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ABSTRACT 

A REAL-TIME INTERNET OF THINGS (IOT) BASED AFFECTIVE FRAMEWORK FOR 

MONITORING EMOTIONS IN INFANTS 

 
Alhagie Sallah 

Thesis Chair: Prabha Sundaravadivel, Ph. D. 

The University of Texas at Tyler                                                                                        

May 2020 

 

 An increase in the number of working parents has led to a higher demand for remotely monitoring 

activities of babies through baby monitors. The baby monitors vary from simple audio and video 

monitoring frameworks to advance applications where we can integrate sensors for tracking vital 

signs such as heart rate, respiratory rate monitoring. The Internet of Things (IoT) is a network of 

devices where each device can is recognizable in the network. The IoT node is a sensor or device, 

which primarily functions as a data acquisition unit. The data acquired through the IoT nodes are 

wirelessly transmitted to the cloud to perform data analytics, thus assisting in remote monitoring. 

The deployment of IoT in applications such as smart healthcare, smart home, smart cities, smart 

transportation, and smart agriculture has made this a billion-dollar industry. 

Affective computing, also known as emotional artificial intelligence, helps in developing 

systems that recognize, interpret, process, and simulate human affects. It is an interdisciplinary 

field of computer science, psychology, and cognitive science. The proposed system will be called 

Amb-I (Short for Intelligent Ambient Monitoring) deploys affective computing in baby monitoring 

through the Internet of Things. The proposed system recognizes the mood of the baby through the 

camera and records the corresponding ambient values through the ambient sensor array, which 

consists of a humidity sensor and temperature sensor. When the mood of the baby changes i.e. if 

the baby cries or feels annoyed, with help of the Amb-I sensing unit, the ambient values are 

checked, and the thermostat is controlled wirelessly, to maintain a desired ambiance for the baby. 

And if the baby continues to feel annoyed, the parents are notified immediately. The learning 

model for recognizing the mood of the baby is based on deep learning deployed through MATLAB 

on local PC or python libraries on Linux based small device environments. The controller for the 

Amb-I system is built based on the general-purpose computer, Raspberry-Pi 3. This cost-effective, 
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IoT-based affective ambient monitoring system helps in maintaining an ideal ambiance for babies 

and improves the quality of life for both parents and babies.
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CHAPTER ONE 

INTRODUCTION 

 According to the US department of labor’s statistics on labor force participation of women 

with children age less than three years, there has been a significant increase by almost two folds 

in the percentages of women in this category in 2016 compared to four decades ago [1].  These 

statistics reflect the need for more babysitters or the increased demand for baby monitoring 

systems for such working parents. However, such monitoring devices require high-speed internet, 

which is very expensive or unavailable in some places. 

Without baby monitoring frameworks, people used to tiptoe every night, occasionally to check on 

their little ones in the nursery. Some will walk through the dark in order not to wake the little one 

up only to be thwarted by some quaky doors, floorings, or some will even stumble and fall, causing 

injury or waking the sleeping baby. A baby monitor can help to avoid all this. At the comfort of 

your couch or bedroom, parents or nursing personnel can watch and monitor the activities of the 

infant. These baby monitors come in different forms based on requirements. The most common 

are the ones that fall in the following three categories. 

Category-1: Audio Monitors: These devices monitor sounds in the environment, that allows you 

to control the sounds such as the cries of the baby, undesirable noise, and other faults or monitoring 

alarms in the nursery. Some of these devices often come with two-way communication, where 

parents can try to interact verbally with their little ones. 

Category-2: Video Monitors: These devices provide real-time visual monitoring (footage), thus 

helping parents keeping an eye on their little ones. 

Category-3: Wearable Monitors: These monitors keep track of the baby’s vitals, such as sleeping 

and breathing patterns, respiratory rates, posture and movements, temperature and crying, etc. [2]. 

Some present-day monitors in the market may embody one, two, or all the categories. The choice 

of monitor used depends on different factors such as cost, installation feasibility, and, most 

importantly, what the parent finds more applicable for their usage. However, one major drawback 

of these monitors is that it requires occasional or constant monitoring to detect or tract the physical 

or emotional state of the infant and sudden changes in the ambient conditions. Our proposed 
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framework, Amb-I, addresses this drawback. Figure 1 shows the conceptual overview of the 

proposed Amb-I system.  In this research, we design, test, and prototype a monitoring system that 

makes use of critical technologies such as IoT, affective computing, and machine learning to 

address the limitations of current monitors. The Amb-I will not only act as audio, video, and 

wearable monitor but will use machine learning techniques to detect the emotional state of the 

infant and use affective computing to try to adjust to the needs of the infants without any direct 

human interaction. All this will be made possible through the use of the concepts of the Internet 

of Things (IoT) where connected devices communicate directly with little or no human 

intervention. 

A leading cause of rashes or infections among infants is the untimely change of soiled diapers [3]. 

Parents or caregivers should regularly check the diapers of infants as frequently to avoid rashes or 

infections. This is usually difficult, especially for working-class parents. Our proposed system will 

monitor the diaper moisture condition, and timely notify parents to attend to the infant as soon as 

possible. 

 

Figure 1: Conceptual Overview of the proposed Amb-I System. 

1.1 Aim/Objectives 

The aims and objectives of this project address some of the limitations of the current infant 

monitoring system and introduce a novel idea that will make baby monitoring more comfortable, 

more efficient, and above all, cost-effective. These objectives will be realized through the 

following: 
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1. Develop a monitoring system that can detect infants’ key emotions (Happy, Crying, 

Sleeping, Normal) through deep learning techniques in MATLAB or python libraries. 

2. An ambient monitoring system that continuously monitors the ambient conditions 

surrounding the infant. 

3.  An intelligent IoT-based affective computing system that makes use of the collected data 

mentioned above to stimulate or trigger the desired outcome. 

4. The use of cheaper devices that will eventually lead to more affordable final products 

1.2 Motivation 

Peace of mind, security, safety, and critical vitals monitoring are the main benefits of a good infant 

monitoring system. Most working-class parents struggle through getting an affordable, effective, 

and efficient monitoring system for keeping up with what is happening around the baby when 

he/she is in the nursery. During work, travels, or sleep, it's not possible to be glued to baby monitors 

to monitor our baby’s nursery in real-time. Limited broadband Internet access, high cost of 

continuously streaming the video footage, and having to call someone to attend to the baby’s need 

while away is a nightmare barely solved by existing monitors. The concerns mentioned above 

mostly prevail among many parents which were the motivation to design a cheaper, more cost-

effective, and smarter monitoring system for infants.  

1.3 Current Monitoring Devices 

There are a lot of different commercially available monitoring devices in the market today. Current 

monitoring devices that are closely related to our proposed framework include but are not limited 

to, the following: 

1. Nanit Plus Smart Baby Monitor:  This has audio, video, and sleeping pattern monitoring 

capabilities. It can provide a review of the sleeping pattern, room conditions to quickly 

detect changes. It offers real-time sound and video footage that can be viewed on a 

smartphone. It works with Wi-Fi to easily connect to the internet and provide a two-way 

communication that allows you to communicate with your little one from afar. 

2. Motorola Halo Baby Monitor and Soother: This monitor in the market has audio, video, 

and sleep pattern monitoring capabilities too. Also, it has a built-in speaker to play soothing 

sounds to promote sleep as well as a two-way communication mechanism to interact with 
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the infant. It also has infrared night vision to help visually see infants clearly through the 

dark.  

3. Infant Optic baby Monitor: This has all the features of a monitor described in the above 

two. Additionally, it has the innovative lens technology that allows you to customize 

camera performance by switching different lenses on the camera. 

4. CasaCam Video Baby Monitor: This camera has a large 5-inch LCD that has a touchscreen 

display and is very easy to operate. It can be adjusted remotely and supports up to six 

different languages. 

