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ABSTRACT 

 

EFFECT ON 360 DEGREE VIDEO STREAMING WITH CACHING 

AND WITHOUT CACHING  

 

Md Milon Uddin  
 

Thesis Chair: Jounsup Park, Ph. D. 
 

The University of Texas at Tyler 

 

November 2022 

 

People all around the world are becoming more and more accustomed to watching 360-degree 

videos, which offer a way to experience virtual reality. While watching videos, it enables users to 

view video scenes from any perspective. To reduce bandwidth costs and provide the video with less 

latency, 360-degree video caching at the edge server may be a smart option. A hypothetical 360-

degree video streaming system can partition popular video materials into tiles that are cached at the 

edge server. This study uses the Least Recently Used (LRU) and Least Frequently Used (LFU) 

algorithms to accomplish video caching and suggest a system architecture for 360-degree video 

caching. Two 360-degree videos from 48 users' head movements are used in the experiment, and 

caching between the LRU cache and LFU cache is compared by changing the cache size. The 

findings demonstrate that, for varied cache sizes, utilizing LFU caching outperforms LRU caching in 

terms of average cache hit rate. 
 

 

In the first part of the research, we compared LRU and LFU caching algorithm. In the second 

part of the research, a suitable caching strategy model was developed based on user’s field of view. 

Field of view (FoV) is the term used to describe the portion of the 3600 videos that viewers typically 

see when watching 3600 videos. Edge caching can be a smart way to increase customer satisfaction 

while maximizing bandwidth usage (QoE). A 3600-video caching strategy has been developed in this 

study using three machine learning models that use random forest, linear regression, and Bayesian 

regression. As features, tiles' frequency, user's view prediction probability, and resolution were used. 

The created machine learning models are designed to decide the caching method for 360-degree 

video tiles. The models can forecast the frequency of viewing for 3600 video tiles (subsets of a full 

video). With a predictive R2 value of 0.79, the random forest regression model performs better than 

the other suggested models when the outcomes of the three developed models are compared. 

 

iv 



In the third part of the research, to compare our machine learning algorithm with LRU 

algorithm, a python test bench program was written to evaluate both algorithms on the test set by 

varying the cache size. The results demonstrate that our machine learning approach, which was 

created for 360-degree video caching, outperforms the LRU algorithm. 



CHAPTER ONE 
 

INTRODUCTION 

 

A human-computer interface called virtual reality (VR) enables people to communicate 

effectively in a three-dimensional virtual world [1]. The foundation of virtual reality is the idea 

of illusion. Users can fully experience virtual reality (see figure 1). Virtual reality has attracted a 

lot of interest recently from a range of sectors, including academia, entertainment, military 

training, and scientific visualization. Many virtual content producers have been investigating 

360-degree videos in recent years to improve the quality of the user experience (QoE). To do 

this, edge servers might cache popular video content with high resolution. 360-degree videos are 

typically viewed with a head mounted display, such as the Oculus Rift S, HTC Vive, and others. 

Head mounted displays give pleasant and immersive feelings for end users [2]. By 2021, there 

will be 100 million Virtual Reality (VR) headsets in use, with 50 million of those predicted to be 

mobile VR headsets, according to Cisco Visual Networking Index [3]. 

 

Omni-directional cameras or numerous cameras can record 360-degree videos, which result in 

spherical panoramas of that size [4]. Segments, which are rectangular-shaped partitions, can be 

created from 360-degree films. Each segment is broken up into tiles that are stored in the content 

servers in a variety of resolutions. 360-degree videos have a high bitrate and require a huge 

storage system, requiring up to 4-5 times the storage when compared to normal videos, so 

delivering them to virtual reality (VR) headsets would require a lot of network traffic [5]. 

Furthermore, compared to streaming traditional videos, these videos take more CPU, GPU, and 

energy from the end user [6]. 

 

A method for sending video to end users while using the least amount of bandwidth is called 

video tiling. The only tiles in a 360-degree video system that must be provided in high-resolution 

format are those that are in the user's field of view (FoV), whereas all other tiles may be sent in 

low-resolution or not at all [7-9]. 

 

Caching is one of many research efforts that have been done to lower the amount of bandwidth 

needed for 360-degree videos [10–12]. Popular 360-degree video content can be cached to 

reduce network traffic. However, it must be utilized well due to the cache size restriction. 
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 A cache between a core network, also known as a video server, and a user can significantly 

reduce bandwidth consumption by reducing the number of queries users make that must be 

transmitted to the core network in order to obtain the desired contents [13].  

The main advantages of caching may be divided into four categories: 1) bandwidth reduction, 2) 

network load reduction of core network, 3) latency reduction, 4) cost reduction, and 4) effective 

resource management. 

 

The process of caching a video stream involves temporarily keeping it in cache so that it can be 

played back later. Users experience a cache hit if a CDN cache server keeps the tiles they have 

requested. A cache miss, on the other hand, happens when the cache must get the requested tiles 

from the CDN's original server because the requested tiles were not found in the cache. Because 

of the high bandwidth required to fetch the tiles from the original server and the distance to the 

server, the delivery time may be prolonged. The cache server must choose whether to save 

fetched tiles in the cache after a cache miss. Additionally, the cache server must choose which 

tile has to be discarded in order to create room for the most recent arrivals of tiles if there is no 

room in the cache to add newly fetched tiles. DeepCache [14], PopCache [15], and Greedy-Dual-

Frequency caching policy [16] are only a few of the many cache eviction methods that have been 

created. A content popularity prediction model is employed by DeepCache to forecast the 

likelihood of upcoming requests. PopCache is a decision policy that allows an individual ICN 

router to cache content roughly in accordance with the popularity characteristic of the content. 

