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ABSTRACT Recently, convolution neural networks (CNNs) have attracted a great deal of attention due
to their remarkable performance in various domains, particularly in image and text classification tasks.
However, their application to tabular data classification remains underexplored. There are many fields such
as bioinformatics, finance, medicine where non-image data are prevalent. Adaption of CNNs to classify
non-image data remains highly challenging. This paper investigates the efficacy of CNNs for tabular data
classification, aiming to bridge the gap between traditional machine learning approaches and deep learning
techniques. We propose a novel framework fuzzy convolution neural network (FCNN) tailored specifically
for tabular data to capture local patterns within feature vectors. In our approach, we map feature values to
fuzzy memberships. The fuzzy membership vectors are converted into images that are used to train CNN
model. The trained CNN model is used to classify unknown feature vectors. To validate our approach,
we generated six complex noisy data sets. We used randomly selected seventy percent samples from each
data set for training and thirty percent for testing. The data sets were also classified using the state-of-
the-art machine learning algorithms such as the decision tree (DT), support vector machine (SVM), fuzzy
neural network (FNN), Bayes’ classifier, and Random Forest (RF). Experimental results demonstrate that our
proposed model can effectively learn meaningful representations from tabular data, achieving competitive or
superior performance compared to existing methods. Overall, our finding suggests that the proposed FCNN
model holds promise as a viable alternative for tabular data classification tasks, offering a fresh prospective
and potentially unlocking new opportunities for leveraging deep learning in structured data analysis.

INDEX TERMS Fuzzy logic, convolution neural networks, deep learning, tabular data, machine learning,
classification.

I. INTRODUCTION
In the era of data-driven decision-making, the ability to
accurately classify and analyze tabular data plays a crucial
role across various domains, including finance, healthcare,
marketing, and beyond. Traditionally, this task has been
approached using machine learning algorithms such as deci-
sion trees, support vector machines, random forests, and
artificial neural network models which rely on handcrafted
features and explicit rule-based representations. However,
with the advent of deep learning, particularly Convolutional
Neural Networks (CNNs), there has been a change in think-
ing in how complex patterns and relationships in data can
be learned directly from raw inputs. CNN models are con-
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ventionally used for image classification due to their high
performance, availability of various architectures, and avail-
ability of graphical processing units (GPUs). CNN models
excel in achieving high accuracy for image data classification.
While CNNs have demonstrated remarkable success in tasks
like image and text classification, their application to tabular
data classification has received comparatively less attention.
Tabular data typically consist of rows and columns, where
each column represents a feature. CNNs are designed for
processing grid-like data to capture spatial dependencies in
data like images, where relationships exist both horizon-
tally and vertically. However, tabular data do not possess
the same grid-like structure as images, and the relationships
between features are not spatial in nature. CNNs offer sev-
eral advantages over traditional machine learning techniques.
Firstly, they provide flexibility and support iterative learning.

151846

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3637-0690
https://orcid.org/0000-0002-3945-4363