5. AXBON Wireless Video Baby Monitor: This has a temperature sensor for detecting if the 

baby's room is too cold or hot. It also has a built-in alarm that can be enabled to remind 

parents to change their baby’s diapers or check them periodically. 

6. Summer Infant Video Baby Monitor: This has a temperature sensor for detecting if the 

baby's room is too cold or hot. Also, it has a zoom in/out functionality for closer 

observation of the baby's activities. It can connect up to four baby monitor cameras. 

7. VTech Audio Baby Monitor: This monitor is strictly for audio monitoring. It has a built-in 

DECT 6.0 digital technology to reduce background noise to hear the baby’s sound. 

8. Owlet Smart Sock and Cam: This is one of the most expensive but most spectacular baby 

monitors out there in the market. It has audio, video monitoring and temperature 

monitoring capabilities as well as the ability to monitor heart rate and oxygen levels in 

babies. 

1.4 Organization of Thesis 

The novel contributions of this research are emotion detection in real-time and the ability to collect, 

analyze, and react to this data using the concept of IoT. The research in this Thesis is explained in 

the following five chapters:  Chapter 2 looks at a brief overview of previous research in infant 

monitoring devices or studies. Chapter 3 describes the technical knowledge or concepts involved 

or used in this project. Chapter 4 describes the method and implementation strategy for this project. 

Chapter 5 detailed out the discussions, observations, problems faced, conclusions and suggested 

future works.
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CHAPTER TWO 

LITERATURE SURVEY 

Before delving into the research for our proposed framework, lets discuss the current research 

work that been done in areas that are foundational for the same. Future IoT projects that will 

continue to shape our relationship with our surroundings. 

2.1 Ambient and Health Monitoring Systems for Infants: 

G. Joshi et al. have proposed a system that would supposedly predict the probability of crying of 

a child, detection of the crying, and the financial viability of this system. The system would target 

working-class people who don't have the time and resources to attend to their young ones 

sometimes due to work or certain predispositions. Cheap hardware used was a raspberry pi, pic 

camera unit, and a microphone and a Microsoft cognitive services capable of image analysis, text 

analysis, language analysis, and Human Emotion analysis for Emotion detection and prediction 

[4]. 

A. Osmani et al. described a Machine Learning Approach for Infant Cry Interpretation. Their paper 

research focused on reducing infants’ distress. They produced real connected objects 

implementing this solution for smart baby monitors. It proposes a machine learning process that 

includes a reliable dataset of infant cries and selecting suitable sound features to detect and analyze 

discomfort (Cries) of infants later automatically. This machine learning process includes a low-

level audio features selection method from labeled pre-cry recordings and the high-level features 

characterizing the envelope of the crying [5]. 

Chuan Yu. Chang and Fu-Ren Chen use the concept of deep learning (TensorFlow) to detect crying 

or face covered vomit among infants. The blockage of the nose and mouth by vomit or coverlets 

are major causes of sudden infant death. They have used Single MultiBox Detector for 

classification and mobilenetis for prediction. The public face database-WIDER FACE dataset was 

used for training the neural network and Gaussian filters for image preprocessing. The area of the 

mouth is estimated so that when there is an object (vomit or coverlets), the new area of the mouth 

region is different from the initial estimate. This region of interest  was used to predict the presence 
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of vomit or object in the mouth region. The same concept was applied to predict crying action 

amongst infants [6].  

Madhuri P. Joshi and Deepak C. Mehetre designed an IoT based smart cradle system for 

monitoring babies through an Android App. The paper presented a design of a cradle system that 

supports video monitoring, as well as swing automatically on detecting the baby crying. This is to 

try to soothe the baby before the baby gets attention from its caregiver. If the baby continues to 

cry after a certain time, a notification is sent to convey a message that the baby needs personal 

attention. It also has a wet bed alarm that is useful not only to monitor the comfort of the baby but 

also help to keep a healthy environment around the baby. All this helps to bridge the gap between 

parents and children anywhere and anytime [7]. 

Ananda Mohan Ghosh et al. presented a paper that detailed the design of a health care system that 

allows relatives or doctors to remotely monitor the health condition of patients over the internet 

using Arduino and some sensors [8]. However, if the same concept is applied to monitoring 

children at home during working hours, the flaw if this system is quite apparent. It will require 

constant surveillance or monitoring of the system for any changes in the patient. This will be nearly 

impossible for a working-class parent or relative. This is why we propose a system that will do the 

monitoring, soothing reactions, and human intervention is only required when extremely 

necessary. Similarly, a raspberry Pi-based patient monitoring system by P Kumar et al. [9] where 

heartbeat, respiration, and temperature are measured using sensors and displayed using putty 

software cannot also react to the data automatically without human intervention. 

Xiaoting Liu et al. [10] proposed a video-based IoT monitoring system for Sudden Infant Death 

Syndrome (SIDS). It can reduce response time by using Eulerian Magnification, a video 

amplification technique to amplify subtle movements by comparing the color difference in frames 

for breathing detection.  An alarm is automatically generated to notify parents or guardians when 

a breathing abnormality is detected. 

A. Archip et al. [11] proposed a system a low-cost modular monitoring system for remotely 

monitoring patients. This could be neonates or patients in an ICU following surgery or complicated 

illness. Their proposal offers mobile support to facilitate faster and better medical intervention in 
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an emergency. The design includes sensor arrays for SpO2, temperature and movement capturing, 

a microcontroller, and interface all to an IoT platform (RESTful based Web Service).  

S.P. Patil et al. [12] proposed a body monitoring system that creates peace of mind for parents or 

caregivers. The proposed system will monitor health conditions such as body temperature, 

moisture, and movement of the baby and will automatically send out signals during an emergency 

using GSM networks. The architecture of their prototype includes sensors, GSM Module, LCD 

screen, and a sound buzzer. However, their prototype does not make use of the internet to be 

accessible from afar. 

M. Leier et al. [13] proposed a miniaturized wireless monitor for long-term monitoring of 

newborns. The architecture of the proposed infant monitoring prototype consists of aspects critical 

to long-term use and convenience. The two key aspects included the physical size of the product 

for convenience and the use of Bluetooth Smart Wireless protocol to increase the monitoring life 

cycle. 

Health-related disease conditions are continuously increasing, and therefore an accurate, cheap, 

and portable heart rate and body temperature measuring device are essential. And it will enable 

timely intervention before or during an emergency. The focus of  A. Miah et al.  research in [14] 

was the same. Their proposed system will provide health information such as heart rate and body 

temperature in real-time through a connected Android platform. 

N. Indumathy et al. [15] and B. Priya et al. [16] proposed android based systems for monitoring 

the health condition of patients using different sensors such as temperature, heart rate, and eye 

blink detection sensors. Data from these sensors are being used to predict or determine the 

condition of patients. 

Hata, Y et al. [17] proposed a human health monitoring system for bedridden patients. The system 

continuously monitors the patients’ health vitals. A specified doctor's cell phone is notified via 

SMS when a critical condition is detected. Nambu, M et al. [18]proposed a similar system for 

monitoring health conditions in homecare systems. A 24-Hour health monitoring system aimed at 

helping independent living of elderly patients in a smart house was proposed by L. Heyoung et al. 
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[19]. It consists of a biosignal sensing part, a monitoring system for caregivers, and a local PC for 

processing the data. 

F.Guo et al. [20] and S. Brangui et al. [21]designed a prototype for monitoring the environment of 

a baby’s room. Their proposed systems had sensors for temperature and humidity, a wet alarm, 

infrared alarm and other information collecting systems. This will allow the family of the baby to 

access, observe, or monitor in real-time the environmental parameters of the baby at home. 