PopCache hasn't looked into contrasting their outcomes with those of other cache replacement 

policies. Researchers recommended including the most crucial aspects of the file and its 

accesses, such as file size, file access frequency, and recentness of the previous access, in their 

Greedy-Dual-Size-Frequency caching strategy. The user's field of view (FoV), which can be an 

intriguing topic to examine for caching 360-degree videos, has not been taken into account for 

view prediction above the given techniques. 

 

Numerous academics have looked into the popularity of videos for video caching [17]. Their 

study aims to decrease bandwidth loss, shorten content delivery time, boost cache hit ratio, and 

enhance user experience. Deep reinforcement learning-based caching, feedforward neural 

networks for caching, and deep learning for 360-degree video caching are just a few of the 

machine learning techniques that have been introduced. 
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In the first part of the research, we design a system architecture of edge server (cache) and apply 

the least recently used (LRU) and least frequently used (LFU) algorithms to cache contents at the 

cache server in order to meet the wireless Virtual Reality applications, increase cache hit rate, 

and improve user quality of experience. The decision of which tiles to remove from the cache 

when the cache is full is one of the issues in 360-degree video. Our strategy is to change the 

cache size and see how the number of cache hits changes. For experimental purposes, we 

examine the cache hits and cache misses between LRU and LFU for various cache sizes, and we 

contrast the consequences of these size changes using the LRU and LFU algorithms. The 48 

users' 360º videos used in this study came from a publicly accessible data source [18]. 

 

 

 

In the second part of our research, machine learning (ML) models are used in this study to 

suggest a caching technique for 360-degree films. Our three machine learning models, which we 

constructed using Random Forest regression, Linear regression, and Bayesian regression, are 

compared. These models are designed to identify which tile should be cached to increase the 

overall cache hit ratio, decrease video delivery delay, and make optimal use of bandwidth. In the 

third part of the research, we have used a test bench to compare our machine learning algorithm 

with LRU algorithm,  

 
 
 
 
 
                                           
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Virtual Reality. 
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1.1 Aim/Objectives 
 

The aims and objectives of this research is  

1) to address some of the some of the limitations of the current 360degree video caching 

system.  

2) to maximize overall cache hit ratio 

3) to reduce video delivering latency and  

4) to minimize bandwidth loss 

The boarder impact of the research is to improve user’s quality (QoE) of experience. 

 

 

 

1.2 Motivation 
 

Utilizing a cache between users and distant content servers can significantly reduce network 

latency, network load, and bandwidth usage by reducing the number of queries sent to content 

servers. Machine learning model for 360-degree video caching could be an effective way to 

maximize cache hit rate at the user end.  
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1.3 Organization of Thesis 

 

The novel contributions of this research are developing a machine learning model for caching 

360-degree videos, comparison of our developed model and other model and effect on cache hit 

ratio by varying cache size for LRU and LFU algorithm. The research in this Thesis is explained 

in the following nine chapters: Chapter 2 looks at a brief overview of previous research in 360-

degree video caching. Chapter 3 describes the system architecture. Chapter 4 LRU and LFU 

algorithm. Chapter 5 illustrates experimental results for LRU and LFU algorithm. Chapter 6 

indicates machine learning model evaluation for 360-degree video caching. Chapter 7 describes 

experimental results for model development. Chapter 8 detailed out the test bench for the 

developed model algorithm and comparison of results. Chapter 9 describes discussion and future 

work of the research.   
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CHAPTER TWO 
 

LITERATURE SURVEY 
 

 

Let's talk about the present research being done in fields that serve as the foundation for our 

proposed framework before we delve into the research for it. 

 

A Macro cell base station (MBS) and a small cell base station (SBS) that work together to 

prevent adjacent SBSs from storing the same tile have been presented as an effective method to 

cache 360-degree videos in cellular networks [19]. The light-wave collaborative field of vision 

(FoV) prediction algorithm in [20] combines the prediction from the trajectories of users in the 

flock with the prediction from its own user's previous trajectory for caching at the edge. 

Reinforcement learning (RL), a machine learning-based cache admission technique, was 

proposed in [21], although they only achieved mediocre cache hit results when cache space was 

plentiful. Reinforcement learning uses a variety of factors, like object size, recentness, 

frequency, etc., to determine cache entry. DeepCache uses popularity prediction to prefetch 

things into a cache [22]. Dynacache reduces the amount of cache misses by more than 65% by 

using recency as a cache evection strategy [23]. The CFLRU algorithm, which employs cost and 

recency for cache eviction, lowers mean replacement costs in swap systems and buffer caches by 

26.2% and 26.4%, respectively [24]. For live 360-degree video, a tile-based caching mechanism 

has been suggested in [25]. When a new user request pops up in the cache, the authors of [26] 

suggest an online MaxMinDistance algorithm to replace the cache. In our study, we altered 

several cache sizes and contrasted these size changes with the LRU and LFU caching algorithms. 

Our research is distinct from previous research methods due to the approach we used, and the 

high cache hit rate it produced when compared to other research works. 

 

Edge caching has been suggested as a practical way to improve the quality of material served 

while also bringing content closer to end users [27-28]. The authors of [29] developed a tile-

based caching method that aims to increase the coverage of the tile set while simultaneously 

reducing the disparity between the requested and cached tile resolutions across viewports. The 

light-wave collaborative field of vision (FoV) prediction approach for edge caching combines 

predictions from the past trajectory of its own user with predictions from the trajectories of other 

users in the flock [30].  
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Caching popular information at mobile edge servers and lowering network operating costs can 

both lessen the requirement for pricey backhaul cables [31–34]. When the cache size is big for 

the reinforcement learning (RL) model, the authors of [35] achieved a good percentage of cache 

hit rate. 

 

Most of the research studies described above assumed that the popularity profiles of the videos 

were known, however in some circumstances, this was not the case. The popularity of a piece of 

content is predicted using reinforcement learning algorithms that profit from demand history in 

[36-39] to get around this restriction. To increase the overall quality of videos for end viewers, 

authors in [40] proposed a view-port aware deep reinforcement learning technique for 360-

degree video, in which the most popular videos were employed at base quality with a virtual 

viewport. To prefetch items into a cache, DeepCache uses popularity prediction [14]. According 

on server hit rate and predicted round-trip time, the creators of PopCache established an 

analytical methodology to evaluate the effectiveness of various caching choice strategies [15]. 

