The University of Texas at

TYLER University of Texas at Tyler

The Graduate School Scholar Works at UT Tyler

Electrical Engineering Theses Electrical Engineering

Spring 4-23-2019

MODERNIZATION OF LABORATORY CURRICULUM FOR THE
UNDERGRADUATE DIGITAL SYSTEMS COURSE

Brolyne H. Onyango
University of Texas at Tyler

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad

6‘ Part of the Electrical and Computer Engineering Commons

Recommended Citation

Onyango, Brolyne H., "MODERNIZATION OF LABORATORY CURRICULUM FOR THE UNDERGRADUATE
DIGITAL SYSTEMS COURSE" (2019). Electrical Engineering Theses. Paper 42.
http://hdl.handle.net/10950/1310

This Thesis is brought to you for free and open access by

the Electrical Engineering at Scholar Works at UT Tyler. It
The University of Texas at

has been accepted for inclusion in Electrical Engineering
Theses by an authorized administrator of Scholar Works i‘YLER
at UT Tyler. For more information, please contact .

tgullings@uttyler.edu. The Graduate School

http://www.uttyler.edu/graduate/
http://www.uttyler.edu/graduate/
https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/ee_grad
https://scholarworks.uttyler.edu/ee
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/1310?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu

MODERNIZATION OF LABORATORY CURRICULUM FOR THE

UNDERGRADUATE DIGITAL SYSTEMS COURSE

by

BROLYNE HAWKAN ONYANGO

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Electrical Engineering
Department of Electrical Engineering

Mukul Shirvaikar, Ph.D., Committee Chair

College of Engineering and Computer Science

The University of Texas at Tyler
May 2019

The University of Texas at Tyler
Tyler, Texas
This is to certify that the Master’s thesis of

BROLYNE HAWKAN ONYANGO
has been approved for the thesis requirements on
April 34,2019

for the Master of Science in Electrical Engineering

Approvals:

r. Mukul V. Shirvaikar, Ph.D.

(KLt

Member: Dr. Prablth Sundaravadivel,Ph.D.

J. Pieper, Ph.D.

an E1-Kishky,

M&——Fb{?}tﬁ

Dr. Javier Kypuros, Ph.D.
Dean, College of Engineering.

XSy

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Professor Dr. Mukul
Shirvaikar, for being my mentor. I am grateful for the guidance, support, advice,
encouragement and patience he has continuously offered me throughout my course and
also to help me complete my thesis successfully. I would also like to thank Dr. Hector
Ochoa for his guidance and support during my thesis. Finally I would like to thank my
committee members, Professor Dr. Ron J. Pieper, Dr. Prabha Sundaravadivel, for serving
as my committee members even at hardship. I also want to thank them for letting my

defense be an enjoyable moment, and for your brilliant comments and suggestions.

A special thanks to my uncle Elisha and his family for their constant encouragement and
financial support while pursuing my Master of Science in Electrical Engineering and for
all the sacrifices that you’ve made on my behalf. I would also like to thank all my friends
who supported me in writing and encouraged me to strive towards my goal. [would like
to thank each and every person for their encouragement and support to complete my

thesis work successfully.

TABLE OF CONTENTS

LIST OF FIGURESoininssieinssisrisisasstssssiessstsssssssssassasssssssossas sessessosssesssssmsroses iii
LIST OF TABLEScoinivniiiitiieimimmeimmsissiimesosorsetssesesssssssssessssessssesssssesssssssessensssas iv
ABSTRACT ...ttt e stes e st sesoesesraesesssassasssnssasasessnessessessasssssssssnosesansant e sassesensassns v
CHAPTER ONE ... sis s s e sessesenassassssanses s sessassessnassesansansassanas 1
IREPOAUEION ..ottt sar s e e na st £ nemeean e enaenrane s rsageenen 1

1.1 Introduction to FPGA ... rrverrrrerressrsresisrsesssssessassssassssrassssesssssssssesssrensassssnnes 1

1.2 Objective of the thesis ... esesreeesseessns 2
1.3 Organization of the thesis ... e srsesersse e 2
CHAPTER 2coovvnriisniiniiisssmssiossis i onsesesssesstssessesrorssesossessensessassasiassnsssessesssasssasensessssssans 4
LI BIAEUTE SUIVYocceeeeeeceeeeeeereernreecres s s s essntesssreesasessrsasssssasssseessssssssasessnsessnnssssssssssaerasersnsvannses 4
CHAPTER 3.ttt nststssnsst st st sin sttt st e s s e e ssessssas st ssensesessasnssssassenesnsansssnnes 9
Technical Background................ovininiicnnirncnnsnnssnisssisssessis et 9
3.1 FPGA BacKEIOUN....vovviririniiinierisvisirioiinsirrorereseresseressssssensessessesesessssassessessossssssssssessssanes 9
J2BasySIFPGA BOATd ...ttt raesseeseseessressesassasssassseseessseseassassesnsans 9
3.3 Software requirements. ...t sen st stsses e sasssessnsassssanse 10
3.3.1 NI MUltisim DeSIBN SUILEeovceerier ittt ires e cr e s s besan s sas s n e senase e s nbsanees 10
332 NEFPGA PIUE INeriiir ittt stsassnessnassasasesrassssasssssasaessassssrsstossssessassasronsarsoneon 12
3.3.3 AdEDE DIIVETS ..ooeceeienrceinrinnenresniraorsssssessistsasstsssssssiassassassarssnsssesserasssssassesssessasessessenees 12

3.4 Setting up the PLD deSi@N ...t ioeesososseesssssssesessees 12
3.4.2 Create a PLD Schematic in MUILISIMoocvriirecreeceirecrrer e ereceneeessenecressseresonaseoneos 15
3.4.3. Export the PLD Design to the FPGA.........o e ccnnsessnassesesessessessasanes 16
CHAPTER di........oini it sr s st st s s ems s s st st s s s snstnsbases 20
The Curriculum........ccooiiiiiiicie e e eeeeeeseeamm e essss s 20
4.1 Current CurriCUIUI ...ttt bears s bs s s s tobsa st bbessnesebasbbsssssstorbns 20
4.2 Proposed CRangescooucniiincnimmioisissiiimeionsemessersosaseseeessessassesssesesessessanes 22
4.2.1 Combinational [ahs.......ccviiiiiiisiiriiiisiiisieimirorereenesessessesssessessesesssssassene 22

4.2.2 5eqUeNtial CirCUILueeieeiiiceeiireeeriececcer s e e s ser e smesmaa s as e re e s e reanssramsessaneesmseanssnasssenases 28

CHAPTER ...ttt st nan sttt s st n e sea st et n st s asastapranssanansrans 30
CONCLUSION. ...t rers s rasbsr s s sas e ses s bt b 0004 bassebbat 000000008 b0sba et e s bonsusbtsaarassans 30
T B S ——— i1
APPERAIX ..ot s s s s s s a s e be b s e sa s e s b s s na s 32

LIST OF FIGURES

Figure 1: Basys SFPGA Board ...ttt svs s sstsssssstssvsssessissssssessns 11
Figure 2: Choosing the PLD design on Multisim............ccccvnnninniineniniimmmeen, 12
Figure 3: Selecting the Board on Multisim ..o 13
Figure 4: Name the desigcooo et sr s s sne s 13
Figure 5: Selecting the peripherals on the board................cccccoiiiinniniee 14
Figure 6: Selected Peripherals as they appear on the empty PLD design............cc.ccccoeneee. 14
Figure 7: Selecting circuit components pick and place............cccoovviviivinininnicenes 15
Figure 8: Generating the VHDL file...............ccoooriierccreretree e 17
Figure 9: Exporting the PLD deSiZn ..ottt csiesssstssssssnsssnssorssies 17
Figure 10: Establishing connection between computer and the board.............cccovvviniririnienna 18
Figure 11: Programming the FPGA Doard..............crioiiinnirieeniieoroeerensenemessesiossorssasens 18
Figure 12: Programming completecovivmicinnininncnecsennn s nssesssnssssssssesanns 19
Figure 13 The figure represents every functional sub-circuit of the 7segment display 25
Figure 14:Function G of the seven-segment display............c.ccocoeivmnrirnrecniccerccrreeee 26
Figure 15: Comparator circuit as implemented on Multisim.............cccccoiinrviinninnnnniinnnicnnnn, 26
Figure 16: VHDL code for Comparator Circuit.............cccoivniiiiinviininninnnionssnssnimmssen 27
Figure 17: Counter implementation on Multisim............ccvviivniinninninnniiemsiene. 28
Figure 18: Motor control circuit for a Lift ... 29

iii

LIST OF TABLES

Table 1: Summary of laboratory exercises currently offered in the EENG 3302 course.......... 21

Table 2: Laboratory Curriculum for the modernized Digital Systems course

v

........................

