University of Texas at Tyler

Scholar Works at UT Tyler

Mechanical Engineering Faculty Publications and Presentations

Mechanical Engineering

Fall 8-19-2021

Using artificial neural network and fuzzy inference system based prediction to improve failure mode and effects analysis: A case study of the busbars production

Saeed Na'amnh

Muath Bani Salim University of Texas at Tyler, msalim@uttyler.edu

István Husti

Miklós Daróczi

Follow this and additional works at: https://scholarworks.uttyler.edu/me_fac

Part of the Mechanical Engineering Commons

Recommended Citation

Na'amnh, Saeed; Salim, Muath Bani; Husti, István; and Daróczi, Miklós, "Using artificial neural network and fuzzy inference system based prediction to improve failure mode and effects analysis: A case study of the busbars production" (2021). *Mechanical Engineering Faculty Publications and Presentations.* Paper 30. http://hdl.handle.net/10950/4439

This Article is brought to you for free and open access by the Mechanical Engineering at Scholar Works at UT Tyler. It has been accepted for inclusion in Mechanical Engineering Faculty Publications and Presentations by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact tgullings@uttyler.edu.

Article Using Artificial Neural Network and Fuzzy Inference System Based Prediction to Improve Failure Mode and Effects Analysis: A Case Study of the Busbars Production

Saeed Na'amnh^{1,*}, Muath Bani Salim², István Husti¹ and Miklós Daróczi¹

- ¹ Department of Engineering Management, Hungarian University of Agriculture and Lifesciences, 2100 Godollo, Hungary; husti.istvan@szie.hu (I.H.); Daroczi.Miklos@uni-mate.hu (M.D.)
- ² Department of Mechanical Engineering, University of Texas at Tyler, TX 75799, USA; msalim@uttyler.edu
- * Correspondence: saeednaamneh1990@gmail.com

Abstract: Nowadays, Busbars have been extensively used in electrical vehicle industry. Therefore, improving the risk assessment for the production could help to screen the associated failure and take necessary actions to minimize the risk. In this research, a fuzzy inference system (FIS) and artificial neural network (ANN) were used to avoid the shortcomings of the classical method by creating new models for risk assessment with higher accuracy. A dataset includes 58 samples are used to create the models. Mamdani fuzzy model and ANN model were developed using MATLAB software. The results showed that the proposed models give a higher level of accuracy compared to the classical method. Furthermore, a fuzzy model reveals that it is more precise and reliable than the ANN and classical models, especially in case of decision making.

Keywords: fuzzy inference system (FIS); artificial neural network (ANN); failure mode and effects analysis (FMEA); risk priority number (RPN); busbars; Industry 4.0

1. Introduction

As the world's economy is developing rapidly, many companies started focusing their efforts on innovation technology so that they can obtain competitive privilege in the future. Furthermore, these innovations aim to mitigate the development cycle of products and provide customers distinguished products at high quality and low cost [1]. However, achieving these requirements is still a challenge for many organizations [2]. Recently, several methods have been used to develop the quality of service and products by minimizing or eliminating potential errors or failures. One of the popular methods is the failure modes and effects analysis (FMEA), which is considered an efficient method and is vastly used in the process of service and production [3,4].

Failure modes and effects analysis (FMEA) is an analytical tool for detecting, defining, and lessening the potential failures that may occur for the product and process systematically by identifying the root causes, potential occurrence, and consequences [5]. FMEA provides a numeric score to compute the failures where each failure is converted to a number to evaluate the value of the risk priority number (RPN). RPN is the final result after multiplication of the three parameters: Severity (S), Occurrence (O), and Detectability (D). Severity, in this study, represents the risk of damage that may take place during the manufacturing process of the busbar part, while the occurrence is the failure likelihood to happen again. Finally, detectability is the degree to which this failure could be detected [6,7]. A higher RPN value means a higher priority of risk [8].

In 1963, NASA improved the FMEA to promote the effectiveness of the tools that are used in the aerospace industry [9]. Ford Motors had developed and adopted the FMEA in 1977 [10]. At the moment, FMEA is commonly being used in the automotive industry

Citation: Na'amnh, S.; Salim, M.B.; Husti, I.; Daróczi, M. Using Artificial Neural Network and Fuzzy Inference System Based Prediction to Improve Failure Mode and Effects Analysis: A Case Study of the Busbars Production. *Processes* **2021**, *9*, 1444. https:// doi.org/10.3390/pr9081444

Academic Editor: Wen-Jer Chang

Received: 26 July 2021 Accepted: 17 August 2021 Published: 19 August 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). to enhance the reliability and quality of production process, and it is used to make sure that all failure modes have been taken into account and assessed duly to mitigate, or even eliminate, the failure [11]. FMEA is divided into two types: the design FMEA and the process FMEA. Design FMEA detects the weakness of product design; whereas process FMEA concentrates on the potential problems of the planning process [10]. However, many researchers demonstrated that the conventional FMEA also has some weaknesses [12]. These weaknesses can be divided into two parts: the evaluation method of the risk factors and the risk priority number (RPN) calculation. First, FMEA documents are obtained by engineers and experts using linguistic idioms that depend on the personal evaluation and experts' knowledge, therefore, removing the impact of subjectivity and judgment of man-made evaluation becomes a crucial concern [13]. Second, RPN is also doubted because of its shortcomings [14] which are mentioned below:

- 1. The three risk factors are assumed to be equally weighted, and the importance of each factor is considered, which makes the results in the risk assessment process inaccurate because this may not be the case when considering a practical application of FMEA [15].
- 2. The RPN elements have many duplicate numbers because the multiplication of S, O, and D can produce the same value of RPNs, while the risk potential may be totally different.
- 3. The judgment on risk factors from different experts to get single values of S, O, and D may lead to loss of valuable information.
- 4. The mathematical formula for calculating RPN is doubtful and highly sensitive to variations in risk factor evaluations. Small variations in one rating make a high different effect on the RPN.

Chang et al. in [10] have criticized the RPN calculation method by the incommensurate correlations among the three parameters. His criticism is according to the fact that these three parameters are linearly multiplied together with a similar scale. This process is carried out without any consideration of the actual impact of each independent parameter and the different qualitative meaning of the scale. For example, high severity value means a high RPN value due to the serious hazard on the operator or the machine. Hence, if there is a risk on humans, the other parameters shouldn't decline the overall value of the risk priority number (RPN) even if they are low.