 

They compared the proposed caching policy to the benchmark caching choice policies, such as 

the always, fixed probability [41], and path-capacity-based probability [42], using their analytical 

model. Our study differs from other research methods in that we employed a machine learning 

model to identify which tiles are likely to be requested by users and which tiles needed to be 

cached to achieve a high cache hit rate. 
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 CHAPTER THREE 
 

SYSTEM ARCHITECTURE  
 

Figure 2 depicts a standalone caching architecture, which serves as the initial point of contact for 

user requests. The terms "cache hit" and "cache miss" refer to two potential outcomes in a 

content caching architecture. Depending on the tile request, a user can receive a cache hit or 

cache miss. If a requested tile is found in the cache, the user receives a cache hit; otherwise, the 

user receives a cache miss. In the event of a cache miss, the cache server requests the desired tile 

from the remote content server. The cache server provides the requested tile to the user after 

retrieving it. It is crucial to send the requested tiles as soon as possible. When a cache hit occurs, 

distributing tiles to users proceeds more quickly than when a cache miss occurs. Due to the 

limited cache size, it is crucial to make informed decisions about which tiles should be added to 

the cache and which tiles should be removed from the cache server in order to increase cache hit 

rate. By boosting the cache hit rate, delivery time and bandwidth usage can be significantly 

decreased [43]. 

 

 

Figure 2:  Cache with the Client and the Video Server. 
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CHAPTER FOUR 
 

LRU AND LFU ALGORITHM  
 

 

4.1 Least Recently Used (LRU) Algorithm  

When the cache capacity is full according to the LRU caching policy, the tile with the longest 

time since the last access gets the highest priority to be removed from the cache in order to make 

room for new tiles [44]. When a user requests a new tile that is not already in the cache, LRU 

removes the least recently used video tiles that the user has viewed from the cache. The cache 

module replaces the least recently used tile when the cache's maximum size is reached with the 

newly requested tile. In order to test the cache capacity, we employed 50%, 80%, and 100% of 

the entire video data kept on a video server. Additionally, we took into account 70% of the 

overall cache size. 

 

Figure 3:  Flow Chart of a LRU Algorithm. 
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4.2 Least Frequently Used (LFU) Algorithm  

When the cache capacity is full, according to LFU caching policy, a tile has the highest priority 

to be removed from the cache to create room for new tiles if it has experienced the fewest 

accesses since the last access [44]. When a new tile that is not already in the cache is requested 

by the users, LFU removes the least frequently used video tiles that were viewed by the users 

from the cache. For the purpose of clearing the cache, the frequency data for tiles is stored in the 

LFU cache. The frequency information for each tile in the cache is examined in the event of a 

cache miss to identify the tile that has been accessed the fewest times. The newly desired tile is 

subsequently put in its place. A first-in, first-out (FIFO) strategy is utilized to replace the first tile 

entered to the cache when the frequencies of the two least recently used tiles are equal. 

 

 
Figure 4:  Flow Chart of a LFU Algorithm. 
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4.3 Experimental Setup for LRU and LFU Algorithm  

We used video 1 and 2 that are 360-degree panoramas. Conan's talk show in video one features 

the most items from the video on stage. Freestyle skiing, which is featured in Video 2, features 

numerous skiers who alternately become visible and invisible. There are 48 viewers for each 

video. Each segment in videos 1 and 2 is broken geometrically into four-by-four tiles to create an 

equirectangular shape, totaling 164 1-sec long video segments. Due to its excellent storage and 

compression capabilities for 360-degree films, we adopted an equirectangular format [45]. The 

maximum cache size was set at the number of tiles in each video as a whole. The segments are of 

varying quality, and each tile has a distinct byte size. 48 individuals come sequentially in 

experiment 1's video-1 and video-2 (starting with user 1, followed by user 2, and so on). We are 

not considering delay time in this situation. We viewed the film with 48 people in a random 

order in experiment 2. The arrival of users is subject to a 1 to 5 second random time delay. User 

requests for tiles are presented in order for experiment 2. By doing this, the experiment's 

frequency, and recency of tile requests, which are used for the LFU and LRU cache eviction 

processes, respectively, are effectively randomized. 
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CHAPTER FIVE 
 

EXPERIMENTAL RESULTS FOR LRU AND LFU ALGORITHM  
 

 

Figure 5 compares the average cache hit rates for the LRU and LFU algorithms for various cache 

sizes for video 1 in Experiment 1 (Sequential). The average cache hit rate for LRU caching at 

50% cache size is 68.67%, but the average cache hit rate for LFU caching is 71.49%. Thus, when 

comparing the LFU algorithm's cache hit rate to the LRU algorithm's, the average cache hit rate 

for video 1 from 48 users increased by 3%. When examining the outcomes for 48 users' viewing 

data for video 1, the LFU algorithm's cache hit rate improved for 80% cache size by an average 

of 0.5% greater than the LRU algorithm's cache hit rate. The error margin for this finding is 

rather narrow, and the pattern might not hold for other videos. 

The size of the cache at 100% is equal to the size of the entire video. As a result, the cache never 

entirely fills to the point where the LFU or LRU algorithms must replace old data in the cache 

with new data. Since there is always available cache space, any cache misses are tiles that no 

prior user has requested. As a result, they are put into the cache without altering any existing 

data. The hit rates for the LRU and LFU algorithms are therefore presented as being equal. The 

cache hit rate at 100% cache size for initial loading is 96.69%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of Average Cache Hit Rate with Different Cache Size for Video 1. 
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Figure 6 compares LRU and LFU caching for total cache misses at 50%, 80%, and 100% of the 

cache sizes, respectively. When the cache size is reduced by 50%, the LRU cache experiences 

2,218 more cache misses than the LFU cache, whereas the LRU cache experiences 412 more 

cache misses than the LFU cache. Both algorithms have the same number of cache misses at 

100% cache size. Even when the cache is initially fully loaded, cache misses still happen. Since 

there is always adequate cache space, any cache misses—tiles that have not been requested by 

any previous users—are loaded into the cache without altering any existing data. 