ABSTRACT

MODERNIZATION OF LABORATORY CURRICULUM FOR THE
UNDERGRADUATE DIGITAL SYSTEMS COURSE

Brolyne Hawkan Onyango

Thesis Chair: Mukul Shirvaikar, Ph. D.

The University of Texas at Tyler
May 2019

The job market is increasingly in need of Electrical Engineers with knowledge of Hardware
Description Languages, yet the school curriculum on digital systems design, largely remains
behind using the traditional gates to implement logic design. While this may have been favorable
in the past, technological advances in the industry and availability of inexpensive hardware and
software, where by students can begin appreciating the importance of Hardware Description
Language (HDL) is on the rise. It is for this reason that this thesis aims to improve the quality of
the digital Systems designs course by modernizing it and introducing the new concepts of HDL

while at the same time making the transition easy for the student to grasp.

A novel hybrid approach is introduced to modernize the curriculum for the Digital Systems
course, using traditional circuit construction, simulation software and implementation of circuits
using reconfigurable logic. The NI Multisim circuit simulation software and a Digilent Basys-3
board are utilized. Students will use a breadboard and chips to construct basic combinational
circuits using logic gates. Next, they will use the NI Multisim to build and simulate circuits that
are difficult to build physically. Finally, a Field Programable Gate Array (FPGA) board will be
utilized to implement the most complex circuits. Typically, the use of FPGA technology requires
knowledge of HDL, which is considered too advanced for most sophomores. This problem is

addressed by designing the complex circuits using the NI Multisim software graphical design

v

addressed by designing the complex circuits using the NI Multisim software graphical design
suite, The students will only build the schematic circuit in the Multisim software with graphical
pick-and-place components. The software suite is already equipped with a special plug-in
application with translation capabilities that allows the students to download the circuit to the
FPGA board. The board is equipped with enough peripherals to implement the circuits and
provide an exciting experience for the students. Several labs will be designed using this approach
and there will be a larger project at the end of the course. Our hybrid approach will familiarize
the students with modern tools and design paradigms. Moreover, the observation of snippets of
basic HDL code will lay the foundation for the study of this topic, which the students may learn

later in advanced digital systems courses.

Vi

CHAPTER ONE

Introduction

All equipment used in military, medicine, manufacturing, entertainment and
telecommunications is either partially or completely digital in nature. Therefore, Digital
System Design is a fundamental course in Electrical and Electronics Engineering. It is in
Digital Systems that students learn the basics of computer engineering. The students are
introduced to fundamental concepts such as logic gates, Boolean algebra, design of
combinational and sequential circuits that are the building blocks for computer circuits
[1]. The course is traditionally taught using TTL gates where the students wire IC chips
on a breadboard. However, when building more complex circuits it becomes increasingly
difficult to build and debug the circuits due to the number of chips involved and the

connections required. Circuit simulations are then performed for such circuits.

The job market today needs engineers proficient in Hardware Description Languages
(HDL) since it is the market standard for Digital Systems Design. A survey meeting by
EET responsible for industrial training of electrical engineers indicates that there is an
increasing need for engineers with knowledge on HDL and reconfigurable logic [2]. The
availability of complex programmable logic devices (CPLD) and field programmable
gate arrays (FPGA) has today changed the world of digital systems design. It is now
possible to design a digital system and employ it on a reconfigurable logic device.
Further technological advances have led to production of inexpensive configurable

devices that can be used for instruction in school.

1.1 Introduction to FPGA

A ficld-programmable gate array (FPGA) is an integrated circuit designed to be
configured by a customer or a designer after manufacturing — hence the term "field-
programmable”. The FPGA configuration is generally specified using a hardware

description language (HDL), similar to that used for an application-specific integrated

circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but
this is increasingly rare due to the advent of electronic design automation tools. FPGAs
contain an array of programmable logic blocks, and a hierarchy of reconfigurable
interconnects that allow the blocks to be "wired together", like many logic gates that can
be inter-wired in different configurations. Logic blocks can be configured to perform
complex combinational functions, or merely simple logic gates like AND and XOR. In
most FPGAs, logic blocks also include memory elements, which may be simple flip-flops
or more complete blocks of memory. Many FPGAs can be reprogrammed to implement
different logic functions, allowing flexible reconfigurable computing as performed in

computer software.

1.2 Objective of the thesis

This thesis aims to create a smooth transition from the traditional circuit building on
breadboard to programming using HDL and FPGA boards to achieve logic designs.
Many schools have done it by introducing HDL courses in advanced level of studies.
Unfortunately, there are problems with increasing the number of credit hours for courses
as government regulations are limiting the number of credit hours assigned to courses.
There are also challenges on the timing with which to introduce the concepts of HDL
programming. Introducing it in the sophomore year poses the challenge of course
complexity since the students barely have any programming skills. Introducing HDL in
junior year has the problem of burdening the students with a lot of information. Our
approach for modernizing the curriculum solves these problems by giving the students a
taste of the HDL and FPGA boards without having the necessary programming skills. It
acts as a primer to advanced digital systems concepts that the students will study later in
their career thus making the transition from basic logic to complex logic via

programming smooth.

1.3 Organization of the thesis

This thesis is organized into 5 chapters. Chapter 1 introduces the topic of FPGA
programming and the importance of having it in the curriculum. Chapter 2 gives a

literature survey on past work on introducing the FPGA and HDL in the school

2

curriculum for engineers. Chapter 3 gives a technical background on how the FPGA
board should be set up, the required software and setup procedure for programming.
Chapter 4 gives the laboratory experiments that have been modified to include the use of
FPGA. Chapter 5 gives the conclusion arrived at during the implementation of this

curriculum.

CHAPTER 2

Literature Survey

The idea of using FPGA’s to teach digital logic design is not a new one, and many
schools have tried to introduce the concept using various methods. A survey into past
work shows many universities have taken different approaches toward introducing the

HDL, FPGA concepts into their curriculum.

Mayer [2] uses an Altium Designer program together with Nano 3000 FPGA board to
introduce a digital designs course with VHDL to undergraduate studies. Altium
developed an electronic design automation EDA software called Altium designer. Altium
designer unifies the design of printed circuits, the design of FPGA’s and embedded
system programming. The Nano 3000 board is based on the Xilinx’s SPARTAN-3AN
FPGA device. The project is sponsored by EET (Electronics Engineering Technology)
advisory committee of Pittsburg State University, Kansas and Altium Limited in a bid to
supply the job market with HDL skilled labor. The students used VHDL for two purposes
to simulate a digital circuit they had designed and to synthesize the circuit by configuring
an FPGA device. The pilot program was first tested as a graduate course in the Fall of
2011 at the Pittsburg State University. The curriculum also contained a project that the
students had to complete by the end of the semester. The project chosen was a real-world
problem and in this case was a bat counter which was developed by University of
Pittsburg’s Biology department. The project involved using sensors well placed so that
whenever a bat flies between the beams produced by the sensors the beam is cut off and a
count is initiated by the FPGA. The following tools were made available for the students
to use during their project; Altium Designer suite (EDA), Nano Board 3000, “VHDL: A
Starters Guide by Sudhakar Yalamanchil.”

At the end of the course, a survey was done to establish how well the students grasped the
concepts; configure FPGA’s using Altium Designer EDA, configure FPGA’s using
VHDL, configure and program soft processors in an FPGA, use VHDL testbenches and
virtual instruments to test and verify FPGA. The results show that 90% of the students

used VHDL to implement their project. However, none of them used the soft cores and
open bus to create their project. Using the soft microprocessors and the open bus would
have allowed their projects to be more functional than simply using VHDL and FPGA

only.

Carrol et al. of University of Texas at Arlington introduced a hierarchical project-based
introduction to digital logic design course for their computer engineering and computer
science course in the fall of 2103 [3]. In their approach the basic concepts of digital logic
design were introduced as a building block towards creating a 4-bit Tiny Reduced
Instruction Set Computer (TRISC). The course CSE 2441 Introduction to Digital Logic is
a sophomore level course with 4 semester credit hour (SCH) taught in a 3-hour lecture
and 3-hour laboratory per week format. In this approach the authors required the students
to have taken a computer programming class as a prerequisite. The course used the
Altera’s Quartus 2 design software to capture and simulate all module designs. Less
complex designs were implemented on a solderless board while the more complex
designs were implemented using an Altera Cyclone 2 FPGA on the DE] development
board. Completed modules were subsequently integrated hierarchically to realize the
CPU. This approach however required that the students use HDL (Verilog) in the
implementation of modules on the FPGA board. In their findings after a survey of the
course they realized most students had difficulty understanding the lab implemented on

the FPGA due to their limited programming experience.

