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Preemies, infants who are born too soon, have a higher incidence of Life-Threatening 

Events (LTE’s) such as apnea (cessation of breathing), bradycardia (slowing of heart 

rate) and hypoxemia (oxygen desaturation) also termed as ABD (Apnea, Bradycardia, 

and Desaturation) events. Clinicians at Neonatal Intensive Care Units (NICU) are facing 

the demanding task of assessing the risk of infants based on their physiological signals.  

The aim of this thesis is to develop a risk stratification algorithm using a machine-

learning framework with the features related to pathological fluctuations derived from 

point process model that will be embedded into the current physiological recording 

system to assess the risk of life-threatening events well in advance of occurrence in 

individual infants in the NICU. 

We initially propose a point process algorithm of heart rate dynamics for risk 

stratification of preterm infants. Based on this analysis, point process indices were tested 

to determine whether they were useful as precursors for life-threatening events. Finally, a 

machine-learning framework using point process indices as precursors were designed and 

tested to classify the risk of preterm infants. This work helps to predict the number of 
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bradycardia events, N, in the subsequent hours measuring point process indices for the 

current hour. The model proposed uses Quadratic Support Vector Machine (QSVM), a 

machine learning classifier, which can solve class optimization problems and execute 

data at an exponential speed with higher accuracy for risk assessment that might facilitate 

effective management and treatment for preterm infants in NICU. The findings are 

relevant to risk assessment by analyzing the fluctuations in physiological signals that can 

act as precursors for the future life-threatening events.  
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CHAPTER 1 

INTRODUCTION 

 

An infant born prior to 37 weeks of pregnancy is classified as a prematurely born infant 

and is referred to as a preterm infant. As of today, premature births are the leading cause 

of infant mortality around the world. Every year 15 million premature babies are born 

around the globe. One million preterm infants die immediately after birth [1]. Brazil, 

China, India, Nigeria and the United States of America (US) are five countries where 

premature births are prominent [1]. In the US, 1 in every 10 babies born accounts for the 

9.8 percent rate of preterm births annually [2]. To date, early birth remains a major cause 

of infant mortality, making it an unsolved clinical challenge.  

Few of the causes for premature birth identified include pregnancy complications, low or 

high maternal age (woman over the age of 35 or under 19), multiple miscarriages, 

structural abnormality of the uterus, or carrying multiple fetuses [3]. Preventive measures 

such as progesterone supplements and cervical cerclage (where the cervix stitched with 

strong sutures to provide extra support to the uterus and are removed at the time of 

delivery) are employed to reduce high-risk pregnancies [3]. 

Despite having measures in place, premature births still occur. Premature infants are 

prone to health issues compared to infants born full-term.  Due to underdeveloped organs, 

these infants risk facing short-term and often long-term health problems, which may 

affect the brain, lungs, hearing or vision. In order to survive, care and support are 

required and most often administered in neonatal intensive care units (NICUs). A 24/7 
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support is mandated at all NICU facilities, the resulting cost amounts to a $26 billion 

annually to care for preterm infants [4]. 

As per an article by Medscape “Revelation of busy NICU nurses” a survey was done 

focusing on the nurses who work at NICU’s [5]. From the survey conducted, more than 

90% of nurses reported caring for two or more infants, while 5.6% reported caring for 

more than four infants. Their job functions entail attending daily rounds, parent 

education, feeding, vital data communication and signs assessment, oxygen 

administration, developmental care, infection control precautions, timely alarm response 

and more. Hence, keeping an eye on each patient within the facility could be incredibly 

cumbersome. 

In NICUs clinicians are faced with the demanding task of assessing the risk of infants 

based on their physiological signals. Research conducted by engineers enabled them to 

derive different techniques for identifying outcomes before they can occur so 

preventative measures can be introduced in order save an infant’s life. Currently, a 

technological system that can assist clinicians to assess risk in preterm infants is not 

available. In order to effectively manage and treat preterm infants in NICU, a risk 

stratification algorithm is needed. Thus, we aim to develop a risk stratification algorithm 

using a machine-learning framework along with features derived from point process 

approach that be embedded into the current physiological recording system to assess risk 

as well as predict life-threatening events in infants. 
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1.1 Defining prematurity 

Prematurely born infants are also termed as “Neonates” or “Preemies.” They are prone to 

severe medical problems, as their organs have not had sufficient time to develop. An 

inverse relationship exists between gestational age (GA) (which is a measure used to 

describe the duration of pregnancy) and infant mortality rate. 

Depending on prematurity, these infants would be classified as late preterm (LPT) when 

born between 34 and 36 weeks of GA, moderately preterm when born between 32 and 34 

weeks, very preterm when birth takes place before 32 weeks and extremely preterm (ET) 

if born by 25 weeks of GA [3] as shown in Figure 1.1. One in ten births in the United 

States are preterm [6]. According to American College of Obstetricians and 

Gynecologist, preterm births, late preterm and early term, accounts for 36% [7] of the 

live births. A notable mention of individuals who came into this world earlier than 

anticipated and lived to tell the tale would be: Mark Twain, Napoleon Bonaparte, Stevie 

Wonder, Sir Winston Churchill and Albert Einstein [8]. 

 

Figure 1.1 Definitions of gestational age periods for premature infants [7] 
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1.2 Signs of prematurity 

The premature infant is typically small in size with a disproportionately large head 

having less rounded features when compared to a full-term infant. They often experience 

distressed respiration, lower body temperatures and lack reflexes resulting in difficulties 

for feeding [3]. Table 1.1 shows the median birth weight and length of an infant as per 

GA. Any GA less than 37 weeks is designated as a preterm infant. The earliest preemie to 

ever survive was born at 21 weeks, 6 days’ gestation and smallest preemie to ever survive 

was born weighing 9.1 oz [9]. 

