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Abstract  

This thesis reports PlantFit: a research and development project that is intended to develop wearable 

sensors for plants. Plants are responsible for providing food, fiber, fuel, and fodder to the society. To 

overcome the problem of a limited land base, a more efficient farming approach needs to be developed, 

and thus precision farming is required. Precision farming would entail personalized healthcare in plants. 

When the plant is under any stress, the productivity declines. Plants release phytohormones, also known 

as early responders, in response to these stressors. The key crop phytohormones that respond to 

environmental stresses include salicylic acid (SA), indole-3-acetic acid (IAA), and ethylene (ET). While 

SA and IAA are liquid phytohormones, ethylene is a gaseous phytohormone. In this research, we have 

developed wearable sensors to detect SA, IAA, and ethylene phytohormones at different parts of plants 

such as leaf, stem, and fruit. The sensors are tested under different physical conditions, and it was found 

that the sensor response is reliable with a coefficient of variance of less than 5%. The developed sensor 

shows a high degree of sensitivity and selectivity. The sensor was deployed in live plants to measure 

hormone levels in real-time. The sensors will find a widespread use and will be useful in measuring plant 

stress early and in real-time, which will help farmers in taking immediate measures to reduce stress-

induced yield decline. In addition, biologists can use the sensors to develop plant species that can cope 

with adverse environmental conditions such as drought and flood.    
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Chapter One  

  
Introduction  

  
Plants play a critical role in preserving ecosystem and preventing climate change by maintaining carbon 

cycle and water balance [1]. In fact, crops provide food which is associated with food security and nutrition 

for the society [2].  In recent years, transgenic crops, preservation of biodiversity, and sustainability in 

agriculture are adopted to cope with unprecedented economic and population growth. However, almost 

690 million people fell in the state of hunger in 2019 and this number was 10 million more compared to 

2018 and 60 million more compared to 2014. In addition, food price has experienced substantial instability 

in the recent years due to the COVID-19 outbreak [3]. Additionally, food security is challenged 

significantly by climate change such as natural disaster and extreme weather conditions [4] because they 

contribute to several contagious plant diseases. Because of biological and environmental stresses on plants, 

the crop productivity declines, which causes agricultural losses [5]. To be more specific, the biological 

stressors include pathogens [6-8] and pests attack [9], while the environmental stressors include flood [10], 

drought [11], heat wave [12] and icing [13]. These stressors are the main reasons for the deterioration of 

the plant health and losses in the productivity. 

   

Various technologies have been employed to detect crop stresses including proximal optical sensor for 

monitoring N2 deficiency [14], image-based plant disease detection [15] and smartphone-based techniques 

[16]. Although these techniques have proven their efficacy, they are not suitable for field applications 

because of lacking discrete monitoring capability, lower sensitivity and specificity, and transformation and 

reconstruction complexity. Remote sensing is an alternative methodology to conduct plant health 

monitoring [17]. Another very effective and promising approach of plant health monitoring is 
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electrophysiological detection of water stress and plant rhythm [18]. However, very few sensing 

technologies have been reported for personalized monitoring of biotic and abiotic stresses in plants.  

    

Although wearable sensing technology has been used to enhance quality of life in humans by health 

monitoring [19-24], personalized diagnosis of health conditions [25-31], and human machine interface 

(HMI) [32-35], the technology is heavily unexplored in agriculture. To date, very few sensors are reported 

for plants [36]. Sensors can be placed in different plant organs including stem and leaves [37, 38]. Different 

organs of the plant serve different purposes and hence, multiple sensors are needed for monitoring varying 

physiology of plants. For instance, the primary function of roots is to collect water and various nutrients 

while the role of stem is to transport the water and nutrients to the leaves [38-39]. In addition, various gas 

exchanging mechanism such as the emission of volatile organic compounds, CO2, O2 and water vapor is 

primarily handled by small pores in leaves known as stomata [40,41]. Thus, to monitor plant health, various 

parameters need to be measured and analyzed. Plants release phytohormones in response to various abiotic 

and biotic stress conditions. Thus, the levels of these phytohormones, such as salicylic acid (SA), indole-

3-acetic acid (IAA) and ethylene (ET), indicate and quantify the level of environmental stresses on plants. 

In addition, continuous monitoring of these phytohormones will allow personalized treatment for plants.  

[42].  

 

In summary, we report a wearable sensor suite that monitors plant’s fitness under various stress conditions. 

In the future, these stress levels will be reported to existing agricultural equipment to automate precise and 

efficient use of resources (e.g., nutrients, water, and pesticides).   
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Chapter Two  

  
Overview of the Thesis  

  

  
This section first provides a review of previous research, then defines the problem statement and finally 

reports our contribution to solve the problem.  

2.1 Literature Review:  

Considering the available sensing methodologies, electrochemical detection is a promising technique for 

the detection of signaling phytohormones in live plants. Electrochemical sensing is more favorable because 

of several aspects including the reliability, repeatability, accuracy and controlled sensitivity. In addition, 

the ease of preparation of the electronics at low cost with higher response time makes the electrochemical 

techniques stand out from other techniques [43]. Guided by these aspects, we have implemented 

electrochemical sensor-based phytohormone detection. We used functional nanomaterials to increase the 

analytical performance of the electrochemical biosensors [44]. The electrocatalytic capability of 

conductive materials was combined with redox reactivity of carbon-based nanomaterials [45, 46].  