 

 

Figure 6: Comparison of cache miss with different cache size for video 1. 

 

 

When viewing video 1, Figures 7 illustrates the cache hit rate for individual users. It is clear that 

LFU cache performs better than LFU cache for cache sizes of 50% and 80%, respectively. Both 

the LFU and LRU algorithms have the same cache hit rate for each individual user at 100% 

cache size. 
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Figure.7. Comparison of Cache Hit for Each Individual User with Different Cache Size for Video 1. 
 

Figure 8 shows that for 70% of the total cache size, LRU caching has an average cache hit rate of 

79.38% whereas LFU caching has an average cache hit rate of 82.92%. When comparing LFU 

caching to LRU caching for video 2's 70% cache size, the average cache hit rate increased by 

3.54%. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Comparison of Average Cache Hit Rate for 70% Cache Size for Video-2. 
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Figure 9 shows that using the LFU technique to cache video 2 resulted in less cache misses than 

using the LRU algorithm. Regarding this, there have been a total of 18648 cache misses for LRU 

caching and 14655 for LFU caching. Nearly 4000 tile queries make up the gap between the two 

techniques' cache misses. 

 

 

 

 

 

 

 

                                      

 

 

 

 

 

 

Figure 9: Comparison of cache miss for 70% cache size for video 2. 

 

Experiment 2 (Random Arrival of People): For both videos 1 and 2, experiment 2 was conducted 

for random arrival of users. For each movie, five simulations were run using a randomly 

assigned user order. Table-1 displays the LRU and LFU simulation results for video-1 when the 

cache size is set to 50%. Table 2 displays the LRU and LFU simulation results for video-2 at a 

cache capacity of 70%. 
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Table I. Simulation of LRU and LFU- 50% cache size (Video-1) 

Simulation Simulation Average Simulati- Average  

number Average Hit on Hit Rate  

 Cache Hit     Rate Average   

 Rate (LRU)  Cache   

   Hit Rate   

   (LFU)   

1 54.35%  59.62%   

      

2 50.57%  52.6%   

      

3 50.74% 
52.53% 

53.27% 
55.47% 

 

    

      

4 52.27%  55.39%   

      

5 54.74%  56.43%   

      

 

Table II. Simulation of LRU and LFU- 70% cache size (Video-2). 
 

Simulation Simulation Average Simulat Average 
number Average Hit -on Hit Rate 

 Cache Hit       Rate Average  

 Rate (LRU)  Cache  

   Hit Rate  

   (LFU)  

1 68.03%  70.94%  

     

2 67.25%  68.04%  

     

3 66.90% 68.19% 68.02% 69.77% 

     

4 67.76%  68.95%  

     

5 71.03%  72.91%  
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According to Figure 10, the average hit rate for caching at a 50% cache size is 52.53% for LRU 

caching and 55.47% for LFU caching, resulting in a difference of 2.94% in favor of LFU 

caching. Average hit rates for LFU caching for the 70% cache size are 69.77% compared to 

68.19% for LRU caching, a difference of 1.58% favoring LFU caching (shows in Figure 10). 

When a random user arrives, LFU caching once more produces marginally superior outcomes to 

LFU caching algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure10:  Comparison of Cache Hit Rate for Random Users’ Arrival for Video 1 and 2. 
 
 
 

Table III. Comparison of average cache hit rate for LRU and LFU. 
 

Algorithm Average Average Average Comments 

 cache cache cache hit  

 hit for hit for for 70%  

 50% 80% cache  

 cache cache   

LRU 68.67% 93.07% 79.38% When users 

LFU 71.49% 93.57% 82.92% come 

    sequentially 

LRU 52.53%  68.19% When users 

LFU 55.47%  69.77% come 
    randomly 
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CHAPTER SIX 

 

MACHINE LEARNING MODEL EVALUATION FOR 360 DEGREE 

VIDEO CACHING  

 

 
6.1. Feature Extraction  

 

For the training and testing datasets of the machine learning model, features were extracted from 

a data set consisting of 9 videos with 48 users. Tile frequency, view prediction probability for 

each tile for 1 second, and tile resolution for each video are features used in the data set. The 

following equation [46] calculates the forecast accuracy. 

 

∑ (𝑤𝑡, 𝑔𝑡)𝑇
𝑡=1 …………………….. (1)  

 
Here, gt= normalized ground truth which has 0 for tiles which are not visible and 1/(number of visible 

tiles) for  tiles which are visible. 

wt= The probability that tile t will be exhibited in a future segment is projected. 

 

The segment frequency score is the result of adding the ground truth values from all users. The 

average individual segment frequency score in the data set was taken to be 16 tiles per video 

segment. 

Segment frequency score= 
𝑓𝑇1+𝑓𝑇2+𝑓𝑇3+⋯…..+𝑓𝑇16

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑙𝑒𝑠
 

Here,  

fT1=frequency of tile 1,  

fT2= frequency of tile 2, 

fT3= frequency of tile 3 

fT16= frequency of tile 16 
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The video's metadata is used to determine the tile's resolution. Using a transition probability 

matrix, P, the users' view prediction has been computed. As indicated in [47], we adopted this 

state transition probability matrix because of its simplicity. Assuming that there are 1, 2, and k 

states, the state transition matrix is 

 

                         p11    p12 . . .  p1k 

                         p21    p22 . . .  p1k 

       P=  .        .            . 

  .        .            . 