Table 1.1 Weight and length by gestational age 

GA 

(weeks) 

Weight 

(lbs) 

Length 

(inches) 

24 1 12.2 

28 2 14.4 

32 3 16.5 

35 5 18.1 

40 7 20 

 

Figure 1.2, below, represents a comparison of size of a preterm infant with the hand size 

of a typical adult measuring around 17 inches. It is evident that premature infants are tiny 

and vulnerable. Furthermore, these infants require specialized monitoring and care. 
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Figure 1.2 Premature infant under specialized care at University of Alabama NICU [44] 

1.3 Premature care and support 

Most of the premature infants are moved to the neonatal intensive care unit (NICU) right 

after their birth, as shown in Figure 1.3, where specialized supportive care is provided by 

the neonatal nurse around the clock to examine and treat the conditions due to 

prematurity with medical interventions as needed.  

There are four levels of NICU’s: Level I provides primary care to newborns; Level II has 

Special Care Nursery providing care to neonates > 32 weeks’ gestational age through 

continuous airway pressure (CPAP), mechanical ventilation for up to 24 hours; Level III 

Neonatal Intensive Care has comprehensive care with high-frequency ventilation and 

onsite accessibility to pediatric subspecialists; and Level IV Regionalized Neonatal 
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Intensive Care Unit provides level III care, Extracorporeal Membrane Oxygenation 

ECMO therapy and has the capability to treat complex cardiac abnormalities requiring 

cardiopulmonary bypass [10]. 

 

Figure 1.3 Neonatal Intensive Care Unit setup [11] 

 

Extremely preterm infants are commonly treated for 71 days in the NICU prior to 

discharge. Very preterm infants are taken care for 39 days in NICU. Moderately preterm 

infants and late preterm infants spend on an average of 12 days and 4 days, respectively, 

in the NICU prior to discharge. 
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1.4 Organization of Thesis 

Chapter 2 addresses the premature infant’s risks, diagnosis, and treatment. Chapter 3 

provides information of previous research papers relating to the current research strategy. 

Chapter 4 explains point process model and machine learning techniques used in the 

study methodology. The results are presented in Chapter 5 and Chapter 6 has 

conclusions, limitations and discusses on future directions of the study conducted. 
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CHAPTER 2 

NEONATAL RISK, DIAGNOSIS AND TREATMENT 

 

Premature infants need care as well as support for surviving and are often admitted to 

NICU immediately after birth for observation and treatment. These premature infants 

commonly have several short term and long-term adverse complications that can lead to 

negative health outcomes. Complications due to premature birth are the underlying 

reasons for the infant death. With increasing prematurity, the risk of complications 

increases. Even after surviving birth, these infants are at the greatest risk of 

developmental challenges in the future. In this chapter, we briefly discuss examples of 

short term and long term adverse outcomes. 

2.1 Short-term adverse outcomes 

During the neonatal period, a premature infant may have adverse outcomes that include 

any or all of the following: apnea (pauses in breathing), bradycardia (slowness of heart 

rate), hypoxia (oxygen de-saturation), sepsis (an infection in blood), and Patent ductus 

arteriosus (an opening between two main arteries of heart. Not all adverse outcomes are 

listed here. 

2.1.1. Apnea 

A lung disorder (bronchopulmonary dysplasia) which develops due to the infant’s 

immature respiratory system which can inhibit breathing. This leads to apnea where 

infants experience a typically short-term cessation of  breathing [12]. Apnea or Apnea of 

prematurity (AOP) is defined as an episode of a sudden pause in breathing that can last 
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for 10 seconds or longer followed by oxygen desaturation and/or bradycardia. This 

occurs commonly during sleep and generally is called sleep apnea [13]. Hypopneas are 

partial reductions in breathing. The normal range of respiratory rate for newborns is 30–

60 breaths per minute (bpm). Three types of apnea observed in preterm infants are 

central, obstructive and mixed. 

Central apneas occur due to lack of diaphragmatic activity resulting from a problem in 

brain or heart. Obstructive Sleep Apnea (OSA) is an obstruction of airflow occurring 

from collapse of soft tissue in the back of throat. Mixed apnea is a combination of central 

apnea followed by an obstructive apnea episode [14]. 

2.1.2 Bradycardia 

Bradycardia is the medical condition in preterm infant whose heart rate is slows 

significantly. The average heart rate (HR) of premature infants is 120-180 beats per 

minute (bpm). A heart rate less than 100 bpm would result in a 10-50% reduction of 

cerebral blood velocities from baseline [15], which may have adverse effects in preterm 

infants. 

2.1.3 Hypoxemia (Oxygen de-saturation) 

Oxygen saturation level is a measurement of blood oxygen; a below-normal blood 

oxygen level is called hypoxemia, which leads to complications in body tissue and 

organs. Hypoxemia is a below-normal level of oxygen in the blood, specifically in the 

arteries [16]. It is estimated by measuring the oxygen saturation level in blood using a 

pulse oximeter (a small device that clips to a finger or in the case of infants wraps around 

their foot). 
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Normal levels of pulse oximeter readings usually range from 95 to 100 percent and 

values under 90 percent are considered to be low. 

Thus, Apnea Bradycardia and Desaturation (ABD)–events are defined as apnea duration 

greater than 10 seconds associated with bradycardia where HR is less than 100 bpm and 

desaturation (SpO2) is less than 85%. Figure 2.1 shows the infant physiological signals 

which are monitored at level 4 NICU showing apnea, bradycardia and hypoxemia events. 

 

Figure 2.1 Preterm infant's Respiratory rate (Resp rate), Heart rate HR and SpO2 levels 

2.1.4 Sepsis 

Another complication for preterm infants who have premature immune systems is the 

development of sepsis. Sepsis is the overwhelming and life-threatening response of the 

infant’s body to infection that can lead to tissue damage, organ failure, and death [17]. 