A. D. Kulkarni: Fuzzy Convolution Neural Networks for Tabular Data Classification

Secondly, deep networks enable the generation of tabular
data, which can help alleviate class imbalance issues. Thirdly,
neural networks can be employed for multimodal learning
problems, where tabular data serve as one of many input
modalities [1]. CNNs exploit the spatial locality of features in
data, which is not applicable to tabular data. In tabular data,
the relationships between features are not spatially organized
but rather depend on their interdependencies. CNNs excel
at capturing local patterns in data due to their convolutional
kernels, which slide across the input. Convolutional kernels
are excellent feature extractors that exploit two properties
of the input images: local connectivity and spatial locality.
Local connectivity means that each kernel is connected to a
small region of the input image when performing the con-
volution. The spatial locality property means that the pixels
where the convolutional kernel is applied are highly corre-
lated, and usually processing them jointly makes it possible
to extract meaningful feature representations. For example,
a single convolutional kernel can learn to extract edges,
textures, shapes, and gradients. While this is effective for
tasks like image classification where local features matter,
tabular data often require capturing both local and global
patterns to make accurate predictions. Fully connected neural
networks or tree-based models can better capture these global
patterns. In tabular data, where the number of features can
be relatively small compared to other domains like images
or text, the efficiency of CNNs might not be fully utilized.
CNNs require a large amount of data to effectively learn the
parameters of the convolutional filters. Tabular datasets are
often smaller compared to image datasets, making it chal-
lenging for CNNs to generalize well. CNNs are known for
their black-box nature, making it challenging to interpret how
they make predictions, especially in the context of tabular
data where interpretability is often crucial for understanding
model decisions and gaining insights from the data. Despite
these challenges, CNNs offer the potential to automatically
learn hierarchical representations of tabular data, capturing
both local and global patterns within feature vectors. There
have been attempts to adapt CNNs for tabular data. One of the
approaches to classifying tabular data is to transform the tab-
ular data into images. CNNs require fixed-size input tensors,
typically with three dimensions (width, height, channels).
Tabular data, on the other hand, can have varying numbers of
features, and the order of features may not have any signifi-
cance. The effectiveness of CNNs on tasks involving image
processing is because they consider the spatial structure of
data, capturing spatially local input patterns. In tabular data,
the relationships between features are often more complex
and might not be easily captured by 1-D convolutions alone.
We cannot feed a tabular dataset straight forward to a con-
volutional layer because tabular features are not spatially
correlated [2]. Most tabular data do not assume a spatial
relationship between features, and thus are unsuitable for
modeling using CNNs. CNNs are designed to automatically
learn hierarchical representations of features in data. In tab-
ular data, the importance of features and their relationships

may not follow a hierarchical structure, making it less suitable
for CNNs. CNN models encounter challenges such as the
vanishing gradient problem, which is mitigated by employing
the entropy loss function with linear rectified units (ReLu)
in the output layer. Another issue is overfitting, especially
prevalent in small datasets. Both Alex Net and ResNet-50
employ several techniques to mitigate overfitting. Alex Net
uses techniques such as data augmentation, drop out, and
weight decay, while ResNet-50 uses techniques such as data
augmentation, batch normalization, global average pooling,
and weight decay.

Tabular data, characterized by structured rows and
columns, present unique challenges such as dealing with het-
erogeneous feature types and capturing interactions between
features.

This paper aims to explore the efficacy of CNNs for tabular
data classification, filling a crucial gap in the literature and
advancing the understanding of deep learning methods in
structured data analysis. We propose a novel Fuzzy Con-
volution Neural Network (FCNN) architecture specifically
tailored for tabular data. We introduce a method for map-
ping a feature vector onto an image. This mapping involves
assigning feature values to their corresponding fuzzy mem-
bership values. We employed fuzzy membership functions
representing five term sets: very_low, low, medium, high,
and very_high. We map each fuzzified feature vector into
an image. In our earlier research work, we converted feature
vectors into images by mapping features and their ratios to
rectangular shapes in the image canvas [3]. In this research
work, we assign features to their fuzzy membership values
and represent fuzzy membership values by square shapes
within the mapped image.

Through extensive experimentation on six complex
datasets, we evaluate the performance of our proposed
model FCNN against traditional machine learning algorithms
and the fuzzy neural network model. The contributions of
this paper are a) we introduce a novel FCNN architecture
designed for tabular data classification, addressing the unique
challenges associated with structured data. b) we conducted
comprehensive experiments to demonstrate the effectiveness
of FCNNs in comparison to conventional machine learning
approaches for tabular data classification tasks and demon-
strated that the proposed FCNN model performs equal or
superior to the state-of-the-art methods. The paper’s structure
is as follows: Section II delves into related work, Section III
presents the framework for the FCNN model, Section IV
covers implementation and results, and Section V presents
conclusions and future work.

