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The definition of a species  has been argued extensively by philosophers and 

biologists resulting in the development of many different concepts which often contradict 

each other (Naomi, 2011). An integrative approach using multiple types of data (e.g, 

morphological, ecological, behavioral, genetic) may be the most successful at correctly 

assigning taxonomic levels (Pante et al., 2014). This approach may also be the best way 

to evaluate subspecific classifications (Makowsky et al., 2010). While many discount the 

existence of subspecies, the use of this level of classification is often vital in the 

conservation of populations (Haig et al., 2006).   Here, we use an integrative approach of 

ecological niche modeling and molecular genetics to investigate the taxonomy of a state 

imperiled gartersnake subspecies, Thamnophis sirtalis annectens, using ecological 

niche modeling and molecular phylogenetics analyses. The distribution, taxonomy, 

population biology, and natural history, in general, of the Texas gartersnake 

(Thamnophis sirtalis annectens) are poorly known.  It was described in the 1950’s as 

one of the 12 currently recognized subspecies of the common gartersnake (T. sirtalis) 

based solely on morphological data.  Since its initial description, its behavior, ecology, 

and systematics have not been examined and it remains one of the more enigmatic of 

the 12 subspecies.  Recently, it was given a conservation rank of S2 (imperiled) in the 
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state of Texas and those that are familiar with it have suggested that its numbers are 

dwindling.  Using ecological niche modeling and mtDNA sequence data we begin to 

understand the natural and evolutionary history of T. s. annectens. The results of this 

study provided additional information on the ecology and potential habitat range of T. s. 

annectens as well as information on  the phylogenetic systematics of this subspecies. 

Our ecological niche model indicates areas where conservation efforts for T. s. 

annectens should be focused as well as important environmental variable such as 

landcover and geology that T. s. annectens prefers. When including T. s. annectens in a 

comparative niche model, this subspecies primarily occupies distinctly different habitat 

than the red-sided gartersnake, T. s. parietalis, which also occurs in Texas. Statistical 

analysis indicated that T. s. annectens occupies as significantly different ecological niche 

than T. s. parietalis. Similarly, the genetic data indicate that T. s. annectens can be 

differentiated from T. s. parietalis and T. s. sirtalis, however this difference is greatest 

between T. s. sirtalis.  While this work has told us much about T. s. annectens, more is 

left to be learned including ground-truthing our ecological niche model. Collecting 

additional genetic data to verify the phylogenetic relationships we have hypothesized 

here should also be done in the future.  Regardless, this work indicates T. s. annectens 

may be distinct both genetically and ecologically and provides conservation managers 

with niche models that will assist in locating the optimal habitat required by this 

subspecies. 
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Chapter One 
 

 Using Ecological Niche Modeling and Genetics to Evaluate the 
Conservation Status of the Texas gartersnake, 

Thamnophis sirtalis annectens 
 
 

Introduction 

 Philosophers and biologists have spent a significant amount of time searching for  

the "best" species concept (Naomi, 2011). This search has resulted in over 20 different 

definitions of what a species is (Frankham et al., 2012). These concepts are usually a 

product of different subgroups of biologists advocating for the concept that concurs with 

their areas of expertise and organisms that they study (Naomi, 2011; de Queiroz, 2007). 

Many of the different species concepts do not agree with each other resulting in much 

taxonomic confusion (de Queiroz, 2007). This is an obvious problem when trying to 

delineate species (de Queiroz, 2007). The three most widely used species concepts are 

the biological species concept (BSC), the evolutionary species concept (ESC), and the 

phylogenetic species concept (PSC) (Frankham et al., 2012). The biological species 

concept (BSC) defines species as "groups of actually or potentially interbreeding natural 

populations, which are reproductively isolated from other such groups" (Mayr, 1942).  

The BSC remains the most widely accepted concept (Singh, 2012), but it does have 

significant downfalls. For instance, the BSC ignores situations in which speciation is 

incomplete making the concept non-evolutionary (Singh, 2012). This is an issue for 

many biologists who feel that the definition or concept of a species must involve 

evolutionary criteria. The evolutionary species concept (ESC) states that a species is a 

"lineage of ancestral descent which maintains its identity from other such lineages and 

which has its own evolutionary tendencies and historical fate” (Simpson, 1951).  Mayr 

rejected the evolutionary species concept on the ground that the ESC was a definition of 
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a phyletic lineage and not of a species (Singh, 2012). The phylogenetic species concept 

defines a species as "the smallest diagnosable cluster of individual organisms with which 

there is a parental pattern of ancestry and descent” (Cracraft, 1983).  Frankham et al. 

(2012) suggest the major problem with the phylogenetic species concept is that with the 

advances in technology, making DNA sequencing more affordable, it may be lead to 

more detailed information among lineages.  Because of the lack of limitation on what is 

to be a "small cluster", individuals within a population may be considered a different 

lineage under the PSC. A fourth species concept, the ecological species concept, 

introduced a new property into species concepts, the ecological niche (Van Valen, 

1976).  A species under the ecological species concept is "a lineage (or closely related 

set of lineages) which occupies an adaptive zone minimally different from that of any 

other lineage in its range and which evolves separately from all lineages outside its 

range” (Van Valen, 1976).  This concept is based on the idea that species are lineages 

that share the same niche. An issue that could arise with this concept would be 

instances of local adaptation that could be confused with the same lineage plastically 

occupying different ecological niches. However, localized phenotypes may eventually 

undergo genetic assimilation in which the local phenotype would then be genetically 

encoded and thus be recognized as a "new" species under many different concepts 

(Pigliucci et al., 2006; Placyk, 2011). 

 Although there are major differences between these concepts, there is an 

underlying property that they all have in common: species are "separately evolving 

metapopulation lineages" (de Queiroz, 2007).  Concepts differ in the "secondary" 

defining properties of a species which are unique to each concept (de Queiroz, 2007). 

de Queiroz (2007) suggests that the differences in secondary properties among species 

concepts comes from where the species "line" is drawn during the process of speciation. 

A unified species concept has been put forth by de Queiroz (2007), which is based on 
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the original common property that previous species concepts are based on except there 

are no secondary properties of species specifically listed in this concept.  Instead, all 

secondary properties are considered "lines of evidence" and are used to assess the 

separation of lineages (de Queiroz, 2007).  

 An integrative approach  using multiple lines of evidence such as differences in 

morphology, behavior, life-history traits, ecology, physiology, and genetics may be most 

successful for correctly assigning taxonomic levels. This approach may be the best way 

to evaluate subspecific levels as well. As discussed earlier, there are also problems or 

discrepancies of definitions of subspecies concepts. Some of the issues with subspecies 

concepts stem from the original confusion of species concepts (e.g., which lines of 

evidence are to be considered). Originally the term "subspecies" was used to replace the 

term "varieties" (Torstrom et al., 2014). Mayr (1963) defines subspecies as "an 

aggregate of local populations of a species, inhabiting a geographic subdivision of the 

range of the species, and differing taxonomically from other populations of the species." 

The ambiguity of "differing taxonomically" has been the major issue with the subspecies 

definition because it can be interpreted multiple ways (morphologically, genetically, 

behaviorally, etc.) (Torstrom et al., 2014). In the past, subspecies were described based 

on morphological and geographical differences alone (Makowsky et al., 2010). Recently, 

critics of this past method of subspecies identification suggest that the differing 

morphological traits in which subspecies were first described may not reflect underlying 

genetic and phylogenetic structure (Haig et al., 2006).  Because of this issue, there has 

been a need to standardize what differing taxonomically means and quantify differences 

using statistical measures such as the 75% rule (Torstrom et al., 2014). This rule helps 

to delimitate subspecies if 75% of the population exhibits morphological traits that are 

different from other populations (Tortstrom et al., 2014).  However there have been 

issues with this rule in that some suggest that the threshold of 75% is not high enough 
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and that it should be raised to 95% in accordance to the standard 0.05 of other statistical 

tests (Tortstrom et al., 2014). Another issue is that phenotypic plasticity could be driving 

the morphological differences rather than genetic differences. 

As Torstrom et al (2014) points out, the "molecular revolution" has infiltrated the 

description process of subspecies. Now, molecular phylogenetic-based taxonomy is 

incorporated in describing subspecies or dissolving subspecies by sequencing 

mitochondrial or nuclear genes to calculate genetic divergence between currently 

existing subspecies (Tortstrom et al., 2014).  If two subspecies have a high genetic 

divergence, then they would remain two separate subspecies or possibly be elevated to 

species level. If two subspecies have a low genetic divergence, then the subspecies 

status would dissolve.  When morphologically described subspecies are reexamined 

using molecular genetics, there tends to be inconsistencies in what should be a 

considered a subspecies (Makowsky et al., 2010). The inconsistencies of subspecies 

concepts, despite the criticism of the subspecies taxa in general, can have extensive 

impacts in taxonomy and conservation which is why it is important to acknowledge these 

inconsistencies and provide an integrative "solution".    