Depending on the mode of infection, it is divided into: early onset sepsis (EOS) which is 

caused by maternal transmission of invasive organisms during the first 7 days of life and 

late-onset sepsis (LOS) when an infection is in blood. 
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2.1.5 Patent Ductus Arteriosus (PDA) 

A common heart problem in premature infants in which abnormal blood flow occurs 

between the two main arteries of the heart and when untreated can lead to heart failure 

[18].  PDA is a congenital heart defect in which a vessel connecting the pulmonary artery 

to the aorta fails to close allowing the blood to bypass the lungs. While a small PDA may 

cause no symptoms, a large PDA may cause failure to thrive and/or breathlessness. 

2.2 Long-term adverse outcomes 

In premature infants, the frequency of the cardio-respiratory events has been associated 

with long-term neurodevelopmental impairment [19], some of which are cerebral palsy 

(injury to a newborn's developing brain), impaired vision, hearing limitations, having 

developmental delays, learning disabilities, and chronic health issues.  

2.2.1 Cerebral Palsy (CP) 

Cerebral Palsy (CP) is a non-progressive brain lesion that occur during early development 

resulting in disorders that impair the control of movement due to damage to the 

developing brain associated with immature lungs that provide insufficient oxygen to the 

brain. 

2.2.2 Vision impairment 

Vision impairment in premature infants include Retinopathy of Prematurity (ROP) which 

is an abnormal growth of blood vessels in the eye which can damage the eye’s retina 

resulting in loss of vision due to scarring and retinal detachment. Stevie Wonder, a world-

renowned singer, is a victim of ROP that caused his blindness in infancy [3]. 
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2.2.3 Neurodevelopmental impairment 

Neurodevelopmental impairment includes Autism Spectrum Disorder (also called ASD) 

which is a developmental disability that can cause severe challenges with 

communicating, behavior, cognitive, and learning skills. While ASD can be detected in a 

child as early as 12 months of age, it is often not diagnosed until the child is older [20]. 

These older children may not get early intervention. 

2.2.4 Other chronic health issues 

Premature infants are more likely to have chronic health problems such as recurring 

infections, asthma, feeding challenges, and increased risk of sudden infant death 

syndrome (SIDS) [21]. 

2.3 Diagnosis 

Ongoing observations that are performed to diagnose complications in the preterm infants 

include breathing and heart rate monitoring, fluid levels, blood biomarkers, ultrasound 

examinations, and eye examinations. Many sensors are often taped to infant’s body to 

monitor blood pressure, heart rate, breathing and temperature as shown in Figure 2.2. 

Infants commonly have a negative reaction to the tape being removed. 
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Figure 2.2 Different types of sensors attached to infant's body for monitoring vital signs [22] 

2.3.1 Monitoring heart rate, breathing and ultra sound scans 

While in the NICU, heart rate and breathing are monitored continuously along with blood 

pressure readings. An echocardiogram is used for displaying moving images on the 

monitor as shown in Figure 2.3. Ultrasound scans are conducted to diagnose brain tissue 

for any bleeding or fluid buildup, and to examine the gastrointestinal tract, liver and 

kidneys for any abnormalities. 
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Figure 2.3 Infants monitor displaying HR, RR, SpO2%, pulse and temperature [23] 

2.3.2 Fluid levels, blood tests and eye examinations 

The NICU team vigilantly tracks the amount of fluid level present in the baby. Blood 

samples are analyzed regularly to monitor critical nutrient levels, anemia, and any signs 

of infection. The infant’s vision is also examined regularly to prevent damage to the 

retina. 

2.4 Treatment 

Depending on the condition of the baby, medicines such as caffeine are used to treat 

apnea. A ventilator may be used to help the infants breathe and continuous positive 

airway pressure (CPAP), which is oxygen under pressure may be given through a nasal 

cannula. Infants may be placed in an incubator to stabilize the infant’s body temperature.  
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The ophthalmologist may perform laser therapy or cryotherapy to eliminate abnormal 

blood vessels and scars in an effort to protect the retina. Phototherapy is one of the 

treatments administered in the NICU to help the infant cope with jaundice. 
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CHAPTER 3 

BACKGROUND 

 

Premature infant mortality rate is relatively high due to cardio-respiratory events such as 

apnea, bradycardia and hypoxemia. Assessing the risk of occurrence of these events is a 

major challenge for the clinician caring for the preterm infant. Part of the challenge in 

caring for premature infants is the complication of multiple conditions. R. J. Martin, et 

al., provided an overview of apnea of prematurity, stating that afferent input to the brain 

stem correlates with the central pattern generation circuitry [24]. This paper discusses the 

interplay of apnea, bradycardia, and desaturation while providing a basis for therapeutic 

approaches to treating apnea of prematurity. 

E. Bloch-Salisbury, et al., studied breathing patterns in 10 preterm infants consisting of 

highly variable inter-breath intervals. Studies were conducted by using a respiratory 

oscillator and a mattress with embedded actuators that delivered small stochastic 

displacements by causing arousal from sleep to wakefulness [25]. This study suggests 

that the incidence of apnea and hypoxia can be reduced using the nonlinear properties of 

respiratory control system by stabilizing normal breathing. Caffeine may also prevent 

hypoxemic episodes. J. R. Moorman, et al., conducted a two-group clinical trial of very 

low birth weight infants in NICU’s [26]. Heart rate characteristics (HRC) monitoring was 

displayed in one group while being masked for the other group. This experimental study 

shows that HRC monitoring can reduce the mortality rate in very low birth weight 

infants. All the above works have analyzed the cause of apnea, hypoxia, and bradycardia 
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to provide strategies for reducing the occurrence. However, it is not sufficient for 

clinicians to protect infants. They are actually in need of a risk stratification model to 

predict events in very fragile infants well in advance for effective scheduling of staff as 

well as defining treatment plans. 

Determining when to cease interventions with minimal infant risk is difficult, M. 