N. Zakaria et al. [22] proposed an IoT based infant body temperature monitoring. They pointed 

out that parents and caregivers are usually not aware of the drastic change in temperature of infants 

unless a device that can continuously monitor the infant body temperature or environment is used. 

Due to power requirements. such devices are hard to get, and they proposed a smaller and lower 

power system to provide continuous monitoring. The proposed system in this project will provide 

not only continuous monitoring but also the ability to react to the measured abnormal temperature 

and effectively and efficiently alert parents on the condition of the infant. 

A temperature monitored IoT based smart incubator was proposed by A. Ashish [23] to provide a 

stable and controlled environment in the enormous care of premature babies. Through the use of 

low-cost devices such as raspberry pi, temperature sensors, relays for thermostat switch control, 

and IoT, the proposed system sought to provide a cheaper and more eco-friendly alternative to 

existing high cost, large and complex existing incubators. 

 E. Saadatin et al. [24] proposed in their paper a low cost, mobile-based monitoring that can 

continuously monitor the baby and remotely update the parent or caregiver about the status of the 

baby. The system continuously collects sensor data such as temperature, heart rate, and sends it to 

a server. This server then immediately notifies the parent as soon as abnormal data is collected. 

This is a great innovation to infant monitoring, but the drawback is that it cannot react to the given 

data besides notification. Reactions such as remotely adjusting the thermostat, playing soothing 

sound, or swinging the cradle to comfort the infant before human intervention is available. 

B. Mohammad et al. [25] proposed a portable embedded system that can provide a continuous 

temperature monitoring system for babies disables or older adults. The includes a single 

microcontroller that picks data from temperature sensors and feeds this to an LCD or activates a 
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sound buzzer to alert or notify caretakers when an abnormal temperature is recorded. This is quite 

cheap and simple to implement, but unlike the proposed system in the project, it lacks the 

intelligence and ability to detect other events surrounding the infant, and also it does not have the 

ability to react to the abnormal data besides simple notification.  

S. Thomas et al. [26] also proposed a system in 2016 for digitally sending heart rate and body 

temperatures using Arduino and an android platform for display. The Arduino microcontroller was 

programmed to receive data from the sensors attached to the body, and through the internet, it can 

relate this data to the user’s android application. 

A novel continuous infant temperature monitoring and the alerting system was designed by M. 

Morthi et al. [27]. It was targeted for people with limited literacy or in rural settings. It uses light 

or sound to call to attention a caregiver whenever a high temperature is detected. Faruk et al., also 

proposed a similar system for hard of hearing parents. In their system, a vibration or led blink is 

generated whenever an abnormality is detected. 

Pradeep Doss M et al. [29] develop a non-invasive monitoring system using raspberry pi, IoT, and 

sensors. Sensor data such as temperature, heart rate, respiration are collected and uploaded to an 

IoT cloud platform for analysis or sending of notifications to parents/caregivers. 

A. A Joseph et al. [30] proposed a smart health monitoring system that can be used by parents to 

monitor the health conditions of their children, especially those under five years. The prototype 

consists of a temperature sensing unit for detecting fever or other abnormalities and notifying the 

parents through an alarm system. 

2.2 Humidity Monitoring in Infants: 

J. Siden et al. [31] described a wet diaper detection system. Their prototype is a paper-based, 

disposable, and moisture-activated RFID system that can be incorporated into diapers. It transmits 

radio signals upon contact with moisture that could be used to alert the caregiver. However, even 

though this might be cheap to build, incorporating it in all diapers may be undesirable or increase 

the cost of production and may likely not be adopted. The proposed system in this project will be 
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more realistic since a single monitor will be used to measure the change in humidity in the diaper 

region as well as the surrounding environment. 

M.S. Tuma and Y. Kim [32] proposed a system of diaper monitoring using the Impedance 

Variation of a Dipole Antenna. This antenna will be attached to the diaper to sense the urine and 

feces of infants by relying on variations in the antenna’s input impedance. Similar to other 

prototypes that require new additional devices to embed into existing diapers, it may increase the 

cost or will less likely be adopted. 

T. Khan [33] proposed a smart wearable gadget for diaper monitoring that is both noninvasive and 

can send a notification to caregivers or parents. The proposed gadget detects the temperature rise 

on the outer surface of the diaper due to urination. The gadget is small, low power, and unlike 

previously proposed gadgets, it is reusable. It also has the functionality to log urination events in 

a database that could be used to track other disease conditions such as retention and dehydration 

etc. However, its drawback is that it monitors only one aspect of the infant’s health or environment. 

P. Sen et al. [34] proposed a low-cost method for detecting the wetness of diapers using hydrogel-

based RFID tags. The diapers embedded with RFID tags would communicate with a nearby RFID 

reader. This reader helps in connecting to the internet would then convey the message to the 

parent/caregiver if urine or moisture is detected. 

M. Y.E Simik et al. [35] proposed an automatic alarm system for wet diapers using GSM. The wet 

diaper, which comprises an elongated pair of spaced conductors, detects wetness of diaper due to 

a change in resistance between the conductors. An RF module is then used to transfer the signal 

from the diaper sensor to a GSM alarm system. Another initial approach towards a paper-based 

diaper sensor was proposed by M. McKnight et al. [36] to detect not only urine but other critical 

physiological parameters wirelessly. 

Ming-Hui Wen proposed a Goo9 system that comprises a sensor (temperature and humidity) 

module, a data processing module, and a cloud database. The processing module will analyze 

sensor data, and output is represented based on wetness levels (dry, slightly wet, wet, and very 

wet). These wetness levels are translated into emoticons (Happy, Mild, Uncomfortable, and 
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Crying) and are sent to parents for baby change reminders [37]. A similar design using Goo9 was 

also proposed by Q. Zhang et al. using SHT21 sensors [38]. 

2.3 Emotion Recognition in Infant Monitoring Frameworks 

On the image processing part, the idea of using existing data to train a system to recognize 

emotions arise from the studies or prototypes discussed below.  

J. Mukhopadhyay et al. [39] did a study aimed at testing the hypothesis that seeks to evaluate the 

human perception of neonatal cry using a database of 315 neonatal cries. Each newborn cry is 

associated with one class (hunger, pain, wet diaper, and others). After training participants, 

different cries are presented to participants to predict the actual type associated with the cry. This 

is the basic idea behind the image processing part of this project. With the advent of artificial 

intelligence, this can be implemented in a system quickly and efficiently using neural network 

techniques. A similar study was done by Aomar Osmani et al. [40] using a machine learning 

approach. 

Another system that was studied to help develop the basis of the project is the paper by K. Kirana 

et al. [40] that looked at facial emotion recognition based on the Viola-Jones algorithm. Here, 

facial features were used to detect, differentiate, and recognize emotions. 

Extracting facial features from a real-time image capturing system (a camera) and using 

appropriate classifiers and techniques such as SVMs, decision trees, and random forest, a supposed 

accurate and efficient emotion detection system was proposed by B.T Nguyen et al.  [42]. 

Suchitra et al. [43] proposed a method for real-time emotion recognition using raspberry pi. In 

their system, they used three-step face detection using Haar cascade, used Active Shape Model 

(ASM) for feature extraction, and Adaboost classifier for emotion classification. 

 



  

12 
 

CHAPTER THREE 

TECHNICAL BACKGROUND 

The technical background discussed in this chapter is centered on the three critical components of 

this research: emotion recognition using cost-effective wearable, ambient monitoring, and the IoT 

framework. Figure 2 shows an overview of the proposed project. First, let us discuss the application 

of fundamental concepts of deep learning architecture, in image and/or emotion processing 

techniques such as this framework. The discussion on deep learning and MATLAB will lead to 

the implementation of the emotion recognition part of this project; the single board computer, 

Temperature, and Humidity sensors, as well as the IoT cloud platform (ThingSpeak), will aid the 

ambient monitoring portion of this project. Further discussion on all these concepts leading to 

implementation is put together to form Amb-i in the next chapter. 