 Subspecies are recognized and listed for protection under the U.S. Endangered 

Species Act of 1973 (ESA), the World Conservation Union (IUCN) Red List of 

Threatened Species, TRAFFIC (wildlife trade monitoring network), Canada's Species at 

Risk Act, and many others (Haig et al., 2006). It is important that conservation efforts are 

not being wasted on subspecies that are not in fact unique. The relatively recent 

inconsistencies of naming subspecies have caused difficultly in conservation efforts by 

misdirecting those efforts. This has been shown with notable cases of morphologically 

described subspecies that did not  "hold true" when genetically analyzed (Phillimore and 

Owens, 2005).  One notable case of morphologically based subspecies determination 

includes the now extinct dusky seaside sparrow (A. m. nigrescens). In 1966, the ducky 
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seaside sparrow was listed as "endangered" under the ESA (Avise and Nelson, 1980). 

By 1980, there were only 6 male individuals that could be found and 5 were brought into 

captivity to become a part of a captive breeding program (Avise and Nelson, 1980). The 

breeding program consisted of breeding these males with a morphologically similar 

subspecies from the Gulf coast populations. This breeding program was not federally 

funded as it was said that the intergrades would not be protected under the ESA 

because they would not be true duskies (Rhymer and Simberloff, 1996). The breeding 

program was unsuccessful, and the last dusky seaside sparrow died in captivity in 1987 

(Avise and Nelson, 1980). Later Avise and Nelson (1989) examined mtDNA gene 

sequences of the dusky seaside sparrow in comparison to 9 other subspecies from both 

the Gulf coast populations and the Atlantic coast populations. They reported that there 

was no evidence to suggest that the dusky seaside sparrow was phylogenetically distinct 

from other Atlantic coast populations of A. martimus meaning these populations should 

have been used in the breeding program instead of the Gulf coast populations (Avise 

and Nelson, 1980). This story emphasizes the importance of integrative approaches, in 

this case morphology and genetic analyses, in informing and designing conservation 

strategies. 

 Accurately delineating subspecies of conservation concern is extremely 

important to conservation efforts and success. Not only are morphological, geographical, 

and molecular differences essential in making this delineation, but ecological differences 

are important as well. Given the conflicting information provided by morphological and 

geographical versus genetic data, some have found that the use of molecular 

phylogenetic analyses along with ecological niche modeling has helped to untangle 

taxonomic uncertainty (Raxworthy et al., 2007; Rissler and Apodaca, 2007).  Subspecies 

delineation of Day Geckos in Madagascar has been successful using morphology, 

mtDNA, and ecological niche modeling (Raxworthy et al., 2007).The results of this study 
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suggested the elevation of three subspecies of Phelsuma madagascariensis, and the 

description of a new species Phelsuma ravenala. Although Phelsuma ravenala had low 

levels of molecular divergence with its sister species Phelsuma dubia, it did exhibit 

ecological niche differences and morphologically diagnostic characters (Raxworthy et al., 

2007). Phylogeography and ecological niche modeling were used to investigate the 

Black Salamander (Aneides flavipunctatus), a species with low levels of morphological 

variation (Rissler and Apodaca, 2007). These results suggested the presence of two 

distinct lineages within this species. Using mtDNA evidence and ecological niche 

modeling, Rissler and Apodaca (2007) suggested that these two lineages be elevated to 

species status. These studies represent the need for an integrative approach in 

evaluating subspecies taxa and how this approach can be used to successfully delimit 

subspecies. I have taken an integrative approach here to investigate three subspecies of 

the common gartersnake, Thamnophis sirtalis, using ecological niche modeling and 

phylogenetic analyses, where one of these three subspecies, the Texas gartersnake, is 

of conservation interest.  

  The common gartersnake, Thamnophis sirtalis, is known for its extensive 

geographic distribution that ranges farther north than any other snake species in the 

Western Hemisphere and from the Atlantic Coast to the Pacific Coast of the USA 

(Rossman et al.,1996). As a result, T. sirtalis occurring across most of the USA along 

with high abundance in many parts of its range, it is one of the most thoroughly studied 

species of snake in the world. One reason that T. sirtalis may be so successful is its 

generalist nature and its ability to adjust to its environment via phenotypic plasticity and 

local adaptations (Placyk, 2011). Both help it to occupy many different habitats (e.g., 

margins of ponds, upland fallow fields, mountain ranges, urban areas) (Rossman et al., 

1996). Thamnophis sirtalis is also a generalist in its selection of prey items, feeding on a 

variety of prey including invertebrates, fish, amphibians and their larvae, reptiles 
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(including other snakes) and mammals (Rossman et al., 1996).  Given the wide 

distribution of T. sirtalis, it often displays morphological characters that differ from one 

geographic range to the next. This polymorphism has resulted in 12 subspecies being 

described (Crother et al., 2012) (Table 1).  

  Although there is much information on the behavior, physiology, evolution, 

ecology, and life-history of Thamnophis sirtalis, as a species, information on specific 

subspecies is often vague or non-existent. For example, since its initial description in 

1950, no further work has been conducted to verify the taxonomic status of the Texas 

gartersnake, T. s. annectens. Rather, all work on T. s. annectens published after 1950 

has primarily focused on updating the range of this subspecies (Gutberlet et al., 1998; 

Dixon, 2000; Lardie, 2001) or brief overviews of current knowledge on natural history 

(Rossman et al., 1996; Tennant, 2003). However, despite these few range updates, 

those who are familiar with this subspecies suggest that there is still a need for updated 

verification of its geographic range, and Dixon (2000) states that it needs reexamination 

taxonomically.  

 The Texas gartersnake was initially described in 1950 based on morphology and 

geographic distribution that differed from the other two subspecies that occur in Texas, 

the red-sided gartersnake, T. s. parietalis, and the eastern gartersnake, T. s. sirtalis 

(Brown, 1950). The historic distribution of T. s. annectens ranges from east-central 

Texas through west-central Oklahoma to the eastern Texas panhandle and 

southwestern Kansas (Brown, 1950; Gutberlet et al., 1998; Dixon, 2000; Lardie, 2001; 

Tennant, 2003) (Figure 1). This range is met and sometimes overlaps with historic 

distribution of both T. s. parietalis in Oklahoma and in the Texas Panhandle and T. s. 

sirtalis in east Texas (Rossman et al., 1996) (Figure 1). However, there is some 

confusion about range boundaries between T. s. annectens and the other two 

subspecies in Texas and Oklahoma, and intergrades between T. s. annectens and the 
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other two subspecies have been observed (Brown, 1950; Gutberlet et al., 1998; Dixon, 

2000; Lardie, 2001) (Figure 1). Populations of T. s. annectens are believed to have been 

most common historically in the original tall-grass prairies of Texas and Oklahoma, 

which were characterized, in part, by small wetlands that provided habitat for anurans, a 

food source for T. s. annectens (Tennant, 2003). However, in recent decades these 

prairies have been disturbed and often completely destroyed by conversion to 

agricultural areas (Tennant, 2003). In addition to tall-grass prairies, T. s. annectens has 

been observed in woodland and riparian bottomland habitat (Tennant, 2003). Currently, 

we know very little about the evolution, ecology, and behavior of T. s. annectens . To 

compound this paucity of data, T. s. annectens is also considered a species of 

conservation concern in the state of Texas, being recently listed as state imperiled 

(Texas Park and Wildlife Department, 2012). 

 Recent molecular work suggests that the subspecific status of several of the 

currently recognized subspecies of the common gartersnake, T. sirtalis, are either not 

warranted (e.g., the Chicago gartersnake, T. s. semifasciatus; Placyk et al., 2007) or 

masks what may actually be considered full species (e. g., the maritime gartersnake, T. 

s. pallidulus; Placyk and Galvan, unpublished data).  In a molecular phylogeographic 

study on T. sirtalis subspecies that occur in western North America,  none of the 

morphologically-based subspecies in the study region were supported by mtDNA 

analyses (Janzen et al., 2002). They found in multiple subspecies that some populations 

were actually more closely genetically related to populations of other subspecies than 

populations of the same subspecies.  Placyk et al. (2007) found greater levels of 

sequence divergence (up to 7.7%) within a single subspecies of T. s. sirtalis as 

compared to Janzen et al. (2002) who sampled four subspecies with only up to 2.5% 

divergence between any given pair of subspecies.  This is surprising in that the 
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subspecies Janzen et al. (2002) evaluated were extremely different morphologically. In a 

similar story, T. s. annectens is considered more morphologically similar to T. s. sirtalis 

than T. s. parietalis, but seems to have more potential range overlap with T. s. parietalis 

than T. s. sirtalis. Given the uncertainty of the status of T. sirtalis as a group, the general 

lack of natural history data, and possible declines of T. s. annectens, detailed studies on 

this subspecies are crucial.   

 This study aimed to (a) determine specific habitat requirements and the potential 

distribution of T. s. annectens using ecological niche modeling (b) compare ecological 

niche models of T. s. annectens with two other subspecies that occur in Texas and (c) 

conduct a phylogenetic analysis to be compared to ecological differences that may occur 

(shown via comparative niche models).  
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Chapter Two 

Methods 

Ecological Niche Modeling Methods 

 Ecological niche models determine relationships between known locations of 

species and predetermined environmental variables (i.e., ArcGIS layers). The models 

then project this relationship across a landscape to provide probabilities of habitat 

suitability. The maximum entropy modeling method (MaxEnt) was applied to generate 

separate ecological niche models (ENMs) for T. s. annectens, T. s. parietalis, and  T. s. 

sirtalis.  This method  uses incomplete information (i. e. presence only data) to find the 

probability distribution of maximum entropy (i. e. closest to uniform) given constraints of 

known locations and environmental variables (Raxworthy et al., 2007). I applied the 

software Maxent version 3.3.3k (Phillips et al., 2006; 

http://www.cs.princeton.edu/~schapire/Maxent) which generates a map showing 

probabilities of habitat suitability for each area of the landscape (given the spatial grain 

size) with values ranging from 0 to 1, where 0 is the most unsuitable areas and 1 is the 

most suitable areas.  