                         pk1    pk2 . . .   pkk  

 

Table IV.  Video meta data  

Video No. Video contents Video length Video category  

1 Conan 2’44” Performance 

2 Ski 3’21” Sport 

3 Help  4’53” Film  

4 Conan  2’52” Performance 

5 Tahiti Surf  3’35” Sport 

6 The fight of Falluja  10’55” Documentary 

7 Cooking Battle 7’31” Performance 

8 LOSE Football  2’44” Sport 

9 The Last of the Rhinos  4’53” Documentary  

 
6.2. Algorithm 

 

Three regression algorithms-random forest, linear regression, and Bayesian regression are used. 

Random forest is a supervised learning method that utilizes the ensemble learning method for 

regression. A random forest performs its operation by building various decision trees (shown in 

figure 3) during the training period and taking the mean of the classes as the prediction of all the 

trees. 

 

Figure11:  Decision Tree for the Random Forest Algorithm. 
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In our model, we randomly selected k data points from the training set (row of the data set 

indicating vector of attributes, such as tile frequency, view prediction, and tile resolution) and 

created a decision tree linked with these k data points. Each of our N-trees (the number of 

decision trees in the model) will forecast the value of Y for the data points (segment frequency 

score) for a new data point, and we will then assign the new data points to the average of all the 

anticipated Y values. 

 

Another kind of regression procedure is linear regression (LR). The linear regression model is 

used to create a link between features (independent variables) and a continuous target variable 

(dependent variable). When there is just one feature, simple linear regression is employed; when 

there are numerous features, multi-linear regression is used. The linear regression equation can 

be expressed as follows because our dataset has numerous features: 

 

Y= mx1+mx2+……..mxn+b………………………………(2) 

Y= dependent variable 

m= slope  

x1=1st independent variable 

x2=2nd independent variable 

xn=nth independent variable 

b= constant  

 

From a Bayesian perspective, we have defined linear regression using probability distributions 

rather than point estimates. Instead of being estimated as a single value, the output, Y, is thought 

to be taken from a probability distribution. The answer used in the Bayesian linear regression 

model comes from a normal distribution. 

 

Y~N(βTX, σ2I)  

Here,  

β=coefficient  

X=predictor  

I=identity matrix 

σ=standard deviation  

 

The output Y is derived from a normal (Gaussian) distribution with a mean and variance. The 

mean has been calculated by multiplying the weight matrix by the predictor matrix. The variance 

has been found by squaring the standard deviation.  
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6.3. Experimental Setup  

 

Nine videos from a variety of genres, including performance, athletics, documentary, and film, 

have been used. Two of these videos were used as a training data set, while seven of them were 

used for training. Title frequency, view prediction probability for each tile over a one-second 

period, and tile resolution are among the characteristics of the training and testing data set. 

Conan's talk program, video-1, features a lot of on-stage displays of objects. In video 2, a free-

style skiing activity is demonstrated, and many skiers emerge in the frame at random. A monster 

chases a woman and a police officer in video 3. Since most of the objects in videos 1 and 4 

appear on the stage, viewers are more likely to focus on the tiles in the video's center. In the 

documentary in Video 9, the rhino serves as the main protagonist. Here, the rhino is the main 

focus of spectators' attention. There were 48 users who watched each video. Each video's section 

lasts for one second and is broken into 16 tiles. Each tile in this case has a distinct number of 

bytes, and each video's resolution is unique. 

 

Table V.  Video segments  
Video number Video segment 

Video-1 154 

Video-2 191 

Video-3 162 

Video-4 195 

Video-5 195 

Video-6 645 

Video-7 441 

Video-8 154 

Video-9 282 
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CHAPTER SEVEN 
 

EXPERMIENTAL RESULTS FOR MODEL DEVELOPMENT 

 

The Random Forest Algorithm uses the video resolution and view prediction probability for 16 

tiles in 1 segment as input characteristics. Frequency is the anticipated result. The projected 

frequency of segments for this method shows a closer relationship to the actual frequency of the 

segments. 

Actual frequency= [32 31 32 …36 35 36] 

Predicted frequency= [31.90 30.68 32.03…31.67 30.47 30.57] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure12:  Comparison of Total Actual vs Total Predicted Frequency for a Video segment for Random 

Forest Algorithm. 

 

Figure 12 compares the total expected frequency of the video segment that the user will watch to 

the total actual frequency of the video segment that the user has actually viewed. While the 

model predicts a frequency of 31.90 for the identical video 1 segment 1, the actual frequency of 

video 1 segment 1 is 32. Out of 48 viewers, the model predicts that roughly 32 will watch a 

comparable amount of segment 1 of the film. For video 9 of section 280, there are significantly 

less predicted frequencies than actual frequencies. Using this frequency data, it is possible to 

load the tiles or segments that many viewers will watch into the cache. 
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For the Linear Regression algorithm, the predicted frequency is given below:  

Actual frequency= [32 31 32 …36 35 36] 

Predicted frequency= [31.90 30.68 32.03…31.67 30.47 30.57] 

 

Figure 13 compares the overall actual frequency of a video segment watched by users to the 

overall anticipated frequency of the segment that the user would watch. The model predicts a 

total frequency of approximately 31, which is 1 frequency less than the actual total frequency of 

video 1 segment 2. The real frequency of video 1 segment 1 is 32. Out of 48 viewers, the model 

predicts that about 31 will watch the first part of the film. The estimated frequency for video 9 of 

segment 282 has been lowered from the total of 36 projected frequencies to roughly 31. Here, the 

model shows almost 5 out of 48 viewers will not watch segment 282.   

 

 

Figure13: Comparison of Total Actual vs Total Predicted Frequency for a Video Segment for Linear 

Regression Algorithm. 
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The Bayesian Regression algorithm's total predicted frequency and total actual frequency are 

shown in Figure 14 respectively. Segments 280, 281, and 282 of video 9 have different 

frequencies than the total projected frequency for segments 11, 12, and 13. 