 

Figure 2: General Overview of the Proposed Project 

3.1 MATLAB 

MATLAB is a high-performance language that allows easy implementation of algorithms, creation 

of user interfaces, and interfacing with other languages [44]. It has optional toolboxes specifically 

designed to accommodate high computing abilities in algebra, simulations, image processing, 

artificial intelligence, controls, and embedded systems. These toolboxes are expertly built, 

thoroughly tested and fully documented. This is why we see it as our choice for building the 

emotion recognition part of this project. 
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3.2 Neural Network 

Neural Networks are techniques used for building artificial systems that can learn from a set of 

existing data and use what was learned to predict, classify, or process future data. Figure 3 gives a 

simple overview of a neural network showing input, output along with hidden layers. It works 

similarly to how the human brain sees, learns, and processes data around us. In order words, they 

are designed to recognize patterns in data. Neural networks are usually stratified in layers, usually 

an Input Layer, one or several hidden layers, and an output layer. Each layer consists of nodes 

where computations are done. Between the nodes or layers are a set of coefficients called Weights 

that can amplify or dampen the input or output of a node.  

 

Figure 3: Simple Neural Network 

 

The product of preceding inputs and weights of a neuron are summed and passed on to an 

activation function to determine to what extent such input or weight will be used in training the 

network. 
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Figure 4: Relationship between Inputs, weights and Activation Function 

 

Depending on the number of hidden layers, a neural network can be classified as a shallow or deep 

neural network. The single-layer perceptron is the simplest form of a neural network with no 

hidden layers. The multilayer perceptron has one or more layers, and they are the ones with most 

practical applications nowadays. 

The type of input data and/or output requirements usually determines the best neural network 

architectures to adopt. The main idea behind these neural networks is to learn special features in 

each input data to form a relationship, classify, or learn patterns from the data. This feature 

extraction can be done manually or automatically by the neural network as data is passed from the 

input layer through the hidden layer(s) to the output layer. The manual extraction is usually very 

complicated and tedious to design. The deep learning networks learn high-level features 

automatically as data is passed through its numerous hidden layers and hence a very suitable choice 

for my project.  
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3.2.1 Deep Learning or Deep Neural Networks 

These are neural network models or techniques with multiples of layers, that take input and extract 

several features for training to perform classification, localization, object detection, instance 

segmentation, or speech recognition. 

A convolutional neural network (CNN) is one of the most popular algorithms for deep learning. 

They are instrumental in finding patterns in images to recognize objects, faces, and emotions. They 

classify images using patterns learned directly from the image dataset. CNN enables us to avoid 

the tedious method of manually extracting features. These CNNs, once built, can be trained for 

recognition of different tasks without necessarily making a new neural network. A CNN, like most 

deep learning networks, can have tens to thousands of layers that learn to detect a feature in the 

image with filters applied to each image at various resolutions.  

 

Figure 5: A deep Neural Network Architecture 

In terms of functionality, a CNN architecture consists of several components  such as convolutional 

layers, pooling layers, fully connected layers, activation function, input layer, and output layer. 

Convolutional Layers 

This layer is the building block of convolutional neural networks. The convolutional layers consist 

of a rectangular grid of neurons whose input is also a rectangular grid of neurons from a previous 

layer. It takes an input and maps it to a feature map of that input before passing it to the next layer. 
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A convolutional layer usually has three attributes; Convolutional filters (Kernels), the number of 

input and output channels and these channels must be equal. 

Pooling Layers 

Pooling layers are used to minimize the dimensions of a given data by combining the outputs of a 

layer into a single neuron in the subsequent layer. These layers are crucial in simplifying the 

outputs of a convolutional neural network by reducing the number of features the network needs 

to learn. This leads to a reduction in the number of parameters and computations in the network 

and thus helping to control overfitting. The reduction can be applied on a small cluster (local 

Pooling), applied on all neurons of that layer (Global pooling), or the use of the maximum value 

in each of the clusters in that layer (Max Pooling). 

Fully Connected Layers 

In these layers, neurons between any two adjacent layers are fully connected pairwise but no 

intralayer connections. This full connectivity often leads to a problem in neural networks known 

as overfitting. Fully connected layers are placed before the classification output to flatten the 

results before classification. 

Activation Functions 

The activation functions are included in neural networks to introduce non-linearity, which is so 

important because most real-world data are nonlinear. These activation functions perform certain 

mathematical operations on neuron data. There are several types of activation functions, and a few 

major ones are described below: 

Sigmoid: This takes several real-valued inputs and squashes it to the range between 0 and 1. In 

other words, it sets large negative numbers as 0 and sets large positive numbers as 1. However, it 

has a few drawbacks. It saturates and kills very small gradients resulting in no leaning by the 

neurons, especially when initial weights are large. Its output is not zero-centered as a result of 

setting all output between 0 and 1, which could affect computation in the subsequent layers. 

𝑆(𝑥) = 1 (1 + 𝑒𝑥𝑝(−𝑥))⁄       (Eq.1) 



  

17 
 

Tanh: This takes several real-valued inputs and squashes it to the range between -1 and 1. Just like 

the sigmoid, its activation also saturates, but its output is zero-centered, making it the better non-

linearity option to sigmoid.  

𝑇(𝑥) = 2𝜎 (2𝑥 − 1)⁄        (Eq.2) 

Rectified Linear Unit (ReLU): It is a half-wave rectifier function that is thresholded at zero [45]. It 

maps all negative values zero. It is effortless to implement, and its convergence is faster compared 

to the tanh or sigmoid functions. It is given by the equation [3] below. 

𝑅(𝑥) = max(0, 𝑥)      (Eq.3) 

 

Figure 5: Graphs of activation functions [46] (a) sigmoid (b) tanh (c) ReLU 

3.2.2 Training Datasets 

In deep learning, one can train the CNN with data from scratch or use pre-trained models with 

minimal input training data in a new process called transfer learning. The former is not necessary 

for this project as it requires massive amounts of data (millions of data) and a long time for training. 

With the latter (transfer learning), minimal data (few hundred) can be used on a pretrained network 

that had already been trained with millions of images and retrained for our new object classification 

[47]. Examples of such pretrained networks include AlexNet, GoogLeNet, ResNet-101, ResNet-

18, DeepNet, SqueezeNet etc. 

3.2.3 Overfitting and solutions (Regularization) 

When a convolutional neural network is trained with a model that is so close to a particular set of 

data that the network fails to fit or predict another set of data, a phenomenon called Overfitting 

arises. This could be as a result of more parameters that are not related or justified by the data. 
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Regularization is the process of preventing overfitting or mitigating its effect. The following are 

various types of Regularization used in CNNs: 

Dropout: This is a process where certain individual nodes are dropped out of the network, and only 

some are allowed to progress or trained in the subsequent layer. In CNN, this is usually 

probabilistic, with dropped nodes (1-P) and kept nodes with probability P. Reducing the number 

of nodes trained decreases overfitting, increases the training speed, and allows the active node to 

learn key features that are specific to the data. 

DropConnect: This is similar to the dropout mentioned above, but unlike dropout, individual 

connections are dropped with probability (1-P) rather than the whole output unit or neuron. 

Other methods of preventing overfitting include stopping the training before overfitting occurs 

(Early Stopping), reducing the number of parameters, hidden layers or depth of network or filter 

sizes, or providing more training examples to the CNN (Artificial Data Expansion). 