 The extent was restricted to the states of Oklahoma, Texas, Arkansas, and 

Louisiana which includes the historic distribution of T. s. annectens (Oklahoma and 

Texas).  Arkansas and Louisiana were included to increase the number of presence 

points for T. s. sirtalis.  Presence records were obtained for T. s. annectens, T. s. 

parietalis, and T. s. sirtalis via museum records, inaturalist records (www.inaturalist.org), 

and personal communications (Table 2). Occurrence points for T. s. annectens range in 

date from 2007-2014 while dates for the other two subspecies range from 1970-2014 

(due to lack of available data). Presence points were projected to NAD 1983 UTM Zone 
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14N in ArcGIS 10.3.  Six environmental GIS layers (Table 3) were used in the model for 

each subspecies: geology, landcover, mean temperature of coldest quarter, precipitation 

of driest quarter, mean temperature of wettest quarter, and mean temperature of driest 

quarter. All continuous environmental variables used in the model had a correlation of < 

0.75 which reduces the effect of spatial autocorrelation. If layers were not in raster form 

when obtained, they were converted to raster from vector form in ArcMap 10.3. All 

environmental raster files were projected to NAD 1983 UTM Zone 14N and resampled 

as necessary to 1km x 1km spatial resolution. Layers were then clipped to the extent of 

the study area and converted into ASCII files to be used in Maxent.  Selections in 

Maxent included  an analysis to assess environmental variable contribution in making 

the habitat suitability map. Run type was set to cross-validate to generate test data, and 

random seed was chosen to randomize test data. To mitigate spatial autocorrelation, we 

randomly removed all but one occurrence record falling within the same grid cell as one 

another.  All other settings in Maxent were set to default. Because Maxent does not 

require absences points, 10,000 pseudo-absence points are generated automatically. 

 To determine if the model was a good fit, the AUC value of each model was 

considered.  The area under the curve the receiver operating curve (AUC) measures the 

probability that presence points will have a higher habitat suitability score than the 

randomly chosen pseudo-absence points (Phillips and Dudik, 2008). Test AUC values 

are based off of "test data" which are presence points that are partitioned out of the 

dataset used to create the model that are then used to "test" the model; specifically one 

point was set aside each run. Models with AUC and Test AUC values greater than 0.75 

are considered usable models that provide sufficiently more predictive power than a 

random map (Elith, 2002). Maxent also reports gain, which represents the mean log 

probability of occurrence samples minus a constant that makes the uniform distribution 
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have zero gain (Phillips, 2006). We used the test gain values to assess which 

environmental variables were the most important for model fit. 

 The "average habitat suitability" map for each subspecies was converted into a 

binary map in ArcGIS 10.3 using the equal test sensitivity and specificity logistic 

threshold. This threshold allows for equal chance of error for false positives and false 

negatives (Phillips, 2006). All three binary maps were then combined using spatial 

analyst tools in ArcGIS 10.3 to create a comparative niche modeling map visually 

showing potential niche overlap (Raxworthy et al., 2007).  

 To test whether the habitat suitability maps for each subspecies were 

significantly different from each other, we used a program called ENMtools v 1.3 

(Warren et al., 2010).  Ecological niche models for each subspecies were used in the 

"measure niche overlap" module. This module conducts a pairwise comparison for all 

models and outputs three statistics, Schoener's D (Schoener, 1968), the I statistic 

(Warren et al., 2008), and relative rank (RR, Warren and Seifert, 2011). All three 

statistics range from 0 (species have completely different ecological niche models) to 1 

(species have identical ecological niche models).  Schoener's D was the statistic used in 

this study as Schoener's D, the I statistic, and RR are highly correlated (Warren et al., 

2011). The empirically derived Schoener's D statistic was then compared for statistical 

significance against a null distribution created using a permutation test with 100 

replicates (Pike, 2013). This test pools the occurrence points for two species, using 

randomly selecting points to create niche models, and then calculate overlap statistics. 

By comparing the observed Schoener's D (created in "Measure of niche overlap") to the 

null distribution Schoener's D (created in "Identity test"), one can test whether two 

species exhibit statistically significant ecological niches (Warren et al., 2011). We used 
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the five percent quantile of the permuted distribution to assess significance (Dunithan, 

2012).  

Molecular Ecology Methods 

All tissue samples were acquired through museum collections and collaborators 

(Table 4 & 5). All specimens used for this study were from Texas or the states 

immediately surrounding Texas (Table 4 & 5). If subspecies were not indicated, 

specimens were assigned subspecies based on location data (Dixon, 2000; Rossman et 

al., 1996). Total genomic DNA was extracted with the illustra™ tissue & cells 

genomicPrep Mini Spin Kit (Martin, 2013).  

 The entire ~1010 base pair gene of the NADH dehydrogenase 2 (ND2) gene 

were PCR-amplified using the forward primer L4437b (5'-CAG CTA AAA AAG CTA TCG 

GGC CCA TAC C-3'; Kumazawa et al., 1996), which lies in the tRNA-Met upstream of 

ND2, and the reverse primer Sn-ND2r (5'-GGC TTT GAA GGC TMC TAG TTT-3'; R. 

Lawson, pers. comm.), which lies in the tRNA-Trp downstream of ND2 (Placyk et al., 

2007).  For the cytochrome c oxidase I (COI) region, 695 base pairs were PCR-amplified 

using the forward primer FishF2_t1 (5'-TGT AAA ACG ACG GCC AGT CGA CTA ATC 

ATA AAG ATA TCG GCA C-3'; Ivanova, et al., 2007) and the reverse primer FishR2_t1 

(5'- CAG GAA ACA GCT ATG ACA CTT CAG GGT GAC CGA AGA ATC AGA A-3'; 

Ivanova, et al., 2007). Polymerase chain reaction (PCR) protocols for ND2 and COI was 

conducted in 20-µL volumes with 3.6µL RNase-free H2O, 10.0µL TopTaq Master Mix 

(Qiagen), 2.0µL Coral Load (Qiagen), 1.0µL each 2-µmol primer, and 2.4µL DNA 

(Placyk, 2013).  A negative control was included for all PCRs. The following parameters 

were used for ND2 mtDNA amplification: 30 cycles each consisting of 1 min of 

denaturing at 94 °C, 1 min of primer annealing at 55 °C, and 1.5 min of extension at 

72 °C.  The following parameters were used for COI mtDNA amplification: 2 min of 
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denaturing at 94˚C, 30 s of primer annealing at 50˚C, 35 cycles of 1 min of extension at 

72˚C, and a final extension of 10 min at 72˚C. 

 Amplification of PCR product was verified using gel electrophoresis. PCR 

products were purified prior to sequencing with the E.Z.N.A. Cylce Pure Kit (OMEGA 

biotek). Sequencing reactions for ND2 were carried out using the primers L4437b (5'-

CAG CTA AAA AAG CTA TCG GGC CCA TAC C-3') and L5238 (5'- ACM TGA CAA 

AAA ATY GC-3') (de Queiroz et al., 2002). Sequencing reactions for COI were carried 

out using the forward and reverse primer used in PCR amplification. Purified DNA was 

concentrated to the level recommended by Eurofins MWG Operon (20–40 ng/μL) and 

shipped to Eurofins MWG Operon where DNA was sequenced on an ABI 3730xl DNA 

sequencer. Sequences were manually proofread and edited using the program 

Sequencher 5.2.4 (Gene Codes Corporation, Ann Arbor, MI). Alignments were 

performed using Clustal X (Thompson et al., 1997) and a final round of editing and inter- 

and intra- subspecific divergence rate calculations for both genes were completed in 

Mesquite 3.01 (Maddison and Maddison, 2014). PhyML 3.1 was used to generate a ML 

tree for the ND2 gene (Guindon et al., 2010). Non-parametric bootstrap resampling was 

used to quantify the statistical support for the ML phylogeny using 1000 bootstrap 

replicates (Felsenstein, 1985). JModelTest 0.1 was used to determine the substitution 

model by using the Akaike Infromation Criterion corrected for small sample size 

(Posada, 2008). JModelTest determined HKY + I was the best model of sequence 

evolution for the data. The substitution model we used was the default HKY85 model in 

PhyML with proportion of invariable sites (I) estimated from the dataset. To root the ML 

tree we included a sequence from T. proximus (Alfaro and Arnold, 2001; GenBank 

access No. AF383847). This outgroup was chosen based on broad-scale phylogenetic 

analyses of Thamnophis phylogeny that show T. proximus as sister to T. sirtalis (Alfaro 

and Arnold, 2001). 
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Chapter Three 

Results 

Ecological Niche Modeling Results 

The training AUC values of the ecological niche models were above 0.75. The 

test AUC values for T. s. annectens and T. s. parietalis were 0.89 and 0.92, respectively 

(Figures 4 & 13), whereas the test AUC for T. s. sirtalis was 0.741 (Figure 22). This 

lower test AUC for T. s. sirtalis could be due to the generalist nature of this subspecies, 

since more widespread species tend to have lower AUC values when modeled 

(Gonzalez et al., 2011) . As a result, it should be noted that the niche model for T. s. 

sirtalis shows areas of high habitat suitability outside of its natural range (Figure 1) which 

could overestimate the overlap when compared with T. s. annectens. The relative 

contribution of environmental variables to niche models varied depending on subspecies 

(Figures 5, 14, & 23).  For T. s. annectens and T. s. sirtalis, the most important 

environmental factor to the gain of the model was landcover (Figures 5 & 23). The top 

most suitable landcover type for T. s. annectens was "western great plains floodplain 

system" (0.86) and "east-central Texas plains post oak savannah and woodland" 

(0.76)(Figure 7 & Table 6). The top most suitable landcover type for T. s. sirtalis was  

"western great plains sand prairie" (0.94) as well as "west gulf coastal plain large river 

floodplain" (0.80)(Figure 25 & Table 6).  For T. s. parietalis, the most important 

environmental layer in the model was mean temperature of driest quarter with the 

optimal range of  -1.43˚C through 1.453˚C (Figure 21 & Table 6).  

