing diseases such as Human 

Immunodeficiency Virus (HIV), Chikungunya, and influenza13-15. Success of VLP as a vaccine 

has lead to continued research into their efficacy as a cell-specific carrier of biologically active 

molecules.  

VLPs are a promising platform for nanomedical applications due to their construction’s 

adaptability and their compatibility with biological systems5. The ability for VLPs to be altered 

via genetic engineering and chemical modifications makes them an ideal candidate for cell 
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specific delivery of drugs and other molecules. The same principles governing the packaging of 

products naturally occurring in a viral capsid can be exploited to package other biologically 

active molecules including drugs or labeling molecules16. The highly repetitive surface geometry 

of VLPs also makes them ideal for the uniform addition of multiple surface motifs16. The 

chemical addition of glycopolymers and cell-penetrating peptides (CPPs) can be utilized to 

traffic modified VLPs to specific tissue types16,17. VLP capabilities for internal drug loading as 

well as external cell targeting modifications, make these protein cages a potentially valuable tool 

in nanomedical applications including direct targeting of drugs to diseased tissue.  

 

Nanomedicine 

The majority of vaccines used currently rely on attenuated or inactivated forms of the 

virus which provoke an immune response in the patient, similar to that which would be provoked 

by the native virus18. Although these methods are highly affective, handling live viruses poses 

safety risks in their manufacturing and the potential for reversion into a live form introduces a 

additional potential risks in administration19. In efforts to increase the safety of vaccines, other 

methods including subunit based and DNA based vaccines were developed18,20. These methods 

improved safety by eliminating the use of live viruses; however, these methods also posed 

several disadvantages including lack of immunogenicity, decreased efficacy, and potential safety 

concerns regarding foreign DNA21-23.  

The emergence of nanotechnology introduced a variety of nanocarrier platforms 

including liposomes, dendrimers, quantum dots (QDs) and VLPs subset of Virus Nanoparticles 

(VNPs)16. Applied potential uses for targeted nanocarrier platforms include a variety of medical 

applications as well as a potential tool for imaging24. QDs, artificial semiconductor particles 
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ranging from 2-10nm, were originally thought to be a valuable imaging tool due to their 

persisting fluorescence, narrow emission spectrum, broad absorption spectra, and probe-like 

mechanism24,25. However, compared to other methods they proved to be relatively cytotoxic24. 

Similarly, Dendrimers, nanoscale artificial branching macromolecules capable of encapsulation, 

also exhibited in vivo toxicity24,26.  Liposomes are nanoscale phospholipid vesicles consisting of 

one or multiple concentric phospholipid bilayers which also have shown efficacy in drug 

trafficking in vivo but have failed to make the transition to clinical use27. Major challenges to 

using liposomes as a drug trafficking strategy include rapid clearance by the Reticuloendothelial 

System (RES), opsinization, and Accelerated Blood Clearance (ABC) due to its synthetic 

properties24,27.   

VLPs, a subset of VNPs expressed in a heterologous system and lacking genomic 

material, are a potential solution for cell-specific trafficking of drugs and other molecules24. 

VLPs emerged as a viable new vaccine technology due to their increased safety and 

immunogenicity18. Their success was first met in the 1980s with the origination of the first 

generation of the Hepatitis B vaccine (HBsAg)6,8,13. The advance of VLPs as a new vaccine 

technology lead to more vaccines which more closely mimicked virion structure, including 

multiple vaccine for Human Papilloma Virus (HPV)13.  Unlike previous models, the lack of viral 

DNA and inability to replicate renders them non-pathogenic and not at risk for reversion 

mutations18. This also eliminated the need for viral inactivation which is known to alter the 

presentation of important epitopes13. Continued research in VLPs as a potential vaccine 

technology has resulted in multiple successes in mammalian models including successful 

immunity for H7N9 and H5N1 influenza strains in mice and other viral diseases including hand, 

foot, and mouth disease (HFMD)28-31. The success of VLPs in vivo and in clinical applications 
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has expanded research into discovery of their uses as a potential cell-specific nanocarrier 

platform.  

 VLPs are an ideal nanocarrier as compared to other competing systems due to their rapid 

construction, adaptability, and immunogenicity. VLPs can be easily produced in relatively large 

quantities due to their ability to self-assemble in vitro using bacterial and yeast cell hosts5. 

Additionally, they are highly adaptable and can be easily modified via genetic engineering and 

biochemical modifications32. These qualities make them ideal candidates for nanomedical 

applications as constructs can be rapidly tested and adapted as needed. In addition to their 

adaptability, VLPs are ideal due to their compatibility with biological systems. Naturally 

occurring properties of the viral capsid increase its immunogenicity as well as support its ability 

to enter cells9,12,33. Their highly repetitive surface geometry mimics the structure of a native virus 

making them highly immunogenic13. VLPs have been shown to possess adjuvant properties 

which can initiate innate adaptive immune responses, including prolonged activation of the 

immune system through B cells5,10,13,34. Their small size, 20-100nm, allows them to pass easily 

through the lymphatic system and the membranes of Antigen Presenting Cells (APCs)34. VLPs 

also show a propensity for cell entrance similar to the natural functions of the virus9. Unmodified 

VLPs have been shown not to enter mammalian cells, while VLPs decorated with CPPs have 

been shown to enter cancerous cells35. Biocompatibility of VLPs makes them an attractive 

potential solution for targeted drug delivery in many disease models including diseases which 

affect specific tissues such as cancers.  
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VLP HK97 