Therefore, in order to avert this vagueness, researchers suggested many methods to enhance the application of FMEA and the improvement of RPN. Many fuzzy approaches were suggested to improve a new risk assessment approach to overcome the weaknesses and fragility of classical FMEA. For example, to improve the ambiguity and uncertainty in the evaluation of risk factors, Zhang and Chu [16] proposed a new method by integrating fuzzy RPNs by using a weighted least square method. This is an imprecision and partial ranking technique that can acquire more accurate fuzzy RPNs and improve the reliability of the evaluation process under uncertainty. Zhou et al. [17] considered the problems of unavoidable bias of expert assessment and the difficulty of determining the evaluation weights; thus, they offered an improved FMEA method that depends on the linguistic weighted geometric (LWG) operator and fuzzy priority. The meaning of LWG can avoid information loss in the evaluation process. Meanwhile, the fuzzy priority was used to calculate the evaluation weights based on the consistency of experts. This approach can provide a lower weight for the evaluation, which has low consistency and reduces its impacts on the results. Rabbi [18] showed that difficulties such as ambiguous information and opinion differences among the experts can reduce the validity of the results in conventional FMEA. Thus, he used a fuzzy logic FMEA method based on fuzzy IF-THEN rules to make it more accurate comparing with the classical one.

Considering the problems of the RPN calculation process, Haktanır and Kahraman [19] have presented many fuzzy methods and grey theory. They suggested interval-valued neutrosophic (IVN) sets-based FMEA to remove the inaccuracy and subjectivity of the human decisions. Ayber and Erginel in [20] have used single-valued neutrosophic (SVN)

Fuzzy FMEA as a new risk analysis method to avoid the ambiguity of the linguistic idioms. Al-Khafaji et al. in [21] have suggested a fuzzy multicriteria decision-making model consistent with FMEA principles to get a reliable method for maintenance management. Liu et al. in [8] have presented the cloud model theory and hierarchical TOPSIS approach to improve FMEA performance, avoiding potential bias of human judgment, and simplifying the change of qualitative terms to quantitative values. Yang et al. in [6] have used a data mining-based approach for isolating faults, depending on FMEA parameters, to improve predictive maintenance by using historical big data to make data-driven models, by which future failure can be predicted properly and subsequently avert failures at a very critical operational item. Keskin and Özkan in [22] have utilized a fuzzy adaptive resonance theory (ART) method for FMEA modeling to enhance the conventional method of calculating the RPN, which, in total, reduced cost and efforts required to react with corrective actions alerts.

The above-mentioned research reveals that proper works have been established to enhance the FMEA method work well in specific applications. However, the weakness of FMEA and RPN is not limited to the ambiguity of the FMEA quantitative description or its textual representation, but it also extends to the necessity of being a proactive tool with high responsiveness to failures. Another drawback of the conventional FMEA technique comes from the fact that its documents are produced during the product or process design stages, which makes these documents outdated after production starts. Therefore, these documents are required to be continuously updated and validated. Adopting new methods is very important to avert these shortcomings and keep these documents responsive [6].

At the time of Industry 4.0, communication and cooperation have become easier than before. Machine learning (ML), Artificial intelligence (AI), Cyber-physical systems (CPS), Internet of things (IoT), and big data made a remarkable evolution in manufacturing automation. Here, automation is no longer exclusive only for machines and processes but also for management aspects such as enterprise resources planning (ERP), customer relationship management (CRM), and quality management systems (QMS) [23]. Moreover, the real-time flow of data among the value chain, which is analyzed and transformed into user-friendly information (special thanks here to the advanced supercomputing and analyzing power [24]) resulted in new models of manufacturing systems, which are being known nowadays by smart factory, smart machine, smart product, and augmented operator [25]. These technologies converted the concepts of production systems from being reactive to being proactive and boost the human interference from doing the work to supervising it while it is being done. Sensors, 3D cameras, radio frequency identifier (RFID), and Wi-Fi made monitoring processes more accurate. Invisible defects or deviation of products and processes can be instantly discovered at the time of occurring. Defect elimination and processes modification are made autonomously at the micro and macro levels [23]. All these technologies, besides the increasing in complexity of products and their manufacturing systems, delivered a huge volume of data at a high veracity and remarkable speed. Analyzing big data needs sophisticated techniques to distribute data that cannot be detected by using traditional analytical methods.

Artificial neural network is a very beneficial method in solving several medical, engineering, and mathematical problems. The concept of artificial neural network was presented around the 1950s to imitate the different activities of the human brain. An artificial neural network works as a parallel distributed information processor made up of identical units (neurons) capable of saving information and making it obtainable for use. Mathematically, ANN is a type of interpolation technique where we have a set of input data and their corresponding functional value [26].

Many applications of artificial neural network function in real life, such as speech recognition, handwriting recognition, etc. The main purpose of neural network is to solve many problems in the same way that a human brain does. The first computational model of ANN has been presented by McCulloh and Pitts [27] in 1943, which shows the concept of a neuron that receives inputs and then process those inputs to give an output the same as

the biological neuron, which receives information, processes it, and transfers information to some other neuron by electrical or chemical signals. As such, in the case of ANN, the synapse signals are real numbers that represent the weight of the network, and the output can be computed after passing through a nonlinear activation function. Basically, the ANN contains three layers, namely the input layer, hidden layer, and output layer. It's also possible for there to be more than one hidden layer in between the input and output layer.

This paper proposed a solution to attain consistency in risk evaluation by using machine learning techniques to analyze failures Figure 1 illustrates the research framework in the proposed approach. Machine learning techniques offer the ability to analyze the data as inputs and outputs. This serves in finding and analyzing unseen parameters. Additionally, exploiting this new technology is very important in the industry because of its features in analyzing that exceed human ability. Moreover, this study offers a reliable decision-making tool to enhance the risk assessment. Sami [28] suggested Google AutoML to improve the Risk assessment, but the vagueness and uncertainty still exist. Subsequently, making the decision and defining the risk priority will be affected, and the results are not precise enough.

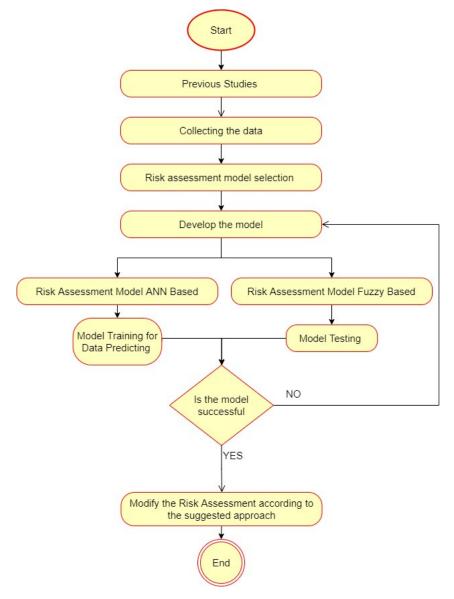


Figure 1. Research Framework.