 The comparative niche model map indicated overlap in suitable habitat between 

T. s. annectens and the other two subspecies (Figure 31). Despite these areas of 

overlap, there tends to be isolated areas of high habitat suitability for each individual 

subspecies from the other subspecies (Figure 3). The ecological niche models of T. s. 
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parietalis and T. s. annectens show a low level of overlap and have significantly different 

niches, while T. s. annectens and T. s. sirtalis do not have significantly different  

ecological niches, Thamnophis s. parietalis and T. s. sirtalis are not considered to have 

significantly different ecological niches (Table 7). 

 

Molecular Ecology Results 

 We successfully sequenced the 1010 bp of the ND2 gene from 6 T. s. annectens, 

4 T. s. parietalis, 10 T. s. sirtalis, and 2 individuals that may have been T. s. parietalis/T. 

s. annectens intergrades based on their collection location (Table 4). We also 

successfully sequenced 695 bp of COI gene for 3 T. s. annectens, 1 T. s. parietalis, 2 T. 

s. sirtalis, and 1 individual that may have been a T. s. parietalis/T. s. annectens 

integrades based on its collection location (Table 5). Divergence estimates for the ND2 

gene were as follows for each subspecies pairing:  0.048 or 4.8% between T. s. sirtalis 

and T. s. parietalis; 0.049 or 4.9% between T. s. sirtalis and T. s. annectens; 0.008 or 

0.8% between T. s. parietalis and T. s. annectens (Table 10). Intrasubspecific variation 

was particularly high for T. s. sirtalis in the ND2 gene while intrasubspecific variation in 

T. s. annectens and T. s. parietalis were relatively low (Table 11). Divergence estimates 

for COI gene were lower than ND2 gene estimates with pairings as follows: 0.03 or 3.0% 

for T. s. sirtalis and T. s. parietalis; 0.031 or 3.1% for T. s. sirtalis and T. s. annectens; 

0% for T. s. parietalis and T. s. annectens. Intrasubspecific variation was low for each 

subspecies for the COI gene (i.e. less than 1.0%) (Table 11).  A rooted maximum 

likelihood tree graphically representing the relatedness of these three subspecies 

supports the divergence data showing T. s. sirtalis to be more distantly related to T. s. 

annectens and T. s. parietalis, while the latter two subspecies appear to be more closely 

related (Figure 34).  In addition to these more clearcut distinctions between subspecies, 

our tree also indicates that two T. s. sirtalis (STX14 & STX16) are more closely related to 
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our T. s. parietalis and T. s. annectens individuals than to other T. s. sirtalis (Figure 34). 

We can find T. s. annectens in two separate clades, one in which there are only T. s. 

annectens grouped together (Figure 34). Both clades that include T. s. annectens are 

placed more closely to T. s. parietalis than to T. s. sirtalis (Figure 34).  
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Chapter Four 

Discussion 

Ecological Niche Modeling 

 The ecological niche modeling results provide insight as to which areas are 

important to T. s. annectens as well as what environmental variables determine its 

optimal habitat. The individual model for T. s. annectens shows areas of high suitability 

within the central Texas area and the eastern portion of the Texas panhandle (Figure 4). 

The areas suitable for T. s. annectens in central Texas are consistent with the historic 

range of the subspecies (Figure 1). However, within our model, there is an emphasis on 

the eastern Texas panhandle that is not represented in historic county records (Figure 

2). Personal communications resulted in 33 occurrence points from the northeastern 

portion of the panhandle suggesting that there may be a viable population of T. s. 

annectens in that region of Texas. It may be that this population has historically existed 

but was not documented until now. Alternatively, it may indicate a range shift or 

expansion northwest for T. s. annectens (Figure 32). Unfortunately, there are no earlier 

records to determine which situation is the case.  

 Historically, T. s. annectens has been most abundant in tall grass prairie habitat 

such as the Blackland Prairie (Tennant, 2003), but our model suggests that the Great 

Plains Flood Plain System and East-central Texas plains oak savannah and woodlands 

may now be more suitable habitat (Figure 8). Thamnophis sirtalis, as a species, is 

known to be a generalist making feasible a possible shift in habitat feasible. The 

Blackland Prairie and East-central Texas plains post oak savannah border each other 

making it possible for remnant populations of T. s. annectens to migrate east into 
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suitable habitat in the post oak savannah habitat after degradation of the blackland 

prairie habitat.  This information will be useful for conservation as it will provide more 

insight on what specific habitat types T. s. annectens prefers and in turn where 

conservation efforts should be focused (Figure 8). In the comparative niche model, it is 

quite visually obvious that T. s. annectens is ecologically differentiated from the other 

two subspecies of T. sirtalis that occur in Texas with only a few areas of potential 

overlap with the two other subspecies (Figure 31). Statistical analysis indicated T. s. 

annectens and T. s. parietalis occupy different ecological niches which provides 

evidence that T. s. annectens is playing a different ecological role than T. s. parietalis. 

Ecological niche differences between T. s. parietalis and T. s. annectens are mostly 

attributed to areas habitat suitability that differ in mean temperature throughout specific 

quarters of the year (coldest, wettest, and driest quarters) (Table 6). During the coldest 

quarter, areas with slightly warmer mean temperatures are more suitable for T. s. 

annectens than T. s. parietalis (Table 6). During the wettest quarter, the T.s. parietalis 

model indicates no particular temperature is important to habitat suitability while the T. s. 

annectens model shows a temperature of 23.8˚C is important to habitat suitability (Table 

6). During the driest quarter, T. s. annectens model indicates that a slightly higher 

temperature is important to habitat suitability than T. s. parietalis models (Table 6). 

Given these differences in temperature importance to habitat suitability, it seems that T. 

s. parietalis suitable habitat is found in areas with cooler temperature during specific 

quarters of the year while T. s. annectens suitable habitat is more likely to be in places of 

warmer temperature. Landcover type importance of the T. s. annectens model is highest 

with the West Great Plains Floodplain system which was the second highest landcover 

type of T.s. parietalis (Table 6). The lack of significant ecological niche difference 

between T. s. sirtalis and the other two subspecies could be related to the model quality 

of this subspecies. While the Test AUC was near the "good fit" model threshold, the 
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generalist nature of T. s. sirtalis could have made it difficult for Maxent to determine a 

pattern across the landscape. As a result, we see many areas of high habitat suitability 

outside of the historic range of T. s. sirtalis including some that extend into the far 

western parts of Texas (Figure 31). These "false-positive" areas may be masking an 

actual significant niche difference between T. s. sirtalis and the other two subspecies.  

 Future directions with this aspect of this study include ground-truthing the habitat 

suitability map for T. s. annectens and the other two subspecies which will provide us 

with more location data that can be used to improve the ecological niche model for this 

subspecies. The addition of occurrence points to the T. s. sirtalis may help more 

accurately predict areas of high habitat suitability within the actual range of this 

subspecies. Improved models could then be used to statistically reexamine differences 

in the ecological niches of these subspecies. Significant ecological differences could be 

used as lines of evidence in delineating between these subspecies. In addition, historic 

ecological niche models should be conducted in order to identify past important habitat 

types.  These results compared with the current niche modeling results could give more 

information on the potential shift in habitat preference as well as population decline of T. 

s. annectens in tall grass prairies.  

Molecular Ecology 

 Our genetic data indicate several important features of the evolutionary history of 

the Texas gartersnake (T. s. annectens). Most importantly, T. s. annectens can be 

genetically differentiated from one of the two subspecies that occur within its historic 

range. Is this differentiation enough to warrant considering it to be a separate species? 

No. The divergence estimates between T. s. parietalis, and T. s. annectens is extremely 

low (i.e., less than 1.0%) indicating, if nothing else, that T. s. parietalis and T. s. 
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annectens are genetically subspecies of the same species. At the same time, however, 

both T. s. parietalis and T. s. annectens are ~4.75% divergent from T. s. sirtalis for the 

ND2 gene, which is extremely high given that Burbrink et al. (2000) elevated two 

subspecies of the ratsnake, Pantherophis obsoleta, to full species status based on 2.83-

4.37% divergence. Torstrom et al. (2014) examined the literature focusing on Class 

Reptilia to examine any pattern of elevating or collapsing subspecies based on genetic 

distance values. He found that the median genetic distances used for elevating 

subspecies to species level was (6.4%), and the midpoint genetic distance ranged from 

1.0% to 19.4% (Torstrom et al., 2014). The median genetic distance for collapsing 

subspecies was 1.0% (Torstrom et al., 2014). Torstrom et al. (2014) concluded that 

while there is not a universal genetic distance threshold for elevating or collapsing 

subspecies, there is a consensus that higher genetic distance is necessary for elevating 

a subspecies, and that these decisions should be done on a case-by-case bases with 

the phylogeny of closely related species considered (Torstrom et al., 2014). Our 

divergence rates between T. s. sirtalis and the other two subspecies fall within the 

midpoint genetic distance range for elevating subspecies.    