 

Recently, paper based electrochemical sensors are reported to detect hydrogen peroxide and salicylic acid 

in tomato plants infected by certain pathogens (Botrytis cinerea) [47, 48]. Salicylic acid helps in plant 

defense and immunity [49-51]. However, the detection mechanism involves punching a hole in the leaf. 

Other existing technologies involve extracting and cutting leaves, which incurs a destructive sample 

collection procedure [52]. 

 

Another research group proposes insertion of a sensor inside the fruit so that real time measurement of 

metabolites is possible; more specifically real time tryptophan is detected which plays a vital role in 
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biosynthesis of auxins [53-55]. A stainless-steel wire-based electrode is developed with significantly lower 

limit of detection of 43 pg/mL to detect IAA in live plants [56]. However, these electrochemical sensors 

are made of a wire that damages the plant tissue and hence are not practical for long-term detection in 

plants. Very few research projects have been reported to detect gaseous phytohormones, such as ethylene 

(ET). The selective detection of ET is challenging because of its small atomic size and nonpolar behavior. 

One notable work to detect ethylene involves single walled carbon nanotube with copper complex coating 

[57]. But the sensor is made on a rigid glass slide which is difficult to place on plants. This research 

addresses these issues and proposes a scheme for in situ sensing of phytohormones in live plants.  

 

Phytohormone controls the plant physiology such as gas control rate including CO2 intake as well as O2 

releases and utilization of nutrient which in turn drives transpiration [58-59]. These phytohormones such 

as SA and IAA control the plant metabolism rate. It is known from the previous literature that with 

increasing metabolism, the rate of transpiration is higher i.e., the translocation of water to the leaf is higher 

[60, 61]. The phytohormones such as SA, IAA, and ethylene indicate plant’s metabolism rate which in turn 

can detect plant stress [62-65]. Previously no work has been done to detect the multiplexed phytohormones 

in live plants to detect the plant stress as well as water translocation simultaneously.  

 

2.2 Problem Statement  
  
The detection of phytohormone is challenging as it involves the detection of chemical compounds. 

One solution is to measure the phytohormones with an electrochemistry-based sensor. However, 

the conventional electrochemical sensors are made on rigid ceramic surfaces or paper-based 

substrates [66]. The ceramic substrate is not suitable for plants as they are not flexible. The problem 

with paper-based sensors is reliability, as the quality of the paper substrate tends to decrease when 

they are in contact with water or liquid. As SA and IAA are liquid phytohormones, a flexible 
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electrochemical sensor is needed with reliable sensing performance over time. Another challenge is 

the liquid phytohormones are released inside the plant tissue and are not available from outside. In 

summary, a multiplexed sensor suite must be developed that can detect phytohormones 

noninvasively or in a minimally invasive approach, has a reliable sensing performance over time, 

and is lightweight so that it can be easily mounted on leaves and stem.  

 

2.3 Contribution  

  
There are three major contributions of this research work. Firstly, for the first time, an electrochemistry-

based flexible sensor has been developed that shows a high degree of reliability. Secondly, minimally 

invasive microneedle-based electrochemical sensors are developed to detect plant phytohormones for the 

first time. Finally, a flexible and microneedle-based hybrid sensor suite has been developed for special 

parts of the plant, such as fruits and vegetables that tend to have a very irregular surface.  

‘  
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Chapter Three  

  
Wearable Sensor Fabrication  

  
At the beginning of this thesis project, a planar sensor was implemented. Next, to improve the 

efficiency, a microneedle-based sensor was implemented and finally a hybrid sensor was developed 

for site-specific applications.  

3.1 Flexible Sensor  
In this section the development of phytohormone sensors in a flexible sheet will be discussed.  The main 

purpose of making the sensor patch is to detect the key phytohormone, SA. The electrochemical sensor 

consists of three electrodes, namely working electrode, counter electrode, and reference electrode. The 

electrodes are made on a polymer substrate, which is flexible in nature [68, 69]. The polymer sheet is 125 

micrometers thick. Another flexible patch contains a strain sensor for stem diameter measurements. Figure 

3.1 shows the step by step procedure to fabricate the sensor and Figure 3.2 shows the chronological order 

of fabrication of the strain sensor.   

 

Briefly, the sensor structure (two dimensional) is designed in AutoCAD Fusion 360. The design is exported 

to a cutting machine where polymer sheet is covered with a transfer tape, which is removed after 

transferring the design to the polymer sheet. The speed, force and blade angle are optimized during each 

cutting. In this sensor fabrication, speed, force and angle were 4.1N, 97mm/s, and 30°, respectively.  

 

The strain sensor is composed of interdigitated electrodes that are coated with graphene ink (annealed at 

100°C for 10 minutes). The design is made in AutoCAD followed by feeding that to the cutting machine. 

