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Abstract 

RNA INTERFERENCE: POTATO/TOMATO PSYLLID, BACTERICERA COCKERELLI, 

ORAL DELIVERY OF DOUBLE-STRANDED RNAI CONSTRUCT 

 

Bijaya Kumar Sharma 

 

Thesis Chair: Blake Bextine, Ph. D.  

The University of Texas at Tyler 

November, 2015 

 
The potato/tomato psyllid, Bactericera cockerelli (Sulc.), is a serious and economically 

important pest of the potato, tomato and other solanaceous crops. This insect is the putative primary 

vector of the phytopathogenic bacterium Candidatus Liberibacter solanacearum which causes the 

Zebra Chip in potato. This disease has caused millions of dollars loss to the potato industry. While 

traditional management programs have minimized the negative impacts of this disease system, a 

sustainable alternative to chemical treatment is needed. Management of this pest by downregulation 

of endogenous mRNA using RNA interference (RNAi) technology is one of the best molecular 

method available; however, several technical challenges exist which must be overcome to 

demonstrate RNAi strategies in potato production. First, the oral delivery of double stranded RNA 

construct need to provide an effective and efficient method that can be used in the field. Second, 

potential genes to target and downregulate the endogenous mRNA level through RNAi technology 

needs to result in insect mortality or reduction in pathogen transmission. Therefore, dsRNA construct 

were synthesized in vitro and offered to adult potato psyllid, mortality was recorded overtime and 

significant downregulation of mRNA level for target gene was assessed using qPCR technology. 

Moreover, to study the synergism between RNAi and insecticide treatments, dsRNA against one of 

the xenobiotic metabolizing gene, CYP450 6BQ13 was orally delivered to the adult B. cockerelli 

along with the imidacloprid, a neonicotinoid insecticide, mortality caused due to the conjugal 

treatment was recorded overtime and qPCR was utilized to observe the possible downregulation of 

endogenous CYP450 6BQ13 mRNA level. 
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Chapter One 

Literature review 

Insecta 

 

Insecta is a broad class of the phylum arthropoda and is divided into several subclasses 

and many more orders. Insects are classified according to their morphological structure and 

biological process of development. The two forms of insect metamorphosis are, hemimetabolism 

(incomplete metamorphosis) and holometabolism (complete metabolism) found in insects. 

Holometalous insects undergo complete metamorphosis and develop through four complete life 

stages – embryo or egg, larva, pupa and adult. Unlike holometabolists, hemimetabolous insects 

undergo incomplete metamorphosis and consists of only three life stages – egg, nymph and adult. 

(Borror et al., 1989).  

The insects lying in the order Coleoptera, diptera, hymenoptera, lepidoptera and all other 

members of endopterygota exhibits complete metamorphosis while the major order for insects 

exhibiting incomplete metamorphosis includes, paraneoptera, orthoptera, blattaria, mantodea, 

isopteran, odonta and hemiptera (Borror et al.,1989). More than 80,000 species of hemiptera 

have been classified and most of them are economically important to agricultural crops, as they 

are associated with the direct damaging of the plant through feeding on the plant’s sap and 

indirect damaging by transmitting plant pathogens (Dolling, 1991). 

Psyllids 

 

Psyllids (jumping plant lice) are small sap sucking insects, which belongs to the order 

hemiptera and superfamily psylloidea (Burckhardt, 2014; Lubanga et al., 2014). Almost forty 

species (19 genera) of order hemiptera have been discovered to be economically important 

(Percy, 2005). Like all hemipterans, psyllid life cycle are comprises of three distinct life stages, 



2 
 

an egg stage, five larval instars and a sexually reproductive adult stage (Lubanga et al., 2014). 

Temperature and precipitation are the two major determining factors for the development of 

psyllid eggs and nymphs (Lubanga et al., 2014). Psyllids are host specific and host plants are 

another factor in psyllid growth and development (Hodkinson, 2009). They feed on plants by 

penetrating with their needle-like stylets (Eyer and Crawford, 1933), this may be one of the 

reason this taxa is associated with the transmission of microbial pathogens. Psyllids receive their 

major nutrients by feeding on host plants. This causes the nutrient deficiency in the host plant 

and causes systemic phytotoxaemia (Hodkinson, 2009).  