Rogriguez-Ponce et al. of the Universidad Automona de Queretaro, Mexico modemized
their digital design course DDE 128 to include concepts of FPGA and VHDL. The 21-
week semester course was offered during the fifth semester of the Automation and
Control department of Universidad Automona de Queretaro with six hours of class
lecture and two hours of laboratory work per week [4]. The course integrated the teaching
of VHDL to go hand-in-hand with teaching of digital design concepts. An introduction to
programming class is a prerequisite for the class. The students choose to use the DE2
Cyclone 2 FPGA board from Altera because it had more peripherals that were important
for the complex mathematical algorithms that they were implementing. Some of the

topics in digital design were like minimization using K-maps were scrapped because they

5

no longer had any significance while using the FPGA. The problem with this approach as
with the previous is that the students do not get enough exposure to the power of the
FPGA board and VHDL because they are learning two concepts simultaneously. The
course covers VHDL extensively and at the end of it they are expected to implement a

project using the knowledge gained.

At Boise State University, Loo ef af introduced FPGA and VHDL in their undergraduate
digital systems design course covered in the sophomore year of the electrical engineering
course [5]. Having realized that the industry requires more engineers with knowledge of
FPGA designs, Loo et al modified the curriculum so that it incorporated both use of TTL
gates to build digital circuits and the FPGA board. In the first 4 weeks of the course,
students build digital designs using the 74xx series TTL chips by wiring them on a
solderless breadboard. This reinforces the hands-on wiring and the modular design where
students build complex circuits by wiring together simple components. After 4 weeks the
students switch to the FPGA for design of circuits. The Xilinx ISE is chosen as the
software for implementation and the Spartan-3 FPGA board. They ran into a couple of
problems with the computers they used. They realized that to ran successful CAD for
digital systems they had to upgrade their computers from the Pentium 4 they were using
at the time to i5 to be able to run the labs smoothly. Since they were introducing VHDL
programming to the course an introductory programming course was a prerequisite to

take the course.

Inductive instruction using FPGA and VHDL is another approach chosen by Zhao and
Huang of South Dakota school of Mines and Technology to enable students have a better
understanding [6]. Previously, they realized that the students did not have any interest in
Digital System Design course because they would not relate the concepts taught in class
to any real-world scenarios. The traditional way of teaching, deductive teaching, which
involves introducing theoretical concepts followed by mathematical concepts and finally
solutions to math problems was not working for them. Thus, they introduced active and
inductive techniques of teaching to encourage student interest in the course. In their
Digital Design course CENG342 they started by introducing a project that will be

implemented throughout the course. A seven-segment time-multiplexing circuit is

6

developed on the Spartan 3 FPGA board using the Xilinx ISE software. Intensive VHDL
is learnt in the course and at the end of it the students are required to complete a project
that involves building MIPS digital processor to implement a small set of its instruction
set. The slide switches on the FPGA board are used to load the 32-bit instructions 8 bits
at a time. The instructions are executed, and the results and the operands displayed on the
LEDs and the 7-segment display of the S§3 board. The problem with this approach is that
it requires extensive programming skills since the student will be fully engaged in the
VHDL programming. At sophomore level this will be a challenge thus in many

universities the introduction of HDL is introduced at later stages of the degree plan.

The research-based teaching was adopted by Texas A&M University Corpus Cristi for
digital systems laboratories in a wholistic approach that include many components such
as; microprocessors and microcontrollers, FPGA boards, CAD software and many more
[7]. The aim of including all this is to create a laboratory curriculum that ensures the
students have a vast knowledge that they will develop later when they take the
microprocessors course and other advanced digital systems related courses. The FPGA is

only used in a single lab where they program the Atlmel FPGA using VHDL.

Donzelini et al. of the University of Genoa, in Genova, Italy introduced learning Digital
systems with DEEDS (Digital Electronics Education Design Suite) [8]. The Deeds has
capability of converting a schematic circuit wired from the graphical interface to one that
can be run on an FPGA. The students design the circuit on the graphical suite, test it
using the virtual instruments available on the Deeds software, simulate the circuit in
deeds then they can export the circuit onto the FPGA board. Deeds supports Quartus 2;
DEI1, DE2, DE2-115 boards by Terasic. In their course they eliminate the traditional
circuit building on a breadboard and focus entirely of using Deeds to enhance student
understanding of the course. In addition to the normal combinational and sequential
circuits they include microprocessor interfacing and programming in assembly language
in their course. Deeds has the capability of generating VHDL files for the circuits created
by the students. Thus, they can examine the code see how the different circuit
components interact. Additional features of Deeds are the slow clock mode which allows

student to slow the internal clock of the FPGA and be able to see the working of

7

sequential logic. This approach was introduced in the university in 2010 and the authors
report an increased average evaluation from the students and the increased number of

students that are interested in the course.

Shayesteh et al. of the Indiana University Purdue University — Indianapolis, improved
their Introduction to Digital System Design course offered at sophomore level to include
the use of VHDL and FPGA boards [9]. The 4-Semester credit hour course is a required
course for the computer engineering and electrical engineering courses offered in the
university. In the course they use the Vivado software from Xilinx together with Nexys 3
FPGA board from Digilent. The course focuses on introducing the students to VHDL as
early as possible and make them get used to hardware description languages. Topics like
number systems and logic minimization are all done in VHDL. Circuit logic using CMOS
technology is also introduced in this course and implemented using HDL. The difference
between this approach and the approach we are putting forward is that this approach does
not include the use of the traditional bread board LED, TTL circuit construction. It jumps
straight away to implementation in VHDL and FPGA. The first lab is a tutorial on
Vivado and Nexys3 FPGA board. With little knowledge on programming, the students
were unable to grasp some of the complex aspects of VHDL and thus in the later chapters
the students did not do well.

In general, there is a push toward changing the digital systems curriculum towards the
use of hardware descriptive languages. The biggest challenge is where in the course to
introduce them and how deep should they be covered [10]. Most universities offer the
introductory digital systems course in the sophomore year where the students barely have
any programming skills hence it becomes a challenge to leasn HDLs effectively.
Moreover, the traditional TTL chip building on a bread board is still important so that
students can appreciate how simple logic gates can be assembled to create more complex
and meaningful circuits. It is therefore important to create a course that merges these
concepts smoothly in a gradual and sensible manner to build from the gate leve! circuit
building to circuit description using HDL as circuit complexity increases. It also very
important for students to realize the circuits they build and for this the FPGA board is

important. Our novel approach aims to achieve these.

8

CHAPTER 3

Technical Background
3.1 FPGA Background

FPGA technology came from Programable read-only memory (PROM) and
programmable logic devices (PLDs) which could be programmed from the factory on in
the field. Programable logic was hard-wired between logic gates. The FPGA is therefore
designed to be configured by the customer or designer after it has been manufactured.
Hardware Description Languages are used to configure or design circuits in the FPGA
board. FPGAs contain an array of programmable logic blocks, and a hierarchy of
reconfigurable interconnects that allow the blocks to be "wired together”, like many logic
gates that can be inter-wired in different configurations. Logic blocks can be configured
to perform complex combinational functions, or merely simple logic gates like AND and
XOR. In most FPGAs, logic blocks also include memory elements, which may be simple
flip-flops or more complete blocks of memory. Many FPGAs can be reprogrammed to
implement different logic functions, allowing flexible reconfigurable computing as

performed in computer software.

3.2 Basys 3 FPGA Board

The Basys 3 is an entry-level FPGA development board designed exclusively
for Vivado Design Suite, featuring Xilinx Artix-7 FPGA architecture. Basys 3 is the
newest addition to the popular Basys line of FPGA development boards and is perfectly
suited for students or beginners just getting started with FPGA technology. The Basys 3
includes the standard features found on all Basys boards: complete ready-to-use
hardware, a large collection of on-board I/O devices, all required FPGA support circuits,

a free version of development tools, and at a student-level price point.
Below are the features of the Basys 3 board:

e Features the Xilinx Artix-7 FPGA: XC7A35T-1CPG236C
« 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-
flops)

1,800 Kbits of fast block RAM

Five clock management tiles, each with a phase-locked loop (PLL)

90 DSP slices

Internal clock speeds exceeding 450 MHz

On-chip analog-to-digital converter (XADC)

Digilent USB-JTAG port for FPGA programming and communication

Designed Exclusively for Vivado Design Suite (Vivado Design Suite WebPACK
edition can be downloaded for free from Xilinx). Expanded features are available
through purchase of the Design Edition.