Mueller, et al., worked toward developing a tool for the prediction of appropriate timing 

for  extubation (the final step in removing a patient from mechanical ventilation) in the 

premature infants with a help of Artificial Neural Networks (ANN), Support Vector 

Machine (SVM), Naive Bayesian Classifier (NBC), Boosted Decision Trees (BDT), and 

Multivariable Logistic Regression (MLR) machine learning algorithms [27]. This work 

also explains about the different extubation supports that are provided to these infants. 

A. K. Singha, et al., reported their analysis of the cause for infants’ mortality and created 

a model in the machine learning for a solution [28]. Logistic Regression (LR), Naive 

Base (NB), and Linear Support Vector Machine (LSVM) models were used to solve 

Binary classification problems. The performance of LR model is better with high 

precision score of 0.87 when compared with the NB and LSVM.  R. D. Shirwaikar, et al., 

compared machine learning techniques such as decision tree (C5.0), Support Vector 

Machine (SVM) and ensemble approach including random forest to predict apnea in 

neonates [29]. The results obtained has the higher accuracy of 0.88 and kappa of 0.72 for 

random forest algorithm using mtry =3 than other techniques. This work has the class 

imbalance problem which is affecting machine learning because of disproportionate 

number of class instances. N. Mago, et al., used machine learning techniques like the 
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Support Vector Machine (SVM) and random forest for predicting Apnea of Prematurity 

(AOP) in neonates [30]. They overcame the class imbalance problem by using Principal 

Component Analysis for feature extraction and Synthesized Minority Oversampling 

Technique (SMOTE). They obtained AUC of 0.72 in Random Forests and AUC of 0.66 

in Support Vector Machine. In all the above works, the prediction model is developed 

only for apnea in neonates. 

C. F. Poets, et al., studied the downloaded data for oxygen saturation and pulse rate data 

of infants [31]. The mean percentages of hypoxemia and bradycardia were recorded and 

studied due to the severe detrimental impact these events have on infants. This work 

clearly explains how hypoxemic episodes were associated with an estimated increased 

risk of late death or disability at 18 months. The authors also suggest that caffeine therapy 

can decrease the risk of developmental coordination disorder of the child. Caffeine can 

reduce apnea and assist infants in case of respiratory support as well as possible 

prevention of hypoxemic episodes. 

R. Barbieri, et al., stated that heart rate variability is an important quantitative measure of 

cardiovascular regulation by the autonomic nervous system [32]. He modeled the 

stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process 

and derived instantaneous R-R interval and heart rate standard deviations. Estimating the 

time-varying parameters of the inverse Gaussian model by local maximum likelihood and 

by Kolmogorov-Smirnov model, he illustrated an analysis of heartbeat intervals from 10 

healthy subjects undergoing a tilt-table experiment. P. Indic, et al., analyzed Interbreath 

interval (IBI) for extracting breathing patterns from the neonates [33]. The discrete bursts 
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of neural activity generated during the IBI time series exhibits stochastic and 

deterministic dynamics. It uses a stochastic dynamic modeling with point process model 

of IBI to quantify the irregularity of breathing. This study validates a new class of 

algorithms based on the point process theory for defining instantaneous measures of 

breathing irregularity in neonates using Kolmogorov-Smirnov. 

A. H. Gee, et al., examined bradycardia events by the use of a point process model for 

heart rate dynamics in preterm infants [34].  Due to the long-tail nature of distribution of 

R-R interval time series, a log normal distribution model is used. It also provides the 

statistical information of vulnerability measure of bradycardia in premature infants. M. B. 

Schmid, et al., reported on the influence of hypoxemia and bradycardia on cerebral 

oxygenation [35]. Data was recorded from 16 preterm infants with intermittent 

hypoxemia and/or bradycardia, cerebral tissue oxygen saturation (StO2), heart rate and 

pulse oximetric saturation (SpO2) for 16 hours. If combined events are compared with 

isolated bradycardias, the combined events usually have the highest impact on cerebral 

desaturation. 

Studies show that the occurrences of bradycardia events have more impact on preterm 

infants and hence, we considered inter beat interval of electrocardiogram and employed a 

point process model to derive features for the machine learning framework for risk 

stratification. 
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CHAPTER 4 

METHODS 

 

This chapter explains the infant dataset acquisition and the use of point process model to 

extract features which can act as predictors for future life threatening events. It explains 

in detail how the life threatening events have been estimated and classified. An algorithm 

based on a point process model framework to capture heart rate fluctuations and machine 

learning classifier using Quadratic Support Vector Machine (QSVM) is employed to 

stratify risk in preterm infants as high or low risk for future events. 

4.1 Infant Data Set 

The data were collected from preterm infants at the Level 4 Regional Neonatal Intensive 

Care Unit (NICU) at the University of Alabama at Birmingham using the ixTrend and 

Philips MP70 systems. The electrocardiogram (ECG) data were obtained using a 

sampling rate of 500 Hz and the HR using a sampling rate of 1Hz. 

Eighteen preterm infants whose parents/legal guardian provided informed consent at the 

time of enrollment were studied at a gestational age of 27 to 37 weeks recorded for 24 

hours per infant in a servo-controlled oxygen environment.   
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Table 4.1 Characteristics of 18 Preterm Infants data set 

Parameter Range 

Sex 9 Males and 9 Females 

GA at Enrollment (weeks) 27 – 37 

Weight at Enrollment (grams) 920 – 2380 

 

4.1.1 Data Acquisition 

ixTrend Express is a professional software used for visualization and data acquisition of 

vital signals from Philips infant monitors [36]. The data acquired is stored by exporting it 

into different files formats like .csv for clinical research and long-term studies.  Signals 

that are most commonly recorded are electrocardiogram (ECG), Arterial Blood Pressure 

(ABP), Plethysmograph (Pleth), Pulmonary Arterial Pressure (PAP), Pulse Rate, Heart 

Rate (HR), Respiration Rate (Resp rate) and Oxygen Saturation (SpO2). 