2. Study Background

In this research, Nematech Kft is adapted as a case study. Nematech was established in 1993 in Hungary as a subsidiary company of Froeteck GmBH Group. Froeteck group is an international German family-owned business company based in Germany and owns many manufacturing plants worldwide. Nematech/Froeteck is a world-leading manufacturer of electrical connectors, especially the busbars for the automotive industry. It offers all products for the assembly of industrial batteries from individual battery cells. Busbar has been spread widely and used in several areas, such as, aviation industry, automotive industry, ships, illumination industry and electronic devices for military. Currently, the busbar has already been a significant part of electrical vehicles such as forklifts and electrical cars since these vehicles are mainly using the busbars as a typical component of their batteries. Nematech manufactures the busbars, and these busbars are shipped from Hungary to the mother company, that is located in Germany, and directly to the end-customers for final assembly with the machine, which can be a battery pack system for electrical vehicles, as shown in (Figure 2). The cost of a single failure is tremendously high, not only because of the product cost itself but also because of the entailed logistics and the re-work cost. To produce Busbars, many steps should be implemented to acquire the final product, and these steps depend on the usage of the product. For example, to produce aluminum Busbar ground connections (Figure 3), the following processes in (Figure 4) should be implemented:

Figure 2. Assembled Busbars to compose the battery pack system.

Figure 3. Aluminum (EN AW 5005A-H24) Busbar ground connection galvanized by (Cu: 3 + 3/0) μ m. (Sn: 7 + 4/0) μ m.

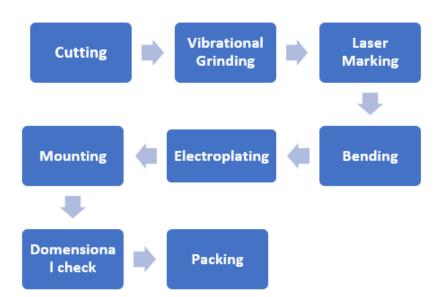


Figure 4. Process flow to produce aluminum Busbar ground connection.

The staff has prepared "Quality Checklists" for every product and process. These quality checklists are made according to the FMEA documents and are being used in the production line in order to emphasize that common failure causes are averted. However, as mentioned previously, FMEA documents are developed during the product design and can be modified or changed once the serial production is started. Meanwhile, further failure modes can be exposed at the final assembly stage. Therefore, these quality checklists are needed to be updatable and responsive to the issues reported during or after production.

The company uses conventional FMEA technique by obtaining RPN for each failure, according to FMEA documents. RPN, in this case, is obtained by multiplying three major parameters together (severity, occurrence, and detection) according to Equation (1). The weight of each parameter ranges from 1 to 10.

$$RPN = Severity \times Occurrence \times Detection$$
(1)

Making evaluation and ranking for the process demands well-experienced people who understand the FMEA functions and its purposes. The volume, velocity, and veracity of failure reported and their processing time is extremely important for the quality management. It is vital, in this industry, to detect and solve issues at the moment of occurrence. Moreover, standardizing the evaluation and ranking approach of the process is important to keep the consistency in RPN values every time.

3. Methodology

This research was carried out by implementing two machine learning models FIS and ANN. The experts from the quality department prepared the conventional risk assessment for the busbar production by specifying and quantifying each factor (Occurrence, Severity, Detection). Afterward, by fuzzifying each factor, RPN values were calculated. Based on the main identified factors artificial neural networks (ANNs) have been used, a risk assessment model of the busbar production was implemented by Matlab-R2019a software. In this model, at least 58 data were used in the ANN model. Finally, to validate the suggested model, the results and outputs of both risk assessment models, based on a FIS and ANN, were compared with the experts' risk assessment

3.1. Fuzzy Interference System (FIS) Risk Assessment Model

FIS is a popular computational method based on the concepts of fuzzy set theory, fuzzy "if-then" rules, and fuzzy logic. In this research, the Mamdani method was adopted to create a fuzzy inference system (FIS) risk assessment as shown in Figure 5a. The purpose for using this model because the output values are fuzzy sets also widely used for capturing

expert knowledge. Moreover, it is ideal to characterize the expertise intuitively and with a more humanlike mode, whereas in other methods, such as the Sugeno fuzzy model and the Tsukamoto FIS, the output values are constant or linear. For defuzzification, the center of gravity (CoG) was implemented. The benefit of this method is that all active rules in the results are incorporated into the defuzzification process [29]. Mathematically, this center of gravity (COG) is given in Equation (4). Since the fuzzy logic method depends on "if-then" rules, the opinions of experts were considered to define the rules. Overall, 58 failure modes (FM) were identified and weighted as shown in Figure 5. Based on the determined parameters in the Matlab fuzzy toolbox, a relation between each parameter was identified as "if-then" rules from type "and". Based on this classification, occurrence, severity, and detection values are classified into five levels (Almost none, Low, Medium, High, and Very high), Overall, 125 fuzzy rules were generated. While the output FRPN is classified into ten levels (None, Very low, Low, High low, Low medium, Medium, High medium, Low high, High, Very high). As a membership function, triangle membership function (trimf) was used to perform the input parameter (O, S, D) Equation (2), whereas Gaussian membership (gaussmf) function was used for output (RPN) in this study Equation (3).

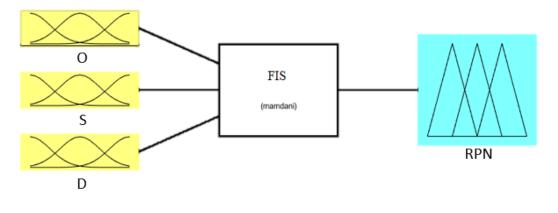
$$f(x;a;b;c) = \left\{ \begin{array}{cc} 0 & , x \leq a \\ \frac{x-a}{b-a} & , a \leq x \leq b \\ \frac{c-x}{c-b} & , b \leq x \leq c \end{array} \right\}$$
(2)

$$f(x;\sigma;c)exp = \left(\frac{-(x-c)^2}{2\sigma^2}\right)$$
(3)

σ: standard deviation, c: mean.

$$COG = \frac{\int_{a}^{b} \mu_{A}(X) x.dx}{\int_{a}^{b} \mu_{A}(X) x.dx}$$
(4)

where $\mu_A(X)$ represents the degree of membership of element *x* in fuzzy set A for each *x* \in *X*. Centroid defuzzification method finds a point representing the center of gravity of the fuzzy set, A, on the interval, ab.