Free WebPACK™ download for standard use.

Micro-B USB cable not included.

Serial Flash

USB-UART Bridge

12-bit VGA output

USB HID Host for mice, keyboards and memory sticks

16 user switches

16 user LEDs

5 user pushbuttons

4-digit 7-segment display

4 Pmod ports: 3 Standard 12-pin Pmod ports, 1 dual purpose XADC signal / standard
Pmod port

The Basys 3 board was chosen for this course because it is a relatively cheap board and
has all the necessary features for an entry level learner of the FPGA. The ease of
integration with the Multisim further supports the use of the board. A picture if the board

is shown in figure 1 below.

3.3 Software requirements
In order to run the laboratories in this course we need a few software packages:

3.3.1 NI Multisim Design Suite

Multisim Design Suite Student Edition is required for the successful implementation of
the proposed curriculum. The success of this approach is hinged on the fact that Multisim
can convert a graphical design made through component pick and place through a
graphical interface into HDL code that can be run on an FPGA board. Multisim 14.1 and
newer versions have the “create PLD” option that is required to create a circuit to be

implemented on an FPGA board.

10

o

MR (O

L Pt

3 .
o
L SmPE

TTEKIN

S

o LT
171 17070 11

R A

Figure 1: Basys 3 FPGA Board

Multisim 14.0.1 Education and later comes with built-in PLD support for the NI Digital
System Development Board (DSDB) and many other Digilent Boards. This support
includes a PLD configuration file that defines the names and properties of port

connectors that a Multisim PLD design will use.

3.3.2 NI FPGA Plug in

The translation capability of Multisim is provided by a special plug-in from NI Multisim
that can be downloaded for free from the NI website [11]. The plug-in is chosen for the
particular operating system properties either 32-bit or 64-bit.

11

3.3.3 Adept Drivers

In addition to Multisim the board drivers are necessary of operation of the board. This
driver can be downloaded for free at the Digilent Adept website for free to configure the

Basys 3 ready for use [12].

3.4 Setting up the PLD design

Once the required software and driver is installed, you are ready to program the FPGA
board. The steps below in figures 2 to 12 describe the process for creating a PLD design

for the Basys 3 FPGA board, and the same steps can be used for the other boards.

1. In Multisim, select FilenNew.

2. Click the PLD Design... the click the Create button.

[Mew Derign e “]
R - - = S
e
Instafled templates Bilank NIELVIS | NI ELVIS 1) NI mgDAD @

dotign dosign dasign

My templataes |; [“j :

Recenily viod tampisies
[
NI EUVS
(=

L]
NIELVIS 1l oad
Templale

[comma][cancet [bee ||

Figure 2: Choosing the PLD design on Multisim

3. Click the Digilent Basys 3 down arrow to select your board. Click Next.

12

New PLD Design - Step 1 of 3 L

Select how 1o create the Programmable Logic Device.

@ LUse standard configuration:

[DigﬂentBasysS v]

= Use custom configuration file:

") Create empty PLD

Browse,

The selected configuration enables programming a connected PLD, generating
a programming fiie, and exporting to VHDL.

< Back MNext > Firush [cancet || Help |

4 Enter Introduction to Digital Electronics in the PLD design name field and click Next.

Figure 3: Selecting the Board on Multisim

New PLD Design - Step 2 of 3

PLD desian name:

PLD part number:
Pt ek
| HEFZO20

Introduction to Digital Elo:tronlc-sl

[<sgock | [wmaxez=]["Biush] [cance

]t

Help

]|

Figure 4: Name the design

5. The New PLD Design dialog allows you to select which peripherals you will use in

your design.
Click Finish.

13

In this tutorial the LED LEDO and the push button BTNO are selected.

New PLD Design - Step 3 of 3

)

Default operating voltages

Input connector: 3.3 v
Qutput connector: 3.3 v
Bidirectional connector: 3.3 v
i Select the defined connectors to place on the PLD:
sB_5_DI1O3 [BTNZ [JETH_RST_B CIHDMI_D_P1
TBB_S_DI1O4 [CIBTNS [CIHDMI_CEC CIHDMI_D_P2
1BB_S_DIOS [CICRYPTO_SDA [CIHDMI_CLE_N [CIHDMI_HPD
[TlBB_S_DIO6 CIDAC_DIN_B CIHDMI_CLE_P CIHDMI_OUT_EN !||
[ZieB_S_DIO7? [CIDAC_LDAC_B CIHDMI_D_NO [CIHDMI_SCL I
[ClBCK_DIv [IDAC_SCLK_B ZJHDMI_D_N1 [CIHDMI_SDa |
iBTND [CIDAC_SYNC_B CIHDMI_D_N2 |
[CIBTNI (CIETH_INT_B [CJHDMI_D_PO ILED1
[checkal | [uncheckan |
i
vext> | [posh] [Cancel] [_wele])]
Figure 5: Selecting the peripherals on the board

6. The selected connectors are placed on the work space.

34 P | I I I [I I] 1
e 1] T
= —_—

1 — I T I | ——a| I I I i

Figure 6: Selected Peripherals as they appear on the empty PLD design

3.4.2 Create a PLD Schematic in Multisim

1. Select PlaceyComponent.

14

2. Select an AND2 gate located in the PLD Legic group, Logic_gates family and
click the OK button.

Select 8 Component (PLD Mode) l?." ;’M"'

Databasa: Component: Symbol (ANSI ¥32.2) m
[Master Database - l L7 2] C‘E] | 'T]
Groue: R - | | P
[dd PLD Logic ~| [aND3 M9l |
Family: {anD4 A :[:}_" | LRotaireport
il <all familes > ANDS i [viow mocel |
ICH LocIc_GATES | :N'x'
o norrens a7 B
¥ ADDERS i
% comMPARATORS Function:
NANDL3
9 DECODERS e 2-Input AND Gate -
= ENCODERS | | nanpa
LrMuTipLExERS | |yanDs L -
ﬂ=.. CEMULTIPLEXERS | |pyaNDS
{BF GENERATORS e .!_V'lode| rhanufacturer/ID:
THLAaTCHES NAND? |
| TR eLIP_FLOPS NANDS :
| 538 COUNTERS NORZ T e L —
. 10} SHIFT_REGISTERS NOR3 VHDL export manufacturer/Name:
| NOR4 | T e e TN T |
| NORS | |
'NORS gl = =
INOR? | Hyperlink;:
¥ 0 J » | [nore =l
Components: 44 Searching: Filter: off
L e v - ear r

Figure 7: Selecting circuit components pick and place

3. Place another connector for the AND gate input by click the Input connector icon
on the toolbar.

[]e-we=
4. Select the push button BTN1 and click OK.

'8 - 3
Input connectar ﬁ}

& Craate defined connector:

Create dgfault connector

] E: =3 L | L___;ancel 1 |— ijelp .]

5. Wire the AND gate to the connectors.

15

u1
BTN)—DLEDO
BTN1

AND2

NOTE: The second button BTN1 could have been chosen while creating the schematic
by choosing two buttons instead of one but here, it is created to show that it is possible to

create your own button if you did not choose one while choosing the peripherals
3.4.3. Export the PLD Design to the FPGA
There are three options for exporting the digital logic from the PLD schematic:
» Programming the connected PLD — Allows students to deploy the design directly
to the FPGA.
« Generate and save a programming file- Students can generate a bit file that can be
used to program hardware later.
o Generate and save the VHDL- This option exports the VHDL netlist allowing
students to view the VHDL code. You can import the VHDL code in the Xilinx
environment and program the FPGA

In this tutorial you will program the FPGA board directly from the Multisim
environment.

1. Select TransfernExport to PLD.

2.Click the Program the connected PLD radio button and click Next.