3.2 Ambient Monitoring  

3.2.1 Single Board Computer (SBC) 

To make this project possible, like most smart device projects, a microcontroller or a single board 

computer (SBC) is required to put the pieces together. These SBCs represent part or whole 

computers but in much smaller sizes. They have different interfaces for connecting and/or 

communicating with other devices or the internet. Some SBCs support the adding of external 

modules through its numerous slots, while some have all the key components embedded in the 

device [48]. The former is usually cheaper and offers more flexibility while the latter are usually 

smaller, with fewer power requirements. 

 

Figure 6: A Single Board Computer: Raspberry Pi 3 B+ 
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The most common interfaces on SBCs are: 

● Universal Serial Boards (USB) for interfacing USB devices such as keyboards, mouse, 

GSM modules, etc. 

●  Serial Peripheral Interface (SPIs) is a four-wire serial bus used to attach numerous devices 

to a set of pins. 

● Inter-Integrated Circuits (I2S) are also used to connect different peripheral devices. 

● Universal Asynchronous Receiver/Transmitter (UART) is a communication protocol used 

to control GPIO pins, and control kernel boot messages . 

● Networking/Communication interfaces and Protocols: This includes the wireless interface 

(Wi-Fi), Ethernet, or Bluetooth interfaces for interconnection with other devices or the 

internet. 

● Multimedia interfaces. 

● Audio/Video Input/output. 

● Serial Data/Multimedia Card (SD/MMC) cards for interfacing storage media. 

 

Figure 7: The Major Parts of a popular SBC (Raspberry Pi) from 

https://www.vippng.com/preview/hbhbmbo_components-of-raspberry-pi-3/ 

https://www.vippng.com/preview/hbhbmbo_components-of-raspberry-pi-3/
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A power supply unit is usually embedded or externally supplied via a dedicated power port or 

other interfaces such as the USB. Embedded with power regulator components, voltage converters, 

transformers, and power distributors. Batteries can also be used to power SBCs. 

The Processor architecture comes in different forms with Intel being amongst the most popular. 

ARM cores are low power processing systems that are very common SBCs used in IoT projects. 

The SBCs will require a software platform such as Windows, Linus, Androids or any other variant 

of the three in order to perform its functionalities. They are usually relatively cheap, can be 

configured in clusters and can be easily configured as smart IoT devices with high flexibility [49]. 

3.2.2 Temperature and Humidity Sensors 

The Digital Output Relative Humidity and Temperature (DHT22) is used for measuring 

temperature and humidity simultaneously. They are low-cost sensors with excellent performance 

capabilities. The supported range for temperature measurement is -40 to 125 degrees Celsius with 

a +/- 0.5-degree accuracy. Its humidity measuring range is 0 to 100% with 2-5% accuracy. The 

DHT11 is cheaper but with lesser measuring ranges or specifications, 0 to 50 degrees Celsius for 

temperature, and 20 to 80% humidity measurement ranges [50]. 

The sensor consists of three parts, a temperature sensing module(NTC thermistor), a humidity 

sensing module, and an integrated circuit (IC) at the back of the sensor. 

The thermistor is a variable resistor that changes its impedance with the change in temperature, 

usually made from materials that provide a significant difference in resistance with a slight change 

in temperature. Negative Temperature Coefficient (NTC) implies resistance is inversely 

proportional to the changes in temperature. 

The Humidity sensing part has two electrodes with a moisture-holding substance in between them. 

As the humidity changes, so does the conductivity of the material or impedance between the 

electrodes. This change in conductivity or impedance is what is expressed as humidity values 

displayed by the sensor. 

The DHT22 is an easy-to-connect sensor with 4 pins. Figure 9 shows the example pin diagram of 

DHT22 sensor. It has 4 pins: 
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1- VCC- Connects to the power supply 

2- Data Out 

3- Not Used 

4- Ground 

Since 1 of the pins remain unused, in figure 9 it is not included. A 10K Ohms pull-up resistor is 

placed between the data pin and VCC to keep the data line high and enable good communication 

between the sensor and microcontroller. A DHT library was installed to take care of all the 

protocols and timings. 

 

Figure 8: A sample of Humidity and Temperature Sensor (DHT22) 

3.3 Internet of Things  

IoT is short for the Internet of Things. It is a phrase coined to describe a platform of technology 

where devices communicate, interact, stimulate, or react to their environment.  The word “internet” 

describes the era where humans control processes or communicate with each other via things 

(workstations). A new era has emerged where human interaction is limited or made unnecessary 

to reduce cost, increase productivity, accuracy, and efficiency. This is the era of the Internet of 

Things. Current rapidly evolving technological trends such as widespread connectivity, increased 

IP adoption, advanced data analytics, cloud computing, and artificial intelligence have made the 

adoption of IoT very rapid and extensive [51]. 

IoT has seen its widespread adoption in different aspects of our lives. Such vital areas are but not 

limited to, the following: 

Smart Health Care: Healthcare IoT is used to connect patients with their health care providers in 

a manner that would save costs and increase efficiency in a way that would have been difficult or 

impossible to achieve. A remote patient can continuously collect and share his/her health data with 
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the health care worker in real-time. The health care worker can observe, diagnose, treat, and 

monitor patients and disease conditions remotely, all partly due to the advent of technologies, 

including IoT at the center [52]. 

Smart Agriculture: IoT is also employed in agriculture to improve productivity and cut down 

costs and increase efficiency. With smart Agriculture, farmers can predict complex weather 

conditions for higher yield and the application of IoT tools to economize available resources and 

ensure optimal utilization. 

Smart Cities: Modern cities now use IoT for interconnecting resources to better understand the 

trends of the city and provide or suggest solutions to central problems. Today, most cities have 

CCTVs installed in almost every corner, traffic lights, and toll roads. This has dramatically helped 

to improve security, cut costs on human surveillance, reduce accidents, and improve efficiency. 

Camera footage of offenders are now automatically collected and sent to the correctional 

department. Toll users or traffic violators are automatically mailed their bills saving time and cost. 

Industrial IoT: Nowadays, most industries, especially chemical industries, have smart devices for 

monitoring oxygen levels, temperature, and toxic gas inside the plant to ensure the safety of 

workers and goods. 

Smart Home: IoT has also found its immense use in most modern homes. It connects our 

appliances, sensors, and other utilities in a network that enables these objects to complete 

designated tasks and communicate with each other without any human intervention. A smart bulb 

or AC unit in a smart home can be controlled from a smartphone. A smart refrigerator that takes 

inventory of its content and sends a notification when it is due to refill. 

In this project, we will make use of the concept of IoT in the direct monitoring of infants and the 

immediate environment. 
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Figure 9: An IoT Ecosystem 

3.3.1 ThingSpeak 

ThingSpeak is a cloud-based IoT analytics platform that allows users to gather, visualize, and 

analyze data in real-time [53]. It is an open-source platform and interfaces for storing and retrieving 

data from things (sensors, etc.) using standard protocols such as HTTP and MQTT over the internet 

or local area networks. It has the tremendous ability to generate plugins or applications for 

connecting or communicating with web services, social networks, and other applications.  

The core element of ThingSpeak is the ‘ThingSpeak Channel.’ This is what is used to store, isolate, 

or retrieve data. It encompasses an eight field for data storage of any kind, 3 locations field 

(longitude, latitude, and elevation) for tracking motion and a one status field for short messaging 

or description. 

 

Figure 10: Image of channel sensor data for Temperature 
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Figure 11: Image of channel sensor data for Humidity 

ThingSpeak has contributed tremendously to the growth and rapid adoption of IoT. Students, 

Engineers, or scientists can now design and build IoT systems quickly without setting up servers 

or developing web software [53]. With it, IoT enthusiast can make the following critical actions 

of any IoT system: 

Collect data from sensors, instruments, and websites and send them to the cloud for storage in 

either a private or public channel. Public channels allow the sharing of data stored on its channel. 