The force, speed and blade angle are optimized to 4.05N, 98mm/s and 30°, respectively.    
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The SA sensor’s working and counter electrodes are made with graphene ink and annealed at 300°C 

temperature for 15 minutes. The strain sensor electrodes are interdigitated and made with the same 

procedure as the working and counter electrodes of the SA sensor. The reference electrode of the SA sensor 

is made with silver/ silver chloride paste. The silver/silver chloride paste is applied over the selected 

regions and cured at 80°C for 20 minutes. The brief fabrication procedure of making SA and strain sensors 

is illustrated in Figure 3.1 and Figure 3.2.   

  

Figure 3.1: Schematic illustration of the sensor fabrication process. (a) A transfer tape was attached to 

the polymer sheet and loaded on the cutting machine. (b) An array of patterns was cut on the tape. (c) 

Steps of screen-printing [74]. 
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Figure 3.2:  Process flow for the strain sensor: i) the transfer tape is removed from the cut regions, ii) 

graphene ink is applied over the patterned region and cured, iii) the remaining transfer tape is peeled off, 

iv) drop-casting of rGO dispersion [75]. 

3.2 Microneedle Based Sensor  
  
A microneedle-based stem sensor is developed for the detection of SA and pH, while a 

microneedle-based leaf sensor is developed for SA, IAA, and temperature detection. The pH and 

temperature sensors are incorporated with the phytohormone sensors because they also play an 

important role in detecting plant stress. The fabrication procedure of these two systems is 

described in the following paragraphs.  

 

A microneedle-based stem sensor comprising SA and pH sensors on a single chip is shown in 

Figure 3.3. The novelty of this sensor relies on the development of microneedle sensors for the 

stem for the first time to detect the stress related phytohormones. The SA sensor is based on three 

electrodes: working electrode, counter electrode, and reference electrode. One microneedle is made 

for each electrode so that less damage is caused to the plant. The microneedle is made with 3D 

printing. After the needles are printed, they were cured in ultraviolet light with a constant rotation 
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for 70 minutes. The needles are pyramidal shaped with a square base. The height and base width 

of the pyramidal shaped microneedles are 800 micrometers, while the tip angle is 30 degree. The 

reason for choosing the 30-degree tip angle is to penetrate the stem easily. The working electrode 

of the pH and SA sensors as well as the counter electrode of the SA sensor is coated with graphene 

ink and cured at 300°C for 15 minutes. Finally, the reference electrode is made with silver/silver 

chloride paste which is annealed at 80°C for 30 minutes. The step-by-step fabrication procedure is 

shown in the following Figure 3.3.  

  

Figure 3.3: (a) The microneedle structure is made with 3D printing; (b) the needles are coated with 

graphene ink; (c) the reference electrode is made with silver/silver chloride ink [76]. 

 

The second microneedle sensor is implemented for monitoring SA, IAA and temperature in plant 

leaves. Each electrode is composed of an array of microneedles. The reason to make the 

microneedle array is to increase the surface area as leaf has a larger area. Similar to the stem 

microneedle sensor, the leaf microneedle sensor has a two-electrode temperature sensor 

incorporated with it. This microneedle structure is also made with a 3D printer. The base 

dimension of the needle is the same as the previous needle, but the height of the needle is 2000 

micrometer. As the height increased, the tip angle also increased to 60°. The working electrode 

of the temperature, SA, and IAA sensors are made with graphene ink and cured at the same 



  15  

condition as before. The reference electrode is common for the SA, IAA and temperature sensors. 

The reference electrode is made with silver/silver chloride paste.  

The graphical illustration of the leaf microneedle sensor is given in Figure 3.4.  

  

Figure 3.4: Microneedle based sensor for leaf [78]. 

3.3 Hybrid Sensing Approach  
The hybrid sensor is comprised of SA, IAA, ethylene, and pH sensors on a single device. This microneedle-

based hybrid sensor is made for fruit ripeness measurement. The sensor is composed of one array of 

microneedles for the SA working electrode and one array of microneedles for the IAA working electrode. 

Both SA and IAA sensors have a common counter electrode and a common reference electrode. The 

reference electrode is also common for the pH sensor. The microneedle structure is made in such a way 

that it housed a planar ethylene sensor and a gas accumulation chamber. The base and width of the 

microneedles are fixed at 800 micrometers, while the tip angle is fixed at 60°.  The ethylene sensor is made 

according to the previously mentioned process with slight modification. The ethylene sensor is made on a 

nafion membrane using screen printing [67, 68]. A transfer tape is attached over the nafion membrane and 

then screen-printed with conductive electrodes. Figure 3.5 shows the step by step procedure to fabricate 

the sensor suite. 
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Figure 3.5: Step-by-step fabrication of the electrodes. (a-c) The 3D printed microneedle electrodes. (d) 

Screen printing of ethylene sensor [79]. 

 

This sensor is called hybrid because it implements both planar and microneedle-based approaches. Hybrid 

sensors are better compared with only planar or only microneedle-based sensor. This is because a hybrid 

sensor is capable of detecting gaseous and liquid phytohormones simultaneously. Previously, no sensor 

suit shows the detection of liquid and gaseous phytohormones. 
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Chapter Four  

  
Synthesis of Chemical Coatings, Sensor Characterization, and Calibration 

In this chapter, the synthesis of chemical coatings, characterization and calibration of sensors are described.  