4.2 Feature extraction using point process model 

Point process model require inter beat interval of ECG called RR intervals. We 

considered heart rate data to obtain R-R intervals [37] as:  

RR (secs) = 60/HR (bpm)         (4.1) 

This data, RR in seconds, is given to the point process algorithm for obtaining the 

required features. According to statistics and probability theory, a point process is a 

mathematical model used to represent the randomly located events as points in some type 

of space such as the real line or the Cartesian plane. Point processes are powerful tools in 



22 

 

statistics for modeling and analyzing spatial data in different disciplines such as 

astronomy, computational neuroscience, economics, geography, seismology and others. 

RR interval of preterm infant follows a lognormal distribution [22, 24]. An algorithm by 

representing RR as a lognormal distribution is employed to estimate the instantaneous 

mean 𝜇(𝑡) as well as instantaneous variance 𝜎2(𝑡). At the 𝑘𝑡ℎ interval given 𝑅𝑅𝑘 = 𝑢𝑘 −

𝑢𝑘−1 and for a time 𝑡 > 𝑘 before the next beat occurs, the probability distribution can be 

represented as 

𝑓𝑘+1(𝑡 𝐻𝐷𝑘, 𝛽) = [
1

2𝜋𝜎(𝑡)2(𝑡−𝑢𝑘 )
]

1

2
 exp {−

1

2

(ln(𝑡−𝑢𝑘)−𝜇(𝑡)
2)

𝜎2(𝑡)
}                                  (4.2) 

where 𝑓𝑘+1(𝑡 𝐻𝐷𝑘, 𝛽)  represents lognormal probability distribution and  𝑢𝑘 time of 

𝑘𝑡ℎ estimated R-wave peak. 𝐻𝐷𝑘 is the set {𝑅𝑅𝑘, 𝑅𝑅𝑘−1, …… , 𝑅𝑅𝑘−𝑛+1 }. The 

instantaneous mean is represented as a 𝑛𝑡ℎ order linear regression process as 

μ(𝑅𝑅𝑘, 𝛽(𝑡)) =  𝛽0 + ∑  𝛽𝑖𝑅𝑅𝑘−𝑛+1
𝑛
𝑖=1                                           (4.3) 

Whose estimation vector 𝛽(𝑡) is set {𝛽0, … , 𝛽𝑖, … , 𝛽𝑛}. 

𝜇 (𝑡) and 𝜎 (𝑡) are the indices estimated using a local maximum-likelihood optimization 

to obtain a continuous estimation of mean as well as variance of the RR signal by using a 

history-dependent window of 120 seconds and 4th order linear regression process [33].  

The average of 𝜇(𝑡) and 𝜎2(𝑡) as 𝜇̅ and 𝜎2̅̅ ̅ respectively for the first one hour were 

calculated. We also estimate instantaneous mean M(t) and variance V(t) for R-R interval 

and heart rate (HR) signal by following the below traditional transformation from a 

lognormal to normal distribution, thus obtaining point process derived indices mean of 
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RR (MRR) variance of RR (VRR) and mean of HR (MHR) and variance of HR (VHR) 

respectively. 

 𝑀𝑅𝑅 (𝑡) =  𝑒
𝜇(𝑡)+𝜎(𝑡)2/2                                                           (4.4) 

𝑉𝑅𝑅(𝑡) = (𝑒𝜎(𝑡)
2
− 1)𝑒2𝜇(𝑡)+𝜎(𝑡)

2
           (4.5) 

 𝑀𝐻𝑅 (𝑡) =  𝑒
−𝜇(𝑡)+𝜎(𝑡)2/2                                                           (4.6) 

𝑉𝐻𝑅(𝑡) = (𝑒𝜎(𝑡)
2
− 1)𝑒−2𝜇(𝑡)+𝜎(𝑡)

2
           (4.7) 

The standard statistical mean m and variance v are also measured for comparing these 

with the mean and variances obtained from the point process. The averages of 𝜇(𝑡), 

𝜎2(𝑡), 𝑀𝑅𝑅 (𝑡), 𝑉𝑅𝑅(𝑡),𝑀𝐻𝑅 (𝑡), 𝑉𝐻𝑅(𝑡)  are the six features that are generated using 

point process model (ppm) for one hour of data for 18 infants. To train a machine-

learning model with these 6 features the number of observations obtained from these 18 

infants is insufficient. Hence, these 6 ppm features are estimated for 2nd hour, 3rd hour 

and 4th hour so on up-to 10th hour of data thus making a total of 180 observations.  

4.3 Estimation of Life Threatening Events and classification design 

We estimated the number of bradycardia events (N), defined as a heart rate below 100 

bpm. For example, since the HR is sampled at 1 Hz, a bradycardia of 10-seconds duration 

was estimated as 𝑁 = 10. 

We considered all events below predefined thresholds (HR < 100 bpm to define life 

threatening events because there is insufficient evidence in the literature to indicate that a 

specific threshold for a certain duration has greater association with worse outcome. The 
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total number of events experienced by infants is predictive of worse outcomes [29]. An 

observation window of 3 hours, 6 hours and 9 hours is considered to classify risk based 

on LTE’s (which is number of times N<100bpm) in that particular risk assessment 

window. We have arbitrarily determined high risk as N>3 per hour and low risk as N <=3 

per hour. Which means high risk is considered as N>27 for 9 hours, N>18 for 6 hours and 

N>12 for 3 hrs whereas low risk is considered as N<=27 for 9 hours, <=18 for 6 hours 

and N<=12 for 3 hrs. 

4.4 Machine learning using Quadratic Support Vector Machine (QSVM) 

Machine learning can help to analyze the life-threatening events in neonates. A 

specialized model based on machine learning is trained using the past data records of 

preterm infants, which helps to predict the classification of risk in cardiorespiratory 

events. This thesis work presents an idea of using a Quadratic Support Vector Machine 

QSVM which may help clinicians to provide better treatment in Neonatal Intensive Care 

Unit (NICU). Through this model, risk stratification for each individual infant can be 

predicted in a short time period so that necessary intervention can be given to the infants 

to potentially prevent negative events. 