 

 

Figure14. Comparison of Total Actual vs Total Predicted Frequency for a Video Segment for Bayesian 

Regression. 

 

The loss function for the regression, also referred to as the mean squared error (MSE), measures 

how closely a regression line resembles a set of data points. It is calculated by averaging the 

squared differences between the estimated and actual values. 

MSE= 1/N ∑  (𝑌𝑖 − 𝑌𝑗)
𝑛

𝑖=1
^2    ……………………………(3) 

N= number of data points 

Yi= observed values 

Yj= predicted values  

K-fold cross-validation offers a way to test a model's performance on hypothetical data, enabling 

assessments of how well a model avoids overfitting and functions generally. The method 

operates by dividing the dataset into k-folds. The dataset is then trained using k-1 folds, and this 

sub-model is tested using the final fold. K times are needed to complete this operation, one for 

each fold.  
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An aggregated assessment of the overall model's performance will be calculated by averaging the 

outcomes from each of these sub-models. Results of random forest regression using cross-validation 

when five folds of data are taken into account: 

[-3.0530  -2.9752   -2.8716  -3.0231  -2.9165]   

MSE= 2.97  

So, Root Mean Square Error (RMSE)= √(MSE)= 1.72 

 

When making predictions about actual data points, our generated model is typically 1.72 

frequency off, according to this Root Mean Square Error (RMSE), but the RMSE is rather small, 

which seems to be a good thing. 

 

Cross-validation results when considering 5 folds of data set of linear regression:  

 

[-4.5384  -2.9659   -2.4855  -1.9474   -3.2928] 

MSE =3.408 

So, Root Mean Square Error (RMSE)= √(MSE)= 1.84 

 

 

Cross-validation results when considering 5 folds of data set of Bayesian regression:  

 

[-4.3109]   -3.0404 -2.425   -1.8992  -3.3320] 

MSE =3 

So, Root Mean Square Error (RMSE)= √(MSE)= 1.73 which is less than the random forest and 

the linear regression.  

 

A coefficient of determination, or R2, is used to assess the extent to which fluctuations in the 

independent variable can account for variations in the dependent variable. R-squared provides 

the precise percentage of fluctuations in Y that are interpreted by X variables. ranges from 0% to 

100%, or from 0 to 1. The correlation coefficient's formula [48] is as follows: 

 

 

 

 

………………………………….(4) 

Here,  

n = Total number of observations 

Σx = Total of the First Variable Value 

Σy = Total of the Second Variable Value 
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Σxy = Sum of the Product of first & Second Value 

Σx2 = Sum of the Squares of the First Value 

Σy2 = Sum of the Squares of the Second Value 

Now the coefficient of determination can be written as = (correlation coefficient)2 = r2.  

 

If the r-squared value is between 0.5 and 0.7, it is generally seen as having a moderate effect 

size, and if it is greater than 0.7, it is often regarded as having a strong impact size [48]. 

 

The regression model is most likely not going to accurately forecast the genuine number because 

it predicts a segment's total frequency as 43.4 instead of the segment's true total frequency. In 

this situation, the threshold serves as a tolerance for error within which predictions provided by 

machine learning models can be accepted as accurate forecasts for all models. An acceptable 

margin of error for determining tile quality modifications for caching in the case of segment 

frequency is 2.5 frequency units. 

 

 

Figure15: Comparison of Coefficient of Determination of Three ML Models. 

 

The coefficient of determination for three models—random forest regression, linear regression, 

and Bayesian regression—is compared in figure 15. With a coefficient of determination of 0.79, 

random forest regression has the highest correlation with linear and Bayesian regression models 

having roughly 0.1 less. 
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Figure16: Scatter Plot Diagram for Random Forest Regression. 

 

The relationship between variables is visually shown and observed using a scatter plot. 

Figure 16's solid line represents the performance of the ideal, perfect model with a forecast R2 

value of 1. A notable departure from the ideal model can be seen in figure 16's data point 

distribution. The dotted line in the illustration illustrates how this might be overcome by giving 

the model a modest threshold. 79% of predictions on the test dataset came inside the threshold 

range for the random forest regression with a threshold value of 2.5 frequency units. As shown in 

figure 17, with a threshold value of 2.5 frequency units, 69% of predictions on the test dataset 

fell within the threshold range for the linear regression 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Scatter Plot Diagram for Linear Regression 
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Figure18: Scatter plot diagram for Bayesian Regression.  
 
 
 

Figure 18 demonstrates that, with a threshold value of 2.5 frequency units, 68% of predictions on 

the test dataset fell inside the linear regression's acceptable range. 

 
Table VI.  Summary of three models 

Model MSE RMSE  R2 

Random forest regression 2.97 1.72 0.79 

Linear regression  3.40 1.84 0.69 

Bayesian regression  3 1.72  0.68  

 

With a predictive R2 value of 0.79, random forest regression seems to perform better when 

compared to the other two models using the criteria in table VI. 
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CHAPTER EIGHT 

 

TEST BENCH FOR THE DEVELOPED ALGORITH AND COMPARISION OF RESULTS 

 

 

8.1Test Bench  

We discussed about the development of the three-machine learning model in the previous 

chapter. The goal of developing those models is to determine which model provides the most 

accurate forecast of viewing a tile based on segment resolution and tile probability. Out of three 

models, Random Forest regression model performs better compared to other two models and we 

have used this trained model for the algorithm development. In the final algorithm the random 

forest model would be used to determine the frequency score of the segment of the 360 degree  

video. A higher frequency score indicates tile within the field of view (FoV) has the high 

probability of being viewed by the users, while a low frequency score indicates the tile is most 

likely the outside of FoV. For this reason, tiles outside of FoV are loaded into cache at half 

resolution, while tiles predicted to be inside the FoV are loaded at full resolution. Once the cache 

is completely filled up, an LRU cache eviction method is utilized to evict the tile from the cache 

to make space for the new tile.  