II. RELATED WORK
Various machine learning algorithms are employed for the
classification of tabular data. These include the minimum
distance classifier, the maximum likelihood classifier (MLC),
and non-parametric techniques such as the support vector
machine (SVM), decision tree (DT), ensemble of decision
trees, multi-layer perceptron model, fuzzy inference system,
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and fuzzy neural networks. The maximum likelihood classi-
fication algorithm assumes a normal distribution for feature
values, computing the mean vector and covariance matrix for
each class using training set data. By applying Bayes’ rule,
the classifier calculates posterior probabilities and assigns the
sample to the class with the highest posterior probability [4].
Decision tree (DT) classifiers are non-parametric classi-

fiers that do not require any priori statistical assumptions
regarding the distribution of data. The structure of a decision
tree consists of a root node, non-terminal nodes, and terminal
nodes. The data are recursively divided down the decision
tree according to the defined classifier framework. One of
the most popular algorithms for constructing a decision tree
is the ID3 algorithm. The ID3 induction tree algorithm has
proven to be effective when working with large datasets that
have several features, where it is inefficient for human experts
to process. C4.5 is a supervised learning algorithm that is a
descendant of the ID3 algorithm. C4.5 allows the usage of
both continuous and discrete attributes. The main problem
with decision trees is overfitting [5], [6]. Random Forest (RF)
is based on tree classifiers. It implements several classifi-
cation trees. The input vector is classified with each tree
in the forest. Each tree provides a classification or ‘‘votes’’
for that class. The RF then selects the classification with
the most votes among all the trees. The main advantages
of Random Forest are unparalleled accuracy among current
algorithms, efficient implementation on large datasets, and
an easily saved structure for future use of pre-generated
trees. In ensemble, results of trained classifiers are combined
through a voting process. The most widely used ensem-
ble methods are boosting and bagging [7]. Support vector
machines (SVMs) are supervised non-parametric statistical
learning methods. SVMs aim to find a hyperplane that sepa-
rates training samples into a predefined number of classes.
Vapnik [8] proposed the SVM algorithm. Operating as a
binary classifier, SVM assigns a sample to one of the two
linearly separable classes. In this algorithm, two hyperplanes
are chosen to not only maximize the distance between the two
classes but also to exclude any points between them. Nonlin-
early separable classes are accommodated by extending the
SVM algorithm to map samples into a higher-dimensional
feature space. The SVM algorithm is especially well-suited
for tabular data due to its adeptness in handling small datasets,
frequently yielding higher classification accuracy compared
to traditional methods.

Neural networks are favored for classification due to their
parallel processing capabilities, as well as their learning
and decision-making prowess. Several studies have aimed
to evaluate neural networks’ performance compared to tra-
ditional statistical methods for tabular data. Neural networks
equipped with learning algorithms like backpropagation (BP)
can extract insights from training samples and are utilized in
tabular data analysis [9]. With advancements in hardware and
algorithms, neural networks (NNs) have evolved into deep
neural networks (DNNs) and convolutional neural networks

(CNNs). CNNs stand out as highly effective learning algo-
rithms for understanding image content and have displayed
remarkable performance in various computer vision tasks.
CNNmodels employmultiple layers of nonlinear information
processing units. The machine learning community’s interest
in CNN surged after the ImageNet competition in 2012,
where Alex Net achieved record-breaking results in classify-
ing images from a dataset containing over 1.2 million images
spanning one thousand classes [10]. Alex Net was built upon
principles utilized in LeNet. Deep Convolutional Neural Net-
works (DCNNs) have heralded breakthroughs in processing
images, videos, speech, and audio [11]. CNN models consist
of convolution and pooling layers organized followed by one
or more fully connected layers. They operate as feed-forward
networks. In convolution layers, inputs undergo convolution
with a weighted kernel, and the output is then passed through
a nonlinear activation function to the subsequent layer. The
primary aim of the pooling layer is to reduce spatial resolu-
tion. Rawat and Wang [12] offer a comprehensive survey of
CNNs. Zhang et al. [13] present a taxonomy of CNNmodels.
CNNs have the capability to learn internal representations
directly from raw pixels and are hierarchical learning models
capable of feature extraction [14]. Khan et al. [15] in their
review article, categorized DCNN architectures into seven
groups. Deep learning enables computational models com-
posed ofmultiple processing layers to learn representations of
data with various levels of abstraction. Recent advancements
in CNN models have been facilitated by the accessibility of
fast graphical processing units (GPUs) and the availability of
extensive datasets.