 Discussions with the Burbrink lab, who are currently attempting to complete a 

range-wide phylogeographic study of T. sirtalis, indicate that they are finding all 

subspecies of T. sirtalis that occur in Texas to be one and  the same species, but our 

data might suggest otherwise. Our next step for this component of the study is to 

generate more additional sequence data for these three subspecies to validate our 

current findings.  

 Three less clearcut results are also evident from our phylogeny. Two involve 

unusual groupings of individuals from our data set. The first includes the individuals 

APTX57 and APTX58 (Figure 34), which form a clade sister with our other T. s. parietalis 
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and T. s. annectens individuals. These were individuals whose locations appeared to be 

a mix of T. s. parietalis and T. s. annectens ranges. We believe that these two 

individuals are T. s. annectens/T. s. parietalis intergrades and this is supported by their 

collection locales (Table 4), as both were collected where the historic range of T. s. 

annectens and T. s. parietalis merge in Oklahoma.  Therefore, my genetic results 

support earlier reports of potential intergradation between T. s. parietalis and T. s. 

annectens (Brown, 1950; Gutberlet et al., 1998; Dixon, 2000; Lardie, 2001). Additional 

genetic data in the form of nuclear markers need to be collected to fully verify this as well 

as possibly examining the morphological characteristics of these two particular 

specimens. The second less clearcut result is the placement of what was thought to be 

two T. s. sirtalis (STX14 and STX16) in the T. s. parietalis/ T. s. annectens clade (Figure 

34).  We believe this to be a simple case of misidentification, as T. sirtalis is known to 

exhibit a very wide range of morphological features throughout its range (e.g., Rossman 

et al. 1996) with different subspecies easily being confused for each other where they 

overlap.  Note that the two T. s. sirtalis (STX14 and STX16) that are most closely related 

to T. s. parietalis and T. s. annectens individuals are also both from Arkansas counties 

(Table 4; Figure 3) close to the Oklahoma border which in near the range boundaries of 

both T. s. parietalis and T. s. sirtalis (Figure 35).  Therefore, we believe this was simply a 

misidentified T. s. parietalis.  The intrasubspecific variation within T. s. sirtalis is reduced 

by 3.0% when these two individuals are removed from the analysis (Table 11). When 

STX 14 & 16 are excluded in the intersubspecific divergence analysis, rates are still 

above 4.65% for each pairing of T. s. sirtalis with the other two subspecies (Table 10).  

Changes in intrasubspecific divergence of T. s. sirtalis and the lack of change in 

intersubspecific divergence seems to support that these two individuals (STX 14 & 16) 

are T. s. parietalis. 
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 The third less clearcut result involves three individuals (ATX12, ATX13 and 

ATX18) thought to be T. s. annectens (Table 4) based on range data (Rossman et al., 

1996).  These three individuals are from counties in far west Oklahoma (Figure 35) close 

to the Texas panhandle. We believe that these individuals are indeed T. s. annectens. 

All other T. s. annectens individuals were grouped within the larger T. s. parietalis clade 

suggesting that these T. s. annectens, from the central part of its range, may not be 

genetically different from T. s. parietalis (Figure 34). When the three T. s. annectens 

individuals (ATX12, ATX13 and ATX18) are treated as the only "true" T. s. annectens 

group, the intersubspecific sequence divergence rate for ND2 between T. s. parietalis 

and T. s. annectens is still < 1%. Despite the low sequence divergence rate, we believe 

the grouping we see with three T. s. annectens individuals is indicating the beginning of 

a divergence from T. s. parietalis (Figure 34).  Future investigation into this population of 

T. s. annectens and the populations in the Texas panhandle may provide more detail on 

this divergence from T. s. parietalis. 
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Chapter Five 

Conclusions 

 Our results from both ecological niche modeling and molecular ecology 

complement each other and indicate that T. s. annectens is in fact unique when 

compared to the other two subspecies of T. sirtalis that occur in Texas. Differences in 

habitat requirements via niche models show that suitable T. s. annectens habitat 

occupies areas that differ from both T. s. sirtalis and T. s. annectens.  Although T. s. 

annectens and T. s. parietalis were statistically not shown to have different niches from 

T. s. sirtalis, both show high genetic divergence from T. s. sirtalis (Table 9; Figure 34). 

This genetic differentiation may be due, in part, to a lack of sympatry throughout much of 

the ranges of the three subspecies in Texas as evidenced by our niche models (Figure 

31).  Thamnophis s. annectens and T. s. parietalis are shown here to have a different 

ecological niche, although they are extremely similar genetically (Table 9; Figure 34). 

These results are even more peculiar when the distinctive coloration difference between 

these two subspecies is considered (Rossman et al., 1996). This ecological difference 

may have started as phenotypic plasticity of T. s. annectens in which over time resulted 

in niche evolution, or it could be that these two subspecies are simply in the process of 

speciation in which mitochondrial DNA has not fully yet diverged (Figure 34) (Placyk, 

2011).  Given the ecological and genetic differences, T. s. annectens appears to be 

different from the two other subspecies of T. sirtalis that occur in Texas.  This study 

provides another example of how an integrative approach using multiple lines of 

evidence can be useful in investigating taxonomy.  In particular, ecological niche 

modeling and phylogenetic analyses has been used here to investigate a subspecies of 

conservation concern. By using multiple lines of evidence, we have a clearer picture of 
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how these subspecies of T. sirtalis differ. Further investigation into each of these 

aspects, as well as into the morphology, behavior, and life-history of the three 

subspecies in Texas will provide more detailed information about exactly how different T. 

s. annectens is from the other two subspecies.  

Conservation Implications 

 The results of this study provide additional information on the ecology and 

potential habitat range of T. s. annectens as well as an examination of the phylogenetic 

systematics of this subspecies (Figures 31 & 34). Our ecological niche model indicates 

areas where conservation efforts for T. s. annectens should be focused (Figures 4 & 8) 

as opposed to depending on less contemporary and possibly no longer pertinent historic 

data (Figure 32). We also have provided a county-based map showing current potential 

range for T. s. annectens (Figure 33). Given that T. s. annectens is of conservation 

concern, our results provide an important conclusion: T. s. annectens is ecologically and 

genetically unique when compared to T. s. parietalis and T. s. sirtalis. While the 

differences in each of these aspects are not enough on their own to elevate T. s. 

annectens to a species level, together both ecological niche modeling and genetics 

provide enough information to consider this subspecies unique which can be used in 

further conservation efforts. In the mean time, we would strongly suggest that T. s. 

annectens continue to be listed as state imperiled or possibly even elevated to state 

threatened in Texas.  
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Appendix 

Table 1. Subspecies of Thamnophis sirtalis (Crother et al., 2012). 

Species Common name 

T. s. annectens Texas gartersnake 
T. s. concinnus Red-spotted gartersnake 
T. s. dorsalis New Mexico gartersnake 
T. s. fitchi Valley gartersnake 
T. s. infernalis California red-sided gartersnake 
T. s. pallidulus Maritime gartersnake 
T. s. parietalis Red-sided gartersnake 
T. s. pickeringii Puget Sound gartersnake 
T. s. semifasciatus Chicago gartersnake 
T. s. similis Blue-striped gartersnake 
T. s. sirtalis Eastern gartersnake 
T. s tetretaenia San Francisco gartersnake 
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Table 2. Presence points of Thamnophis subspecies and sources used for ecological 

niche modeling.  