Psyllid mouth parts are modified for piercing and sucking, this is one of the primary 

factor accounting for the transmission of plant pathogens. These insects transmit more than 50% 

of vector-borne pathogenic viruses and bacteria in plants (Huot et al., 2013). During feeding on a 

host plant, psyllid nymphs release toxic secretions through saliva causing severe symptoms to the 

host plant. Psyllids also show a close association with pathogenic microbes, such associations are 

detrimental to the host plant’s physiology by reducing the levels of defensive chemicals, there by 

weakening the plants immune response (Hodkinson, 2009). 

While feeding on infected plants, psyllids ingest pathogenic viruses and bacteria 

(liberibacters and phytoplasmas) and later introduce them into other healthy host plants 

(Hodkinson, 2009). Both adults and nymphs are associated with the transmission of 

phytoplasmas. These bacteria have been found to be vertically transferred by female psyllids to 

the offsprings, e.g. Cacopsylla pruni (Hodkinson, 2009). Recently, four psyllid species 

(Diaphorina citri, Trioza erytrea, Bactericera cockerelli Sulc and Trioza apicalis) have become 

subject of intense research because these species are strongly associated with the transmission of 

various species of Liberibacter (Munyaneza, 2010). 
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Bactericera cockerelli (Sulc.) 

 

The Potato psyllids (Bactericera cockerelli Sulc.) are insects; which lay in the order 

Hemiptera sub-order Sternorrhyncha, and family Triozodae. They are hemimetabulous and 

undergo five nymphal instars. Adults are black to brown and have stripes of different colors 

along their abdomen. Both; male and female have clear wings and the length of their body can be 

between 1.3 and 1.9 mm (Lehman, 1930; Liu and Trumble, 2007). Female B. cockerelli lay eggs 

on the upper and lower surface of leaves of host plants (Knowlton and Janes, 1930). The eggs are 

yellow in color and oblong in shape, they are attached to the leaves through stalks (Pletsch, 

1947) (Figure 1). Normally, eggs take 3-15 days to hatch and the sex ratio of offspring is around 

1:1 (Pack, 1930; Knowlton and Janes, 1930). Adult males are smaller than female, as the females 

have higher metabolic rate than the male (Hodkinson, 2009). Nymphs feed on underside of 

leaves and rarely move (Lehman, 1930).    

 

Figure 1.1. Life stages of Bactericera cockerelli (Rondon et al., 2012) 
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Potato psyllids are polyphagous insects and have wide host range of more than 20 plant 

families and more than 40 host species where they can oviposit and complete their life cycle 

(Knowlton and Thomas, 1934; Wallis, 1951). However, they prefer the plants in the family 

solanaceae (Wallis, 1955), hence the common names of the tomato or potato psyllid. They are 

serious pest of solanaceous crops such as potato, tomato (Solanum lycopersicum L.) peppers, and 

eggplant (S. melongena L.) (Crosslin et al., 2010).  

Life history and development are highly dependent on temperature and other various 

conditions such as; host plants, sex and regional differences in haplotype (Yang et al., 2010). 

Optimal temperature for the growth and development of potato psyllid has been determined to be 

26.7°C or 32.2°C begins to be detrimental and 38.8°C is lethal to eggs and nymphs and prevents 

mature females from oviposition (List, 1939). The underside of the larger plant canopy is cooler 

than the upper side of host leaves, B. cockerelli may use the shade of the leaves to stay in optimal 

temperature (Wallis, 1946). 

B. cockerelli are endemic to North America and are regularly found in Oklahoma, 

Kansas, Nebraska, Arizona, Colorado, Idaho, California, Montana, Minnesota, Nevada, New 

Mexico, Utah, Oregon, Texas, North and South Dakota, Washington and Wyoming (Pletsh, 

1947; Munyaneza et al., 2009; Cranshaw, 1994; Munyaneza et al., 2010).  They follow optimal 

temperatures and undergo a seasonal range variation and/or migration. They have been observed 

in the upper provinces of Canada, Alberta, Saskatchewan, British Columbia, and Ontario 

(Pletsch, 1947; Wallis, 1995; Ferguson et al., 2002), as well as Mexico and Central America as 

far south as Guetemala, El Salvador, Hondurus and Nicaragua (Espinoza, 2010; Munyaneza, 

2012, Powell et al., 2012; Bextine et al., 2013) and New Zealand (Butler and Trumble, 2012; 

Nachappa et al., 2012). In an aeriel insect survey, they have been collected at an altitude up to 
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1200 m and have also been reported from Sierra Nevada Mountains suggesting that potato 

psyllids migrate using air currents (Glick, 1939; Papp and Johnson, 1979).  