The primary advantage of CNNs is their capacity to learn
from input data and make decisions. However, due to the
substantial number of parameters, they can be challenging to
interpret and are often regarded as black boxes since they do
not transparently explain how outcomes are achieved. Fuzzy
Logic (FL) systems, on the other hand, excel at explaining
their decisions but struggle with learning from input data.
Combining FL and CNN can mitigate the drawbacks of each
approach to create a more robust and flexible computational
system. Talpur et al. [16] in their survey article, detail meth-
ods for integrating FL and DNN to create hybrid systems.
One approach involves a sequential structure, where fuzzy
systems andDNN operate sequentially. In this structure, there
are two possibilities: a) converting input data into fuzzy sets,
followed by processing the fuzzified data with the DNN,
and b) the DNN model aiding the fuzzy system in deter-
mining desired parameters. Another method to combine FL
and CNN is by utilizing CNN for feature extraction, trans-
forming the output of the final convolution layer for fuzzy
classification Sarabakha and Kayacan [17] propose a DFNN
structure where input features are fed to the fuzzification
layer, and the fuzzified vector serves as input to fully con-
nected hidden layers. Fuzzy Deep Neural Networks (FDNNs)
have been employed in many practical applications. FDNNs
represent a compelling constructive collaboration between
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fuzzy logic and neural networks, offering a powerful tool
for managing uncertainty and intricate relationships in real-
world applications. Das et al. [18] provide a survey of FDNN
systems.

Deep Convolutional Neural Network (DCNN) models
have demonstrated remarkable performance and have conse-
quently been widely adopted for computer vision tasks. How-
ever, adapting them to tabular data remains highly challeng-
ing. Sun et al. [19] introduced a method called SuperTML
to convert tabular data into images. The algorithm adopts
the concept of the Super Characters method for address-
ing machine learning tasks with tabular data. Initially, the
input tabular features are projected onto a two-dimensional
embedding and then fed into fine-tuned two-dimensional
CNN models for classification. They validated the algorithm
using four datasets, and experimental results demonstrate
that SuperTML method achieves state-of-the-art results on
both large and small tabular datasets. The main difference
between SuperTML and FCNN is that SuperTML is based
on success of Super Characters method in text classifica-
tion. Whereas FCNN maps fuzzy membership values into
rectangular shapes. FCNN is based on shape recognition.
Sharma et al. [20] developed a method called DeepInsight
to convert non-image data into images suitable for CNNs.
Their approach constructs the image by grouping similar fea-
tures together and positioning dissimilar ones farther apart,
facilitating the collective utilization of neighboring elements.
They evaluated their algorithm using four distinct datasets
and compared the results against state-of-the-art classifiers
such as decision trees, AdaBoost, and Random Forest. Their
model exhibited superior classification accuracy across all
datasets. In DeepInsight method feature vectors are trans-
formed into feature matrices that are represented by pixels
in the mapped image. The method is more suitable for large
data sets. Zhu et al. [21] proposed a method named Image
Generator for Tabular Data (IGTD) to convert tabular data
into images by assigning features to pixel positions in a
way that similar features are placed close to each other.
The algorithm assigns each feature to a pixel in the image,
generating an image for each data sample where the pixel
intensity corresponds to the value of the respective feature in
the sample. The algorithm seeks to optimize the assignment
of features to pixels by minimizing the difference between
the ranking of pairwise distances between features and the
ranking of pairwise distances between assigned pixels. They
applied the algorithm to two datasets. Their results demon-
strate that CNNs trained on IGTD images yield the highest
average prediction performance in cross-validation on both
datasets. Du et al. [22] Have proposed a neural network
architecture TabularNet to simultaneously extract spatial and
relational information from tables. The spatial encoder of
the TabularNet utilizes the row/column level pooling and
the Bidirectional Gated Recurrent Unit (Bi-GRU) to cap-
ture statistical information and local positional correlation,
respectively. Their experiments show that TabularNet signif-
icantly outperforms the state-of-the-art ML algorithms. Arik