Species Latitude Longitude Source 

T. s. annectens 35.91452 -100.29860 Richard Kazmaier 
T. s. annectens 35.91147 -100.29714 Richard Kazmaier 
T. s. annectens 35.91549 -100.29394 Richard Kazmaier 
T. s. annectens 35.91219 -100.29241 Richard Kazmaier 
T. s. annectens 35.90150 -100.29107 Richard Kazmaier 
T. s. annectens 35.91374 -100.29125 Richard Kazmaier 
T. s. annectens 35.91375 -100.29125 Richard Kazmaier 
T. s. annectens 35.91370 -100.29108 Richard Kazmaier 
T. s. annectens 35.91376 -100.29107 Richard Kazmaier 
T. s. annectens 35.91368 -100.29099 Richard Kazmaier 
T. s. annectens 35.91035 -100.28947 Richard Kazmaier 
T. s. annectens 35.90337 -100.28895 Richard Kazmaier 
T. s. annectens 35.90265 -100.28868 Richard Kazmaier 
T. s. annectens 35.90326 -100.28816 Richard Kazmaier 
T. s. annectens 35.90248 -100.28676 Richard Kazmaier 
T. s. annectens 35.90246 -100.28558 Richard Kazmaier 
T. s. annectens 35.90248 -100.28554 Richard Kazmaier 
T. s. annectens 35.90217 -100.28182 Richard Kazmaier 
T. s. annectens 35.90199 -100.28123 Richard Kazmaier 
T. s. annectens 35.90184 -100.28083 Richard Kazmaier 
T. s. annectens 35.90199 -100.27961 Richard Kazmaier 
T. s. annectens 35.90144 -100.27956 Richard Kazmaier 
T. s. annectens 35.90131 -100.27899 Richard Kazmaier 
T. s. annectens 35.90438 -100.27832 Richard Kazmaier 
T. s. annectens 35.90181 -100.27781 Richard Kazmaier 
T. s. annectens 35.90194 -100.27750 Richard Kazmaier 
T. s. annectens 35.90200 -100.27744 Richard Kazmaier 
T. s. annectens 35.90201 -100.27742 Richard Kazmaier 
T. s. annectens 35.91600 -100.27614 Richard Kazmaier 
T. s. annectens 35.89531 -100.26808 Richard Kazmaier 
T. s. annectens 35.89806 -100.26623 Richard Kazmaier 
T. s. annectens 35.89386 -100.26424 Richard Kazmaier 
T. s. annectens 35.89036 -100.20406 Richard Kazmaier 
T. s. annectens 32.18483 -97.09975 Clint King 
T. s. annectens 32.68390 -96.92091 Mike Malevich 
T. s. annectens 32.64763 -97.64871 Mark Pyle 
T. s. annectens 30.36003 -97.64740 John Williams 
T. s. annectens 32.73005 -96.75250 inaturalist 
T. s. annectens 32.86588 -96.73370 inaturalist 
T. s. annectens 33.27015 -95.90115 Jerrod Tynes 
T. s. annectens 33.27745 -95.30466 Jerrod Tynes 
T. s. annectens 33.26907 -95.90034 Jerrod Tynes 
T. s. annectens 32.71200 -97.47800 Mark Pyle 
T. s. annectens 32.95000 -96.43080 Lani Lyman- Henley 
T. s. parietalis 36.91452 -96.15620 Carnegie Museum of Natural History 
T. s. parietalis 36.62228 -94.86720 MVZ Herp Catalog 
T. s. parietalis 36.74898 -98.13940 Carnegie Museum of Natural History 
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T. s. parietalis 36.81123 -98.13290 Carnegie Museum of Natural History 
T. s. parietalis 36.61608 -100.10900 Univ. of Colorado Museum of Nat. History 
T. s. parietalis 34.12470 -94.67080  Smithsonian Institution 
T. s. parietalis 36.86998 -97.69030 University of Kansas Biodiversity Institute 
T. s. parietalis 36.95555 -96.55140 University of Kansas Biodiversity Institute 
T. s. parietalis 36.19492 -95.63480 Carnegie Museum of Natural History 
T. s. sirtalis 36.62228 -99.85097 Carnegie Museum of Natural History 
T. s. sirtalis 36.54578 -99.55501 Carnegie Museum of Natural History 
T. s. sirtalis 36.60103 -99.38514 Carnegie Museum of Natural History 
T. s. sirtalis 34.69000 -94.13639  Smithsonian Institution 
T. s. sirtalis 31.61140 -93.40080 Univ. of Colorado Museum of Nat. History 
T. s. sirtalis 29.00107 -95.81584 Katy Snakes 
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Table 3.  The environmental layers used for ecological niche modeling of Thamnophis 

subspecies.  

Environmental variables Source 

Geology USGS 
Landcover USGS 
Bio 11: Mean temperature of coldest quarter WorldClim 
Bio 17: Precipitation of driest quarter WorldClim 
Bio 8: Mean temperature of wettest quarter WorldClim 
Bio 9: Mean temperature of driest quarter WorldClim 
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Table 4. Tissue sample localities of Thamnophis subspecies and sources used in ND2 gene analyses.  

Subspecies ID State County/Parish City Source ID Source 

T. s. annectens ATX1 Texas Rockwall   L. Lyman 
T. s. annectens ATX2 Texas Rockwall   L. Lyman 
T. s. sirtalis STX6 Louisiana Plaquemines Belle Chasse CAS 207052 CAS 
T. s. sirtalis STX7 Louisiana St. John the Baptist  La Place CAS 207053 CAS 
T. s. parietalis PTX8 Oklahoma Muskogee Muskogee OMNH 6690 OMNH 
T. s. parietalis PTX9 Oklahoma Muskogee Muskogee OMNH 6694 OMNH 
T. s. parietalis PTX10 Oklahoma Muskogee Muskogee OMNH 6749 OMNH 
T. s. annectens ATX12 Oklahoma Ellis Arnett OMNH 7063 OMNH 
T. s. annectens ATX13 Oklahoma Ellis Arnett OMNH 7108 OMNH 
T. s. sirtalis STX14 Arkansas Montgomery Norman OMNH 2838 OMNH 
T. s. parietalis PTX15 Oklahoma Le Flore Sallisaw OMNH 2474 OMNH 
T. s. sirtalis STX16 Arkansas Scott Poteau mtn OMNH 2526 OMNH 
T. s. annectens ATX18 Oklahoma Roger Mills Durham OMNH 2664 OMNH 
T. s. sirtalis STX26 Louisiana East Feliciana   LSUMZ H-1823 LSUMZ 
T. s. sirtalis STX27 Louisiana East Baton Rouge  LSUMZ H-2024 LSUMZ 
T. s. sirtalis STX28 Louisiana East Baton Rouge  LSUMZ H-2025 LSUMZ 
T. s. sirtalis STX29 Louisiana Iberville  LSUMZ H-2081 LSUMZ 
T. s. annectens ATX47 Texas McLennan  LSUMZ H-7775 LSUMZ 
T. s. sirtalis STX54 Louisiana Jefferson  LSUMZ H-8772 LSUMZ 
T. s. annectens/parietalis APTX57 Oklahoma Cleveland Norman LSUMZ H-9326 LSUMZ 
T. s. annectens/parietalis APTX58 Oklahoma Cleveland Norman LSUMZ H-9327 LSUMZ 
T. s. sirtalis STX67 Louisiana Saint Martin  LSUMZ H-20419 LSUMZ 

(CAS- California Academy of Science; OMNH-Sam Noble Oklahoma Museum of Natural History; LSU-Louisiana Museum of Natural 

History)
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Table 5. Tissue sample localities of Thamnophis subspecies and sources used in COI gene analyses. 

Subspecies ID State County/Parish City Source ID Source 

T. s. annectens ATX1 Texas Rockwall   L. Lyman 
T. s. annectens ATX2 Texas Rockwall   L. Lyman 
T. s. annectens ATX21 Texas Dallas Dallas  S. Christman 
T. s. annectens/parietalis APTX57 Oklahoma Cleveland Norman LSUMZ H-9326 LSUMZ 
T. s. parietalis PTX10 Oklahoma Muskogee Muskogee OMNH 6749 OMNH 
T. s. sirtalis STX29 Louisiana Iberville  LSUMZ H-2081 LSUMZ 
T. s. sirtalis STX7 Louisiana  St. John the Baptist  La Place CAS 207053 CAS 

(CAS- California Academy of Science; OMNH-Sam Noble Oklahoma Museum of Natural History; LSU-Louisiana Museum of Natural 

History)
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Table 6.  Results from response curves of environmental layers for each subspecies 

showing the optimal values within each layer.  Numbers in parentheses indicate the 

probability of presence for each species at the given value.  

Environmental Layer T. s. annectens T. s. parietalis T. s. sirtalis 

Geology Terrace (0.669) Water (0.725) 
 
Shale (0.663) 
 

Sand (0.605) 

Landcover Western great 
plains floodplain 
system (0.856) 
 
East-central Texas 
plains post oak 
savannah and 
woodland (0.763) 

Southeastern great 
plain tall grass 
prairie (0.807) 
 
Western great plains 
floodplain system 
(0.78) 
 
Water (0.77) 
 

Western great 
plains sand prairie 
(0.943) 
 
Western gulf 
coastal plain large 
river floodplain 
(0.795) 
 

    
Mean temperature 
of coldest quarter 

3.15˚C (0.714) -0.219˚C through 
1.6˚C (0.804) 
 

-0.23˚C through 
1.275˚C (0.514) 

Precipitation of 
driest quarter 

42.87mm (0.658) 0mm to 7.43mm 
(0.524) 
 

All values were 
equal (0.50) 

Mean temperature 
of wettest quarter 

23.834˚C (0.637) All values were 
equal (0.50) 
 

All values were 
equal (0.50) 

Mean temperature 
of driest quarter 

3.136˚C (0.661) -1.43˚C through 
1.45˚C (0.771) 

-1.43˚C through 
1.25˚C (0.51) 
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Table 7. Comparison of observed Schoener's D to 5 percent quantile of Schoener's D of 

the null distribution. 

Subspecies Comparison Observed Schoener's D 5% of Null Schoener's D 

T. s. annectens X T. s. parietalis 0.38 0.49 
T. s. annectens X T. s. sirtalis 0.46 0.29 
T. s. parietalis X T. s. sirtalis 0.38 0.33 
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Table 8. Unique geological characteristic of rock type with corresponding ID value shown 

in response curves produced by Maxent.  