4.1 Coating Synthesis 

4.1.1 A composite coating of copper metal organic framework-carbon black- 

Nafion for Salicylic Acid sensing  

Salicylic acid detection is done by a copper-based metal organic framework. The synthesis process 

of the copper metal organic framework is quite complex, and the detailed process is described in a 

previous report [69]. The procedure is briefly explained here. At first, an anhydrous solution of 

dimethylformamide (DMF) is added to CH3-CH2OH. Next, the resulting solution in made uniform 

via a centrifuge. Once a uniform solution is achieved, polyvinyl pyrrolidone (PVP) is added to the 

mixture. Next, coper nitrate and 2-aminobenzene-1,4-dicarboxylic acid are added to the DMF 

solution. The resulting mixture is centrifuged to achieve a high degree of uniformity. After that the 

solution is heated so that the reaction takes place. The resulting product is precipitated, which is 

collected and then dissolved in the fresh DMF solution. The final DMF solution is heated again 

overnight. The final precipitate is collected and heated to remove the water content. This product 

is the desired copper metal organic framework (CuMOF).   

 

The CuMOF is then mixed with carbon black at a certain ratio to get the best result. A small amount 

of nafion is added to the solution to complete the coating preparation. The resulting solution is drop 

casted over the bare sensor for selective detection of SA.  
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4.1.2 A composite copper complex (I)-single-walled carbon nanotube coating 

for ethylene sensing   

We followed the recipe in [56] to prepare the copper complex coating. In summary, sodium 

borohydride is added to [3,5-(CF3)2pyrazol-1-yl] in an inert medium. Kerosene was used to 

facilitate the dispersion and prevent any agglomeration. Temperature was ramped gradually and 

then kept constant for several hours. Then the solution containing beaker was partially submerged 

into organic oil and heated continuously and uniformly. A heat gun was used to evenly heat the 

solution to prevent any agglomeration of the intermediate product. Then the heat gun was turned 

off and diethyl ether was added to filter out the product from the reagent. The product was 

characterized using nuclear magnetic resonance (NMR) spectroscopy and the results are discussed 

later in Section 4.2. The chemical formula of the expected product is Na[HB(3,5-(CF3)2-pz)3]. Next, 

in a separate container, HPLC grade toluene and copper(I) trifluoroethane sulfonate benzene 

complex were mixed and the resulting solution was mixed vigorously to achieve uniformity. In this 

solution the previously synthesized product was added and stirred. Finally, the solution was filtered 

using a fine filter paper to get the desired copper complex powder.   

 

Finally, to prepare selective coating for the ethylene sensor, single walled carbon nanotube was 

dissolved in the mixture of 1,2-dichlorobenzene and toluene (which was made uniform). In this 

homogeneous solution, the as prepared copper complex powder was added, and the solution was 

made uniform. The resulting solution was drop casted over the ethylene electrodes and dried at room 

temperature.   
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4.1.3 Reduced graphene oxide coating for strain sensing   

The strain sensor is prepared using reduced graphene oxide (rGO). rGO is dispersed in N-methyl-

2-pyrrolidone (NMP). Different concentrations of rGO is made to have an optimized solution.  It 

should be mentioned that a long duration of sonication was required to prepare the uniform 

dispersion of rGO. Finally, the dispersion was used as a coating.  

4.1.4 Polyaniline based pH sensing 

The pH coating is made according to the previously mentioned procedure [70]. At first polyaniline 

solution is made. Then cyclic voltammetry is applied between the electrodes of the pH sensor. A 

nanofiber is created which is sensitive to hydroxyl ion.  

4.1.5 Gold Doped Graphite Hydrogel for IAA detection 

The IAA coating is based on preparation of Gold nanoparticle doped Graphite Hydrogel (AuNP-

GH). The detailed preparation procedure is discussed in the literature [71]. In short, graphene oxide 

solution is made where one fourth volume of hydro tetrachloro gold and triethylenetetramine are 

added and then after making the solution uniform, the resulting solution is autoclaved overnight at 

high temperature. The resulting hydrogel is collected and then freeze dried to make a power and 

then used as the coating over the IAA sensor electrode. 

 

4.2 Coating Characterization   

To characterize the coating, several methods are utilized. Fourier Transform Infrared Spectroscopy 

(FTIR) is used to characterize the CuMOF coating (Figure 4.1a). The peaks between 3550 and 3390 

cm-1 wave numbers refer to the symmetric stretching of amino groups originating from 2-

aminobenzene-1,4-dicarboxylic acid. The stretching peak at a wavenumber of 2950 cm-1 appears 
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because of the presence of hydroxyl groups that mainly originate from ethanol. The FTIR 

characterization of CuMOF coincides with the previous report [72]. Further, the CuMOF surface is 

analyzed via scanning electron microscopy (SEM) (Figure 4.1b).    

The copper complex is characterized with NMR spectroscopy (Figure 4.1c). The most crucial step 

of preparing the copper complex coating is the product Na[HB(3,5-(CF3)2-pz)3]. The NMR spectra 

shows the presence of this product in the diethyl ether mixture. The SEM analysis of the final 

coating implies that the mean diameter of the nanoparticles is almost 10nm (Figure 4d).    