This study utilizes Virus-Like Particle Honk Kong Isolate 97 (VLP HK97), a virus-like 

particle derived from a long-tailed bacteriophage and member of the Siphoviridae family which 

is known to infect Escherichia coli36. The wild type capsid consists of 415 copies of the gp5 coat 

protein which create its characteristic icosahedral structure.  This particle is ideal for further 

experimentation due to its well characterized assembly and maturation, its highly stable 

structure, and its biocompatibility. This VLP can be synthesized in two variations. The first of 

which is made through heterologous expression of only the gp5  coat protein which allows for 

the in vitro assembly of the HK97 pro-head structure which is approximately 60 nm in 

diameter35. This form of the VLP is highly stable, however, a stronger capsid can be made 

through the heterologous expression of both the coat protein gp5 and protease gp4 in vitro. The 

protease allows for the formation of a highly stable catenane structure of cross-linked subunits 

which increases the strength of the protein cage17,37-40. VLP HK97’s well characterized 

development in addition to its highly repetitive surface geometry make it a good candidate for 

precise manipulation35,41-43. Due to these characteristics, site specific genetic manipulations and 

chemical modifications can be carried out in a precise manner, including the external addition of 

CPPs and internal loading of drugs and other molecules.  

VLP HK97s relative size, 30nm, also makes it an attractive platform. Compared to other 

site-specific technologies available, viral particles are relatively small, allowing for entrance into 

numerous cellular spaces. This increases the immunogenicity of these particles as they can 

actively drain into the lymph nodes and can accumulate in specific tissues6,8,44,45. Relative to other 

VLPs of a similar size, VLP HK97 has a much larger internal space available for loading of 

drugs and other molecules. As compared to Cowpea chlorotic mottle virus (CCMV) and Red 
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clover necrotic mottle virus (RCNMV), two other VLPs currently under investigation, VLP 

HK97 has an internal capacity of 3.5 x 107 Å3 35. This is approximately 9x larger than the internal 

capacity of CCMV and nearly 6.9x larger than RCNMV35. Large amounts of internal space give 

VLPHK97 the potential to house high quantities of a given drug or molecule, allowing for less of 

the VLP itself to be administered.  

 

Zebrafish: a complementary system for nanomedical applications of VLP HK97 

 The use of the zebrafish as a multifaceted vertebrate model organism was pioneered by 

geneticist George Streisinger in the 1960s46. Drosophila melanogaster and Caenorhabditis 

elegans were the primary model organisms for genetics research at the time, however, a 

vertebrate organism was needed to move genetics research closer to the human model.  

In addition to being a useful model to genetics research, zebrafish lent themselves well to the 

field of developmental biology allowing for advances in nervous system development and 

patterning in the 1980s46-48.  

Zebrafish lend themselves well to scientific experimentation due to their high fecundity 

and rapid development. At just 48 hours post fertilization (hpf) the segmentation period has been 

completed and development of the circulatory system and nervous system has already begun to 

occur49. At 72hpf major organ systems of the body have been established and continue to 

mature49. From five days post fertilization (dpf), major cartilaginous structures are established in 

the fish and can be visualized via staining49,50. Their rapid and transparent development makes 

zebrafish highly efficient for laboratory testing.  

In addition to its numerous advantages in the lab, its highly conserved genome has 

allowed zebrafish to serve as excellent vertebrate model for comparative research. With 
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approximately 70% of the zebrafish genome possessing a human ortholog, zebrafish serve as a 

useful platform for evaluating a variety of human diseases and disorders51. The zebrafish has also 

become a useful model for high-throughput testing for acute toxicity of a variety of molecules 

including surfactants, nanoparticles, and common teratogens50,52,53.  Meta-analyses of acute 

toxicity studies in zebrafish have also shown the results to be predictive of outcomes in 

mammalian models including common toxicity screens for rats and rabbits54. The emerging body 

of work utilizing zebrafish as a high throughput platform for acute toxicity studies provides a 

platform for evaluation of novel drugs and foreign molecules, including VLPs. Because the 

synthesis of VLPs can be optimized to occur very quickly, capable of occurring in a matter of 

weeks, the zebrafish is ideal for equally rapid toxicity screens. The establishment of a baseline 

toxicity profile for unmodified VLP HK97 will allow for subsequent modifications of this 

particle, including the addition of CPPs, to also be assessed rapidly with a comparative baseline.  

 

Ideal Disease Models for VLP HK97: Rhabdomyosarcoma 

 While many well characterized disease models in zebrafish could benefit from increased 

site selectivity of drugs, cancer treatments are an important area for research due to the 

widespread and aggressive side effects that are associated with these types of drug treatments. 

Depending on the type of cancer being treated, side effects can range from short term ailments 

such as nausea, vomiting, fatigue, and hair loss to long term or life threatening ailments 

including increased susceptibility to infection, memory loss and overall cognitive impairment, 

damage to the heart and nerves, and potential infertility 2,55,56. VLP based nanocarriers hope to 

alleviate these symptoms by trafficking the drug directly to the diseased tissue. This strategy 

aims to alleviate unwanted side effects in two ways: firstly, by avoiding entrance of the drug into 
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healthy cells and secondly, by decreasing the amount of drug that needs to be administered to the 

patient.  

 Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and 

adolescents less than twenty years of age57. Although the specific etiology of this cancer is 

unknown, it is thought to originate in striated muscle tissue and is found in two major subtypes, 

Embryonal Rhabdomyosarcoma (ERMS) and Alveolar Rhabdomyosarcoma (ARMS)58. ERMS 

tumors generally develop in the head and neck or genital and urinary tracts. This subtype 

accounts for approximately 60% of all pediatric cancer diagnoses59. Although prognosis for this 

cancer has improved, multiple factors contribute to treatment success rates including the primary 

tumor site, number of metastatic sites, and age of the patient58.  