16

? ; =
PLD Export - Step 1 of 2 y bt

Select from these exports:

[« Save genorated pragramming Fila
 Generate and save programming File

Gonerate and save YHOL fles

T Ejrizh [cancel I Help]

Figure 8: Generating the VHDL file

3. In the Select a tool to use area, select the Xilinx tool for you board.

PLD Export - Step 2 of 2

Select o tool tO U

Xilinx Vivado Design Suite 2016 2 54- bt (Unsupported) Browse
Nl LabVIEW FPGA Xdinx [SE 14-; {2014) G4-but
NI Lab p -

Progremuning fike:
Ci\Users\bhayt\Downloads\dedb _for_board. bt

Bronsaa. ..
PLD part number:
HCTZO20 e
(=
Not checked Rafresh

Xihnm user constraint Hles [xac)

C mpiD3I0DB xoc
Allow unmaiched LOC constraims

Yeou

T < Beck | Flant = [Cancel Help

Figure 9: Exporting the PLD design

4, Connect the hardware to your computer and wait for Windows to detect the
connection.

17

5. Make sure power is applied to the board and the power switch is set to the on
position.

6. Click the Refresh button. The Detected message will appear if the board is
detected by your computer.

Device

Detected - 5/6/2016 5:29:20 PM

Figure 10: Establishing connection between computer and the board

7. Click the Finish button to begin programming the board.

Note: Some Vivado versions do not support file path containing spaces for the XDC file.
In these cases, you will get an “illegal file or directory name” error when trying to export

the design. If this happens, copy the DSDB.xdc file stored in the installation folder:

<Program Files>\National Instrumentsi\Circuit Design Suite
14.0\pldconfig to a local path such as c:\temp. Next, change the Xilinx user
constraint file (*.xdc) in the Multisim PLD Export step 2 of 2 dialog to where you saved
the file before exporting the design.

B Advanced settings
il wzer constramt fes {7.xdc] C:\temp\DSDB.xdc J
Allow unmatched LOC constraints Yes

8. Multisim will automatically open the Xilinx tool in the background and perform all

the requires steps to program the FPGA, no user interacting is required.

PLD Export with a tool: NI LabVIEW FPGA Xilinx Vivado 2014.4 64-bit [

Step 1 of 4: Check device status

e i

Figure 11: Programming the FPGA board
18

9. Once the FPGA is programmed, Multisim will display a message on the
Spreadsheet View.

fl] PLD Introduction to Digital Electronics -
INFO: [Common 17-186] *Ci/Users/tpham/AppData/Local/Temp/NiCds/pld_export_1/Xil/Vivado-13264-TPHAE6420/webtalk/usage_statistics, «
INFOQ; [Commaon 17-206] Exiting Webtalk at Fri May 06 17:39:52 2016...

§ close_hw: Time (5): cpu = 00:00:00 ; elapsed = 00:00:21 . Memary (MB): peak = 106,624 ; gain = 0.000 |

s INFO: [Cammon 17-206] Exiting Vivado at Fri May 06 17:39:52 2016... [_|

E Cormnpleted; 0 error(s), b warning(s); Time: 9:48.83 =

|| R e e »

3 Results INets jComponents | Copper layers | Simulation]

Figure 12: Programming complete

10. You can now test the design built in Multisim on the real-hardware.

19

CHAPTER 4

The Curriculum

4.1 Current Curriculum
EENG 3302 Digital Systems offered at University of Texas in Tyler is a 3-credit hour

course with 2-hours lecture and 3-hour laboratory per week. The main objectives of the

course are:

o To design digital systems using simple logic elements.

¢ To demonstrate knowledge of sequential logic circuit elements like flip-flops, and
latches and their applications.

¢ To demonstrate knowledge of advanced circuits like counters and registers

o To write laboratory reports with experimental results demonstrating visual and

written communication skills.
Topics covered in the course are:

Introductory digital concepts

Number systems, operations and codes
Logic gates

Boolean Algebra and logic simplification
Karnaugh Maps

Combinational Logic

Flip-Flops and related devices

Counters, Shift registers, and sequential logic

A L o

Memory and storage
10. Introduction to microprocessors

11. Integrated Circuit technologies.

The laboratory exercises covered in this course are summarized in the Table 1 below.

20

Table 1: Summary of laboratory exercises currently offered in the EENG 3302 course

No | Lab Title Learning Objective Implementation
0 | Instruments To familiarize the students to the
lab instruments.
1 | Logic gatesand | Test and observe the working of On the breadboard using
Boolean Algebra. | basic gates AND, OR, NAND, TTL chips and LED’s.
XOR, NOR, NOT.
2 | De Morgan’s To verify De Morgan’s Theorems | On the breadboard using
Theorems of Boolean Algebra. TTL chips and LED’s.
3 | Combination To simplify Boolean expressions | Simulate on Multisim
Circuits to the and construct the simplest using
form and compare with the Word generator and Logic
original form. analyzer
4 | Universal Verify the use of the universal On the breadboard using
property of gates as AND, NOT and OR gates. | TTL chips and LED’s.
NAND & NOR
5 | Adders and To implement an ADDER and a Simulate on Multisim
Multiplexers Data Selector and analyze its Software using Word
output. generator and Logical
analyzer
6 | Encoders and To implement an Encoder and a Simulate on Multisim
Decoders Decoder circuit. using Word generator and
Logic analyzer
7 | Seven Segment | To implement a BCD decoder with | Simulate on Multisim
Display the seven-segment display. using Word generator and
Logic analyzer
8 | Comparators Implement a comparator circuit Simulate on Muitisim
using Word generator and
Logic analyzer
9 | Look Ahead Implement the Look ahead carry Simulate on Multisim
Carry Adders adder. using the Word generator
and Logica analyzer
10 | Arithmetic and Implement a simple ALU. Simulate on Multisim
Logic Unit using Word generator and
Logical analyzer
11 | Latches and Implement the flipflops Simulate on Multisim
Flipflops using Word generator and
Logic analyzer
12 | Counters Implement a BCD decade counter | Simulate on Multisim

Software using Word
generator and Logic
analyzer

21

In the current curriculum, laboratory implementation is majorly two-fold, either through
wiring of TTL basic gates on a solderless bread board or by simulation on NI Multisim
and analyzed using a word generator and logic analyzer. The simple circuits are
implemented by wiring the circuit components in the form of TTL chips on a solderless
bread board and the circuit functionality is tested by connecting LEDs and switch
buttons. As the circuits get more complex it becomes increasingly difficult to wire them
on a bread board and some of the sequential circuits will not work properly if a lot of
wiring is involved. In such instances the circuits are simulated on Multisim Design Suite
from National Instruments (NI). The suite is equipped with virtual instrumentation to

allow the students to test and simulate their circuits in the program.

4.2 Proposed Changes

In the new curriculum changes are made so that the laboratory exercises can feature use
of FPGA boards to implement some of the complex circuits. These changes only affect
the mode of implementation of some laboratory exercises that are tough to implement on
a bread board and easy to implement on the Basys 3 board. The peripherals on the Basys
3 board are more than enough for the entry level FPGA programming. Table 2 shows the
new summary of laboratory exercises after modernization of the course. Two
combinational circuit lab exercises and one sequential lab have been modified so that

they can be implemented on the Basys 3 FPGA board.

4.2.1 Combinational labs

Labs 7 and 8 have been modified so that they can be implemented on the FPGA board.
Lab 7 involves building a BCD decoder that takes input in the form of a BCD number
through four of the switches on the FPGA and outputs the actual number on the seven-
segment display of the FPGA board. Below is a picture of such an implementation as it
would appear on Multisim. The blocks in the circuit represent the functional circuit for
each LED of the seven-segment display. A detailed figure for each circuit is found on
figure 14 and 15.

22

Table 2: Laboratory Curriculum for the modernized Digital Systems course

No | Lab Title Learning Objective Implementation

0 | Instruments To familiarize the students to
the lab instruments and how to
use them

1 Logic gates and Test and observe the working | On the breadboard using

Boolean Algebra. of basic gates AND, OR, TTL chips and LED’s.
NAND, XOR, NOR, NOT.
2 | De Morgan’s To verify De Morgan’s On the breadboard using
Theorems Theorems of Boolean Algebra. | TTL chips and LED’s.

3 | Combination Circuits | To simplify Boolean Simulate on Multisim
expressions to the simplest using the Word generator
form and construct the and Logic analyzer
simplest form and compare
with the original form.

4 | Universal property of | Verify the use of the universal | On the breadboard using

NAND and NOR. gates as AND, NOT and OR TTL chips and LED’s.
gates.

5 | Adders and To implement an ADDER and | Simulate on Multisim

Multiplexers a Data Selector and analyze its | using the Word generator
output. and Logic analyzer

6 | Encoders and To implement an Encoder and | Simulate on Muitisim

Decoders a Decoder circuit. using the Word generator
and Logic analyzer

7 | Seven Segment To implement a BCD On the Multisim

Display decoder with the seven- software and Basys 3
segment display. FPGA board.