VALUE Primary Rock Type 

1 sand 
2 evaporite 
3 clay or mud 
4 sandstone 
5 shale 
6 water 
7 terrace 
8 mixed clastic/carbonate 
9 fine-grained mixed clastic 
10 mudstone 
11 limestone 
12 silt 
13 gravel 
14 alluvial fan 
15 dolostone (dolomite) 
16 basalt 
17 playa 
18 landslide 
19 quartzite 
20 granite 
21 rhyolite 
22 conglomerate 
23 siltstone 
24 indeterminate 
25 trachyte 
26 granodiorite 
27 phyllite 
28 paragneiss 
29 amphibole schist 
30 coarse-grained mixed clastic 
31 gneiss 
32 diorite 
33 claystone 
34 serpentinite 
35 medium-grained mixed clastic 
36 chert 
37 tuff 
38 novaculite 
39 ash-flow tuff 
40 alluvium 
41 gabbro 
42 carbonate 
43 alluvial terrace 
44 dune sand 
45 clastic 
46 loess 
47 alkalic intrusive rock 
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48 volcanic rock (aphanitic) 
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Table 9. Unique landcover type with corresponding ID value shown in response curves 

produced by Maxent.  

VALUE Landcover Category  

1 West Gulf Coastal Plain Upland Longleaf Pine Forest and Woodland 
2 Central and South Texas Coastal Fringe Forest and Woodland 
3 East Gulf Coastal Plain Maritime Forest 
4 East Gulf Coastal Plain Southern Loess Bluff Forest 
5 East Gulf Coastal Plain Southern Mesic Slope Forest 
6 Mississippi Delta Maritime Forest 

7 
West Gulf Coastal Plain Chenier and Upper Texas Coastal Fringe Forest and 
Woodland 

8 West Gulf Coastal Plain Mesic Hardwood Forest 
9 East-Central Texas Plains Pine Forest and Woodland 
10 West Gulf Coastal Plain Pine-Hardwood Forest 

11 
West Gulf Coastal Plain Sandhill Oak and Shortleaf Pine Forest and 
Woodland 

12 
East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Loblolly 
Modifier 

13 
East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Offsite 
Hardwood Modifier 

14 
East Gulf Coastal Plain Near-Coast Pine Flatwoods - Offsite Hardwood 
Modifier 

15 Evergreen Plantation or Managed Pine 
16 Madrean Encinal 
17 Madrean Pinyon-Juniper Woodland 
18 Madrean Pine-Oak Forest and Woodland 
19 Madrean Upper Montane Conifer-Oak Forest and Woodland 
20 Edwards Plateau Dry-Mesic Slope Forest and Woodland 
21 Edwards Plateau Limestone Savanna and Woodland 
22 Edwards Plateau Mesic Canyon 
23 Llano Uplift Acidic Forest, Woodland and Glade 
24 Edwards Plateau Limestone Shrubland 
25 Crosstimbers Oak Forest and Woodland 
26 East-Central Texas Plains Post Oak Savanna and Woodland 
27 Lower Mississippi River Dune Woodland and Forest 
28 Mississippi River Alluvial Plain Dry-Mesic Loess Slope Forest 
29 Crowley's Ridge Sand Forest 
30 Ouachita Montane Oak Forest 
31 Ozark-Ouachita Dry Oak Woodland 
32 Ozark-Ouachita Dry-Mesic Oak Forest 
33 Managed Tree Plantation 
34 Ruderal forest 

35 
Atlantic Coastal Plain Fall-line Sandhills Longleaf Pine Woodland - Offsite 
Hardwood 

36 
East Gulf Coastal Plain Interior Shortleaf Pine-Oak Forest - Hardwood 
Modifier 

37 East Gulf Coastal Plain Interior Shortleaf Pine-Oak Forest - Mixed Modifier 
38 Ozark-Ouachita Shortleaf Pine-Bluestem Woodland 
39 Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland 
40 East Gulf Coastal Plain Northern Mesic Hardwood Forest 
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41 Ozark-Ouachita Mesic Hardwood Forest 
42 Crowley's Ridge Mesic Loess Slope Forest 
43 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland 
44 Southern Rocky Mountain Juniper Woodland and Savanna 
45 Southern Rocky Mountain Pinyon-Juniper Woodland 
46 Western Great Plains Floodplain 
47 Western Great Plains Floodplain Systems 
48 Central Interior and Appalachian Floodplain Systems 
49 Central Interior and Appalachian Riparian Systems 
50 Ozark-Ouachita Riparian 
51 South-Central Interior Large Floodplain 
52 South-Central Interior / Upper Coastal Plain Wet Flatwoods 
53 East Gulf Coastal Plain Large River Floodplain Forest - Forest Modifier 
54 East Gulf Coastal Plain Small Stream and River Floodplain Forest 
55 East Gulf Coastal Plain Tidal Wooded Swamp 
56 East-Central Texas Plains Floodplain Forest 
57 Southeastern Great Plains Riparian Forest 
58 Southeastern Great Plains Floodplain Forest 
59 Mississippi River Bottomland Depression 
60 Mississippi River Floodplain and Riparian Forest 
61 Mississippi River Low Floodplain (Bottomland) Forest 
62 Mississippi River Riparian Forest 
63 Red River Large Floodplain Forest 
64 Southern Coastal Plain Blackwater River Floodplain Forest 
65 West Gulf Coastal Plain Large River Floodplain Forest 
66 West Gulf Coastal Plain Near-Coast Large River Swamp 
67 West Gulf Coastal Plain Small Stream and River Forest 
68 Gulf and Atlantic Coastal Plain Swamp Systems 
69 West Gulf Coastal Plain Seepage Swamp and Baygall 
70 East Gulf Coastal Plain Southern Loblolly-Hardwood Flatwoods 
71 Lower Mississippi River Flatwoods 
72 Southern Coastal Plain Nonriverine Basin Swamp 
73 West Gulf Coastal Plain Nonriverine Wet Hardwood Flatwoods 
74 West Gulf Coastal Plain Pine-Hardwood Flatwoods 
75 Edwards Plateau Riparian 
76 East Gulf Coastal Plain Near-Coast Pine Flatwoods 

77 
East Gulf Coastal Plain Near-Coast Pine Flatwoods - Open Understory 
Modifier 

78 West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods 
79 Rocky Mountain Montane Riparian Systems 

80 
North American Warm Desert Lower Montane Riparian Woodland and 
Shrubland 

81 North American Warm Desert Riparian Systems 
82 North American Warm Desert Riparian Woodland and Shrubland 
83 Tamaulipan Floodplain 
84 Tamaulipan Riparian Systems 
85 Rocky Mountain Gambel Oak-Mixed Montane Shrubland 
86 Rocky Mountain Lower Montane-Foothill Shrubland 
87 Central Mixedgrass Prairie 
88 Western Great Plains Foothill and Piedmont Grassland 
89 Western Great Plains Tallgrass Prairie 
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90 Western Great Plains Sand Prairie 
91 Western Great Plains Sandhill Steppe 
92 Western Great Plains Mesquite Woodland and Shrubland 
93 Western Great Plains Shortgrass Prairie 
94 Arkansas Valley Prairie and Woodland 
95 Southeastern Great Plains Tallgrass Prairie 
96 Texas Blackland Tallgrass Prairie 
97 Texas-Louisiana Coastal Prairie 
98 Central Interior Highlands Calcareous Glade and Barrens 
99 Coahuilan Chaparral 
100 Mogollon Chaparral 
101 West Gulf Coastal Plain Catahoula Barrens 
102 West Gulf Coastal Plain Nepheline Syenite Glade 
103 West Gulf Coastal Plain Northern Calcareous Prairie 
104 West Gulf Coastal Plain Southern Calcareous Prairie 
105 Central and Upper Texas Coast Dune and Coastal Grassland 
106 South Texas Dune and Coastal Grassland 
107 South Texas Sand Sheet Grassland 
108 Texas Coastal Bend Beach 
109 Upper Texas Coast Beach 
110 East Gulf Coastal Plain Savanna and Wet Prairie 
111 Texas-Louisiana Coastal Prairie Slough 
112 Eastern Great Plains Wet Meadow, Prairie  and Marsh 
113 Western Great Plains Depressional Wetland Systems 
114 Chihuahuan-Sonoran Desert Bottomland and Swale Grassland 
115 Gulf and Atlantic Coastal Plain Tidal Marsh Systems 
116 Mississippi Sound Salt and Brackish Tidal Marsh 
117 Texas Saline Coastal Prairie 
118 North American Warm Desert Playa 
119 Apacherian-Chihuahuan Mesquite Upland Scrub 
120 Apacherian-Chihuahuan Semi-Desert Grassland and Steppe 
121 Chihuahuan Creosotebush, Mixed Desert and Thorn Scrub 
122 Chihuahuan Gypsophilous Grassland and Steppe 
123 Chihuahuan Loamy Plains Desert Grassland 
124 Chihuahuan Mixed Desert and Thorn Scrub 
125 Chihuahuan Sandy Plains Semi-Desert Grassland 
126 Chihuahuan Stabilized Coppice Dune and Sand Flat Scrub 
127 Chihuahuan Succulent Desert Scrub 
128 Madrean Juniper Savanna 
129 North American Warm Desert Active and Stabilized Dune 
130 Chihuahuan Mixed Salt Desert Scrub 
131 Sonora-Mojave Mixed Salt Desert Scrub 
132 South Texas Lomas 
133 Tamaulipan Calcareous Thornscrub 
134 Tamaulipan Clay Grassland 
135 Tamaulipan Mesquite Upland Scrub 
136 Tamaulipan Mixed Deciduous Thornscrub 
137 Tamaulipan Savanna Grassland 
138 Colorado Plateau Mixed Low Sagebrush Shrubland 
139 Inter-Mountain Basins Semi-Desert Shrub Steppe 
140 East Gulf Coastal Plain Large River Floodplain Forest - Herbaceous Modifier 
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141 Rocky Mountain Cliff, Canyon and Massive Bedrock 
142 Western Great Plains Badland 
143 Southwestern Great Plains Canyon 
144 Western Great Plains Cliff and Outcrop 
145 North American Warm Desert Badland 
146 North American Warm Desert Bedrock Cliff and Outcrop 
147 North American Warm Desert Pavement 
148 Rocky Mountain Alpine Bedrock and Scree 
149 Unconsolidated Shore 
150 Undifferentiated Barren Land 
151 Cultivated Cropland 
152 Pasture/Hay 
153 Introduced Upland Vegetation - Annual Grassland 
154 Introduced Upland Vegetation - Perennial Grassland and Forbland 
155 Modified/Managed Southern Tall Grassland 
156 Introduced Riparian and Wetland Vegetation 
157 Disturbed, Non-specific 
158 Harvested Forest - Grass/Forb Regeneration 
159 Harvested Forest-Shrub Regeneration 
160 Recently burned grassland 
161 Recently burned shrubland 
162 Disturbed/Successional - Grass/Forb Regeneration 
163 Disturbed/Successional - Shrub Regeneration 
164 Open Water (Brackish/Salt) 
165 Open Water (Fresh) 
166 Quarries, Mines, Gravel Pits and Oil Wells 
167 Developed, Open Space 
168 Developed, Low Intensity 
169 Developed, Medium Intensity 
170 Developed, High Intensity 
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Table 10. Intersubspecific divergence rates (%) for both ND2 and COI mitochondrial 