 A collection of RAS genes including H-RAS, K-RAS, and N-RAS are classified as proto-

oncogenes with gain of function mutations observed in approximately 25% of all human 

cancers60. These genes code for Ras proteins which govern cell proliferation, differentiation, and 

cell survival via the RAS/MAPK pathway61. Mutations in Ras genes can result in the over-

proliferation of cells i.e. cancer60. K-RAS is the most frequently mutated isoform accounting for 

85% of RAS mutations and is typically mutated at codon 1260,62. Moreover, activating mutations 

in Ras proteins including K-RAS mutations are associated with approximately 25% of ERMS 

patients59. Commonly associated with ERMS and other sarcomas, inducing K-RAS activating 

mutations in zebrafish provide a working disease model for ERMS59.  

 Characterized models of zebrafish embryonal rhabdomyosarcoma (zERMS) mimic 

human cancerous mutations and provide a relatively quick protocol for inducing tumorigenesis in 

the zebrafish model. Gene Set Enrichment Analysis and Microarray Analysis show high 

similarity to human ERMS with both morphological and clinical diagnostic similarities63. 
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Tumorigenesis can be achieved with relative ease in zebrafish using a mosaic transgenic method 

with microinjection at the one-cell stage59,63. Using this approach, tumor onset can be observed as 

soon as 10dpf, with an increase at 30dpf and 80dpf59,63. Tumorigenesis occurs relatively quickly 

in the zebrafish as compared to conditional knock ins in murine models which can take as long 

as 300 days for tumor onset to occur depending on the system used63. Zebrafish provide a highly 

functional and clinically similar model of ERMS which can be utilized to test potential targeted 

therapies like VLPs.  

 Currently, radiation and chemotherapy remain the first line of treatment along with 

localized surgical procedures64. Systemic circulation of chemotherapeutics for treatment of this 

disease results in deleterious effects throughout the body in addition to their effects on cancerous 

cells. A Therapeutic Index (TI) is a metric which provides a comparison of the portion of 

therapeutic effect provided by a drug versus its toxic effects. Current TIs chemotherapeutics 

remain difficult to quantify due to the use of combination therapy for drugs and a lack of 

established concentration ranges65,66. However, TI for current cancer treatments is estimated to be 

relatively low due to the vast side effects associated with cancer drugs. Application of VLPs in a 

cancer model could potentially increase the TI for commonly used chemotherapeutics for RMS 

due to cell-specific trafficking of the drug and increased immunogenicity provided by the VLP 

platform. 

 

VLP Design Strategy  

 In order to utilize VLP HK97 as a potential delivery mechanism for a variety of disease 

models in zebrafish including zERMS, a baseline toxicity profile must be established to 

determine if components of the VLP may be cytotoxic. Initial toxicity experiments were 



 11  

performed with unmodified VLP HK97. For localization experiments, Fluoroscien (FITC), a 

green fluorophore, was conjugated to the internal surface of the VLP for tracking via fluorescent 

microscopy. To test cell-specific targeting, a tripeptide motif Arg-Gly-Asp (RGD) was externally 

linked to VLP HK97.  

The cell-specific trafficking strategy relies on the upregulation of RGD recognizing 

integrins on cancerous cells. Integrins are a family of cell-surface receptors which aid in cell 

interactions with the extracellular matrix. Bidirectional signaling pathways triggered by integrin 

binding serve a variety of functions including arrangement of the actin cytoskeleton and 

regulation of cell processes including differentiation, growth, and survival67. Aberrations in 

integrin signaling observed in cancerous cells have been shown to promote cell survival and 

invasiveness as well as support the microenvironment which allows the tumor to grow and 

metastisize68. Upregulation of integrin receptors has been shown to occur in many cancer types, 

making them an ideal site for cell-specific targeting69. RGD specifically has been observed in 

binding eight distinct dimers of the integrin family, αvβ1, αvβ3, αvβ5, αvβ6, αvβ8, α5β1, 

α8β1, and αIIbβ370. This subgroup of receptors is influential in the functioning and metastases of 

cancerous tissue. Additionally, upregulation of several integrin subtypes has been observed in 

multiple cancer types including sarcomas71,72.  

Exploiting structural and physiological aberrations of cancerous tumors can also be used 

to increase the trafficking of a given chemotherapeutic to the desired target area. Vasculature 

characteristics unique to solid tumors include hypervascularization, increased permeability or 

blood vessels, and decreased lymphatic draining73. The Enhanced Permeability and Retention 

(EPR) effect is a phenomenon observed in nanoscale molecules accumulating in cancerous 

tissue. This effect is believed to occur due to a variety of factors including the ability for these 
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particles to extravasate through the increased and leaky vessels in tumors and remain there due to 

decreased lymphatic drainage74. However, it is necessary to mention that opinion in the field 

varies greatly on the true influence of the EPR effect in nanomedical applications in cancer. Cell-

specific targeting of VLP HK97 to RMS tissue hopes to be accomplished via the RGD motif and 

exploitation of the EPR effect.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Design strategy for cell-specific targeting and localization of VLP HK97. Unmodified VLP 
HK97 (left) was internally loaded with FITC for localization via fluorescent microscopy (middle). 
Addition of the RGD motif (right) will drive the particle to cancerous tissue with upregulated integrin 
receptors 
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Chapter 2 

 Materials & Methods 

 

Zebrafish Housing & Husbandry 

Adult farm raised wild-type (WT) zebrafish were housed in a continuous flow circulating 

system (AHAB) and maintained on a 14-10 light/dark cycle at 28°C in reverse osmosis (RO) 

purified water (pH 7.4) salted with Instant Ocean Sea Salt to a salinity of 1.0 µS75. Fish are fed 

brine shrimp twice daily and kept in accordance with the University of Texas at Tyler IACUC 

protocol (IACUC Protocol #112). 