 

To test the LRU and Machine learning caching algorithm, a test set was extracted two 360 videos 

(video 1 and video 2). Features used in the data set are tile probability and tile resolution. The 

test data set is passed through the model to generate frequency score prediction. Since 360-

degree video caching system is designed to be used by multiple users, the test file is setup in a 

way that we can simulate multiple users watching the same segment at the same time of the same 

video or users coming and watching videos sequentially for example user 1 watches video 1and 

user 2 watches video after user 1with a time delay between 2 minutes by repeating calls different 

segments throughout the test file for different users. 716 segments were used in the test bench for 

two videos. We have considered a full segment size is 5MB.  

 

To compare our machine learning algorithm with LRU algorithm, a python test bench program 

was written to evaluate both algorithms on the test set by varying the cache size. The size of 

cache is defined as varying sizes in megabyte. After defining the data cache size, we loaded the 

testing data set and imported the trained Random Forest machine learning model.  
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We set requested segment’s resolution to full resolution into the cache if frequency score 

predicted by the model surpasses the threshold, otherwise sets requested segments resolution to 

50% of the original segment into the cache. With the resolution reduced for frequency scores less 

than the threshold, tiles loaded into the cache would take less space in the cache than those at full 

resolution. In the test bench, if there is a cache miss, a cache miss counter is incremented, and, if 

there is a cache hit, the hit counter incremented.  

 

The test bench prints the average cache hit and average cache miss  

 
The average cache hit rate is calculated:  
 

Average cache hit rate =
𝐶𝑎𝑐ℎ𝑒 ℎ𝑖𝑡

𝑐𝑎ℎ𝑒 ℎ𝑖𝑡+𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠
∗ 100………………………….. (5)  

                       
 
 

8.2 Comparison of Results  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 19: Comparison of Average Cache Hit Rate for LRU and ML algorithm.  

 

The figure 19 shows comparison of cache hit rate of LRU and machine learning algorithm. When 

cache size is 5MB, the cache hit rate for LRU (least recently used) algorithm, and developed 

machine learning algorithm is similar (i.e., 83.55%) and almost similar cache hit rate is found for 

the10 MB too. With a max tile size of 5 MB, the cache size of 5 MB and 10 MB only allows for 

a maximum of 2 tiles at full size.  
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With the tile request order tested, the cache was depopulated in both algorithms evenly due to the 

low cache size. When cache size is 54 MB, the machine learning model shows 2.19% higher 

cache hit rate more than the LRU algorithm. For the 100 MB the average cache hit is 89.56% for 

the machine learning and 87.54% for LRU algorithm, resulting in a difference of 2.2%, favoring 

our ML algorithm. The highest average cache hit rate, which is 93.36%, is found for machine 

learning algorithm when cache size is 300 MB whereases the LRU algorithm exhibits 91.86% 

average cache hit rate. Each model shows same cache hit rate at cache size of 1000 Mb because 

at this the cache size is big enough that it can load every segment for both algorithms. Between 

45 MB to 300 MB the machine learning performs well.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20:  Comparison of Average Cache Miss Rate for LRU and ML algorithm. 
 

Figure 20 illustrates comparison of average cache miss rate between LRU and ML algorithm. 

The lower average cache miss rate indicates that the machine learning model l performs better 

than the LRU cache algorithm. The lowest average cache miss rate which is 6,64% is found for 

the machine learning algorithm whereas the average cache miss rate for the LRU algorithm is 

8.14%. With the increases of cache size both algorithm exhibits the lower average cache hit rate.  
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CHAPTER NINE 

 

DISCUSSION AND FUTURE WORK  

 

 

9.1 Discussion  
 

In the first of the research, we proposed caching 360-degree video using the LRU and LFU 

caching algorithms to reduce network latency and provide 360-degree videos to users effectively. 

According to our testing findings, when the cache size is set to 50%, the average cache hit rate 

for video 1 shows a nearly 3% improvement over LRU caching when users arrive consecutively. 

In contrast, for video 2, when the cache size is set to 70%, the average cache hit rate for LFU 

caching shows a 3.54% improvement over LRU caching. The sequential experiment revealed 

that the majority of users have similar viewing habits. As a result, it will be simple for future 

users to save the tiles that were watched by previous users in the cache. According to the results 

of the randomized trial, LFU caching looks to perform better overall than LRU caching. 

Additionally, when employing a reduced overall cache size for the LFU caching mechanism, the 

hit rate performance improvement is much more noticeable. When designing a tiny cache, it is 

practical to take the LFU caching algorithm into account. By decreasing the number of times 

video tiles need to be retrieved from the core network, an enhanced rate of cache hits can 

conserve bandwidth, lower network load, reduce network latency, and cut costs. The outcomes 

could vary if the scenario were scaled up to include more users, longer videos, and more tiles. In 

our 2nd part of the research, we'll haved the results of the FoV prediction to create an even more 

effective machine learning-based caching technique for removing unwanted tiles from the cache. 

 

In second part of the research, we developed three machine learning models for caching 360-

degree videos, using random forest, linear, and Bayesian regression. For the random forest, 

linear, and Bayesian regression models, the predictive R2 values are 0.79, 0.69, and 0.68, 

respectively. 79% of predictions on the test dataset came within the threshold range for random 

forest regression with a threshold value of 2.5 frequency units. On the test dataset, however, 69% 

of predictions for linear regression and 68% of predictions for Bayesian regression, respectively, 

came below a threshold value of 2.5. The random forest regression model outperformed the other 

two models overall. 
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In the third part of the research, we have utilized our developed our trained machine learning 

model for the test bench. A Python test bench program was created to assess both methods on the 

test set while adjusting the cache size in order to compare our machine learning approach with 

the LRU algorithm. Our Machine learning model removes unwanted tiles from the cache while 

also improving the cache hit rate at the user end. Performance-wise, the machine learning model 

outperforms the LRU approach. The model shows a cache hit rate of 93.46% at 300 MB of cache 

size.  