  

Figure 4.1: (a) Characterization of CuMOF using FTIR. (b) SEM image showing the morphology 

of the CuMOF/CB/nafion coating over the working electrode of the SA sensor. (c) NMR 

spectroscopy of the ether mixture of Na[3,5-(CF3)2-pz]. (d) SEM image of copper complex 

nanoparticles over the working electrode of the ethylene sensor.    
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The UV Vis spectra of the AuNP-GH is shown in Figure 4.2 where the gold peak and C=O bond 

are visible. 

 

Figure 4.2 Characterization of AuNP-GH with UV-Vis [78]. 

4.3 Sensor Calibration 

The electrochemical sensors are calibrated using electrochemical techniques such as differential 

pulse voltammetry (DPV) and cyclic voltammetry (CV). The DPV technique is run from 1.0V to 

1.5V with a step voltage of 0.01V. The scan rate is fixed at 10mV/s. To calibrate the SA sensor, 

eight different concentrations are chosen, such as 1 µM, 10 µM, 100 µM, 200 µM, 400 µM, 600 

µM, 800 µM and 1000 µM of SA. The DPV spectrum consists of two major peaks. The first peak 

is the result of the reduction of copper ion in the CuMOF coating while the second peak is due to 

the oxidation of SA. The carbon black works as a functional material. It is noteworthy to mention 

that the first current peak decreases while the second peak current increases with increasing SA 

concentration. In addition, there is a significant potential difference between the copper peak and 

the salicylic acid peak. Hence the ratio of the two peak currents was utilized for calibration. Figure 

4.3a and 4.3b show the DPV spectra and the corresponding calibration curve for the SA sensor, 

respectively.  
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Cyclic voltammetry is utilized to calibrate ethylene sensor. The CV is performed from -0.2V to 

0.5V at a scan rate of 50mV/s and Estep of 0.01V. Seven different concentrations of ethylene 

(1ppm, 10 ppm, 30 ppm, 50 ppm, 75 ppm, 105ppm, and 115 ppm) are used for calibration. When 

ethylene is absorbed by the copper complex coating, a complex is formed that reduces the 

conductivity of single walled carbon nanotube. Due to this phenomenon, the current decreases as 

the concentration of ethylene increases. The current value is plotted against logarithmic value of 

the ethylene concentration in ppm which gives a linear response (Figure 4.3c and 4.3d).    

The strain sensor is resistive in nature. The sensor is calibrated using an LCR meter. The strain 

sensor is calibrated for various angles of curvature. The equation that relates the angle of curvature 

and radius is given below.  

                                                                    𝜃 =
360 𝑆

2𝜋𝑟
 

Where s, r and θ represent arc length, radius, and angle of curvature, respectively. The calibration 

curve of the strain sensor is shown in Figure 4.4. 
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Figure 4.3. (a) DPV responses for different concentrations of Salicylic Acid. (b) Calibration 

curve of SA sensor indicating the ISA/ICuMOF vs. concentration. (c) CV responses for different 

concentrations of ethylene. (d) Calibration of ethylene sensor representing the peak current vs.  

logarithm of the concentration.   
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Figure 4.4: Calibration curve of the strain sensor.  

4.4 Sensitivity and Limit of detection (LOD) analysis  

The sensor response for unit change in analyte concentration or any physical parameter is referred 

to as sensitivity. When the sensor has a linear response, the slope of the calibration curve is called 

sensitivity. The sensitivity calculation is different for a non-linear sensor. We observed a non-

linear response for salicylic acid and strain sensors, which may be due to the material property. 

The calibration curves for salicylic acid and strain sensors are fitted with power series curves. The 

derivative of the power series curve is taken, and two sensitivity values are calculated. The 

preferred approach is to measure the sensitivity at low and high concentration/strain values [74]. 

Briefly, from the fitted curve:   

𝑆𝑦|𝑥 ∶=  
𝑑𝑦

𝑑𝑥
 = 𝑎𝑏𝑥𝑏−1 
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The lowest amount of analyte or any physical parameter that can be detected by the sensor consistently 

and accurately is known as the limit of detection (LOD). For SA, temperature, and strain sensors, the 

limit of detection is calculated by using the following equation.   

3* 𝑠𝑡𝑑.  𝑑𝑒𝑣. 

𝐿𝑂𝐷 =   

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

LOD for the ethylene sensor is calculated by the following equation [73],  

𝐿𝑂𝐵 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑏𝑙𝑎𝑛𝑘 𝑠𝑎𝑚𝑝𝑙𝑒) + 1.645 (𝑠𝑡𝑑. 𝑑𝑒𝑣. 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘 𝑠𝑎𝑚𝑝𝑙𝑒) 

𝑦𝐿𝑂𝐷 = 𝐿𝑂𝐵 + 1.645 (𝑠𝑡𝑑. 𝑑𝑒𝑣. 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑡 𝑙𝑜𝑤  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 )  

𝑦𝐿𝑂𝐷 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

𝐿𝑂𝐷 =   

𝑠𝑙𝑜𝑝e 

Table 4.1 Summary of sensitivity and limit of detection (LOD) for nonlinear sensors.   