For breeding, six zebrafish were placed in a breeding tank which allowed embryos to fall 

into a protected area for retrieval. All embryos used for experiments were kept in E3 medium 

and housed in a 28°C incubator75.  

 

Synthesis of VLP HK97 

The synthesis of VLP HK97 and all modifications for these experiments were carried out 

by the Patterson Lab at the University of Texas at Tyler. HK97 VLPs were produced via 

heterologous expression in E. coli and subsequent purification via centrifugation and size 

exclusion chromatography (SEC) to isolate the desired product. Dynamic Light Scattering (DLS) 

was then used to confirm the identity of the desired product. Subsequent modifications include 

the internal loading of FITC. In addition, an RGD VLP HK97 was made by modification of the 

gene encoding GP5 with the RGD peptide sequence, which was subsequently labeled after 

purification for the studies in the same manner as WT VLP HK97. 
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Synthesis of rag2:kRASG12D & rag2:DSRED 

 Heterologous expression of rag2:kRASG12D and rag2:DSRED was carried out in E.Coli, 

provided by Dr. Eleanor Chen of the University of Washington. One colony of each bacterium 

was transplanted separately into 5ml of Luria Broth Media along with 10µl of Ampicillin. 

Cultures were incubated at 37°C for a maximum of 16 hours. Bacterial cells were harvested via 

tabletop centrifugation and plasmids were purified using the QIAGEN Plasmid DNA 

Purification Miniprep Kit. After purification, plasmids were linearized by restriction digest at the 

Xho1 restriction site using the New England Biolabs Cutsmart protocol76. Linearized DNA was 

then purified using the Monarch PCR & DNA Cleanup Kit. Isolation and linearization of the 

product was confirmed via Gel Electrophoresis. Concentration of each sample was determined 

via NanoDrop in ng/µl. Samples exceeding desired ranges for 260/280 and 260/230 ratios 

according to Thermo Scientific were excluded from use in experiments77. Pure DNA was then 

diluted and used for injection in WT embryos. Original plasmids were obtained from the lab of 

Dr. Eleanor Chen.  

 

 

 

 

Figure 2. Plasmid maps depict the ampicillin resistant E.coli vector expressing either rag2:KRAS12D 
(left) or rag2:DRED (right) in addition to the Xh01 restriction site.  
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Embryo Collection & Injection 

 Fertilized zebrafish embryos were collected within thirty minutes post fertilization 

initiated by the onset of a 14/10 light-dark cycle. For generation of tumors in WT zebrafish, 

increasing doses from 1.5 nl to 6.0 nl of ~80 ng/µl rag2:KRAS was injected into the single cell 

of the embryo using a microinjector and a PV830 Pneumatic PicoPump. Zebrafish were then 

incubated in E3 Medium and transferred to an AHAB system until mature75.  

Embryos for toxicity experiments were collected in the same manner and injected at the 

single cell stage into the yolk with VLP HK97 at increasing doses from 0 nl to 6.0 nl. A dosage 

curve was performed with pilot trials determining injection concentrations of 1.0 mg/ml, 0.75 

mg/ml, 0.5 mg/ml, 0.25 mg/ml and 0.1 mg/ml VLP HK97. One-hour post injection, embryos 

were evaluated. Those not exhibiting cell division were removed, while other embryos were 

reserved and incubated at 28°C for further evaluation and experimentation75.  

 

Toxicity Profile 

 Viability Screening 

The number of viable embryos were counted post injection at 0 dpf and again the 

following morning at 24 hpf. The mean viability for each trial dose was 

normalized to the viability of the controls for each biological replicate and then 

combined. Total mean viability was then determined for each dosage.  

 Morphological Toxicity 

  Multiple parameters of morphological toxicity were evaluated from 1 dpf to 5 dpf   
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  according to standards established by previous acute toxicity assays and     

  Zebrafish: Methods for Assessing Drug Safety and Toxicity50. At 1 dpf through  

  5 dpf , all major structures including the head, eye, heart, tail, and yolk sac were  

  examined for any major morphological aberrations. At 1 dpf, the morphological  

  age of the larval fish was compared to its temporal age (24 hpf) to determine if  

  any developmental delay was exhibited. At 3 dpf, presence or absence of   

  melanocytes was recorded. At, 4 dpf morphology of major structures previously  

  mentioned was again monitored and recorded. At 5 dpf, larval zebrafish were  

  fixed overnight in 4% paraformaldehyde on a benchtop rocking shaker. The  

  following day, fish were stained in Alcian Blue following protocol retrieved from  

  the Zebrafish Information Network (ZFIN)78. Cartilaginous structures were then  

  examined via bright field microscopy using a Zeiss Axioskop and imaged with a  

  Sony digital camera. 

 Physiological Toxicity 

  At 3 dpf, the heartbeat of zebrafish was recorded for twenty seconds and   

  extrapolated for a measurement in beats per minute (BPM). Measurements were  

  normalized to the control for each biological replicate and then combined for each 

  dosage.  

 Neural Toxicity 

  Central Nervous System functionality was examined via a “tap-elicited swim test” 

  in which a small brush was used to graze the top of the head of each fish. A rapid  

  aversion resulting in the fish swimming away from the stimulus was considered a  

  “normal” response or non-toxic phenotype.  
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VLP HK97 Localization  

 Embryonic Localization 

Zebrafish embryos were collected and injected into the yolk at single-cell stage 

with increasing doses of either 0.25 mg/ml VLP HK97:FITC or 0.25 mg/ml VLP 

HK97:FITC:RGD. Embryos were house in a 28°C incubator in E3 medium until 

5hpf or the 50% epiboly stage. Embryos were mounted in 70% glycerol according 

to The Zebrafish Book protocol and analyzed using a Zeiss Light Scanning 

Microscope 5 Pascal75. Entrance of the VLP from the yolk into the developing 

animal as well as uniformity of the distribution was monitored. Fluoresence was 

quantified using image J software79. 