 

9.2 Future Work  

 

In the future it will be good to set up an actual 360-degree video system which includes a real 

test bench, a real cache server and main server to cache the tiles requested by the users. The 

hypothetical test bench might not be 100% similar in the real world. We can explore more 

features for example point of interest from the video segment and incorporate them in the 

dataset.  
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Appendix 1 

Code for the Machine learning Model (Random Forest Algorithm)  
 
 

import pandas as pd 

import numpy as np 

import sklearn as SK 

data_df=pd.read_csv("/Daraset_revised_2.csv") 

data_df.shape 

 

 

data_df.size 

 

X = data_df.iloc[:,18:33].values 

Y = data_df.iloc[:,17].values 

print(Y) 

print(X) 

 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.2, random_state=0) 

 

 

from sklearn.ensemble import RandomForestRegressor 

rfr=RandomForestRegressor() 

rfr.fit(X_train, Y_train) 

Y_pred=rfr.predict(X_test) 

print(Y_pred) 

 

Y_pred[0:2507] 

 

from sklearn.metrics import r2_score 

r2_score(Y_test, Y_pred) 

 

r2_score(Y_test, Y_pred) 

import matplotlib.pyplot as plt 

plt.figure(figsize=(15,10)) 

plt.scatter(Y_test, Y_pred) 

plt.xlabel('Actual') 

plt.ylabel('Predicted') 

plt.title('Actual Vs Predicted') 
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Appendix 1(Continued)  

 

 

Difference=Y_test-Y_pred 

 

Difference=Y_test-Y_pred 

row=len(Difference) 

col = len(Difference[0]) 

Y_temp = Y_pred.copy() 

 

threshold=2.5 

for i in range(row): 

  for j in range(col): 

    if abs(Difference[i][j]) < threshold: 

      Y_temp[i][j] = Y_test[i][j] 

 

r2_score(Y_test, Y_temp) 

 

 

 

plt.figure(figsize=(15,10)) 

plt.scatter(Y_test, Y_temp) 

plt.xlabel('Actual') 

plt.ylabel('Predicted') 

plt.title('Actual Vs Predicted') 

 

 

Code of the test bench:  

# -*- coding: utf-8 -*- 

""" 

Created on Mon Jan 24 15:35:55 2022 

 

@author: 19033 

""" 

 

# Imported libraries 

from LRUCache_1 import LRUCache 

import sklearn as SK 

import pandas as pd 

import numpy as np 

import joblib 

from VideoSegment import VideoSegment 

 

# Creates an LRU cache for caching video tile and segment data 

#cache_store = 0             # Size in MB of filled space in the cache 

cache_size =1000# Size in MB 

cache = LRUCache(cache_size) 
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Appendix 1(Continued)  

 

# Reads testing data file for cache simulation 

data = pd.read_csv("C:\\Users\\19033\\OneDrive\\Desktop\\RA-Milon\\algorithm\\Cache-Algorithms-

main\\Cache-Algorithms-main\\CacheTest_1.csv") 

 

 

 

# Imports trained RFR machine learning model 

joblib_model = joblib.load("rfr.pkl") 

 

# Initializes hit count and miss count to 0 

num_users=20 

miss_count = 0 

hit_count = 0 

user_miss=[0] * num_users 

user_hit=[0] * num_users 

# For each row in the testing data file, 

for index in range(len(data)):   

    user_num=data.iloc[index, 52] 

    user_num=round(user_num) 

    # Extracts maximum resolution of the requested tiles 

    resolution = data.iloc[index, 35] 

 

    # Extracts features for iput to the machine learning algorithm 

    X = data.iloc[index, 19:34].values 

    X = X.reshape(1, -1) 

     

    # Makes predictions on the provided features and rounds the result to the nearest whole number 

    Ypredict = joblib_model.predict(X) 

     

Ypredict = round(Ypredict[0]) 

    print(Ypredict) 

 

# Sets requested resolution to full resolution if predicted frequency surpasses threshold 

    if Ypredict >31: 

        segment_size = 5 

        #print(segment_size) 

     

    # Otherwise, sets the requested resolution to 50% 

    else: 

        segment_size = 2.5 

        #print(segment_size) 

 

 

    # Sets item cache key to tile number 

    key = data.iloc[index, 51] 
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Appendix 1(Continued)  

 

 # Sets item cache content to segment size 

    content=VideoSegment(1,segment_size) 

    print (content.getSize()) 

    #content = segment_size # eventually will replace with actual video size in MB 

     

    # Checks if the requested tile is in the cache 

    tile = cache.get(key) 

 

        # If there is a cache miss, the requested tile is added to the cache 

    if tile == -1: 

        cache.put(key ,content) # Change 'content' to actual video tile in the furture  

        miss_count += 1         # Increments miss count by 1 

        user_miss[user_num-1] +=1 

        # Otherwise, increments hit count by one   

    else: 

        hit_count += 1  

        user_hit[user_num-1] +=1 

 

    # If the new value of cache storage excedes the cache size, 

    #if cache_store > cache_size: 

        # Adjusts pre-incremented cache_store value to the current value of filled cahce 

       # cache_store = cache_store - segment_size 

 

# Prints hit count and miss count 

print(hit_count) 

print(miss_count) 

print(user_hit) 

print(user_miss) 

cache_hit_sum=0 

cache_miss_sum=0 

for i in range (num_users): 

   cache_hit_rate=(user_hit[i]/(user_hit[i]+user_miss[i]))*100  

   cache_miss_rate=100-cache_hit_rate 

 

print(cache_hit_rate) 

   print(cache_miss_rate) 

 

cache_hit_sum +=cache_hit_rate 

   cache_miss_sum +=cache_miss_rate 

print(cache_hit_sum/num_users) #average cache hit rate for the …… users 

print(cache_miss_sum/num_users) #average cache miss rate for the …. users 
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