and Pfister [23] propose a high-performance and interpretable
deep tabular data learning architecture called TabNet that
uses sequential attention to choose which features to reason
from at each decision step, enabling interpretability and more
efficient learning. Besides robust performance, TabNet pro-
vides explainable insights on its reasoning, both locally and
globally. Borisov et al. [1] provide an overview of deep learn-
ing methods tailored for tabular data, categorizing them into
three groups: a) data transformations, b) specialized architec-
tures, and c) regularization models. In this study, we focus
on the first category: data transformations. Iqbal et al. [24]
introduced a novel feature embedding technique Dynamic
Weighted TabularMethod (DWTM), which dynamically uses
feature weights based on their strength of the correlations
to the class labels during applying any CNN architecture to
the tabular data. In their approach each feature in the obser-
vation vector is assigned space in the image canvas based
on its corresponding weight. They use statistical techniques
such as Pearson correlation, chi-square test to compute the
weights of each feature. Their results show that DWTM
usually outperforms the results of traditional ML algorithms.
Medeiros et al. [25] have provided comparative analysis of
tabular data into image for classification. They conclude that
transforming tabular data into images to leverage the power
of CNN has the potential to increase the model performance
by the additional 2D spatial information that can be pro-
cessed by CNN. Their study highlights the potential benefits
and limitations of using image-based DL models for tabular
data. Kulkarni [3] proposed a method to map tabular data
into images. They mapped feature values and ratios of the
feature values as rectangular shapes in the image canvas.
They used the model to classify tabular data. Li et al. [26]
provide a survey on Graph Neural Networks (GNNs) for
tabular data. The survey highlights a critical gap in deep
neural tabular data learning methods: the underrepresenta-
tion of latent correlations amongst data instances and feature
values.

III. PROPOSED FRAMEWORK
The framework for the proposed Fuzzy Convolution Neural
Network (FCNN) is shown in Fig. 1. We analyzed six tab-
ular data sets using the proposed framework. The columns
represent the features and rows represent entities. The last
column in the training set data represents class labels. The
first module in the proposed framework is a fuzzifier block,
which converts feature values into the corresponding fuzzy
memberships. The second module is a converter that maps
fuzzy memberships onto the image canvas. During the train-
ing phase images are stored in Datamart. The last block is
CNN, which is trained using the images in Datamart. During
decision making phase, an unknown input feature vector is
fuzzified. The fuzzified vector is converted into an image
which is classified with the trained FCNN.

The trapezoidal andπ -shaped fuzzymembership functions
are shown in Fig. 2 and Fig. 3, respectively. The trapezoidal

VOLUME 12, 2024 151849



A. D. Kulkarni: Fuzzy Convolution Neural Networks for Tabular Data Classification

FIGURE 1. Framework for fuzzy convolution neural network (FCNN).

FIGURE 2. Trapezoidal membership functions.

FIGURE 3. π-shaped membership functions.

membership functions are given in (1).

f (x; a, b, c, d) =



0 for x < a
x − a
b− a

for a ≤ x < b

1 for b ≤ x < c
d − x
d − c

for c ≤ x < d

0 for d > 0

(1)

f (x; b, c) =


S

(
x; c− b,

c− b
2

, c
)

for x ≤ c

1 − S
(
x; c,

c+ b
2

, c+ b
)

for x > c

(2)

where a, b, c, d are constant that define the fuzzy member-
ship function. The π -shaped membership functions are given
by (2) and S (x, a, b, c) represents a membership function

which is defined in (3) [27].