 Larval Localization 

Larval zebrafish (2 dpf) were soaked in microcentrifuge tubes containing 3 nl of 

system water and 3 nl of either 0.25 mg/ml VLP HK97:FITC or 0.25 mg/ml VLP 

HK97:FITC:RGD. After two hours of soaking, larval zebrafish were removed 

from the microcentrifuge tubes and imaged via fluorescent microscopy using a 

Zeiss LSM 5 Pascal microscope.  

 Adult Localization 

Adult zebrafish were soaked overnight in a 1:50 ml dilution of ~2.0 mg/ml VLP 

HK97:FITC in system water. The following morning zebrafish were euthanized in 

cold water according to (IACUC Protocol #112). Zebrafish were then set in a 7% 

agarose block and nine transverse cuts were made from the anterior to posterior 

axis of the fish (Figure 3). Dorsal and ventral regions of individual sections were 
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then imaged using a Zeiss LSM 5 Pascal confocal microscope. Fluorescence of 

these images were analyzed and quantified using Image J software79.  

 

 

 

Data Analysis 

 Data and images were analyzed using the following software programs: Microsoft Excel 

for Mac Version 16.20, GNU Image Manipulation Platform (GIMP), and Graph Pad Prism for 

Windows80-82.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Sectioning schema for adult zebrafish treated with VLP HK97.  
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Chapter 3 

 Results 

 

Toxicity Profile 

Farm-raised WT zebrafish embryos were collected and injected into the yolk with 

varying concentrations of VLP HK97 at the one cell stage. Embryos were kept in E3 medium in 

a 28°C incubator and observed daily until 5 hpf. Viability, morphology, as well as physiological 

and behavioral parameters were measured and recorded daily to establish baseline toxicity for 

unmodified VLP HK97.  

 

Viability Screening  

  

 

 

Figure 4. Viability of embryos at 1 dpf following injection of unmodified VLP HK97 at 0.1 mg/ml and 
0.25 mg/ml. 0.25 mg/ml: F(4,17) = 4.510, P=0.0290    * = 0.0404. 0.1 mg/ml: F(4,10) = 2.518, P=0.1077 
 
  

* 
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At an injection concentration of 0.25 mg/ml VLP HK97, an inversely proportional 

relationship between injection volume and viability is observed. Four biological replicates were 

recorded with approximately 30 embryos per group per injection dose. Biological replicates were 

normalized to their respective controls and then grouped for analysis. At this concentration, a linear 

relationship was observed and an LD50 of 2.08ng was extrapolated from a linear regression. An 

adjusted dose of 0.1 mg/ml was also tested. Three biological replicates were observed with 

approximately 50 embryos per injection dose. Biological replicates were normalized to their 

respective controls and then grouped for analysis. An average viability of 89% across at 1dpf was 

observed across all injected embryos. With a minimum of 88% and a maximum of 91% viability 

observed.  

 

 

 

  

Single celled embryos injected with increasing doses of VLP HK97:RGD:FITC. A linear 

regression allows for the extrapolation of an LD50 of 0.0413ng.  

Figure 5. Viability measures after the addition of the RGD cell targeting peptide decreases the amount 
of VLP that can be injected before reaching the LD50 of 0.0413ng. F(4,5)=10.46 P=00120  *=0.0130 
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Morphological Toxicity 

 

  

 

Larval zebrafish were observed at 24 hpf. Their temporal age was compared to their 

morphological age using the developmental clock provided by The Zebrafish Book as a metric75. 

Discrepancies in morphological age from temporal age indicate developmental delay. 10 

embryos were examined for each dose and three biological replicates were examined. Each 

biological replicate was normalized to their respective control and combined for analysis. At an 

injection concentration of 0.25 mg/ml VLP HK97, a significant decrease in morphological age 

was observed in treated fish beginning at a dose of 1.125 ng VLP HK97 (P<0.0001) . At the 

adjusted concentration of 0.1 mg/ml VLP HK97 all fish were recorded as having a 

morphological age of 24 hpf indicating no developmental delay.  

 

Figure 6. Developmental delay measured by assessing morphological age is not observed in larval 
zebrafish injected with increasing doses of 0.25mg/ml unmodified VLP HK97 at the one cell stage. 
0.25mg/ml: F(4,208) = 8.244, P<0.0001  *** = .0005 **** = <.0001  
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At 1dpf, ten larval zebrafish were randomly selected from each injection volume and 

subsequently dechorionated. Three biological replicates were observed and normalized to their 

respective controls before being combined for data analysis. Larval fish were examined for 

morphological aberrations including tail deformities. At an injection concentration of 0.25 mg/ml 

VLP HK97, a significant increase in tail deformities was only observed at the highest injection 

volume, 6.0nl (1.5ng VLP HK97) (P=0.0285). Uniformity in tail aberrations was not observed. 

Both forward and backward bends were observed. At the adjusted dose of 0.1 mg/ml VLP HK97, 

no tail deformities were observed across trials.  

  

 

 

 

 

Figure 7. Tail deformities are observed at the highest injection dose (1.5ng) at 1dpf after injection 
of increasing doses of 0.25mg/ml unmodified VLP HK97, F(4,17)=2.892, P=0.0539  * = 0.0285 
(left) . No toxic phenotypes are observed at all other injection doses(left). Two fish exhibiting tail 
deformities after injection with 1.5ng VLP HK97 as compared to WT controls (right).  