Sensor  Equation  Sensitivity (low 

concentration)  

Sensitivity 

(high 

concentration)  

Limit  of  

detection  

SA  ISA/ICuMOF=0.0143(𝑐𝑜𝑛𝑐.) 
0.3787 + 0.8346  

0.002264 μM-1 (at 0.1 

μM)  

7.409 X 10-5 
μM-1  

(at 1000 μM)  

0.644 μM  

Strain  R=0.000248𝜃0.1442 + 18260  1.5935 X 10-6 kΩ/°  1.006 X 10-8 

kΩ/°  

9.3211°  

 

 

 

Table 4.2 Summary of sensitivity and limit of detection (LOD) for linear sensors.   

Sensor  Equation  Sensitivity  LOD  

Ethylene  I= −17.073 (𝑐𝑜𝑛𝑐.) + 34.635  17.073 

μA/log(ppm)  

0.6089 ppm  

Temperature R/Ro=0.098 (temp.) +1.17313

   

0.0098/°C 10.5478°C 
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4.5 Drift Analysis  

The hormone sensors (SA and ethylene) are tested for drift. Drift analysis is done to help determine 

whether the sensor is capable of continuous operation and if so, how much deviation can be found 

at different time points given that the physical conditions are the same. Every sensor has gone 

through long term (12 h) drift testing for a constant concentration of phytohormone. Figure 4.5 

shows the drift analysis of the hormone sensors. The sensors demonstrate less than 1% coefficient 

of variance over 12 hr.   

  

Figure 4.5. Twelve-hour drift response of salicylic acid sensor for 0.1μM (a), 400 μM (b) and 

1000 μM (c) concentrations. Twelve-hour drift response of ethylene sensor for 0.001ppm (d), 50 

ppm (e) and 115 ppm (f) concentration.   

4.6 Selectivity Analysis  

The ability of the sensor to detect the target molecule in presence of any unwanted species is 

known as the selectivity of the sensor. One of the most important criteria before deploying the 

sensor especially electrochemical sensors in field is to check whether the sensor is selective or not. 
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Selectivity test is done for both salicylic acid and ethylene sensors (Figure 4.6). For salicylic acid 

the tested solutions are: (i) 50 µM of glucose, (ii) 50 µM of sucrose, (iii) 50 µM of soluble starch, 

(iv) 50 µM of L-tryptophan, (v) 50 µM of L-cysteine, (vi) 50 µM of abscisic acid (ABA), (vii) 50 

µM of gibberellic acid (GA), (viii) 50 µM of Jasmonic acid (JA), (ix) 50 µM of oleic acid (OA), 

(x) 50 µM of indole-3acetic acid (IAA), (xi) 50 µM of citric acid (CA), (xii) 50 µM of salicylic 

acid (SA), (xiii) a mixture of 50 µM glucose, soluble starch, L-tryptophan, L-cysteine, ABA, GA, 

JA, OA, IAA, CA each, (xiv) a mixture of 50 µM glucose, soluble starch, L-tryptophan, L-

cysteine, ABA, GA, JA, OA, IAA, CA each, and 100 µM of SA, (xv) 900 µM of SA, and (xvi) a 

mixture of 50 µM glucose, soluble starch, L-tryptophan, L-cysteine, ABA, GA, JA, OA, IAA, CA 

each, and 900 µM of SA.  

The relative signal strength is considered instead of the base current. The relative signal is defined 

as
𝑅𝑎−𝑅𝑏

𝑅𝑏
, where Ra = ratio of hormone redox current and CuMOF current  

and Rb =ratio of base current and CuMOF current. The relative signal analysis plot indicates 

superior selectivity of the SA sensor. 

To evaluate the selectivity of the ethylene sensor, various gas mixtures were used: (i) 50 ppm of 

nitrogen (N2), (ii) 50 ppm of methane (CH4), (iii) 50 ppm of nitrous oxide (N2O), (iv) 50 ppm of 

ammonia (NH3), (v) a mixture of 50 ppm of N2, CH4, N2O, NH3 each, (vi) 10 ppm of ethylene, (vii) 

115 ppm ethylene, (viii) a mixture of 50 ppm of N2, CH4, N2O, NH3 each, and 10 ppm of ethylene, 

and (ix) a mixture of 50 ppm of  N2, CH4, N2O, NH3 each, and 115 ppm of ethylene.  The difference 

of the current from the baseline is considered for selectivity analysis.  
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Figure 4.6. (a) Relative signal for different solutions introduced over the SA sensor surface, where 

i-xvi denote: (i)50 µM glucose, (ii)50 µM sucrose , (iii)50 µM soluble starch, (iv) 50 µM L  

tryptophan, (v)50 µM L cysteine, (vi)50 µM abscisic acid(ABA), (vii)50 µM gibberellic 

acid(GA), (viii)50 µM Jasmonic acid(JA), (ix) 50 µM oleic acid(OA), (x)50 µM indole 3 acetic 

acid(IAA), (xi)50 µM citric acid(CA), (xii)50 µM salicylic acid(SA), (xiii)mixture of 50 µM 

glucose, soluble starch, L trypan L cysteine, ABA, GA, JA, OA, IAA, CA each ,  (xiv)mixture of 

50 µM glucose, soluble starch, L trypan L cysteine, ABA, GA, JA, OA, IAA, CA each with 100  

µM SA, (xv)900 µM SA and(xvi) mixture of 50 µM glucose, soluble starch, L trypan L cysteine, 