8 | Comparators Implement a comparator On the Multisim
circuit software and Basys 3

FPGA board
9 | Look Ahead Carry Implement the Look ahead Simulate on Multisim
Adders carry adder. using the Word generator
and Logic analyzer

10 | Arithmetic and Logic | Implement a simple ALU. Simulate on Multisim

Unit using the Word generator
and Logic analyzer

11 | Latches and Flipflops | Implement the flipflops Simulate on Multisim

using the Word generator
and Logic analyzer

12 | Counters Implement a BCD decade On the Multisim
counter software and Basys 3

FPGA board.
13 [Project To design an elevator motor | On the Multisim

23

PO P

r:;
1
é

Nnm&a A —

Function B
FLD3 oc

Munotion €
D4 fs)

fupetion D
PFLD3

=
R i

fuaction ¢
noi g

Functicn ©

Figure 10: BCD Decoder with seven-segment display

Lab 8 involves implementing a comparator circuit, which takes in two binary numbers
through its switches as inputs and lights up an appropriate LED to indicate either greater

than, equal to or less than. An implementation of the circuit in Multisim is show in figure
15.

Although the students are still not familiar with Hardware Descriptive Languages (HDL),
they get a chance to view how a typical HDL code would look like for the circuit they
designed. Multisim produces a VHDL file that implements the circuit on the FPGA

board. Figure 16 shows a VHDL snippet for the comparator circuit in figure 15.

24

B——y M X us
L] —F B T—
3 | AN
) 7 AND2 . C—
o . BUF | B n . vt oW
g e = R O
& : 12 OR3 ¥ o0 Eem oW oR
AND? AND2
g o
Ei_ 1T 1Y e N
alllls =Py O
- T =1 l
B SR - » U3
T 4 C—————
=t T,
S . RN 1
| | D
‘—!—m'r-_ R OR3
I Y
A
3 u3s
A B u30
C— u =
B
['}—

i UM
¢ i AND2 L

O— ol Pt
' Uzs :
y oR2
h_-
Dc »
AN

Figure 13: The figure represents six functional sub-circuits of the 7-segment display (a, b, c,

d, e, 1)

25

T ——
B u43
o Dt u3g
E e
[iy - AND2 : _
u44 ﬂ‘.’_\ “,"4 FG
- AND2 OR3 _
: s uat
: INV b

Figure 14: Function G of the seven-segment display

B [(s Yow Pacr freise Gl Irow fyou Opeers dodon by ;
DEe 80 B YN FERAEHD . WY -rww- T EWY
c=egeY o+ JUCORCE+ HORT T b o Sewmm BEEbEDDD

MT* _.'!j AP IR . -4
D Jd a ? D':- s u
% | 2—__—_-(”% - —
B oot 4 u
0 it Benp 1T -
= ANG3 un
'I 3 - W w o LT
| = S 2 =" .
i E‘g | e = =
= = o
o
B e LS .
o e) --l :Fé
s unt _q:
ey ==
=l Uk »
E > m‘
Il [}
f | - ur wom1 mmisg
: - 1 AND4
it [ty e | m L‘E |

Figure 15: Comparator circuit as implemented on Multisim

26

-- Sheet: comparator2

-- RefDes:

-- Part Number: XC7A35T
-- Generated By: Muitisim

-- Author: Brolyne
-- Date: wWednesday, February 06 15:41:32, 2019

T ——— — i M T T o e o e e ol AL S

-- Ese: This file defines the top-level of the design
-- Use with the exported package file

Tibrary ieee;]
use jeee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;

Tlibrary work;
use work. comparator2_pkg. ALL;

entity comparator2 is
port (

sSwW0 : in std_logic;
swl : in std_logic;
sw3 : +in std_logic;
Sw5 : in std_logic;
sw7 : in std_logic;
LEDOGT : out std_logic;
LEDILT : out std_logic;
LED2EQ : out std_logic

b
end comparator?;
architecture behavioral of comparator2 is

component AND2_NI|
port (

in STD_LOGIC := ‘X’

in STP_LOGIC := ‘X'

out STD_LOGIC := "U

a8

<pm

end component;

component AND3_NI
port (

C : 1in STD_LOGIC := 'X';

B : in STD_LOGIC := 'X';

Figure 16: VHDL code for Comparator circuit

27

4.2.2 Sequential Circuit

The sequential circuit implemented on the FPGA Basys 3 board is the decade counter of
lab 12. The counter uses the internal clock of the FPGA board to synchronize the flip-
flops of the counter circuit. The seven-segment display of the FPGA board is used to
display the count from the counter. An implementation of the counter on the Multisim is

shown on figure 15.

ul u e

_us FE.T_CLR GO
nmrmqu_m “ e s EF_T_CLR_CO E_‘-ncu!.co [il

S 5 S5 o 1 A e S SRR &

[

L - 1
us T 1
o = = =
DIGITAL_HIGH
L3 i3 il W34
FFFTEOLCD |~ FFICOHED | FRTGAALD | FRTCLRCO
U9 |
] : "'T —— - [e
DIGITAL_HGH el e '—l__[I_L,,.;.. - = |_-I|. - e

uz

1
DIGITAL _HIGH

——Laap
uzs s .' %
DIGITAL_HIGH E b an

DEC_BCD 7

Figure 17: Counter implementation on Multisim

A major challenge in implementing a counter on the FPGA board and using the internal
clock of the board to synchronize the flip flops in your counter is that the internal clock
of the Basys 3 FPGA is that the clock frequency is very high SO0OMHz making it
impossible to see the count on the seven-segment display. To solve this one must divide
the frequency of the clock as many times as possible to bring it down to about 1KHz. To
achieve this 25 T flip flop were used to bring the frequency down. Since this number of
flip flops will not fit on to your counter design a separate sub circuit is built in your

design with the 25 flipflops scaling down the frequency of the clock.

28

4.3 Project

At the end there is a project to be implemented that goes over the concepts covered
during the course. The project is the design of a finite state machine in the form of a
motor control for the lift of a building. The lift operates on a 3 storey building where it
can go up and down. The lift stops when the sensors of the lift perfectly align with those
at the door of a floor. The user should be able to choose the floor he desires to go to. This
circuit is to be implemented on the FPGA board through Multisim. A picture showing the

implementation of the control circuit is shown in figure 16.

Q1= 0,Q1=1 Fwoor 1

—@o1 Q1 =1,G7=0Floor2
E—-{ Q1 =1, Q2= Floord
D) e go—&] =&
(+ emfi] 1 Cy
o
D02
[a37) (@

@)

Znan D "B [
@ o

aa-l:D—%

il = IQ‘ > Floor Sensars
@ 81 - Floor 1 Sensor, 82 - Ficor I Benaor
M3 €3 - Flnor J Ganase
lau ,‘,
Bed i (&)
' "B [
Bey
2 [S]—
ra [}) > (Be1]
-D-O-r\ (=)
Floor Selsclion (UBER)
M1 F1-Floot 1, F2 - Floar 2, F3 - Flaor 3
=

Maolar Conirol

Mim 0OM2= 0:-OFF
MiasOmM2a 1 Down
Miw 1 M2=0-UP

Figure 18: Motor control circuit for a Lift

29

CHAPTER 5
CONCLUSION

The intention is to make the Digital systems design course more exciting while at the
same time introducing new concepts that the students will need in the future of their
study in digital systems. Once the course is introduced, we intend to conduct a student
survey and observe the level of satisfaction that the modernized course produces. A
questionnaire will be filied by the students after taking the new labs and the data

collected analyzed to gauge the students’ reaction to the new approach.

The new curriculum will be introduced in the fall semester of 2019. Modified lab
manuals will be available for the students use. A ten-minute tutorial guide is also
available to guide the students how to install the required software and the setup for the
use of the Basys-3 FPGA. The laboratory procedures have been developed and tested for;
lab 7 binary to BCD converter, lab 8 comparator circuit and lab 12 a decade counter.
Further work is underway to create a word generator that can be used to analyze digital
circuits through the FPGA. This is meant to make analysis of truth tables for circuits

easy.

30

2

10,

11.

12.

References

. H. A. Ochoa and M.V. Shirvaikar, “A Survey of Digital Systems Curriculum and

Pedagogy in Electrical and Computer Engineering Programs.” Proceedings of the
2018 of ASEE Gulf-Southwest Section Annual Conference, Austin, Texas, April
2018

E. A. Mayer, “Developing undergraduate FPGA curriculum using Altium
Software and Hardware.” American Society for Engineering Education”,
Pittsburg, Kansas 2012.