WT 

1.5ng 
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At 2 dpf, ten larval zebrafish from each injection dose were randomly selected,  

dechorionated, and observed for various morphological aberrations. At an injection concentration 

of 0.25 mg/ml unmodified VLP HK97, a significant increase in clouding in the pericardial 

region, assumed to be cell death, was observed in treated fish beginning at an injection volume of 

3.0 nl (0.75 ng VLP HK97) and continuing to the highest injection volume, 6.0 nl (1.5 ng VLP 

HK97) (P=0.004). The circled region indicates the heart and pericardial region of the larval 

zebrafish (B) in addition to a magnified view of this same region (C). At the adjusted dose of 0.1 

mg/ml, no significant increase in pericardial cell death was observed across doses, 

F(4,10)=0.6250 P=0.6554. 

 

Figure 8. Pericardial cell death is observed at high injection observed at 2dpf after injection of 
0.25mg/ml unmodified VLP HK97 at the one cell stage, 0.25mg/ml: F(4,17)=9.044 P=0.004  
*=0.0261 **=0.0046 ***=0.003 (A). Bright field images of the heart and pericardial region of WT 
and treated fish. Magnification of the heart and pericardial region (C).  

A C B 

WT 

0.75ng 
VLP 
HK97 

0.25mg/ml: 
F(4,17)=9.044 
P=0.004  *=0.0261 
**=0.0046 ***=0.003 

0.1mg/ml: 
F(4,10)=0.6250 
P=0.6554 

W
0.

75
ng
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At 5 dpf, ten zebrafish from each injection dose were randomly selected, euthanized and 

fixed in 4% paraformaldehyde solution overnight and subsequently stained in Alcian Blue for 

observation of  cartilage in the larval zebrafish. Zebrafish were then observed using bright field 

microscopy for any differences in cartilage development across trials. Major structures shown 

here include Meckel’s second arch structures (m), Ceratohyal (Ch), and Ceratobranchial (Cb) 

structures. Qualitative analysis indicates no differences in cartilaginous structures of developing 

zebrafish between treated fish and uninjected controls (n= 50).  

 

 

 

 

 

 

Figure 9. Alcian blue stain reveals no deformities of major cartilaginous structures in zebrafish at 5dpf 
after injection of unmodified VLP HK97 at the one-cell stage shows no toxic phenotype in treated fish. 
Meckel’s structures (m), Ceratohyal (Ch), and Ceratobranchial (Cb) structures are notated. 

WT 0.75ng VLP HK97 
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Physiological Toxicity 

 

 

 

At 3 dpf, ten zebrafish from each injection volume were randomly selected, 

dechorionated, and heart rate (HR) in beats per minute (BPM) was recorded. Three biological 

replicates were observed and data was normalized to their respective controls and subsequently 

combined for analysis. At an injection concentration of 0.25mg/ml unmodified VLP HK97, no 

significant difference in HR was observed between uninjected controls and treated fish. 

Similarly, at the adjusted concentration of 0.1mg/ml unmodified VLP HK97, no significant 

difference in HR was observed between treated fish and uninjected controls.  

 

Neural Toxicity 

All zebrafish injected with increasing doses (0nl -6.0nl) of 0.25mg/ml unmodified VLP 

HK97 passed the tap-elicited swim test resulting in a positive response (n=30). All zebrafish 

injected with increasing doses of 0.1mg/ml VLP HK97 also passed the tap-elicited swim test 

resulting in a positive response (n=30).  

 

Figure 10.  Injection of unmodified VLP HK97 at increasing dosages shows no toxic effects on 
heart rate in Danio rerio. 0.25 mg/ml F(4,207)=2.602 P=0.0371 (left). 0.1 mg/ml F(4,143)=1.701   
P=0.1530 (right). 
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 Developmental 
Delay 

Tail 
Deformity 

Eye 
Deformity 

Pericardial 
Cell Death 

Heart Rate 
Aberrations 

Tap-elicited 
Swim Test 

Craniofacial 
Malformations 

0.1 
mg/ml 

not observed not observed not observed not observed not observed not observed not observed 

0.25 
mg/ml 

observed ³ 
1.125 ng 

observed ³ 
1.5 ng 

not observed observed  ³ 
0.75 ng 

not observed not observed not observed 

 

 

 

VLP HK97 Localization 

 Embryonic Localization 

Localization of VLP HK97:FITC in 5 dpf Zebrafish Embryos 

 

 

 

 

  

Figure 11. Injection of single cell embryos with FITC labeled VLP HK97 shows uniform entrance of 
the particle into the developing tissue of the animal (bottom). Bright field images of each embryo are 
also provided (top). 

Table 1. Summary of the toxicity profile indicates no toxic phenotypes are observed at biologically 
relevant doses of unmodified VLP HK97.  Two concentrations in the dosage curve are highlighted, 
0.25mg/ml and 0.1mg/ml.  

Summary of Toxicity Profile of Unmodified VLP HK97 

Developing 
animal 

Yolk 
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Zebrafish embryos were injected into the yolk with varying doses of 0.25 mg/ml VLP 

HK97:FITC at the one cell stage. Embryos were stored in a 28°C incubator until 5 hpf or 50% 

epiboly was reached. At 5 hpf, embryos were analyzed using bright field and fluorescent 

microscopy. Bright field images (Figure 11, top) of the 5 hpf embryos are shown along with the 

fluorescent image of the same embryo (Figure 11, bottom). Images indicate entrance of the 

nanoparticle into the tissue of the developing embryo from the yolk.  

 

Localization of VLP HK97:FITC:RGD in 5 dpf Zebrafish Embryos 

 

 

 

Figure 12. The addition of the RGD cell targeting peptide results in non-uniform entrance of the 
particle into developing tissue of the animal (bottom). Corresponding bright field images of the 5hpf 
embryos (top).  