Supervised Learning is a pair of vector and supervisory signals. Supervised learning 

algorithm is designed basing on linear and distance functions. The Support Vector 

Machines, linear regression, logistic regression, naive Bayes, linear discriminant analysis, 

decision trees, k-nearest neighbor and Neural Networks are a few supervised learning 

algorithms. In this work, a new quadratic kernel-free non-linear support vector machine 

which is also known as QSVM is used. 
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A new quadratic kernel-free non-linear support vector machine is called QSVM [29]. The 

QSVM is focused to find the locations of discriminative hyperplanes. QSVM is a novel 

discretized interpretable multilayer perceptron (DIMLP) network trained by an SVM 

algorithm. This special architecture makes it possible to apply the rule extraction 

algorithm. It will analyze and train the data in an exponential learning speed.  Quadratic 

Machine learning QML is robust against decoherence and hence it can work in a real-

time environment. In this thesis, to solve the optimization problem, a quadratic decision 

function is used. QSVM gives better performance than the SVM with polynomial kernel 

(PSVM). The optimization problem is the maximization of the geometrical margin to all 

sets of the training data with a functional margin which is always greater than a constant. 

QSVM solves the optimization problem into two parts: the linear part of the quadratic 

function and the non-linear term. In this work, the Matlab quadratic optimization function 

‘quadprog ()’ is used with the default maximum number of iterations. The main 

advantage of QSVM is that it can separate the data linearly and non-linearly and the 

decision surfaces can be assumed at any of the general forms like hyper-planes, hyper-

spheres, hyper-ellipsoids, hyper-paraboloids, hyper-hyperboloids whereas in kernel trick 

can classify only nonlinear data in hyper planes and also helps to solve a class imbalance 

problem. Hence, in this work QSVM is used. Figure 4.1 shows the block diagram for the 

proposed model using Point process model and QSVM machine learning technique for 

risk classification of preterm infants at the NICU 
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Figure 4.1 Block diagram representation of the proposed risk stratification algorithm 

 

The parameters which can access the performance of classifiers are called performance 

metrics. In this work accuracy, Receiver Operating Characteristic ROC, and Area Under 

Curve AUC are the performance metrics that helped to determine the performance of the 

model designed using machine learning classifier QSVM. 

4.5 Receiver Operating Characteristic (ROC) and Area Under Curve (AUC) 

This metric was first used to detect the signal in radar in 1950’s. ROC curve should be 

straight up to the Y axis and then along the X axis for the perfect classifier. A classifier 

which is in diagonal always shows that it has no power, whereas most classifiers will fall 

somewhere in between. Hence, ROC curve is plotted between Sensitivity on the Y-axis 

and Specificity on the X axis [10]. The sensitivity is called the True Positive Rate and 

specificity called the False Positive rate. This curve can able to access the performance of 

a built model using Area Under Curve AUC. ROC curve can be used to be a threshold 

value for a classifier which maximizes true positives and minimizes the false positives as 

shown in Figure 4.2.  

The Area Under Curve AUC will compare the performance of two or more classifiers. 

This curve helps to interpret the classifier. The perfect machine learning model has AUC 
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of 1.0. A good model should have at least 0.7. If AUC is 0.5, it has 50% of chance to 

predict correctly.  

 

Figure 4.2 Sample ROC curve [40] 

4.6 Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                       (4.4) 

Accuracy helps to predict the performance level of the model. Lower accuracy indicates 

poor prediction. Accuracy is the number of correct predictions to the overall prediction 

made by the created model. The numerator shows all the correct predictions and the 

denominator shows all the correct and false predictions.  

When we assign the event row as ‘positive’, the no-event row as ‘negative’, the event 

column of predictions as ‘true’ and the no-event as ‘false’ we get confusion matrix [41] 

with true positive (TP) which gives the correctly predicted events, false positive (FP) 
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shows the incorrectly predicted events, true negative (TN) gives the correctly predicted 

no-events and false negative (FN) shows the incorrectly predicted no-events as shown in 

Table 4.2. 

Table 4.2 Confusion matrix for events classification 

 Predicted 

Actual event no-event  

event  TP FN 

no-event FP TN 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

The results from our analysis are presented below, divided into two main sections. First, 

we investigated whether the life-threatening events were associated with growth 

characteristics of the infants and studied the correlation between the point process indices 

(as well as the traditional statistical measures) with the life threatening events. Finally, 

we developed a risk stratification model using QSVM to classify high and low risk 

infants using point process indices obtained from one hour of data. 

5.1 Infant Characteristics and Heart rate measures 

The gestational age (GA) and weight of the18 preterm infants at enrollment is shown in 

the following Figure 5.1 along with the features obtained from point process model for 

first one hour of heart rate data which are the averages of instantaneous mean 𝜇(𝑡) and 

instantaneous variance 𝜎2(𝑡) represented as 𝜇̅ , 𝜎2̅̅ ̅ respectively. We calculated the 

standard mean m and variance v of the logarithm of the original RR interval data for the 

first one hour and the number of life threatening events N for the remaining 23 hours of 

data is presented. 
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Figure 5.1  μ̅ , σ2̅̅ ̅, m, v for first one hour and N for next 23 hours of data of 18 preterm infants 

 

The point process indices that are obtained using point process model mentioned in 

section 4.3 are MRR, VRR and MHR and VHR mentioned earlier in section 4.2. Figure 5.2 

shows the heart rate of infant E25 along with the point process indices of estimated HR 

for the first one-hour. As the heart rate goes below 100 bpm, the 𝜇(𝑡) as well as 𝜎2(𝑡) 

shows a significant increase. While 𝜇(𝑡) follows the RR interval, 𝜎2(𝑡) captures the 

variability in the fluctuations of RR during bradycardia events. 