(a)

Figure 5. Cont.

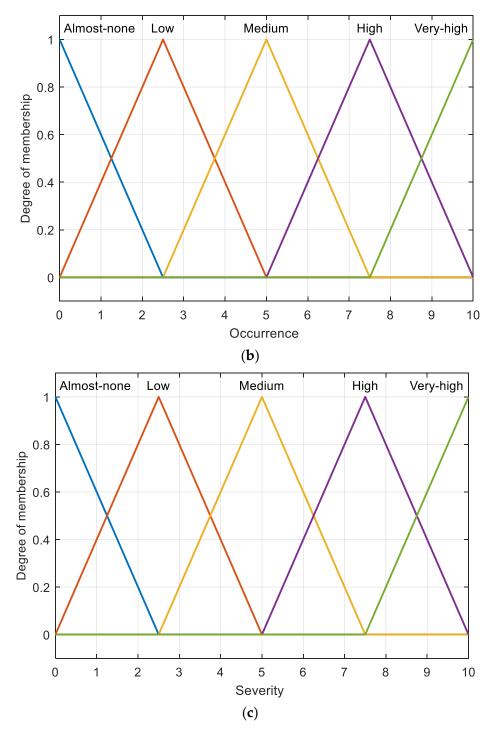


Figure 5. Cont.

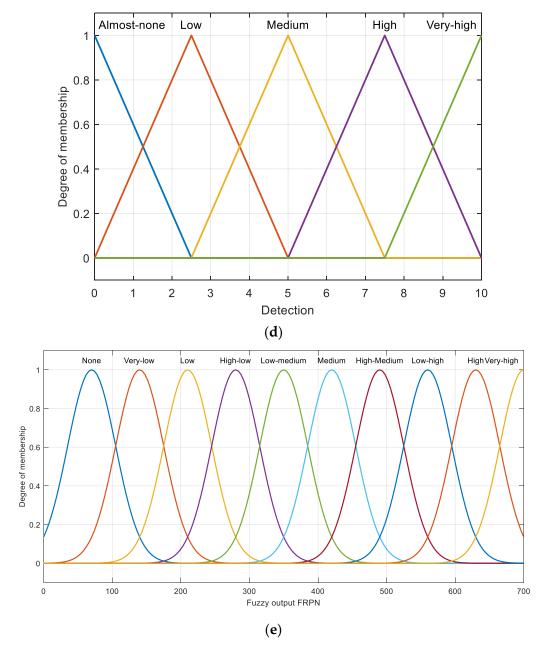


Figure 5. Fuzzy set diagram. (a) Structure of the design system, (b) Occurrence, (c) Severity, (d) Detection, (e) Fuzzy output FRPN.

3.2. Artificial Neural Network (ANN) Risk Assessment Model

The suggested risk assessment model was based on a neural network model (ANN). The model was made by MATLAB Neural Network algorithm. The model was created with three important factors affecting the busbar production risk, which are the most relevant elements to compose the FMEA. In this study, the acquired data from inspection and failure reports were reanalyzed in accordance with the predefined variables. Consequently, they were prepared and quantified to enter the networks. Finally, based on the best performance of the ANN model and the limitation of the dataset, 90% of data were selected as training data, 10% as validation data. The data were selected randomly in MATLAB 2019. Concerning the target of current research, many types of ANNs might be suitable for the current study. Among all, Multi-Layer Perceptron (MLP) was selected, which is commonly used as ANN structure. Due to the nature of FMEA, Feed forward ANN was implemented as the suitable and effective choice for risk modeling. Based on the trial-and-error approach,

it was found that the ANN was appropriate for our study. Input layers, hidden layers, output layers, and other parameters are defined in Table 1 and Figure 6.

Table 1. Selected parameters of the suggested ANN model.

Model Parameter	ANN	
Number of layers	3	
Number of neurons in hidden layer 1	50	
Number of neurons hidden layer 2	30	
Number of neurons in the output layer	1	
Size of all of dataset	58	
Size of training dataset	90%	
Size of validation dataset	10%	
Number of epochs	1000	
Training function	trainlim	
Transfer function for hidden layer 1	tansig	
Transfer function for hidden layer 2	tansig	
Transfer function output layer	purelin	

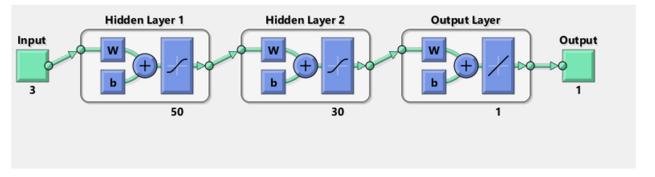


Figure 6. The architecture of the selected ANN.

To perform the model performance and finding the suitable network structure, the correlation coefficient (R), which measures the accuracy of the model to predict the outputs and the root mean squared error (MSE), was used, which represents the error of the predicted results. Obtaining low MSE and high R means that the developed network is optimal. To attain the best integration of transfer functions in the network, various types of transfer functions in hidden layers were used to create the network. As shown in Table 1, the best integration of transfer functions for the input layers and Purelin functions for the output layers, while the TrainIm function was implemented for the training layer.

It is important to determine the number of hidden layers to develop a network with the low error value in predicted outputs. Trial and error procedures are generally used to obtain the optimal number of hidden layers; therefore, a model with the minimum number of hidden layers means less time to train the network, but it does not mean that the results will always be acceptable. In this case, increasing the number of hidden layers and the number of neurons may achieve better results even if the training time is longer.

4. Results and Discussion

Firstly, the classical FMEA was developed to determine the main three parameters occurrence (O), severity (S), and detectability (D) which are shown in Table A1. The RPN was evaluated for each failure based on these parameters. The values for the occurrence, severity, and detectability were estimated by the quality staff according to the experience acquired. After the RPN values are determined, a decision is taken by considering severity, detectability, and occurrence, respectively, to rank the parameters. Fuzzy logic was also implemented in order to avoid the shortcoming in conventional FMEA. The fuzzy

memberships values for input and output are provided in Tables 2 and 3 and shown in Figure 5a–e.

Table 2. Linguistic terms of fuzzy memberships—inputs (Occurrence (O), Severity (O), Detection (D)).

Linguistic Terms	Fuzzy Membership Numbers				
Almost None	(0,0,2.5)				
Low	(0,2.5,5)				
Medium	(2.5,5,7.5)				
High	(5,7.5,10)				
Very High	(7.5,10,10)				

 Table 3. Linguistic terms of fuzzy memberships—output (RPN).