ABA, GA, JA, OA, IAA, CA each with 900 µM SA. (b) Current(μA) Difference from the baseline 

for the ethylene sensor, where i-ix represents: (i)50ppm nitrogen(N2), (ii) 50 ppm methane(CH4), 

(iii)50 ppm nitrous oxide (NO), (iv)50 ppm ammonia(NH3), (v) 50ppm of ethylene a mixture of 

50ppm of  N2, CH4, NO, NH3 each, (vi)10 ppm ethylene, (vii) a mixture of 50ppm of  N2, CH4, NO, 

NH3 each with 10 ppm of ethylene(viii) 115 ppm ethylene and (ix) a mixture of 50ppm of  N2, 

CH4, NO, NH3 each with 115 ppm of ethylene [79]. 
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4.7 Stability Analysis  

In a real agricultural field, environmental factors are not controlled and the stability of the sensor 

in these cases must be evaluated. The salicylic acid and ethylene sensors show considerable stable 

response with less than 1% coefficient of variance over a week.   

  

Figure 4.7. Stability Analysis of (a) salicylic acid (100μM) and (b) ethylene (10ppm) sensors.  

 

 

4.8 System Development  

A separate data acquisition unit was made for the strain sensor. The main processing unit of the 

data acquisition unit is MKR 1000 board. The MKR 1000 board has WiFi capability. The board 

is programmed to measure resistance with an auto-ranging function. The strain sensor is calibrated 

using cylindrical blocks. The block diagram and the corresponding circuitry are shown in figure 

4.8 [74].    
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Figure. 4.8. (a) System architecture. (b) The voltage divider circuit wherein Ra is a variable 

resistor, Rs and V0 are the resistance and the voltage across the strain sensor, respectively [74]. 

4.9 Real plant data collection  

To perform in situ experiment, the flexible sensor is placed beneath the leaf of a bell pepper plant. 

Figure 4.9a shows the schematic and practical deployment of the developed flexible sensor. A 5 

micrometers radius hole is punched on the leaf, and 20 microliters of buffer is applied. A spacer is 

placed between the sensor and the leaf so that the plants can transpire naturally. The spacer is made 

with a polymer sheet which has a thickness of 125 micrometers, while the radius of the sensor is 

1.5 centimeters. The Differential Pulse Voltammetry (DPV) results of the stressed and unstressed 

plants are presented in Figure 4.9 b. The corresponding FTIR results are also included (Figure 

4.9c). The salicylic acid concentrations measured with our sensor and FTIR technique are almost 

identical with a deviation of less than 2%. The ratio of the SA peak and the CuMOF peak for the 

stressed plant is higher (0.94319) compared with the controlled plant (0.9042) [75].   
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Figure 4.9: (a) Real-time SA measurements in the leaf.; (b) DPV and (c) FTIR responses for the 

sap collected from unstressed, water- and sunlight-stressed plants [75]. 
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Chapter Five  

  
Results of Microneedle and hybrid Sensor Analysis 

5.1 Microneedle based stem sensor   

The details of the microneedle-based stem sensor are described in our previous work [76]. The 

pH sensor is made along with SA sensor in this work. It is used to detect plant stress accurately. 

Figure 5.1 shows the pH sensor characterization and calibration plots, while Figure 5.2 shows the 

SA sensor response. Figure 5.3 represents the pH response of the SA sensor. At low pH when the 

medium is acidic, the SA sensor shows a higher peak current, ISA due to electron affinity. 

However, at high pH when the medium is basic, ISA is lower due to less availability of the 

electrons.  

The SA level of the water stressed and unstressed plants is shown in the Figure 5.4a. With the 

increasing stress level on plants, the SA level also increases. Two different sensors at different 

stem positions of the same plant is placed and the corresponding results are shown in Figure 5.4b. 

  

Figure 5.1. (a) Cyclic voltammetry (CV) responses for PANI deposition on the pH sensor. (b) Calibration 

curve of the pH sensor [76]. 
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Figure 5.2. (a) Differential Pulse Voltammetry responses for different concentrations of SA. (b) 

Calibration curve showing ISA/ICuMOF vs. SA concentrations [76].  

  

Figure 5.3. Calibration curves of the SA sensor for different pH values (4.09, 7.1, and 10.14) 

[76]. 
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Figure 5.4. (a) SA measurement results on the stem of unstressed and water-stressed cabbage 

plants. (b) SA measurement results at two different locations on the same plant [76]. 

5.2 Microneedle based leaf sensor  

The microneedle-based leaf sensor has temperature sensor incorporated with it. In this project SA is 

detected simultaneously with IAA. 