S(x; a, b, c) =



0 for x < a
2 (x − a)2

(c− a)2
for a ≤ x < b

1 −
2 (x − c)2

(c− a)2
for b ≤ x ≤ c

1 for x > c

(3)

In (3), a, b, and c are the parameters that are adjusted to
fit the desired membership function. The parameter b is the
half width of the curve at the crossover point. The triangular
membership functions are defined by three parameters a, b,
and c as shown in (4).

f (x; a, b, c) =



0 for x < a
x − a
b− a

for a ≤ x < b
c− x
c− b

for b ≤ x ≤ c

0 for c > x

(4)

The Gaussian membership functions are defined bymean and
standard deviation as shown in (5).

f (x; σ, c) = exp
[
−(x − c)2

2σ 2

]
(5)

where c represents the mean value and σ represents the
standard deviation.

Both trapezoidal and π-shaped membership functions
(MFs) offer advantages over triangular and Gaussian MFs,
particularly in terms of computational efficiency, robustness
to noise, and flexibility. The flat top of these functions allows
for a range of values to have full membership, which is ben-
eficial when precise membership values are less critical. The
flat top region can enhance the system’s robustness to small
variations or noise in the input, as a range of input values
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FIGURE 4. Sample mapped image.

will share the same membership degree. Trapezoidal MFs are
computationally less intensive compared to Gaussian MFs.
They are straightforward to define and implement, requiring
only four parameters. Their simplicity and practical appli-
cability in fuzzy inference systems make trapezoidal MFs
especially advantageous. On the other hand, π-shaped MFs
provide a balance between smooth transitions and robust-
ness, combining the characteristics of both trapezoidal and
Gaussian functions. They are smooth like Gaussian functions
but also feature a flat top like trapezoidal functions. These
features make π -shaped MFs suitable for a wide range of
fuzzy logic applications where both smooth transitions and
robustness are desired. Triangular MFs, with their linear tran-
sitions, can result in more abrupt changes, especially if the
input value is close to the peak of the triangle.Managing over-
lapping regions can be challenging, as the membership value
changes linearly and abruptly at the boundaries, making the
systemmore sensitive to input variations. Any change in input
directly affects the membership value due to the linear nature
of the function. The advantage of triangular MFs lies in their
ease of implementation. Gaussian MFs, which require expo-
nential calculations, can be computationally more intensive.
Although they provide smooth curves, adjusting their shape
precisely can be less intuitive since changes in parameters
affect both the spread and the height of the curve simulta-
neously. In situations where the data distribution is normal
with known mean and variance values, Gaussian MFs can
represent the system more accurately. In our FCNN system
implementation, we have chosen trapezoidal MFs.

The fuzzified feature vectors are mapped into images,
which are saved in Datamart in folders that are labeled with
class names. The mapped sample image is shown in Fig. 4.
The shapes within the resulting mapped image symbolize the
fuzzy membership values. The number of columns of shapes
is equal to the number of term sets, while the number of rows
is equal to the number of features in the observation vector.
The number of the squares in the output image is equal to
nf × nterm where nf is the number of features and nterm is the

number of term sets. The area of each square in the mapped
image is proportional to the corresponding fuzzymembership
value. We analyzed six datasets that contain two features for
each observation.

The last module implements DCNN model. The DCNN
models are trainedwith the images stored in the images stored
in the Datamart. Convolution layers extract features from the
input image. Inputs are convolved with learned weights to
compute feature maps and results are sent through a nonlinear
activation function. The convolution layer is followed by a
pooling layer. All neurons within a feature map have equal
weights, however, different feature maps within the same.
convolution layers have different weights. [11]. The output
of the kth feature map Yk is given by (6)

Yk = f
(
W ∗
k x

)
(6)

where x denotes the input image,Wk is the convolution filter,
and the ‘∗’sign represents the 2D convolution operator. The
purpose of the pooling layer is to reduce the spatial resolution
and extract invariant features. The output of a pooling layer
if given by (7).