Linguistic Terms	Fuzzy Membership Numbers			
Almost None	(35,70)			
Very low	(35,140)			
Low	(35,210)			
High low	(35,280)			
Low medium	(35,350)			
Medium	(35,420)			
High medium	(35,490)			
Low high	(35,560)			
High	(35,630)			
Very high	(35,700)			

The relationship between occurrence, severity, detection, and FRPN can be presented by three-dimensional plot that performs the mapping from two inputs (occurrence, severity, or detection) to one output (FRPN), as shown in Figure 7. In the case of the fuzzy logic method and the classical method, it is obvious that the fuzzy provides a wider range of risk assessment and smaller intervals between different levels of risk, which means higher accuracy could be achieved.

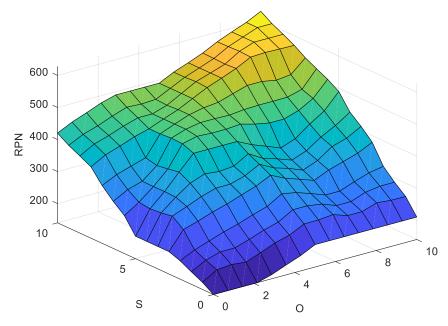


Figure 7. Three-dimensional plot between two inputs (S, O) and fuzzy-RPN output.

As can be seen, the obtained results from the fuzzy model are much more realistic than the classical one. The classical model considers the human judgment in decision making, unlike the fuzzy model, where the human subjectivity is eliminated and according to that, the risk priority for each failure mode has been changed, and Table A2 confirms that. For example:

The value of Classical RPNFM1 = 560 which is the multiplication of three parameters (O = 7, S = 8, D = 10) and the value of FRPNFM1 = 651.56.

The value of Classical RPNFM52 = 648 which is the multiplication of three parameters (O = 9, S = 9, D = 8) and the value of FRPNFM52 = 639.2.

The value of Classical RPNFM15 = 400 which is the multiplication of three parameters (O = 5, S = 10, D = 8) and the value of FRPNFM15 = 628.3.

The value of RPNFM58 = 448 which is the multiplication of three parameters (O = 7, S = 8, D = 8) and the value of FRPNFM58 = 612.

Based on the classical FMEA, the FM58 is prior to FM1. The classical model missed the importance of high value of detection in FM1, which drives the wrong priority evaluation and thus wrong decision making. However, the fuzzy model has overcome this problem and developed the correct assessment by taking the detection high value in the consideration and changed the priority of the FM1 from priority 2 to 1. Although the values of other parameters O and S are high for FM52, FM1 is still riskier, and the same situation applies for FM15 and FM58. The classical FMEA did not provide a correct weight for severity, but the fuzzy model provided the correct weight for severity parameter, and that is why FM15 is prior to FM58. The RPN behavior, with failure mode for the classical method and fuzzy method, is demonstrated in Figure 8. It's obvious that FRPN behaves the same as actual RPN with some deviations. This deviation cannot be considered an error, but it is coming from the scale difference between two models.

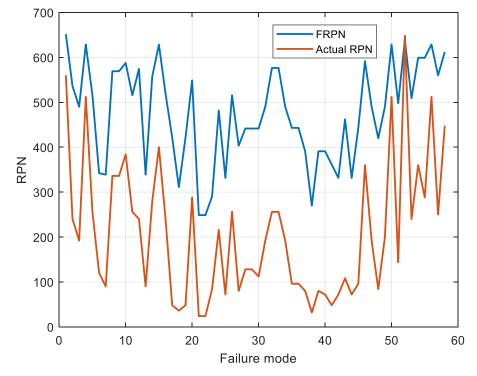
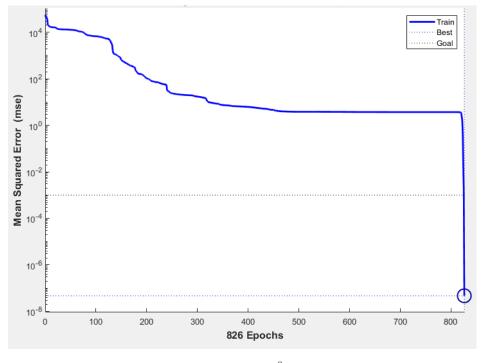


Figure 8. RPN representation in both models, Actual vs. Fuzzy.

To acquire a more accurate model, the ANN model was trained to create a proper relationship between inputs and outputs to have valid outputs. ANN has been used to learn the risk assessment mapping functions. The ability of ANN was improved by carefully choosing the number of neurons in the hidden layers. The number of neurons in the hidden layers will have a critical impact on the performance of the ANN. Figure 9 shows the best training performance data of the suggested network. The data used for training were 52 and 6 for validation. In order to predict the value of RPN, the correlation coefficient R is



0.99, which is shown in Figure 10, and the MSE is 4.6636×10^{-8} , representing the accuracy of the model in predicting the outputs.

Figure 9. Best Training Performance is 4.6636×10^{-8} at epoch 826 for the suggested network.

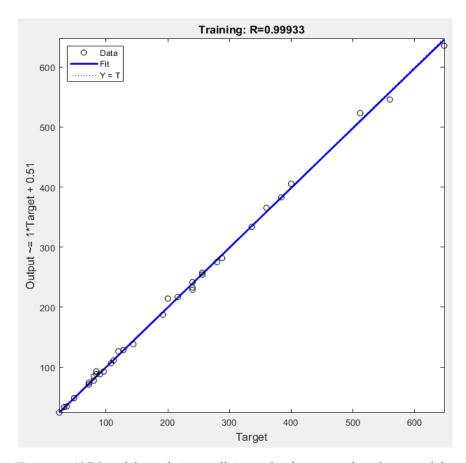


Figure 10. ANN model correlation coefficient value for outputs based on actual data for Training.