The IAA sensor is calibrated using DPV and the calibration curve is shown in Figure 5.5. The  

IAA sensor is tested for selectivity, where unwanted chemical species are added including:  

I) Jasmonic acid (JA)=50 μM, (II) L-Cysteine (L-Cys)=50 μM, (III) glucose=50 μM, (IV) citric 

acid=50 μM, (V) ascorbic acid=50 μM, (VI) a mixture of JA, L-Cys, glucose, citric acid, and 

ascorbic acid (50 μM each), (VII) IAA=100 μM, (VIII) a mixture of ascorbic acid, JA, L-Cys, 

glucose, citric acid, ascorbic acid (50 μM each), and IAA=100 μM, (IX) 200 μ), (X) a mixture of 

ascorbic acid, JA, L-Cys, glucose, citric acid, ascorbic acid (50 μM each), and IAA=200 μM. The 

IAA sensor temperature response is also checked. Both the results are delineated in Figure 5.6. 
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The sensor response is tested for both stressed and unstressed plants (Figure 5.7). The result is 

verified with HPLC. The sensor is placed in upper and lower leaves, showing the time difference 

between the phytohormone readings (Figure 5.8). 

  

Figure 5.5. (a) The differential pulse voltammetry responses of IAA sensor for different 

concentrations of IAA and (b) the calibration curve of the IAA sensor [78]. 

  

Figure 5.6: (a) Temperature response of the IAA sensor; (b) Selectivity tests of IAA sensor where i-ix 

means Jasmonic acid (JA)=50 μM, (II) L-Cysteine (L-Cys)=50 μM, (III) glucose=50 μM, (IV) citric 

acid=50 μM, (V) ascorbic acid=50 μM, (VI) a mixture of JA, L-Cys, glucose, citric acid, and ascorbic 
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acid (50 μM each), (VII) IAA=100 μM, (VIII) a mixture of ascorbic acid, JA, L-Cys, glucose, citric acid, 

ascorbic acid (50 μM each), and IAA=100 μM, (IX) 200 μ), (X) a mixture of ascorbic acid, JA, L-Cys, 

glucose, citric acid, ascorbic acid (50 μM each), and IAA=200 μM [78]. 

 

Figure 5.7. The real time SA levels on stressed and unstressed plants [78]. 

 

Figure 5.8. The real time SA levels on upper and lower leaves [78]. 
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5.3 Hybrid sensor (Fruit)  

The hybrid sensor suite includes SA, IAA, ethylene, and pH sensors on a single chip. The calibration 

curves for SA and IAA sensors at different pH levels are shown in Figure 5.9. In addition, the 

measurements of SA and IAA levels in a bell pepper are shown in Figure 5.10. This work has been 

accepted for publication at 2022 IEEE Sensors Conference [79].  

  

Figure 5.9: Calibration curves of (a) SA and (b) IAA sensors for different pH [79]. 

  

Fig. 5.10. The trend of SA and IAA in (a) unripe and (b) ripe bell peppers [79]. 
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Chapter Six 

  
Conclusion and Summary  

  
In summary, in this research work wearable sensors for plants have been developed keeping in 

mind several research challenges such as invasive testing and response in real environment. The 

main contribution of this research work involves developing electrochemical sensors to detect 

three key phytohormones related to plant stress in a very early stage. The sensors detected salicylic 

acid, indole-3-acetic acid, and ethylene. This research evolves from a planar sensor that causes 

permanent damage to the leaf tissue to microneedle-based sensors that cause minimal damage to 

the leaves and fruits, while also resulting in improved sensitivity and selectivity for real-field 

applications. This research work involves not only laboratory experiments but also real field data 

collection. Another aspect of this research is that the wearable sensors have been developed for 

multiple parts of the plants including leaf, stem, and fruit. The leaf and stem sensor can detect the 

plant stress early which will help to intervene early to improve productivity while the fruit sensor 

indicates the ripening stage of fruits which will help harvesting at the right time.   
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Appendix  

3D – Three-dimensional printing 

ABA – Abscisic acid 

AuNP-GH – Gold Nanoparticle Doped Graphite Hydrogel 

CA – Citric Acid 

CB – Carbon Black 

CE– Counter Electrode  

CV– Cyclic Voltammetry 

CuMOF – Copper Metal Organic Framework 

DMF – Dimethylformamide 

DPV – Differential Pulse Voltammetry 

ET– Ethylene 

FTIR – Fourier-Transform Infrared Spectroscopy 

GA – Gibberellic Acid 

HPLC – High-performance liquid chromatography 

HMI – Human Machine Interface 

IAA – Indole-3-Acetic Acid 

ICuMOF – Oxidation Current for Copper Metal Organic Framework 

ISA – Oxidation Current for Salicylic Acid 

JA – Jasmonic Acid 

LC– Liquide Chromatography 

LCR– Inductance, Capacitance, and Resistance 

L-Cys– L-Cysteine 

LOD – Limit of Detection 

NMR – Nuclear Magnetic Resonance 

OA – Oleic Acid 

PANI – Polyaniline 
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PVP– Polyvinyl pyrrolidone 

RE– Reference Electrode 

rGO – reduced Graphene Oxide  

SA – Salicylic Acid 

SEM – Scanning Electron Microscopy 

SWCNT – Single Walled Carbon Nanotube 

UV-Vis – Ultra Violet – Visible range   

WEIAA – Working electrode for Indole-3-Acetic Acid 

WEpH – Working electrode for pH 

WESA – Working electrode for Salicylic Acid 

WET – Working electrode for Temperature  

 


	WEARABLE SENSORS FOR PLANTS
	Recommended Citation

	EFFICIENT ENERGY HARVESTING WITH APPLICATIONS IN VIBRATION AND IMPLANTABLE BIOSENSORS