Analyze and visualize data stored using online analytical tools to discover relationships, patterns 

or trends in a date. New data can be simulated or generated from the ThingSpeak platform. Acting 

on data or given results is an essential part of any IoT system. With ThingSpeak, an IoT system 

can send alerts to describe or prompt reactions to an event.  

There are several other options similar to ThingSpeak available for public and commercial use. 

Still, in this project, we used ThingSpeak because it is straightforward to configure, send data from 

sensors using popular protocols and real-time visualization of this data. It is highly compatible 

with MATLAB; in fact, it uses all the powerful tools of MATLAB for data analysis. 
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CHAPTER FOUR 

METHODS AND IMPLEMENTATION PROCEDURES 

4.1 Emotion Detection 

Emotion, as a general definition, can be described as the natural instinctive state of mine due to 

someone's mode, circumstance, or relationship to others. In other words, it is the reaction or actions 

that reflect the significance of a thing, occasion, or state of being. Over time humans have come a 

long way to learn or associate certain actions or reactions to a particular emotion. Recently 

machines are being trained through techniques such as convolutional neural networks to recognize, 

predict, or detect human emotions. This has been applied and continued to be applied in so many 

aspects of our daily lives. The lie detector machines are a good example. Most normal adult 

humans can express their emotions verbally and may often call for attention or try to adjust to the 

situation. However, infants and as well as some adults with certain disabilities, are not able to 

express their emotions verbally. They require attention or help from others; therefore, it is 

imperative to detect or predict these emotions as early as possible in order to give timely 

intervention. Infants express discomforts such as wet diapers, hunger, sleepiness, or sickness by 

crying, and mothers or caregivers pay a lot of attention to this signal. This is why, in this research, 

we focused on the four main emotional classes (Happiness, Crying, Sleeping, and Normal) that 

are useful in predicting or caring for infants. In recent years, several machine learning techniques 

have been identified to train and predict with high accuracy human emotions using facial 

recognition techniques. We used MATLAB in-build tools for training and recognition of emotions 

in this project. Figure 13 shows the type of images used to train the four basic emotions in this 

research. 

In this research, we used the famous AlexNet architecture, which is easier to implement and has 

better effects than the traditional Support Vector Machines [54]. AlexNet was the first deep 

convolutional neural network to achieve very high accuracy in 2012 and has since been improved 

significantly. In general, it has an input database of 227x227x3  RGB images and an output of 

1000x1 probability vectors. A total of more than 60 million variables are trained or learned as the 

input data moves through the hidden layers to the output layer. Each of these layers performs 

operations, such that it can learn features that are specific to the data. 
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Figure 12: Types of Images used to train Amb-I  

In the AlexNet architecture, the four most used layers in terms of functionality are Convolution, 

activation, fully connected (FC), and pooling layers. Figure 15 shows a general AlexNet 

architecture. 

 The convolutional layer has a set of convolutional filters that activates certain features from 

the input image. There are five convolutional layers in the AlexNet architecture. The activation 

function is usually a Rectified Linear Unit (ReLU), which allows only certain features to be carried 

to the next layer. The ReLU set all negative values to zero to allow much faster training. The ReLU 

function does not suffer from the vanishing gradient that activation functions such as the sigmoid 

and tanh often endure due to their minimal gradient at the saturation regions of the data. This 

vanishing gradient makes the network very difficult to train. A ReLU layer is placed after each 

convolutional layer. 

The outputs are usually simplified by reducing the number of features the network needs to learn, 

and this processing is called pooling. Over-fitting, a major problem of previous neural network 

architecture, is reduced by using the dropout layer approach after each fully connected layer. It 
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stochastically set a number of input or hidden neurons to zero, thereby reducing computation and 

co adaptations. 

 

Figure 13: An AlexNet Architecture [55] 

Other important layers include the classification layers, which include a vector of K classes to 

predict and a classification layer such as Softmax to produce the classification output.  

The Emotion detection method, as shown in Figure 15.,  aims to customize and retrain a pre-trained 

convolutional neural network (AlexNet) to classify emotion on a new dataset (collection of 

images). The MATLAB deep learning toolbox already has an inbuilt AlexNet that has been trained 

with more than 1 million images. AlexNet has already learned several features of an image, such 

as edges, resolution, and contrasts, etc. 

 

Figure 14: Emotion Detection Method 

4.1.1 Dataset Creation 

Using my laptop webcam and a small MATLAB code, we can create our desired database, whose 

number, size, format and other properties can be pre-determined. This will help to reduce or 

eliminate most of the preprocessing steps required during the retraining of the neural network. 
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A database of 100 images of each of the class was created and labeled according to four basic 

expressions. A total dataset of 400 grayscale images was obtained for retraining the pretrained 

AlexNet using MATLAB. The final image sizes for training will be set to 227x227x1 at the input 

layer of the AlexNet. The four classes of the data set are Crying, Happy, Normal, and Sleeping.  

100 Images of a Happy Face 

 100 images of a Crying face 

 100 images of a Sleeping face 

 100 images of a Normal face 

 

 

allImages = imageDatastore('images', 'IncludeSubfolders', true,... 

    'LabelSource', 'foldernames'); 
 

4.1.2 Training of the Neural Network 

The images of the created database are loaded using imageDatastore function in MATLAB to 

automatically label the images based on folder names and store the data as an ImageDatastore 

object. The images are resized into the required input image size of 227x227x3 for colored 

mages or 227x227 for grayscale images. 

As mentioned earlier, in this project, a well-studied pretrained convolutional network called 

AlexNet is selected. In addition, it is a very suitable candidate for low hardware quality and time 

constraint projects such as this. It has a depth of 8 compared to other CNN architecture out there, 

making training faster and easier. 

The AlexNet architecture comprises five convolution layers, three fully connected layers, and a 

number of filters or kernels of various sizes for producing the feature maps [56]. The sizes of the 
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filter vary in sizes and are located immediately after the convolution layers.  Table 1 shows the 

layers of the customized AlexNet architecture. 

Table 1: Customized AlexNet Architecture as seen in MATLAB  
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Load AlexNet 

Before using the pretrained network, we must download the AlexNet support package in the deep 

learning toolbox of MATLAB. 

Split Data 

Our small dataset is further divided into training and validation data. We use 70% of the data for 

training the neural network and 30% for validation purposes. 

%% Split data into training and test sets  

[trainingImages, testImages] = splitEachLabel(allImages, 0.70, 'randomized'); 

 

Customize or Modify the Pre-trained network 

Based on our classification requirements, such as the number of classes and classification type, we 

updated the 23 and 25 layers to suit 4 classes of emotions. We made layer 25 as our final 

classification layer. Table 2 shows the modified layers 

Table 2: Modified Layers of AlexNeT to myNET 

 

%% Modify Pre-trained Network  

layers(23) = fullyConnectedLayer(4); % change this based on # of classes 

layers(25) = classificationLayer 

maxEpochs= 50; 

miniBatchSize = 128; % lower this if your GPU runs out of memory. 
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Training the Network 

The network is now trained to learn the key features of an image, updating the weight 

correspondingly. We set the epoch (number of full training cycles on an entire dataset) to 50 and 

the learning rate to a very low figure (0.0001) to slow down the learning in the inherited layers.  

%% Perform Transfer Learning 

opts = trainingOptions('sgdm', ... 

    'MiniBatchSize',128, ... 

    'MaxEpochs',50, ... 

    'InitialLearnRate',1e-4, ... 

    'Shuffle','every-epoch', ... 

    'ValidationData',testImages, ... 

    'ValidationFrequency',3, ... 

    'Verbose',false, ... 