Ykij = max(p,q)∈Rij
(
Xkpq

)
(7)

where Xkpq denotes elements at location (p, q) contained
by the pooling region Rij. We used two DCNN models
in our analysis, the Alex Net and Resnet-50. Alex Net is
seminal CNN architecture that significantly contributed to
the advancement of deep learning in computer vision tasks.
AlexNet consists of eight layers: five convolution layers
followed by max-pooling layers, and three fully connected
layers. The ReLu activation function is used throughout the
network, and dropout regularization is applied to prevent
overfitting. The network has the image input size of 227-
by-227. The network maximizes the multinomial logistic
regression objective function. Resnet-50 is DCNN, which
is a variant of Resnet architecture. It is one of the most
popular and influential deep learning models used for image
classification and related tasks. It uses residual connections
that allow the network to learn a set of residual functions that
map the input to desired output. These connections enable
the network to learn without suffering from vanishing gradi-
ents. It has fifty layers. The architecture is divided into four
parts: convolution layers, the identity block, the convolution
block, and fully connected layers. It introduced the concept
of residual connections, which are shortcut connections that
skip one or more layers. These connections allow gradients
to flow more easily during training, mitigating the vanishing
gradient problem and enabling training of very deep net-
works. ResNet50 employes a bottleneck architecture, which
reduces the computational cost of the network by using 1×1,
3×3, 1×1 convolutions in sequence. Resnet50 is often used
as a pre-trained model for transfer learning. The pre-trained
model can be fine-tuned on a smaller dataset for a specific
task [28]. In our research work we used both AlexNet and
Resnet50 to train and classify images that were generated
from fuzzified feature vectors.
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IV. EXPERIMENT AND RESULTS
To validate our approach, we generated six artificial noisy
non-linearly separable datasets: Half Kernel, Two Spirals,
Clusters in Cluster, Crescent and Moon, Corners, and Out-
liers. Scatter plots for the datasets are displayed in Fig. 5.
Each dataset comprises two attributes and 400 samples. All
datasets, except for the Corners dataset, consist of samples
from two classes, with 200 samples per class represented by
\ blue and red dots. The Corners dataset contains samples
from four classes. Two datasets, Half Kernel and Corners,
exhibit overlapping samples in the feature space. The datasets
were generated using a MATLAB script [29]. The Outliers
dataset comprised of 200 samples from four classes. The data
set contains overlapping samples in the feature space. As an
illustration, the results from analysis of the Two Spiral dataset
are presented below. The parallel coordinates plot for the Two
Spirals dataset is shown in Fig. 6.

FIGURE 5. Scatter plots for half kernel, spirals, cluster in cluster, crescent,
corners, outliers datasets.

FIGURE 6. Parallel coordinates for two spiral dataset.

The dataset was split for training and testing. 70 percent of
randomly selected samples were selected for training and the
remaining 30 percent were used for evaluating the models.
The decision tree that was generated to the Two Spiral data
set is shown in Fig. 7. The confusionmatrix is shown in Fig. 8.
The decision tree classifier was able to classify dataset with
92.5 percent accuracy. Fig. 9 shows the ROC curve obtained
with the DT classifier. The SVM and Bayes’ classifier were
able to classify the dataset with 65 percent accuracy, and with
the RF we got the accuracy of 95 percent.

We also classified the Two Spiral dataset using the fuzzy
neural network (FNN) shown in Fig. 10. The fuzzy member-
ship values were used as the input for the neural network.
FNN model consists of two modules. The first module is a
fuzzifier module that maps feature values into fuzzy mem-
bership functions. We have used five trapezoidal membership
functions that represent five term sets.The neural network has
10 input units that represent fuzzy membership values for the
two features. The hidden layer has ten units, and the output
unit is with two units that represent two classes. The same
dataset was classified by FNN model with the accuracy of
86 percent. The learning curve for the FNN model is shown
in Fig 11.

FIGURE 7. Decision tree for Two Spiral dataset.

FIGURE 8. Confusion matrix for decision tree for Two Spiral dataset.