Infant
GA at 

Enrollment

Weight at 

Enrollment
v Events

ID (weeks) (grams) (x10
-3

) (x10
-3

) N 

E2 34.42 1310 -1.01 0.059 -1.01 4.29 112

E4 30 1250 -0.98 0.033 -0.98 1.69 84

E5 31.28 1330 -1.02 0.03 -1.02 2.53 33

E7 31.85 1130 -0.98 0.025 -0.98 2.71 148

E9 31.57 1170 -1.05 0.023 -1.06 3.72 3

E10 32.42 920 -1.11 0.013 -1.11 1.07 58

E12 37.57 2380 -0.9 0.041 -0.91 3.17 23

E13 29 1080 -1.05 0.023 -1.05 0.73 108

E14 31.28 1150 -1.05 0.028 -1.05 0.86 61

E17 33.85 1270 -0.93 0.106 -0.93 5.31 194

E18 35.42 1600 -1.02 0.03 -1.02 3.68 9

E20 27.42 1010 -1.06 0.031 -1.06 1.69 129

E22 32.57 1240 -0.89 0.136 -0.89 2.84 399

E23 31.14 1190 -1.01 0.091 -1.02 2.16 246

E24 31.57 1310 -1.01 0.173 -1.02 7.03 299

E25 31.57 1220 -1.06 0.081 -1.07 9.66 93

E26 37.57 1350 -0.73 0.021 -0.74 11.31 68

E27 36 1730 -1.12 0.039 -1.12 1.88 72

     m
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Figure 5.2 Point Process Indices from Infant E25 in the first one-hour data (A) HR in bpm, (B) 

RR in seconds, (C) instantaneous mean  𝜇(𝑡),  and (D) instantaneous variance  𝜎2(𝑡) 

5.1.1 Relationship of Life Threatening Events with Growth Characteristics 

We investigated whether infant growth characteristics were associated with life 

threatening events as shown in Table 5.1.  This was undertaken to ensure that the infants’ 

vulnerability to events was independent of age and weight, and that each infant requires 

special attention regardless of growth characteristics.  We found that GA and Weight at 

the time of enrolment do not correlate with N. Here, we calculated Pearson correlation 

coefficient r and probability p value where p < 0.05 is considered to be statistically 

significant [42]. 
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Table 5.1 Growth Characteristics vs. Life Threatening Events 

Growth N 

 r p 

GA -0.22 0.38 

Weight -0.25 0.31 

 

5.1.2 Relationship of Point Process Indices with Traditional Statistical Measures 

We investigated whether the point process indices 𝜇̅ and 𝜎2̅̅ ̅ correlate with the standard 

statistical estimates mean m and variance v. We found that the 𝜇̅ correlates strongly with 

m (r = 0.99 and p = < 0.0001), suggesting that no additional information is gained by 

employing the point process framework for estimating the first order statistics. On the 

other hand,  𝜎2̅̅ ̅ shows no correlation with v (r = 0.32 and p = 0.2), suggesting that the 

point process model captures the fluctuations in RR differently than the traditional 

statistical variance. This lack of correlation would point to a possible improvement in risk 

stratification by using the point process algorithm. 

5.1.3 Relationship of Life Threatening Events with Point Process Indices 

We investigated whether the point process indices can act as precursors for the life-

threatening events. Hence, we studied the correlation between the point process indices 

instantaneous mean 𝜇(𝑡), instantaneous variance  𝜎2(𝑡) and these LTE’s for 18 preterm 

infants. We found that the 𝜎2̅̅ ̅ correlates strongly with the bradycardia events N. None of 
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the standard statistical measures as well as 𝜇̅ correlated with life threatening events [43] 

as shown in Table 5.2. 

Table 5.2 Point Process Indices vs. Statistical Measures 

Measures N 

 r p 

𝜇̅ 0.22 0.37 

𝜎2̅̅̅̅  0.84* <0.001 

m 0.22 0.37 

v 0.07 0.80 

*represents significance 

5.2 Risk Classification using Point process indices as predictors for machine 

learning classifier QSVM 

Life threatening events (LTE’s) calculated in each hour of 24 hours’ data for 18 preterm 

infants is calculated. Figure 5.3 shows the number of bradycardia events N in each hour 

for 24 hours’ data in infant E2. Similarly, these events are calculated for all other 17 

preterm infants. 
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Figure 5.3 Number of N when HR<100 bpm in each hour for Infant E2 

Since, features obtained from 18 preterm infants is insufficient to train a machine 

learning model, we have increased the number of observations by taking point process 

features (PPM) for 1st hour of data as observation window and calculating bradycardia 

events for next 3 hours, 6 hours and 9 hours as risk assessment windows. Similarly, we 

repeat the same process for 2nd hour, 3rd hour so on up to 10th hour obtaining a total of 

180 observations. 

 

Figure 5.4 Demonstration for obtaining 180 observations 
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Number of high and low risk infants in each risk assessment window for 180 

observations is listed as follows in Table 5.3 to estimate the total number of bradycardia 

events (N) for 3, 6, and 9 hours’ period of time. The six features that are generated using 

point process model for one hour of data act as predictors for estimating risk in infants 

after 3hours, 6 hours, and 9 hours. 