    'Plots','training-progress'); 

myNet = trainNetwork(trainingImages, layers, opts); 

 

save myNet myNet 

After all MATLAB configurations, the training of the CNN is started by a simple press of a handle 

button created on the guidemo figure. This figure is a customized version created using the legacy 

Graphic user interface development Environment (GUIDE) of MATLAB. Figure 16 shows the 

MATLAB interface showing the CNN handle/button needed to start the training process. 
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Figure 15: MATLAB Graphical User Interface with the CNN handle/button  

4.1.3 Emotion Detection/Recognition 

The part too, like the training part is programmed in MATLAB and linked to a hand button in the 

guide graphic user interface. Figure 17 shows the MATLAB Graphical User Interface showing the 

CNN handle/button that needs to be used after loading the image for the emotion recognition.  

 

Figure 16: MATLAB Interface with Recognition 
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The overall detection and recognition phase of this project is broken down into three processes:  

 

Figure 17: Emotion Recognition process  

Video Capture 

This is the image acquisition phase of the monitoring system. Video capture is done via a webcam 

and requires a MATLAB support package for Webcams. 

    ud.adaptor_name = 'winvideo'; 

    global framesize 

% Check & Init Web-Cam 

cam = imaqhwinfo(); 

nr_adaptors = length(cam.InstalledAdaptors); 

linind = 0; 

for i=1:nr_adaptors 

     if strcmp(cam.InstalledAdaptors{i}, ud.adaptor_name) 

         linind = i; 

         break; 

     end 

end 

Image Preprocessing 

The images acquired from the video are preprocessed before being loaded into the trained neural 

network for emotion detection. For an AlexNet neural network, the input size to the neural network 

is 227 by 227 for grayscale. 
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To make the training more accessible to people of different color and race, all the colored images 

are converted to grayscale before being loaded into the neural network.  

Face Detection 

To detect the emotions from any video data or image, additional standardization and image 

processing were performed. Regardless of the image background, size of images or objects in the 

images, the face which is a key is identified, cropped out, and magnified if necessary and used to 

detect emotional state associated with the image. The Viola-Jones algorithm [58] was used to 

detect our interest region (the face) before the emotion detection process is applied. During 

training, the algorithm ensures that only the right images are used in the training and validation 

dataset.   

Emotion Detection 

Once the image is acquired, preprocessed, and the face region detected, this cropped region is 

projected into the face space. The PCA features are extracted from the image and compared with 

the feature learned during training. The Euclidean distance between the projected test image and 

the projections of all training images is calculated. The minimum distance corresponds to the 

emotion of the image in the training database. 

load('myNet.mat'); 

 

4.1.4 Communication with the Single Board Computer  

A UDP communication is established between the MATLAB and Raspberry Pi, so that emotion 

out of the neural network is forwarded to the raspberry Pi for further processing. 

echoudp('on', 5555) 

u = udp('10.11.65.117', 5555); 

fopen(u); 

 

To transmit data on the communication channel, I decided to translate the image output into a 

single digit number which is small in size and easily transmitted. 
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         label = char(classify(myNet,im)); % classify with deep learning 

         OutputName=char(label); 

                    disp(OutputName); 

                    switch OutputName 

                        case 'Happy' 

                             fwrite(u,'0'); 

                        case 'Crying' 

                             fwrite(u,'1'); 

                        case 'Sleeping' 

                             fwrite(u,'2'); 

                        case 'Normal' 

                             fwrite(u,'3');      

                        otherwise         

                    end 

 

4.2 Ambient Monitoring 

 The ambient conditions surrounding an infant directly affects their wellbeing and emotion. Infants 

cry when the surrounding temperatures are too hot or cold. Wet diapers also cause much distress 

to a lot of young infants and are usually expressed through cries, inability to sleep or restlessness. 

In this research, the focus was to monitor the effect of ambient temperature in baby’s emotion. To 

implement the monitoring system, the single board computer, Raspberry Pi 3 B+ was used along 

with the DHT22 sensor. Raspberry Pi 3 B+ is a low-cost device with low power requirements (2W) 

and high computing power or performance [59]. It has a Broadcom BCM2837BO, Cortex-A53 

(ARMv7) 64-bit quad-core processor capable of running at up to 1.4GHz. It has a 2.4GHz/5GHz 

wireless LAN, fast Ethernet, and Bluetooth for communication. The temperature and humidity 

data from the DHT22 sensor is fed into ThingSpeak for future analysis and sent to the Raspberry 

Pi for event notification and other intelligent processing.  
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Figure 18: Amb-I system showing sensors and SBC (Raspberry PI) 

The applications of our Ambient Monitoring can be described but not limited to the following 

usage: 

The DHT22 sensor can be used to collect temperature conditions in the environment and send it 

to the microcontroller. Depending on the preset condition (Temperature >80-degree Fahrenheit), 

it is considered a hot environment; the microcontroller will send a trigger to adjust an attached 

Thermostat to set the air conditioner on or turn the heater off. When the temperature is low, say 

below 60 degrees Fahrenheit, the settings are adjusted to readjust the temperature by turning the 

air conditioner off or turning on the heating system. All these can be accompanied by email 

notification to the caregiver, stating previous temperature conditions, action taken to regulate it 

and current temperature in real-time. 

4.3 Internet of Things Framework 

The use of internet of things framework in this research is 2 folds:  

4.3.1 Data Upload, detection, and feedback on ThingSpeak 

The ThingSpeak helps in logging all the data from the sensors and image processing unit into the 

cloud. The data can later be collected and studied for a correlation between emotional events and 

sensor data. This data can also be accessed by parents who want to look at historical data. 

4.3.2 Reactions to emotional or sensor data by ThingSpeak  

The Second Part includes the microcontroller, which also receives data from the image processing 

unit as well as the sensor data. It acts based on the following: 
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If the emotion data received is Happy and the corresponding sensor data is normal at that time, 

then no notification messages are forward or no changes in the triggered as in the flow chart below. 

4.4 Amb-I System Prototype 

In the final prototype, all the three components, communications, data sharing, and analysis, are 

linked together to develop the Amb-I system.  

The emotion detected by the system is converted to single-bit data and sent over the UDP 

communication like between the MATLAB and the Raspberry Pi. For example, when crying is 

detected, number 2 is sent to the Raspberry Pi which then checks for the ambient conditions 

surrounding the infant by querying the Humidity and Temperature database. If any of this is above 

or below a set threshold, a corresponding alarm in the form of a blinking LED and/or send 

notification (Email) to a preset email address. Table 3 shows the image to data conversion to enable 

cheaper and faster communication. Figure 20 shows the flowchart of integration of IoT and 

Affective computing in the proposed Amb-I system. 

 

Table 3: Classifying Images based on emotions 
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DATA

CRYING HAPPY SLEEPING NORMAL

T>80

And/or

H>80

Baby is 

Happily 

Playing

Baby is 

Sleeping

Baby is 

awake 

and Quiet

Baby is 

Crying but 
T & H are 

OK

Baby is 

Crying

T>80 H>80

Baby is 

Crying: 
Thermostat

Baby is 

Crying: 
Change Wet 

Diaper

Email 

Notification

End

NO NO NO

YES YES YES

YES

YES

YES

YES YES

NO

NO NO

NO

Amb-I
T= Temperature

H= Humidity

 

Figure 19: Flowchart of the proposed Amb-I system 
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CHAPTER FIVE 

DISCUSSION AND CONCLUSION 

5.1 Discussion 

In order to have a quick but rapid classification training to detect or identify emotions, the concept 

of Transfer Learning was used.  This concept was applied to the already trained AlexNet with very 

little data (400 Images) to get the desired or  meaningful outcome.  The pretrained AlexNet already 

had 1000 classes at its output, but in this project, this was modified to only four classes: Crying, 

Happy, Normal, and Sleeping.  For training and validation, 100 images were used, and obtained a 

good result with almost 100% training accuracy and 95% validation accuracy. 