After training, Figure 11 shows very good prediction, and both results are almost close together. The output results are listed in Table A1. The results revealed that using ANN is a very promising method for prediction and proved their efficiency to simulate the risk assessment, and based on that, some Failure mode priorities have been changed. For example:

The value of Classical RPN_{FM2} = 240 which is the multiplication of three parameters (O = 5, S = 8, D = 6) and the value of FRPN_{FM2} = 535.92 and ANN_ RPN_{FM2} = 232.62 The value of Classical RPN_{FM12} = 240 which is the multiplication of three parameters (O = 3, S = 8, D = 10) and the value of FRPN_{FM12} = 574.37 and ANN_ RPN_{FM12} = 241.7 The value of Classical RPN_{FM16} = 240 which is the multiplication of three parameters (O = 6, S = 8, D = 5) and the value of FRPN_{FM16} = 519.05 and ANN_ RPN_{FM16} = 228.91

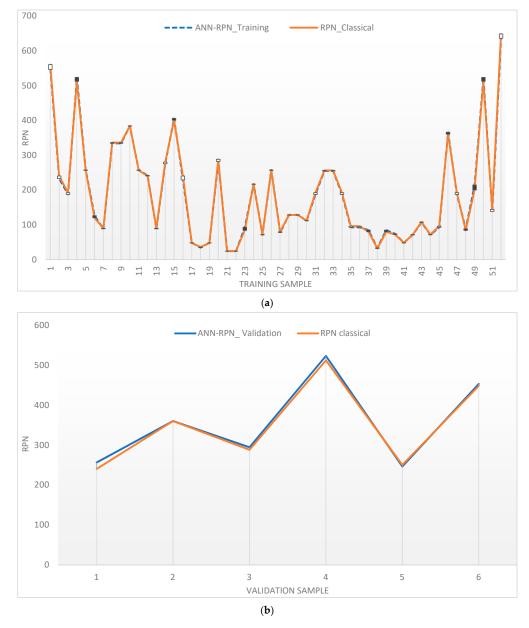
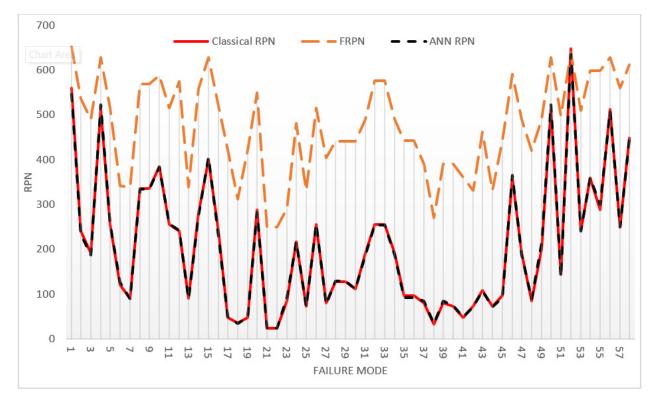
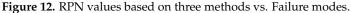


Figure 11. Demonstrating the prediction of ANN-RPN for training samples and validation samples. (a) ANN-RPN_Training and RPN_Classical vs. Training sample, (b) ANN-RPN_Validation and RPN_Classical vs. Validation sample.

The Classical FMEA provide duplicate RPN values for FM2, FM12, and FM16, despite of different values for occurrence, severity, and detection without considering the importance of the parameter. However, the ANN model and Fuzzy model have averted this inconvenience in results and have provided a consistent result by considering the importance and the weights of the three parameters. Since the value of severity is the same in the three failure modes, both models considered the importance of occurrence and detection, and thus, FM12 is prior to FM2 because D = 10, and FM2 prior to FM16 D = 6, although the occurrence value in FM16 is higher than in FM2, but the weight of detection has more effects on the risk assessment in this case.

However, the ANN model has some prediction errors which have been noticed, such as predicting the value of RPN for FM23 and FM35, where the FM35 should be prior to FM23 based on the (O, S, D) values. The error happened between FM17 and FM41. FM41 should be prior to FM17 and also between FM7 and FM48. FM48 should be prior to FM7. The explanation for this error belongs to the limited dataset, and by increasing the training and the validation samples mapping, the data will be improved as well as the model ability for learning. Interesting enough to be mentioned, the fuzzy method has not recorded the same error in prediction the output, unlike the ANN. All output values were consistent, reliable, and worthy to be used to create the FMEA. Furthermore, fuzzy method was the best for risk assessment prediction among the others, which means it's the superior choice for decision-making applications, and Figure 12 shows the RPN values based on three methods.





This higher accuracy can be interpreted by the fact that the relationship between input and output data in the fuzzy model is represented as linguistic variables. It is also considering the importance of each parameter to identify the risk. Therefore, the suggested methods can eliminate the shortcomings of the classical method and subsequently provide outputs with higher reliability, applicability, and accuracy.

Since the results of the suggested methods are revealing acceptable accuracy, the models can be implemented at the company. The advantage of the suggested methods, compared to the classical one, is that they replace the human interference in the process and

changes the decision-making to be automated, which leads to saving cost, time, resources, and enhances recognition to failures.

5. Conclusions

In this research, Fuzzy logic and artificial neural network have been employed to improve failure modes by automatically determining the failure and evaluating the RPN to identify the root cause during busbar production. Three inputs were used to predict values for the RPN these inputs namely severity, occurrence, and detection. The models demonstrated relatively high accuracy, which can be integrated and implemented to improve the company's risk assessment approach. The main reason for this research was to experience new models based on ANN and a FIS. The case study results on the busbar production line showed that the suggested models FIS and ANN can avert the shortcomings of classical risk assessment methods, such as the duplicity in RPN results. In addition, the relationship between input and output in the proposed fuzzy model was described as linguistic variables, which are more realistic in describing the actual conditions, unlike the classic model. Moreover, FIS model has revealed efficient prediction for output, which simplify the decision-making process. ANN model also demonstrated a positive response in prediction, but because of the black box behavior of ANN, some errors in predictions have occurred. Using the machine learning features offers optimal solutions to detect the failure efficiently and inform the quality team immediately to serious problems or by updating the quality checklists in the production line within a reasonable time. Using these methods improves the ability of the quality team to deal with any failure data smoothly and quickly. The features of this technology are not limited, but also could be used to connect failures and defects directly to the responsible machine or operator by integrating the algorithm in the production system once the failure has occurred. Meanwhile, it is paramount to highlight the factors that affect the accuracy of the developed models, such as incorrect evaluation for FMEA or ambiguous data. Therefore, setting the correct inputs leads to acquiring high-quality predictions. For example, in the case of fuzzy, it's very important to set the correct evaluation for three parameters to create a correct linguistic membership, and it is the same for ANN, where the accurate inputs and large enough dataset means accurate training and consistent results.

Author Contributions: S.N. (Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review & Editing). M.B.S. (Conceptualization, Supervision, Validation). I.H. (Supervision, Project administration). M.D. (Supervision, Project administration). All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Stipendium Hungaricum Programme and by the Mechanical Engineering Doctoral School, Hungarian University of Agriculture and Lifesciences, Gödöllő, Hungary.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Classical failure mode and the results of RPN in three methods.