Table 5.3 Number of infants with high risk and low risk  

 N 3 hours N 6hours N 9hours 

High risk 69 91 102 

Low risk 111 89 78 

 

5.2.1 Outcomes for 9 hours’ risk assessment window  

We employed QSVM to classify high risk and low risk infants. We obtained an Accuracy 

of 76.4%, an AUC of 0.80 using 5-fold cross validation and 40% hold out for 180 

observations in 9hours prediction window. We were able to classify 22 low risk infants 

out of 31 infants and 33 high risk infants out of 41 infants as mentioned in Table 5.4. The 

TPR obtained is 80% and FNR obtained is 20% for high risk classification whereas TPR 

and FNR for low risk classification is 71% and 29% respectively. 
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Table 5.4 Confusion matrix for classifying high risk and low risk of infants using QSVM 

 Predicted 

Actual Low Risk High Risk  

Low Risk  22 9 

High Risk 8 33 

 

We obtained an Accuracy of 70.2 %, an AUC of 0.77 using 5-fold cross validation and 

30% hold out for 180 observations in 9 hours’ prediction window. We were able to 

classify 16 low risk infants out of 23 infants and 23 high risk infants out of 31 infants as 

mentioned in Table 5.5. The TPR obtained is 74% and FNR obtained is 26% for high risk 

classification whereas TPR and FNR for low risk classification is 70% and 30% 

respectively. 

Table 5.5 Confusion matrix for classifying high risk and low risk of infants using QSVM 

 Predicted 

Actual Low Risk High Risk  

Low Risk  16 7 

High Risk 8 23 

 

5.2.2 Outcomes for 6 hours’ risk assessment window  

We obtained an Accuracy of 63.9%, an AUC of 0.65 using 5-fold cross validation and 

40% hold out for 180 observations in 6 hours’ prediction window. We were able to 

classify 25 low risk infants out of 36 infants and 21 high risk infants out of 36 infants as 

mentioned in Table 5.6. 
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Table 5.6 Confusion matrix for classifying high risk and low risk of infants using QSVM 

 Predicted  

Actual Low Risk High Risk  

Low Risk  25 11 

High Risk 15 21 

 

We obtained an Accuracy of 68.5 %, an AUC of 0.71 using 5-fold cross validation and 

30% hold out for 180 observations in 6hours prediction window. We were able to classify 

19 low risk infants out of 27 infants and 18 high risk infants out of 29 infants as 

mentioned in Table 5.7. 

Table 5.7 Confusion matrix for classifying high risk and low risk of infants using QSVM 

 Predicted  

Actual Low Risk High Risk  

Low Risk  19 8 

High Risk 9 18 

 

5.2.3 Outcomes for 3 hours’ risk assessment window  

We obtained an Accuracy of 68.9%, an AUC of 0.67 using 5-fold cross validation and 

40% hold out for 180 observations in 3 hours’ prediction window. We were able to 

classify 21 low risk infants out of 27 infants and 10 high risk infants out of 18 infants as 

mentioned in Table 5.8. 
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Table 5.8 Confusion matrix for classifying high risk and low risk of infants using QSVM 

 Predicted  

Actual Low Risk High Risk  

Low Risk  21 6 

High Risk 8 10 

 

We obtained an Accuracy of 64.8 %, an AUC of 0.68 using 5-fold cross validation and 

30% hold out for 180 observations in the 3-hours prediction window. We were able to 

classify 24 low risk infants out of 33 infants and 11 high risk infants out of 21 infants as 

mentioned in Table 5.9. 

Table 5.9 Confusion matrix for classifying high risk and low risk of infants using QSVM 

 Predicted  

Actual Low Risk High Risk  

Low Risk  24 9 

High Risk 10 11 
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CHAPTER 6 

CONCLUSION, LIMITATIONS and FUTURE DIRECTIONS  

 

There are several algorithms available to predict the bradycardia events or apnea 

occurrences for a shorter interval of time. But, there is no model that is currently 

available to assess the risk in preterm infants. The model developed in this research can 

classify the risk for a longer period of time up to 9 hours, so that the clinicians will have 

enough time to provide necessary interventions for preterm infants to overcome risks. 

The time taken for assessment of risk after 9 hours using one-hour heart rate data is 

around 14mins including extracting point process features and applying machine learning 

technique. The advantage of this model is that it can continuously assess the risk every   

one hour and 14 minutes after the initial start time period of 9 hours if applied in real time 

and infant’s risk assessment can be updated every hour thereafter.  

The model designed can assess high risk and low risk in preterm infants for 9 hours by 

observing the infant heart rate dynamics collected for an hour. The overall accuracies and 

AUC’s obtained for risk assessment window of 9, 6, and 3 hours for 108 observations 

with 40% and 30% holdout are shown below in Tables 6.1 and 6.2 using 5-fold cross 

validation. 
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Table 6.1 Accuracy and AUC with 40% holdout 

 N 9 hours N 6 hours N 3hours 

Accuracy 76.4% 63.9% 68.9% 

AUC 0.80 0.65 0.67 

 

Table 6.2 Accuracy and AUC with 30% holdout 

 N 9 hours N 6 hours N 3hours 

Accuracy 70.4% 68.5% 64.8% 

AUC 0.77 0.71 0.68 

 

We conclude that the estimation of life threatening events for 9 hours is more effective 

because of obtained higher accuracies and AUC’s when compared to their estimation for 

6 hours or 3 hours. The results obtained show an Accuracy of 76.4% and AUC of 0.80 for 

9-hour risk assessment window using point process model features and quadratic support 

vector machine classifier with 5-fold cross validation and 40% holdout. Thus, this study 

designed a model for classification of high risk infants and low risk infants after 9 hours 

which can assist clinicians for risk assessment to effectively manage and treat preterm 

infants in NICU’s. 
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6.1 Limitations and future directions 

In this work, only heart rate HR data is considered and is focused only on slowness of 

heart (bradycardia events). The data examined to design the algorithm is using less 

number of infants which is data from eighteen preterm infants. The model is developed 

by considering statistical features derived from point process model only.  

Consideration of respiratory rate for apnea events and oxygen desaturation for hypoxemic 

events can further improve the model. Exploring additional features including non-linear 

features like entropy, detrended fluctuations, etc., along with statistical features will help 

to improve the model. The algorithm must be designed using more preterm infant data 

sets to test and to implement this model in real time for assessment of risk in preterm 

infants at the NICU. 
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