B. D. Carrol, S. N. Gieser, and D. Levine “A hierarchical project-based
introduction to digital logic design course.” 121% Annual Conference and
Exposition. Indianapolis, Indiana. June 2014.

R. Rodriguez-Ponce, and J. Rodriguez-Resendiz, “Integrating VHDL into an
undergraduate digital design course.” IEEE International Conference on
Teaching, Assessment and learning for Engineering. Kuta, Indonesia August
2013.

S. M. Loo, A. Planting and M. Murdock, “Introducing Field Programmable Gate
Arrays into Sophomore Digital Circuits Course, “SEE Annual Conference &
Exposition, Chicago, Illinois. June 2006.

Y. Zhao and S. Huang, “Improving Student Understanding of Digital Systems
Design with VHDL via Inductive Instruction,” ASEE Annual Conference &
Exposition, Columbus, Ohio June 2017.

H. Shaalan, D. Kar and R. Bachnak, “Digital Systems Laboratory for Teaching
and Research,” ASEE Annual Conference, Salt Lake City, Utah April 2004.

G. Donzelini and D. Ponta,” From Gates to FPGA: Learning Digital Design with
Deeds.” Interdisciplinary Engineering Design Education Conference, Genova,
Italy June 2013.

S. Shayesteh, M. E. Rizkalla, L. Christopher, and Z. Ben Miled, “Attached

Learning Model for First Digital System Design Course in ECE Program,” ASEE
Annual Conference & Exposition, New Orleans, Louisiana June 2016

M. Hassan, *Course Development in Digital Systems Targeting Reconfigurable
Hardware,” SEE Annual Conference & Exposition, Austin, Texas June 2009.

The NI FPGA from National Instruments Web-Site http://www.ni.com/fpga/,
accessed January 30, 2019.

Digilent FPGA Web-Site https://store.digilentinc.com/digilent-adept-2-download-
only/, accessed January 30, 2019.

31

Appendix

EENG 3302 Digital Systems
Lab 7 — Seven Segment Display

Objectives

Seven-segment displays are used with logic circuits that decode a binary coded decimal
{BCD) number and activate the appropriate digits on the display.

Afier completion of this experiment, you will be able to use the ECG 3080 and the
appropriate logic design for each segment to activate any digit.

Material Needed
7404 inverter
7408 AND gate
7432 OR gate
ECG 3080
Discussion

The segment decoding logic requires four binary coded decimal (BCD) inputs and seven
outputs, one for each segment of the display as shown in the handout. The multiple-
output truth table, shown below, is seven truth tables in one and could be separated into a
separate table for each segment. A 1 in the segment output columns of the table indicates
an activated segment.

Since the BCD code does not include the binary values 1010, 1011, 1100, 1101, 1110,
1111, these combinations will never appear on the inputs and can therefore be treated as
don't care (X) conditions, as indicated on the truth table.

32

BCD Inputs |Segment Qutputs

DICIBAjlalbic|d|e|f (g

Decimal Digit

0 ofojolofifififtfijr]o
B olofoltlofi|t]ololo]o
2 oot fo{t{tfol1lilo]s
3 ofo{t{t{tfilt]ifofof
4 ofltjolofoftiijofolt|
5 o1 ot |t]oft]tjol1
6 oflt{tfoftjolifififif
7 ottt ififilolololo
8 tolojofififtlipnhh
9 tlololt ihrfiifolt|

Decimal Digit

Invalid

11 i1 0 (111 {1 |1 |1 |1

I 1T (1 |1 (11|11 (1|1}l

Boolean Expression for the Segment Logic:
The standard SOP expression for segment a from the truth table is:
a=ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + A

The Karnaugh map for segment a is:

33

i ™
bC 1 1 1
f = "
bc 1 1 1
DC X X X X
e S
DT 1 \ 1 X X
p /

The minimum SOP expression is:

a=B+D+AC+AC

— B

>t

»>Q @y
y

The minimum logic for each of the remaining six segments b, ¢, d, e, f, and g, can be
obtained with a similar approach.

Procedure

Design the logic for segments a, b, c, d, e, f, and g. Include necessary Boolean algebra
and expressions, truth tables, Karnaugh maps, and logic diagrams in your report.

Open Multisim Design Suite and under the files choose new then select new PLD Design
and click the create radio button at the bottom of the pop-up window.

In the new window that pop-up under use standard configuration drop list choose
Digilent Basys 3 as shown below. Then choose next.

34

L STRE CE—

Select how to create the Programmable Logic Davica.

i@ Use standard configuration:
[D!oaent Baays 3 - |

Use custom configuration file:

Browse,

Creats empty PLD

g The selected configuration enables programming a connected PLD, penerating
a programming e, and exporting to VHDL.

" Back (Crewr>]| Fruzh [canced | { Heip]

In the next window name your PLD design “Seven segment display” and click next as
shown below.

I
PLD design name: ;
Seven segment display|
Plzp_partnwnber:
(xC7A35T -]
I
[<Back |[Next> 1| Fiish || cancal || Hebp]_:E

Choose the Basys 3 peripherals you need for the project in the next window. Make sure
you tick CA, CB, CC, CD, CE, CF, CG which represent the seven segments of the
display. Also choose three switches SW0, SW1, SW2 which represent switches on your
board. Then choose finish. The figure below shows this window.

35

v 10 5 -5 3573

Default operating voltages

Input connector: i3 v
Qutput connector: 3.3 v
Bidirectional connector: 3.3 v

Select the defined connectors to place on the PLD:

{13%AB {TILED& [TILED 14 [CIswe
[C]IXAZ [TILED7Z [CILED15S [CIswz

[CiLEDS i swWo [sws
[CHED1 [CLED9 [PISW 1 {1sw9
[CILED2 [CILED 10 MFIsw2 [Ciswia
[JLED3 [CILED11 ¥Isw3 [Ciswil
[ZILED 4 [CILED12 I SwWa [TIswi1z
[CILEDS [ClLeDas [Isws [swi3
- ————TE— '
| checkan | [uncheckall |

Next [Fnieh || cancel | [Help |

A blank design page appears next with the peripherals you chose for your project. Now
implement your design on this page attaching the appropriate peripherals and the logic
gates necessary.

NOTE: Your design may not fit in the design space provided, you may explore the option
of using sub-circuits to represent each of the segments then join then them to form your
final circuit.

| = B { * 1] | ! I1

4

s

36

Once your design is complete attach your FPGA Basys 3 to your computer and program
it by transferring your design to the FPGA board. Refer to the tutorial on how to program
the Basys 3 board available in the modules.

Open the vhdl file generated for the circuit and observe how the different components
interact with each other.

Exercises

Test your design on the FPGA board by entering binary digits through the switches and
observe the value displayed on the 7-segment display.

1. HoPun 10 Deamal Point
2. Segmert A 11, Segment D

3. Segment F 12 Comm an Anode
4. Comm on Anode 13 Segment C

3. Segment E 14 Segment G

6. Comm on Anode 15 Segment B

7. No Connection 16 HoPin

8. Ho Pin 17 Cominon Anode
9. NoPin 18 NoPin

ORIEHTATIOH MARKE

[\

J,(ﬁn 78

I
!

~

g
TTTITH

'y

—_— oig=

CATS

?
('u“g:) (l%)
4+ +

T
—DUQ-(S U

I"(igf’| Jo*

(3sh

37

EENG 3302 Digital Systems
Lab 8 — Comparators

Objectives
A comparator is a device that compares the magnitudes of two digital quantities and
produces an output indicating the relationship of the quantities.

After completion of this experiment, you will be able to use the 7485 magnitude
comparator.

Material Needed

* 7404 inverter

+ 7408 AND gate

» 7432 OR gate

* 7485 magnitude comparator

Discussion

The purpose of a comparator is to compare two quantities and to indicate whether or not
they are equal to each other or which quantity is larger. A block diagram for a magnitude
comparator designed to compare two 4-bit binary numbers is given below.

4
4 bit magnitude
comparator

Three outputs are provided: A < B, A =B, A > B. It is important to notice that when two
numbers are unequal, you determine the greater number by examining the most
significant unequal bit; for example, the number 11010 is greater than 11001. The
internal logic of the magnitude comparator uses this order to make the correct
comparison.

38

Notice that the 7485-magnitude comparator has three cascading inputs that permit the
comparators to be cascaded so that any number of bits can be compared. Cascading is
done by connecting the outputs of a less significant comparator to the cascading inputs
of a more significant comparator.