All insects harbor microbial symbionts which help them in growth and development, 

symbionts also save them from pathogenic attack. Some microbial endosymbionts are heritable 

i.e., transfer vertically from parents to offspring (Oliver et al., 2014; Cayetano and Vorburger, 

2015). Insects also acquire some microbial endosymbionts through food sources or diet (Oliver 

et al., 2014; Cayetano and Vorburger, 2015). B. cockerelli harbors Candidatus Carsonella ruddii 

as its primary endosymbiont, with Wolbachia, Acinetobacter Methyllibium, Rhizobium, 

Gordonia, Mycobacterium, and Xanthomonas as secondary endosymbionts (Nachappa et al., 

2011; Hail et al., 2012). To supplement of diet of phloem deficient amino acids, phloem-feeding 

insects harbor the symbiotic microbial community in a specialized bundle of cells called 

bacteriomes (Hail et al., 2012). Though the purpose of having secondary endosymbionts is 

unknown, some might play great role in providing resistance towards the insecticides (Arp et al., 

2014; Hail et al., 2012). 

Disease associated with Bactericera cockerelli 

 

B. cockerelli is a polyphagous phloem feeding insect (Alvarado et al., 2012; Nachappa et 

al., 2012). They penetrates their needle-like stylets through the plant tissues (Eyer and Crawford, 

1933), to suck the plant sap this causes mechanical tissue damage towards the host plants. They 

acquire pathogenic bacteria while feeding on infected plants and transmit to the other host plants 

through direct feeding (Hodkinson, 2009; Rondon et al., 2012). While feeding on potato plants, 

psyllid nymphs inject a toxin that causes plants’ yellowing and underdevelopment, this 

pathology is known as “psyllid yellows disease”, which affects both tuber yield and quality 

(Munyaneza et al., 2007; Liefting et al., 2009). Direct feeding by this pest causes the tissue 
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damage and nutrients deficiency in plants. The indirect damages due to B. cockerelli are 

associated with the transmission of phytoplasma by adults and nymphs, which is the causal agent 

of the purple top potato disease, and the transmission of the bacterium Candidatus Liberibacter 

solanacearum, the causal agent of Zebra Chip disease in potato (Ramírez-Davila et al., 2012; 

Buchman et al., 2011; Liefting et al., 2009).  

Zebra Chip Disease 

 

In 1994 a new disease, commonly called as Zebra chip, was reported in potato fields in 

Saltilo, Mexico (Munyaneza et al., 2007). The disease was first documented in the United States 

from 2000 in the potato fields in Southern Texas (Munyaneza et al., 2007; Secor et al., 2009). 

Zebra chip disease is associated with the bacteria Candidatus Liberibacter solanacearum, which 

is transmitted by B. cockerelli (Munyaneza et al., 2007; Hansen et al., 2008). As of 2013, Zebra 

Chip has been reported through far northern state Washington and Idaho up to the Central 

America Nicaragua, and in 2008 was also reported in New Zealand (Munyaneza et al., 2009; 

Crosslin et al., 2012; Bextine et al., 2013; Liefting et al., 2008). The geographical map showing 

the presence of Zebra chip in North and Central America as of 2012 is shown in figure 2. 
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Figure 1.2. Map showing the presence of zebra chip in North and Central America (dark blue) as 

of 2012 (Munyaneza et al., 2012). 

 

The foliar symptoms of Zebra Chip infected potatoes is similar to psyllid yellow disease, 

but the physiological changes in tubers are different (Arslan et al., 1985; Senogeda et al., 2010). 

Foliar symptoms of Zebra Chip is characterized by; stunting growth, leaf chlorosis and 

scorching, proliferation of axillary buds, aerial tubers, browning of vascular tissue and premature 

plant death (Munyaneza et al., 2007; Crosslin et al., 2010) (Figure 1.3). A freshly cut potato 
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tuber shows alternating light and dark bands (Figure 1.4), as the starches converted into soluble 

sugars in the medullary rays (Gao et al., 2009). These symptoms become more severe when 

frying the infected tubers, the fried tubers show very dark blotches and stripes (Figure 4) 

rendering them unsellable for chipping industries and other uses (Munyaneza et al., 2007). 