Failure Mode	Occurrence	Severity	Detection	Classical RPN	FRPN	ANN- RPN
1	7	8	10	560	651.5611	545.9408
2	5	8	6	240	535.9268	232.6222
3	6	8	4	192	489.9969	187.1682
4	8	8	8	512	628.737	523.1866
5	8	8	4	256	515.6287	257.438
6	8	5	3	120	342.2019	126.3246
7	6	5	3	90	338.8225	88.3889
8	6	8	7	336	569.1328	333.7609

Failure Mode	Occurrence	Severity	Detection	Classical RPN	FRPN	ANN- RPN
9	6	8	7	336	569.1328	333.7609
10	6	8	8	384	587.5532	383.0731
11	8	8	4	256	515.6287	257.438
12	3	8	10	240	574.3771	241.7017
13	6	5	3	90	338.8225	88.3889
14	5	8	7	280	557.7503	275.2798
15	5	10	8	400	628.3222	405.5927
16	6	8	5	240	519.0588	228.9174
17	6	8	1	48	421.2735	48.2871
18	6	6	1	36	311.2224	34.3957
19	6	8	1	48	421.2735	48.2871
20	6	8	6	288	548.6954	281.7224
20	6	4	1	24	248.7806	24.323
21	6	4	1	24	248,7806	24.323
23	7	4	3	84	290.5127	93.0517
23 24	6	6	6	216	481.602	216.9044
24 25	6	6	2	72	331.5981	71.087
25 26	8	8	4	256	515.6287	257.438
20	5	8	4 2	230 80	403.3139	77.649
27	4	8	4	128	403.3139 441.5676	128.5023
28 29	4	8	4 4	128		
		8 7	4		441.5676	128.5023
30 21	4	8		112 192	441.5676	111.3022
31	6		4		489.9969	187.1682
32	4	8	8	256	576.4116	254.2345
33	4	8	8	256	576.4116	254.2345
34	6	8	4	192	489.9969	187.1682
35	6	8	2	96 06	443.0008	92.6944
36	6	8	2	96	443.0008	92.6944
37	4	10	2	80	390.9377	84.718
38	4	4	2	32	269.9129	33.5688
39	4	10	2	80	390.9377	84.718
40	4	9	2	72	390.9377	74.3005
41	4	6	2	48	361.1775	48.4972
42	6	6	2	72	331.5981	71.087
43	6	9	2	108	462.0342	106.4877
44	6	6	2	72	331.5981	71.087
45	6	8	2	96	443.0008	92.6944
46	6	6	10	360	591.5751	365.5352
47	6	8	4	192	489.9969	187.1682
48	3	7	4	84	420	88.4474
49	4	10	5	200	490	214.2713
50	8	8	8	512	628.737	523.1866
51	3	6	8	144	498.0242	138.3124
52	9	9	8	648	639.2029	635.506
53	6	5	8	240	508.9993	240.1423
54	5	9	8	360	599.0759	359.0091
55	4	9	8	288	599.0759	299.4594
56	8	8	8	512	628.737	508.4506
57	5	5	10	250	559.997	249.7707
58	7	8	8	448	612.0462	445.5558

Table A1. Cont.

311.2224

290.5127

269.9129

248.7806

248.7806

48.2871

34.3957

33.5688

24.323

24.323

Priority	Classical RPN	Failure Mode (FM)	Priority	FRPN	Failure Mode (FM)	Priority	ANN-RPN	Failure Mode (FM)	
1	648	52	1	651.5611	1	1	635.506	52	
2	560	1	2	639.2029	52	2	545.9408	1	
3	512	4	3	628.737	4	3	523.1866	4	
3	512	50	3	628.737	50	3	523.1866	50	
3	512	56	3	628.737	56	4	508.4506	56	
4	448	58	4	628.3222	15	5	445.5558	45	
5	400	15	5	612.0462	58	6	405.5927	15	
6	384	10	6	599.0759	54	7	383.0731	10	
7	360	46	6	599.0759	55	8	365.5352	46	
7	360 360	40 54	0 7	599.0759 591.5751	46	9	359.0091	40 54	
8	336	8	8	587.5532	10	10	333.7609	8	
8	336	9	9	576.4116	32	10	333.7609	9	
9	288	20	9	576.4116	33	11	299.4594	55	
9	288	55	10	574.3771	12	12	281.7224	20	
10	280	14	11	569.1328	8	13	275.2798	14	
11	256	5	11	569.1328	9	14	257.438	5	
11	256	11	12	559.997	57	14	257.438	11	
11	256	26	13	557.7503	14	14	257.438	26	
11	256	32	14	548.6954	20	15	254.2345	32	
11	256	33	15	535.9268	2	15	254.2345	33	
12	250	57	16	519.0588	16	16	249.7707	57	
13	240	2	17	515.6287	5	17	241.7017	12	
13	240	12	17	515.6287	11	18	240.1423	53	
13	240	16	17	515.6287	26	10	232.6222	2	
13	240	53	17	508.9993	53	20	228.9174	16	
13	240	24	10	498.0242	51	20	216.9044	24	
				498.0242 490					
15	200	49	20		49	22	214.2713	49	
16	192	3	21	489.9969	3	23	187.1682	3	
16	192	31	21	489.9969	31	23	187.1682	31	
16	192	34	21	489.9969	34	23	187.1682	34	
16	192	47	21	489.9969	47	23	187.1682	47	
17	144	51	22	481.602	24	24	138.3124	51	
18	128	28	23	462.0342	43	25	128.5023	28	
18	128	29	24	443.0008	35	25	128.5023	29	
19	120	6	24	443.0008	36	26	126.3246	6	
20	112	30	24	443.0008	45	27	111.3022	30	
21	108	43	25	441.5676	28	28	106.4877	43	
22	96	35	25	441.5676	29	29	93.0517	23	
22	96	36	25	441.5676	30	30	92.6944	35	
22	96	45	26	421.2735	17	30	92.6944	36	
22	90	7	26	421.2735	19	30	92.6944	45	
23 23	90 90	13	20	421.2755	48	30 31	92.6944 88.4474	43 48	
		13 23	27			31		48 7	
24 24	84 84			403.3139	27		88.3889		
24	84	48	29 20	390.9377	37	32	88.3889	13	
25	80	27	29	390.9377	39	33	84.718	37	
25	80	37	29	390.9377	40	33	84.718	39	
25	80	39	30	361.1775	41	34	77.649	27	
26	72	25	31	342.2019	6	35	74,3005	40	
26	72	40	32	338.8225	7	36	71.087	25	
26	72	42	32	338.8225	13	36	71.087	42	
26	72	44	33	331.5981	25	36	71.087	44	
27	48	17	33	331.5981	42	37	48.4972	41	
27	48	19	33	331.5981	44	38	48.2871	17	
	10						10.207 1	1,	

 Table A2. Failure mode priority for classical method, fuzzy method and ANN method.