When there is no less significant comparator, the cascade inputs are connected as shown
in the figure above, Notice that the active-HIGH S = B input is tied HIGH, and the
activeHIGH A < B and A > B inputs are tied LOW. The reasons for these connections
are as follows:

When only one 4-bit comparator is used, it is considered the least significant comparator
for purposes of cascading. Logically, it should not be affected by the absence of a less
significant comparator. It follows that the A = B cascade input should be active-HIGH,
because the absent four bits of A could not be considered either more or less than the
absent four bits of B. The cascaded inputs are not even examined unless the two 4-bit
numbers being compared are equal. In this case, the only condition of the cascaded
inputs that will not disturb this equality is that the cascaded input A = B is tied HIGH
and the A <Band A > B inputs are tied LOW.

An example 2-bit comparator circuit is shown below.

At 1 [3 _‘ﬂ
>0—~ /
>0—
81 3 [3 L/
:)D: :>——E|e A=B
=
M 23 N\ D —D—ET he
>0—

Y

39

Procedure

Design a four-bit magnitude comparator and implement it in Multisim following the
design steps in the previous lab to achieve your PLD design.

Choose 8 switches SW0, SW1, SW2, SW3, SW4, SW35, SW6, SW7 where the first four
switches represent one of the input number and the other four represent the second input.

Let SWO be the LSB for the first number and SW3 be the MSB for the same number
also let SW4 be the LSB and SW7 be the MSB for the other number.

Also choose three LEDs LEDO, LED1, LED2 where the LEDs represent the result of the
comparison of the two numbers at the input.

Let LEDO represent the less than condition, LED1 represent the equal to condition and
LED2 represent greater than condition. Program the Basys 3 board by transferring your
design to the board as shown on the tutorial on how to program the Basys 3 FPGA board
using Multisim.

Exercises

1. Using your design test the numbers below with each put on either inputs of your
FPGA and record your results. Confirm if your design works perfectly

a. A=0001, B=0000
b. A=0010,B=0011
c. A=1000,B=0111
d. A=0100,B=0011
e. A=1001,B=1001
LSBs MSBs
Ao o CoOMP A, o COMP
A, As
A1 (4 Ag .
Ay 13 A, [3
A>B A>B A>B A>Bjpb—
~S5V A=B A=B A=B A=B ——}o.npm
o A<B A<B A<B A<B }—
By) B, 0
Bl B’]
B, o B ‘ z
Ba 3 B?—— 3 1
. 74HCSS 74HCSS

40

2. Install two 7485 magnitude comparators as shown in the figure above to create a
8bit comparator and test with the numbers below:

a. A=00100100, B =00101000
A=11001101,B=10101100
A =00100110,B = 00100110
A =11110000, B = 11100001
A =00110100,B =11001011

®ao o

41

EENG 3302 Digital Systems
Lab 12 - Counters

Objectives

Counters, which consist of flip-flops and gates, are used to count pulses in digital
systems. They can also be used as frequency dividers. The term asynchronous refers to
events that do not have a fixed time relationship with each other and, generally, do not
occur at the same time. An asynchronous counter is one in which the flip-flops within the
counter do not change states at exactly the same time because they do not have a common
clock pulse. All clock inputs of the flip-flops in a synchronous counter are connected to a
common clock. As a result, the outputs of the flip-flops change only after the leading or
trailing edge of the clock occurs.

After completion of this experiment, you will be able to build asynchronous and
synchronous counters with flip-flops and gates.

Material Needed

¢ Your computer with Multisim installed
e Digilent Basys 3 FPGA Board
Discussion

In a synchronous counter, the outputs of the flip-flops change simultaneously because
they are triggered by a common clock. In the asynchronous or ripple counter, each flip-
flop is triggered from the outputs of the preceding flip-flop, and the output of the last flip-
flop cannot change until all of the preceding flip-flops have operated. Thus, propagation
delays accumulate, thereby causing unreliable decoding in the ripple counter. These
delays can cause spurious spikes, called glitches. In a synchronous counter, the total
propagation time is limited to a single flip-flop, and therefore these problems are reduced.

Counters with ten states in their sequence (modulus-10) are called decade counters. A
decade counter with a count sequence of zero (0000) through nine (1001) is a BCD
decade counter because its ten-state sequence is the BCD code.

To obtain a truncated sequence, it is necessary to force the counter to recycle before
going through all of its normal states. The BCD decade counter must recycle back to the
0000 state after the 1001 state.

Notice in the figure below that only Qiand Qsare connected to the NAND gate inputs.
This arrangement is an example of partial decoding, in which two unique states (Q1= 1)
and (Q; = 1) are sufficient to decode the count of ten, because none of the other states (0-

42

9) have both Qi and Q3 HIGH at the same time. When the counter goes into count ten
(10190), the decoding gate output goes LOW and asynchronous resets all the flip-flops.

10 decoder
HIGH
@ JO \gci [_]1 glqi - _]2 &’ > j3 Q3
CLK —-d>C > C > C >C
K, K, _Ik, Ik,
clR | | CLR | CLR cL
i 3 i
FF, FF, FF, FF,
CLKJ 1 2 3 4 5 6 7 3 9 10

1 1 [|]]] I T]]
QO 1 1 3

I 1 1] 1

Ghtchm_)
Q

I 1 1

(]

1

(]

Q . ;

" 1
% |

]

Glitch—""1

An asynchronously clocked decade counter with asynchranousrecycling

Refer to the figure below to follow the explanation of the synchronous counter. First,
FFo (Qo) toggles on each clock pulse, so the logic equation for its Joand Ko input is

Jo=Ko=1
This implemented by connecting Jo and Ko to a constant HIGH level. The FF1 (Qi)
changes on the next clock pulse each time Qo=1and Q3 =0, so the logic equation for the J;

and Kjinput is
Ji =K1 =G Qs

43

FF2 (Q2) changes on the next clock pulse each time both Qo =1 and Q) =1.

J2=K; = Qo0

FF3 (Q3) changes to the opposite state on the next clock pulse each time Qo =1, Q1 =1,
and Q2=1 or when Qo=1 and Q3 =1.

Ja = K3 = Q¢01Q: + Q03

HIGH) G
e =
- 8 | } 5 —Ql-l 1, 6;— —1J; o)
> C >C > C C
Kk, —k, —k, L,
e FF, FF, FF, FF,
A synchronous BCD decade counter
CLK |1 2 3 4 5 6 [_ 7 8 10 L
1 1 1 | | 1 1] 1 i
0 1 0 1 0 | 0 1 1] 0
Qo — i . i —
] 1 1 1 . 1 : 1 : =
: JI- 1 1 1 1
N 11 0 ! 0 1o D ! 0
11 1 1 1 1]
i i i ' ' | 1 ; i i
0f 0 I 0 ! 0 R 0 oD
Q- ; i i i i | i i
| | i l i i ' ; i i
1 1 I J) 1 1 1
Q ot 0 ' 0 ! 0 } O} 0O } O } O 1} 0
Timing diagram for the BCD decade counter
{Qoisthe LSB)
Procedure

Design the synchronous decade counter using a state transition diagram, state table, and
Karnaugh maps.

Implement you design on Multisim PLD using the steps from the tutorial on how to
program the Basys 3 FPGA board using Multisim.

When choosing your peripherals make sure you select the CLK which is the internal
clock of the Basys 3 board and the seven segments CA, CB, CC, CD, CE, CF and CG to
display your counter on the seven-segment display.

Use the in-built decoder circuit found under decoders in Multisim to decode your counter
and display them on the seven-segment display. (DEC_BCD_7)

Note: The internal clock of the FPGA is about 500MHz and at such a frequency it is not
possible to observe the count on the 7-segment display. To remedy this use frequency
dividers to divide the clock frequency of the FPGA board down to about 1000Hz.

Tip 1: The frequency divider circuit may be too large thus not fitting on your single page
design use multipage design so that you can have the frequency dividers on one page and
your counter and decoder on another.

Tip 2: To use multipage design left click anywhere on your schematic and under the
place on schematic menu find Multipage.

Exercise

Test your circuit on the FPGA board and observe if it counts from 0 to 9 and then resets
to 0.

Modify your circuit to be an UP/DOWN counter between 0 and 9.

45

	MODERNIZATION OF LABORATORY CURRICULUM FOR THE UNDERGRADUATE DIGITAL SYSTEMS COURSE
	Recommended Citation

	tmp.1556035542.pdf.uqRKF