The Two Spiral data set was analyzed by the proposed
FCNNmodel. We developed software using MATLAB script
to map fuzzy membership values to images. Each fuzzified
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TABLE 1. Classification accuracy.

FIGURE 9. ROC curve for decision tree for Two Spiral dataset.

FIGURE 10. Fuzzy neural network (FNN) model.

feature vector was mapped to an image. The mapped images
were stores in respective class folders in Datamart. We imple-
mented two FCNN models, one with Alex Net and the other
with Resnet 50 using MATLAB script. The input image size
for Alex Net was 227 × 277 x 3, and the input image size
for Resnet 50 was 512 × 512 x 3. The number of output
units for both models was equal to the number of classes. The
training progress plots for Alex Net and Resnet50 are shown
in Fig 12 and Fig. 13, respectively. For training two FDNN
models 70 percent of randomly chosen images were used for
training and the remaining 30 percent were used for testing.

FIGURE 11. Error curve for FNN learning.

FIGURE 12. Training progress plot for FCNN (Alex Net).

FIGURE 13. Training progress plot for FCNN (Resnet-50).

Both FCNNs were able to classify images in the testing set
with 100 percent accuracy. and Resnet-50. We implemented
and executed FCNN models with both Alex Net and Resnet-
50 on a desktop with a Pentium dual processor. The execution
time can be decreased by executing the script on aworkstation
with a GPU. The training process for Alex Net took about
4 min and 50 sec for each data set for 28 iterations, while
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FIGURE 14. Classified images with labels (FCNN-Resnet-50).

FIGURE 15. ROC curve for Two Spiral dataset (Alex Net).

FIGURE 16. ROC curve for Two Spiral dataset (Resnet-50).

learning process for Resnet-50 took about 78 min for each
data set for 72 iterations. Some sample classified images with
class labels are shown in Fig. 14. In this example, the dataset
consists of two features. While mapping features, we mapped
each feature twice. The first two rows of shapes represent the
first feature, and the last two rows of shapes represent the
second feature. The ROC Curves for both FCNN models are
shown in Fig. 15 and 16. All six datasets were classified using
ML models that include decision tree (DT), support vector
machine (SVM), Bayes’ classifier, Random Forest (RF) and
fuzzy neural network (FNN). The classification accuracy
obtained by with these classifies for all six datasets is shown
in Table 1. The classification accuracy for FCNNmodels with
AlexNet and Resnet-50 was the same for all datasets.

V. CONCLUSION
In this paper, we present a novel framework called FCNN
for classifying tabular data. We developed software using

MATLAB scripts to map features to corresponding fuzzy
membership values and to convert fuzzified vectors into
images. Additionally, we implemented AlexNet and ResNet-
50 using the MATLAB Deep Learning Toolbox. To evaluate
the proposed approach, we generated six complex noisy
datasets and analyzed them using various ML algorithms:
decision trees, support vector machines, Bayes’ classifiers,
Random Forests, and fuzzy neural networks. The six datasets
were also classified using the proposed FCNN model. It can
be observed from Table 1 that FCNN model performs as
well as or better than state-of-the-art ML algorithms, suggest-
ing that FCNN provides a viable alternative for classifying
tabular data. The limitation of the proposed approach is the
number of features and term sets. The number of shapes in the
mapped image is proportional to the number of features and
term sets. For a finite image size, the number of shapes that
can be mapped onto the image canvas is limited. Therefore,
the approach is suitable for datasets with a small number
of features. The future work includes a) It is possible to
directly feed images to the DCNN and eliminate Datamart, b)
Experimenting with shapes having different morphological
properties, such as circular, rectangular, hexagonal, or tri-
angular to generate mapped images. c) In this research
work, we have used trapezoidal fuzzy membership function.
We would like to try other membership functions such as
Gaussian and triangular and evaluate the classification accu-
racy. d) In our current research, we have utilized AlexNet and
ResNet-50 DCNN models. We would like to analyze data
using other DCNNs such as VGG-16 and GoogleNet and
deploy the FCNN model to real-life applications.
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