References

- 1. Lorenzi, C.I.; Ferreira, J. Failure mapping using FMEA and A3 in engineering to order product development. *Int. J. Qual. Reliab. Manag.* **2018**, *35*, 1399–1422. [CrossRef]
- Hoppmann, J.; Rebentisch, E.; Dombrowski, U.; Zahn, T. A Framework for Organizing Lean Product Development. *Eng. Manag. J.* 2011, 23, 3–15. [CrossRef]
- 3. Liu, H.-C.; Chen, X.-Q.; Duan, C.-Y.; Wang, Y.-M. Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review. *Comput. Ind. Eng.* **2019**, *135*, 881–897. [CrossRef]
- Wang, L.; Hu, Y.; Liu, H.; Shi, H. A linguistic risk prioritization approach for failure mode and effects analysis: A case study of medical product development. *Qual. Reliab. Eng. Int.* 2019, 35, 1735–1752. [CrossRef]
- 5. Cicek, K.; Celik, M. Application of failure modes and effects analysis to main engine crankcase explosion failure on-board ship. *Saf. Sci.* **2013**, *51*, 6–10. [CrossRef]
- 6. Yang, C.; Zou, Y.; Lai, P.; Jiang, N. Data mining-based methods for fault isolation with validated FMEA model ranking. *Appl. Intell.* **2015**, *43*, 913–923. [CrossRef]
- Arabian-Hoseynabadi, H.; Oraee, H.; Tavner, P. Failure Modes and Effects Analysis (FMEA) for wind turbines. Int. J. Electr. Power Energy Syst. 2010, 32, 817–824. [CrossRef]
- Liu, H.-C.; Wang, L.-E.; Li, Z.; Hu, Y.-P. Improving Risk Evaluation in FMEA with Cloud Model and Hierarchical TOPSIS Method. *IEEE Trans. Fuzzy Syst.* 2018, 27, 84–95. [CrossRef]
- 9. Yang, C.; Shen, W.; Chen, Q.; Gunay, B. A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance. *J. Build. Eng.* **2018**, *15*, 26–32. [CrossRef]
- 10. Chang, C.-L.; Wei, C.-C.; Lee, Y.-H. Failure mode and effects analysis using fuzzy method and grey theory. *Kybernetes* **1999**, 28, 1072–1080. [CrossRef]
- 11. Chin, K.-S.; Chan, A.; Yang, J.-B. Development of a fuzzy FMEA based product design system. *Int. J. Adv. Manuf. Technol.* 2007, 36, 633–649. [CrossRef]
- 12. Gargama, H.; Chaturvedi, S.K. Criticality Assessment Models for Failure Mode Effects and Criticality Analysis Using Fuzzy Logic. *IEEE Trans. Reliab.* 2011, 60, 102–110. [CrossRef]
- 13. Ko, W.-C. Exploiting 2-tuple linguistic representational model for constructing HOQ-based failure modes and effects analysis. *Comput. Ind. Eng.* **2013**, *64*, 858–865. [CrossRef]
- 14. Liu, H.-C.; You, J.-X.; Lin, Q.-L.; Li, H. Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory. *Int. J. Comput. Integr. Manuf.* **2014**, *28*, 701–714. [CrossRef]
- 15. Jiang, W.; Xie, C.; Wei, B.; Tang, Y. Failure Mode and Effects Analysis based on Z-numbers. *Intell. Autom. Soft Comput.* **2018**, 24, 165–172. [CrossRef]
- 16. Zhang, Z.; Chu, X. Risk prioritization in failure mode and effects analysis under uncertainty. *Expert Syst. Appl.* **2011**, *38*, 206–214. [CrossRef]
- 17. Zhou, Y.; Xia, J.; Zhong, Y.; Pang, J. An improved FMEA method based on the linguistic weighted geometric operator and fuzzy priority. *Qual. Eng.* **2016**, *28*, 491–498. [CrossRef]
- 18. Rabbi, F. Assessment of Fuzzy Failure Mode and Effect Analysis (FMEA) for Reach Stacker Crane (RST): A Case Study. *Int. J. Res. Ind. Eng.* **2018**, *7*, 336–348. [CrossRef]
- 19. Haktanır, E.; Kahraman, C. Failure Mode and Effect Analysis Using Interval Valued Neutrosophic Sets. In *International Conference* on *Intelligent and Fuzzy Systems*; Springer: Cham, Switzerland, 2019; pp. 1085–1093. [CrossRef]
- 20. Ayber, S.; Erginel, N. Developing the Neutrosophic Fuzzy FMEA Method as Evaluating Risk Assessment Tool. In *International Conference on Intelligent and Fuzzy Systems*; Springer: Cham, Switzerland, 2019; pp. 1130–1137. [CrossRef]
- 21. Al-Khafaji, M.S.; Mesheb, K.S.; Abrahim, M.A.J. Fuzzy Multicriteria Decision-Making Model for Maintenance Management of Irrigation Projects. J. Irrig. Drain. Eng. 2019, 145, 04019026. [CrossRef]
- 22. Keskin, G.A.; İlhan, S.; Özkan, C. The Fuzzy ART algorithm: A categorization method for supplier evaluation and selection. *Expert Syst. Appl.* **2010**, *37*, 1235–1240. [CrossRef]
- 23. Lee, S.M.; Lee, D.; Kim, Y.S. The quality management ecosystem for predictive maintenance in the Industry 4.0 era. *Int. J. Qual. Innov.* **2019**, *5*, 4. [CrossRef]
- 24. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data—Evolution, challenges and research agenda. *Int. J. Inf. Manag.* 2019, *48*, 63–71. [CrossRef]
- 25. Brettel, M.; Friederichsen, N.; Keller, M.; Rosenberg, M. How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. *FormaMente* **2017**, *12*, 47–62.
- 26. Jeswal, S.K.; Chakraverty, S. ANN Based Solution of Static Structural Problem with Fuzzy Parameters. In *Recent Advances in Applications of Computational and Fuzzy Mathematics*; Springer: Singapore, 2018; pp. 23–46.
- 27. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. *Bull. Math. Biol.* **1943**, *5*, 115–133. [CrossRef]

- 28. Sader, S.; Husti, I.; Daróczi, M. Enhancing Failure Mode and Effects Analysis Using Auto Machine Learning: A Case Study of the Agricultural Machinery Industry. *Processes* 2020, *8*, 224. [CrossRef]
- 29. Biezma, M.V.; Agudo, D.; Barron, G. A Fuzzy Logic method: Predicting pipeline external corrosion rate. *Int. J. Press. Vessel. Pip.* **2018**, *163*, 55–62. [CrossRef]