 

 

Figure 20: Graph showing training accuracy and loss progress of my customized CNN 

Since the hardware resource available for training is just a single CPU (i5 @ 1.95GHz 2.50GHz 

and 8GB RAM), the following were selected to minimize the time required for training but also 

not compromise accuracy: 

▪ Maximum of 50 Iterations. 

▪ 60 Iteration per epoch. 

▪ A constant learning rate of 0.0001. 
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The small learning rate of 0.0001 was chosen to pace out the training, this will help the newly 

added layers to adjust sufficiently and adapt with the already trained layers in the original 

pretrained network. 

As shown in the figure above, the training started with a low accuracy of around 18% in the first 

few iterations but progressed almost linearly up to the 10th iteration when it reaches almost 95%. 

By the 25th iteration, it has already started hitting the 100% accuracy. Such rapid and accurate 

results would not have been possible without the use of a pretrained network. 

The loss ratio shown above reflects the same. It started around 3% but steeped negatively towards 

zero by the 25th iteration. 

Following successful training, CNN is deployed as part of the Amb-i project for video monitoring. 

When the video is started, frames are obtained from it for analysis at a rate of 20 frames per sec. 

These are then individually analyzed and forward to the raspberry pi for further processing. 

 

Figure 21: MATLAB Interface showing the Emotion Recognition Process (Sleeping) 

At the same time, the sensors are uploading sensor data to the ThingSpeak cloud server and the 

Raspberry Pi, so that in the event of a change in emotion, temperature or Humidity, the raspberry-

Pi is prompted to act on this data based on the set criteria. 
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Figure 22:MATLAB Interface showing the Emotion Recognition Process (Crying) 

 

5.2 Validation 

The model is validated using the following two methods: Validation using 30% of dataset, 

validation using Youtube videos showing emotions,  

5.2.1 Validation using 30% of my dataset 

During training, we set aside 30% of the data testing and used that as a first step towards validating 

our model. Figure 21 shows that validation results of 95% accuracy immediately after the training. 

%Validation Test 

YPred = classify(myNet, testImages); 

YTest = testImages.Labels; 

 

%Classification accuracy on the validation set 

accuracy = sum(YPred == YTest)/numel(YTest); 

disp('accuracy'); 

disp(accuracy); 

 

 
 

We ran a simple code to test 9 test images and display them with their corresponding labels as 

shown below. 
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Figure 23: Display of nine sample validation images with their predicted labels 

 

5.2.2 Validation using YouTube videos of emotional (Crying) infants 

Since it was hard to get enough infant data for training and validation, we also used some sample 

videos and loaded them to our model for validation. However, due to insufficient training data to 

account for special features on infants’ faces such as tears, movements, partial faces, or sizes, the 

validation was not as good as the previous validation process. A validation score of 17% was 

recorded when tested on our model. Figures 25 through 28 show the process of loading the videos, 

validation, and analyzing the accuracy.  

 

Figure 24: Loading Baby’s video for validating emotion recognition 
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Figure 25: Video loaded being tested in our model for validation 

 

 

Figure 26: Command window showing accuracy of data 

 

Figure 27: Display of nine sample validation images with their predicted labels from frames 

extracted from the YouTube video 
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Table 4: Accuracy of results of validation tests conducted 

NO DATA SOURCE /DATABASE VALIDATION ACCURACY 

1 My Training Dataset 95% 

2 https://youtu.be/XlNriVfRBTs 17% 

3 https://youtu.be/8RTyyJyHg0w 14% 

4 https://youtu.be/MzwAsUlkpjA  20% 

5 https://youtu.be/qS7nqwGt4-I 27% 

6 https://youtu.be/l0NynUuTPRU  19% 
 

5.3 Conclusion and Future Recommendation 

A real-time emotion detection system was built for infant monitoring systems using transfer 

learning concepts of deep learning. A small database of 400 images was enough to get the desired 

results. The training time was low, even though it was done on a low CPU processing laptop. The 

cost involved in both training and implementation was extremely low. The AlexNet was easily 

customized to recognize the four classes of interest in our project. Realtime time monitoring of the 

classes of emotion was also achieved using a connected webcam. 

However, due to time constraints and limited resources such as low hardware functionality, other 

convolutional neural network architecture such as GoogleNet, SqueezeNet or DenseNet were not 

implemented. For further enhancing the accuracy of the proposed system, it is important to train 

the network with more images in order to validate them.  

With the proper sensors, body temperatures can also be measured using attached sensors to monitor 

the fever and other health conditions that are related to body temperature. With this, parents or 

caregivers are updated with the conditions of their infants in real-time. The humidity sensor part 

of the DHT22 sensor will be used to monitor the dampness of the infant’s environment. This 

information is fed to the microcontroller that is connected to a humidifier for autoregulation. 

To measure the diaper conditions, a similar humidity sensor can be attached to the diapers to send 

the moisture condition of the diaper. This same data can be fed into the microcontroller and 

ThingSpeak. The microcontroller is then able to alert the caregiver or parent in a timely manner. 

 

https://youtu.be/XlNriVfRBTs
https://youtu.be/8RTyyJyHg0w
https://youtu.be/MzwAsUlkpjA
https://youtu.be/qS7nqwGt4-I
https://youtu.be/l0NynUuTPRU
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Monitoring using cameras has some drawbacks, the frequent movement of infants away from the 

camera, right adjustment of camera settings or position, the posture of infants as well as lighting 

conditions of the environment should be considered in future studies to further enhance the 

performance of the system. Security measures should be further studied to ensure the safety and 

protection of the infant and data collected. 
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APPENDIX 

MATLAB and Python were the programming languages used in this project. The following 

MATLAB toolboxes, libraries, and function were used: 

1. Deep Learning Toolbox: provides a platform for designing and implementing deep neural 

networks with algorithms to perform classification and regression analysis. Neural 

networks can be built from scratch or one can make use of already pretrained networks for 

faster deployment. 

2. AlexNet: is a pretrained convolutional neural network that is already trained with a large 

set of data (more than a million images from the ImageNet database). Its support package 

must be downloaded before it can be used. 

3. Instrument Control Toolbox: This toolbox allows us to connect MATLAB directly with 

peripheral devices or instruments such as analyzers, power supplies, signal generators, etc. 

With it, you can write data to or from MATLAB using TCP/IP, UDP, I2C, SPI, and 

Bluetooth serial protocols.  

4. echoudp: This is used to start or stop a UDP echo server for enabling communication 

between a UDP server and a client. 

5. Computer Vision Toolbox: This toolbox allows us to connect MATLAB directly with 

peripheral devices or instruments such as analyzers, power supplies, signal generators, etc. 

With it, you can write data to or from MATLAB using TCP/IP, UDP, I2C, SPI, and 

Bluetooth serial protocols 

The following python libraries or functions were used: 

1. Adafruit_Python_DHT: is a python library designed to read the sensor data from a DHT 

sensor on a Raspberry Pi. It can read humidity and/or temperature data for display or 

transfer to other physical or cloud platforms. 

2. RPi.GPIO: General-Purpose Input/output is a row of pins on one side of a Raspberry Pi. 

The purpose of each GPIO pin can be designated by the user using software and can be 

used for multiple different purposes. 



  

54 
 

3. smtplib: is a python mailing library that includes the SMTP class that is used to connect 

to a mail server and to send messages. 

4. socket: is a python library that provides support for low-level networking interface. It 

provides the option for communication between raspberry pi and other devices using 

different forms of communications. 

5. Urllib.request: is a python module that provides a very simple interface for fetching and 

opening Uniform Resource Locators (URLs) using different protocols. 
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