genes for three subspecies of Thamnophis sirtalis 

Subspecies X Subspecies ND2 COI 

T. s. annectens X T. s. parietalis 0.79% 0% 
T. s. annectens X T. s. sirtalis 4.85% 3.02% 
T. s. annectens X T. s. sirtalis** 4.75%** N/A** 
T. s. parietalis X T. s. sirtalis 4.75% 3.02% 
T. s. parietalis X T. s. sirtalis ** 4.65%** N/A** 

**When STX 14& 16 excluded 

 

 

Table 11. Intrasubspecific divergence rates (%) for both ND2 and COI mitochondrial 

genes for three subspecies of Thamnophis sirtalis 

Subspecies ND2 COI 

T. s. annectens  0.49% 0% 
T. s. parietalis 0.29% N/A* 
T. s. sirtalis 
T. s. sirtalis**  

4.55% 
1.55%** 

0.57% 
N/A** 

*one sample used; **When STX 14& 16 excluded  
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Figure 1. Historic ranges of the Texas gartersnake (T. s. annectens), the red-sided 

gartersnake (T. s. parietalis), and the eastern gartersnake (T. s. sirtalis) in Texas and 

neighboring states. (Rossman et al., 1996). 
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Figure 2. County based map of historic range of T. s. annectens in Texas. Historic 

county range data is compiled from Dixon (2000) and Texas parks and wildlife data. 
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Figure 3. County-based map showing location data of tissue samples of T. s. annectens 

used for genetic analysis and ecological niche modeling.  
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Figure 4. The individual ecological niche model for the Texas gartersnake (T. s. 

annectens). Locality data detailed in Table 2.  
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Figure 5. Jackknife of test gain from Maxent for the niche model of the Texas 

gartersnake (T. s. annectens). 
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Figure 6. Geology response curve from Maxent showing probability of presence of T. s. 

annectens at a specific geological characteristic. Identification values and corresponding 

character can be found in Table 8. 
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 Figure 7. Landcover response curve from Maxent showing probability of presence of T. 

s. annectens at a specific landcover characteristic. Identification values and 

corresponding character can be found in Table 9. 

 



53 
 

 

Figure 8. Distribution of the top two most important landcover types for T. s. annectens.  
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Figure 9. Mean temperature of coldest quarter response curve from Maxent showing 

probability of presence of T. s. annectens at a specific temperature (˚C*10). 
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 Figure 10. Precipitation of driest quarter response curve from Maxent showing 

probability of presence of T. s. annectens at a specific precipitation amount (mm).  
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Figure 11. Mean temperature of wettest quarter response curve from Maxent showing 

probability of presence of T. s. annectens at a specific temperature (˚C*10).  
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Figure 12. Mean temperature of driest quarter response curve from Maxent showing 

probability of presence of T. s. annectens at a specific temperature (˚C*10). 
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Figure 13. The individual ecological niche model for the red-sided gartersnake (T. s. 

parietalis).Locality data detailed in Table 2.  
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Figure 14. Jackknife of test gain  from Maxent for the niche model of the red-sided 

gartersnake (T. s. parietalis). 
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Figure 15. Geology response curve from Maxent showing probability of presence of T. s. 

parietalis at a specific geological characteristic. Identification values and corresponding 

character can be found in Table 8. 
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Figure 16.  Landcover response curve from Maxent showing probability of presence of T. 

s. parietalis at a specific landcover characteristic.  Identification values and 

corresponding character can be found in Table 9. 
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Figure 17. Distribution of the top two most important landcover types for T. s. parietalis. 
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Figure 18. Mean temperature of coldest quarter response curve from Maxent showing 

probability of presence of T. s. parietalis at a specific temperature (˚C*10). 

 

 



64 
 

 

Figure 19. Precipitation of driest quarter response curve from Maxent showing 

probability of presence of T. s. parietalis at a specific precipitation amount (mm). 
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Figure 20. Mean temperature of wettest quarter response curve from Maxent showing 

probability of presence of T. s. parietalis at a specific temperature (˚C*10).  
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Figure 21. Mean temperature of driest quarter response curve from Maxent showing 

probability of presence of T. s. parietalis at a specific temperature (˚C*10).  
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Figure 22. The individual ecological niche model for the eastern gartersnake (T. s. 

sirtalis). Locality data detailed in Table 2.  
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Figure 23. Jackknife of test gain from Maxent for the niche model for the eastern 

gartersnake (T. s. sirtalis). 
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 Figure 24. Geology response curve from Maxent showing probability of presence of T. 

s. sirtalis at a specific geological characteristic. Identification values and corresponding 

character can be found in Table 8. 
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Figure 25. Landcover response curve from Maxent showing probability of presence of T. 

s. sirtalis at a specific landcover characteristic.  Identification values and corresponding 

character can be found in Table 9. 
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Figure 26. Distribution of the top two most important landcover types for T. s. sirtalis. 
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Figure 27. Mean temperature of coldest quarter response curve from Maxent showing 

probability of presence of T. s. sirtalis at a specific temperature (˚C*10). 
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Figure 28. Precipitation of driest quarter response curve from Maxent showing 

probability of presence of T. s. sirtalis at a specific precipitation amount (mm). 
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Figure 29. Mean temperature of wettest quarter response curve from Maxent showing 

probability of presence of T. s. sirtalis at a specific temperature (˚C*10). 
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Figure 30. Mean temperature of driest quarter response curve from Maxent showing 

probability of presence of T. s. sirtalis at a specific temperature (˚C*10). 
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Figure 31. Comparative niche model showing areas of overlap and isolation between the 

eastern gartersnake (Thamnophis s. sirtalis), the red-sided gartersnake (T. s. parietalis), 

and the Texas gartersnake (T. s. annectens). Based off binary threshold maps for each 

subspecies produced from average maxent habitat suitability map outputs. 
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Figure 32. County-based map of the historic range and the current potential range for T. 

s. annectens. Historic range data is compiled from Dixon (2000) and Texas parks and 

wildlife data. Current potential range data is a representation of the binary threshold map 

produced from average Maxent habitat suitability map output.  
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Figure 33. Binary threshold habitat suitability map, based off average Maxent habitat 

suitability map, overlaid onto current potential county range map for T. s. annectens. 
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Figure 34.  Rooted maximum likelihood phylogeny of the mtDNA gene ND2 for the 

eastern gartersnake (Thamnophis s. sirtalis), the red-sided gartersnake (T. s. parietalis), 

and the Texas gartersnake (T. s. annectens).  ATX represent T. s. annectens.  APTX 

represent individuals collected where the ranges of T. s. annectens and T. s. parietalis 

met.  PTX represent T. s. parietalis.  STX represent T. s. sirtalis. Numbers to the left 

indicate non-parametric bootstrap values (>50%) for those recovered in maximum 

likelihood analysis.  Additional data for individuals used in this analysis can be found in 

Table 4. Colored circles correspond with locality data (Figure 34)of samples used in 

genetic analysis.  
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Figure 35. Geographic representation of clades from maximum likelihood phylogeny of 
the mtDNA gene ND2 for the (A) eastern gartersnake (Thamnophis s. sirtalis), (B) the 
Texas gartersnake (T. s. annectens).  (C) the red-sided gartersnake (T. s. parietalis). 
Additional data for individuals used in this analysis can be found in Table 4. Gray 
portions represent the historic range of each subspecies according to Rossman et al. 
(1996). Red lines indicate range boundaries. Red dashed lines indicate uncertainty of 
range limits. 
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