 Developing 
animal 

Yolk 
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Zebrafish embryos were injected into the yolk with varying doses of 0.25 mg/ml VLP 

HK97:RGD:GFP at the one cell stage. Embryos were stored in a 28°C incubator until 5 hpf or 

50% epiboly was reached. At 5 hpf, embryos were analyzed using bright field and fluorescent 

microscopy. Bright field images (Figure 12, top) of the 5 hpf embryos are shown along with the 

fluorescent image of the same embryo (Figure 12, bottom). Images indicate entrance of the 

nanoparticle into the developing tissue from the yolk. Non-uniform grouping of the nanoparticle 

is also observed in the lateral portions of the developing tissue.   

 

Larval Localization 

Larval zebrafish (2 dpf) were soaked for two hours in 0.25 mg/ml VLP HK97:FITC:RGD 

and subsequently imaged via fluorescent microscopy. Results indicate localization of the 

particle to known areas of integrin expression in larval zebrafish.  

 

 

Figure 13. Percentage of embryos which exhibit non-uniform distribution of VLP 
HK97:FITC:RGD in the developing animal.  



 29  

 

 

Localization of VLP HK97:FITC in 2 dpf Larval Zebrafish 

 

   

 

 

 

 

 

Figure 14. VLP HK97:FITC:RGD localizes to known regions of integrin expression in larval zebrafish 
including the otic vesicle and junction between the yolk sac and developing animal.  

VLP:FITC:RGD  

WT  

Head  Otic Vessicle  Yolk Sac  

Figure 15. VLP HK97:FITC:RGD localizes to known regions of integrin expression in larval zebrafish 
including the somites.   
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Adult Localization 

  

 

 

No significant difference is observed across sections, dorsal (D) and ventral (V), between 

 treated fish and untreated controls.  

 

zRMS Tumorigenesis 

 

 

 

 

 

 

 

Figure 17. Successful induction of tumorigenesis (circled) in zebrafish using 
linearized KRAS vectors.  

Figure 16. VLP HK97 does not localize to specific body regions after overnight treatment in 
adult zebrafish 



 31  

 Farm-raised WT zebrafish embryos were injected with linearized rag2:KRAS DNA to 

drive the formation of RMS tumors in the tail region of the zebrafish. Through this method 

tumorigenesis was observed indicated by the circled regions.  
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Chapter 4 

Discussion  

 VLPs provide a promising new platform for cell-specific targeting of drugs and other 

molecules due to their ease and safety in preparation, natural immunogenic properties, and 

inherent biocompatibility. Establishing a basis for testing VLPs and their various modifications 

in zebrafish will provide a complementary platform for VLPs to be modified and tested rapidly 

in the wide variety of disease models characterized in Danio rerio.  

 

Toxicity Profile  

 Unmodified VLP HK97 

 A comprehensive baseline toxicity profile of VLP HK97 in Danio rerio reveals that 

unmodified VLP HK97 is non-toxic at below the dose of 0.75ng  (Table 1). In vitro studies 

evaluating entrance of unmodified VLP HK97 in Hela cell and mouse fibroblast lines also did 

not report cytotoxicity of the particle35. Viability assays reveal an LD50 of 2.08ng VLP HK97 

with toxic effects only being observed at high doses of 0.25 mg/ml VLP HK97 (Figure 4). An 

adjusted concentration of 0.1 mg/ml VLP HK97 shows no significant difference in viability 

between treated fish and uninjected controls (Figure 4). Examination of morphological 

characteristics of major structures in larval zebrafish up to 5 dpf indicate that unmodified VLP 

HK97 induces little to no toxic effects in the zebrafish at biologically relevant doses (Figure 6-

10). Toxic phenotypes including tail deformities and pericardial cell death were observed, 

however only at high doses of 0.25 mg/ml VLP HK97 (Figure 7-8). Physiological and neural 

toxicity parameters indicate no significant differences between treated fish and uninjected 

controls (Figure 10). Other in vivo toxicity studies using other non-mammalian derived VLPs 
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like cowpea mosaic virus (CPMV) have shown doses up to 100mg/kg of body weight to be non-

toxic in mouse models83. On average, a dry larval zebrafish has been recorded to weigh between 

58 and 79 µg when measured across multiple time points from 0 hpf to 96 hpf84. These time 

points used for weight measurements mimic the time frame used for toxicity assays in this study. 

From these biometrics, it is inferred that a range of 1.29 ng/µg to 0.95 ng/µg is not toxic in 

zebrafish across the time points examine (0 hpf – 96 hpf). This baseline toxicity profile 

establishes VLP HK97 as a promising candidate for cell specific delivery as it is non-toxic at 

biologically relevant doses in Danio rerio.  

 

 VLP HK97:FITC:RGD 

 VLP HK97:FITC:RGD is toxic to larval zebrafish beginning at much lower doses than 

the unmodified particle (Figure 5). In conjunction with localization experiments, it can be 

inferred that a nonuniform dispersal of the particle may be causing this result. Trafficking of the 

particle to cells expressing integrin receptors in the early stage embryo may be causing the 

collection of VLP HK97 in specific cell types rather than diffusing throughout the embryo. This 

agrees with the hypothesis that increased localization will decrease the amount of drug needed to 

be administered to a patient. Co-localization assays should be performed to confirm the modified 

VLP in localizing to known integrin subtypes in the embryonic zebrafish.  

In zebrafish models with diseased tissue, RMS for example, it is hypothesized that VLP 

HK97:FITC:RGD will be driven towards the cancerous tissue with upregulated integrin 

receptors85. Upregulation of the integrin receptors will create a preference for the modified VLP 

to enter the cancerous cells, increasing the site selectivity of the encapsulated chemotherapeutic 
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agent. This will result in an increase in the amount of target tissue reached and drug released thus 

decreasing the amount of VLP that needs to be administered initially.  

 Cytotoxicity of the modified particle may be another potential explanation for the 

decreased LD50 of VLP-RGD. A previous in vitro study concluded that unmodified VLP HK97 

did not interact with Hela Cells or mouse fibroblast cells35. Upon the addition of the cell-

targeting peptide, transferrin (tf), the VLP was uptaken into both cell lines with a preference for 

the Hela cells35. Further assays must be performed to determine if the RGD peptide is directly 

responsible for cytotoxicity in the zebrafish embryos.  

 

VLP HK97 Localization 

 Embyronic Localization 

 Embryonic injection of VLP HK97:FITC and analysis at 5 hpf indicate entrance of the 

nanoparticle into the developing tissue from the initial injection site in the yolk of the embryo. 

Uniform entrance of VLP HK97:FITC into the developing tissue of the embryo is also observed 

(Figure 11). This indicates that unmodified VLP HK97 can be injected into the yolk at the one 

cell stage and easily pass into the developing tissue. This is beneficial for both research and 

clinical applications. In the research setting, yolk injections are often easier and quicker to 

achieve than direct cell injections. Injection of future VLPs and their modifications can be tested 

more efficiently and accurately via simple yolk injections. These findings are also clinically 

relevant because they indicate no preference for unmodified VLP HK97 into specific tissues. 

This provides an unbiased platform which can then be driven to specific cell types by utilizing 

cell targeting peptides affixed to the external surface of the VLP.  



 35  

 Repetition of this assay utilizing VLP HK97:FITC:RGD indicates non-uniform entrance 

of the particle from the yolk into the developing tissue (Figure 12). We hypothesize the addition 

of the cell targeting peptide is driving the particle to accumulate in specific subsets of cells 

beginning in the early embryo. Most notably, at a 12 nl injection volume a collection of the 

particle is observed at the junction between the yolk and the developing animal which is a known 

site of integrin expression in embryonic zebrafish86.  

 

 Larval Localization 

 Soaking larval zebrafish in VLP HK97:FITC:RGD helped to confirm localization results 

found in embryonic zebrafish. Distinct regions of localization of the particle are observed in the 

head region of the fish which was not observed in WT zebrafish (Figure 14). The RGD motif 

affixed to the external surface of the VLP is known to bind over twenty integrin subtypes 

including  αvβ3, αvβ5 and α5β170,85,87,88. The vast binding capability of RGD to multiple integrin 

subtypes makes it a promising candidate for targeting cancerous cells and multiple integrin 

subtypes have been shown to be upregulated in a variety of different cancer types69. Individual 

cancer cell types can also express integrin subtypes differentially68. This has been shown to be 

true of sarcomas specifically with beta subtypes72. Characterizing the zRMS tumors and 

determining which integrin receptors are dysregulated is a key step to moving forward with using 

RGD as a CPP in this model.   

  Most notably in these experiments, increased localization is seen in known areas of 

integrin expression in larval zebrafish including the otic vesicles, somite boarders, and the 

junction between the yolk and developing animal which was mimicking in embryonic assays 

(Figure 14-15)86. Localization seen in this study mimics in situ studies identifying areas of 
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integrin expression in larval zebrafish78,86. These findings indicate that the RGD motif may be a 

promising candidate for directing the particle to cancerous cells with upregulated integrin 

receptors. Colocalization assays should be done to ensure that areas of particle localization 

overlap areas of integrin expression at different time points in the zebrafish life cycle.  

 

 Adult Localization 

 Unmodified VLP HK97:FITC was administered adult zebrafish via soaking overnight. 

Treated zebrafish were subsequently euthanized and sectioned and analyzed using fluorescent 

microscopy (Figure 3). Analysis of the fluorescence intensity reveals no significant difference 

between WT controls and treated fish (Figure 16). Initial examination indicates that 

accumulation of the unmodified particle is not occurring in any specific tissue or transection. 

However, variation in data points among controls indicates this method may not be effective for 

assessing fluorescence comparatively. Issues with autofluorescence due to tissue shearing may 

be causing these results. Other sectioning methods that prevent tissue shearing could be  

potential solutions to this problem. Further analysis including additional time points is needed to 

determine if the particle could potentially accumulate if left for a longer period of time in the 

adult zebrafish.   

 

Rhabdomyosarcoma Model in Zebrafish 

 Tumors were successfully generated through direct cell injections of rag2:KRAS DNA 

(Figure 17). This method will provide a model to assess the efficacy of RGD as a candidate for 

trafficking VLPs to cancerous tissue.  
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 Currently, expression of various integrin subtypes has begun to be characterized in 

zebrafish however full profiles of integrin expression in early stage embryos have not been 

completed75. Further exploration of integrin expression in early stages is needed to assess 

targeting of VLP HK97:FITC:RGD. Further characterization of the zebrafish RMS model is also 

need to increase the efficacy of VLP targeting as well as the accuracy of these assessments. 

Identifying key integrin subtypes upregulated in this particular model will provide insight into 

the site selectivity that could be achieved via RGD in this model. If upregulation of specific 

integrin subtypes are identified in this specific cancer model, the potential for a more finely 

tuned VLP may arise through targeting of specific integrin subtypes.  

 Application of the targeted VLP HK97:RGD in the zRMS model is also necessary to 

assess the efficacy of the nanoparticle as a potential drug delivery system. These experiments 

have shown this VLP’s propensity for cell entrance and the potential for RGD as an efficacious 

cell-targeting peptide. Accumulation of this particle in cancerous tissue in the zRMS model 

would indicate integrin receptors are a feasible target for trafficking these particles to disease 

tissue and avoiding death of healthy cells.   
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