Navarre et al. (2009) discovered an increase in aromatic amino acids and phenolic compounds 

with an eight folds increase in tyrosine concentration in extract of ZC infected potato tubers 

compared to that of healthy potato. In a similar study, Wallis and Chen, (2011) also discovered 

high levels of peroxidases, polyphenol oxidases, chitinases, and β-1,3 glucanases. Such findings 

could be used to suggest that; the significant increase in amino acids and phenolic compounds 

may contribute to enzymatic browning of the infected potato.  

 

Figure 1.3. Damaged associated with Zebra Chip disease. (A) Healthy plants (left) and Zebra 

Chip disease infected plants (right); (B) Aeriel tubers. (Butler and Trumble 2012). 
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Figure 1.4. Zebra Chip infected potato tubers showing (A) Necrotic flecking; (B) Streaking of 

medullary ray tissue; (C) Fried chips obtained from infected potato tubers, and (D) chips from 

healthy potato. (Butler and Trumble 2012). 

 

Candidatus Liberibacter solanacearum (Lso) 

 

 The liberibacters are bacteria that belongs to Alphaproteobacteria group and are phloem 

limited, Gram negative and unculturable (Jagoueix et al., 1994; Bove, 2006). Like other 

Liberibacters, Lso has a rod-shaped morphology (Liefting et al., 2009; Secor et al., 2009) and 

about 0.2 µm wide and 4 µm long (Liefting et al., 2009). Psyllids are the primary vectors of these 

bacterial plant pathogens (Bove, 2006). The putative cause of zebra chip disease was unknown 

until 2008. Liefting et al. (2009) implicated that Candidatus Liberibacter solanacearum as the 



10 
 

putative causal agent of ZC through transmission electron microscopy and 16S rDNA 

sequencing study.  

Candidatus Liberibacter solanacearum (Lso) is closely related to liberibacters that are 

associated with the Huanglongbing, citrus greening disease (Hansen et al., 2008; Munyaneza, 

2012). This pathogen has been observed in Western and Central region of USA, Mexico, Central 

America and New Zealand and has also been documented in Northern Europe and the 

Mediterranean region (Munyaneza, 2012). Lso has a wide host range, including: pepper 

(Capsicum annum), chilli pepper (C. frutescens), tomatillo (Physalis peruviana), tomato 

(Lycopersicum esculentum), potato (Solanum tuberosum), tamarillo (S. betaceum), tobacco 

(Nicotiana tobacum), eggplant (S. melongena) and several weeds in the solanaceae family 

(EPPO 2013; Janse, 2012; Munyaneza, 2012). Recently, Lso has been documented associated 

with several other non-solanaceous species, suggesting that this liberibacter species has multiple 

hosts and vectors (Munyaneza, 2012). 

Mangement of Potato psyllid 

 

Currently, B. cockerelli are attempted to be managed by chemical applications, and 

commonly used insecticides such as; acephate, metamidophos, thiacloprid, buprofezin, 

abamectin, cypermethrin, deltamethrin, lambda-cyhalothrin, esfenvalerate, spinosad, 

spirotetramat, imidacloprid, thiamethoxam, spiromesifen, dinotefuran, pyriproxyfen and 

pymetrozine (Goolsby et al., 2007; Berry et al., 2009; Gharalari et al., 2009; Butler and Trumble, 

2012). Management of psyllids with insecticides is difficult because they are primarily found on 

the ventral surface of the leaves and total coverage by foliar insecticides is impossible (Nansen et 

al., 2010; Butler and Trumble, 2012). Various kinds of insecticides have been registered for use 

according to the life stage of the psyllids (Rondon et al., 2012). The insecticides that is effective 
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against adult stage might not have the same insecticidal activity against nymph stages or egg 

stage (Gharalari et al., 2009; Zens et al., 2010; Rondon et al., 2012). In addition, repeated use of 

insecticides may lead to resistance to pests (McMullen and Jong, 1971; Rondon et al., 2012). Liu 

and Trumble (2007) found the populations of psyllids from California were resistance to 

imidacloprid and spinosad compared to the psyllids from Central USA. Treatments of psyllids 

ideally should begin immediately after the first detection of the insect in the field, within hours 

these insects can transmit Candidatus Liberibacter solanacearum, the causal agent of Zebra Chip 

disease, to healthy plants (Buchman et al., 2011; 2012). The total costs associated with Zebra 

Chip control in Texas in 2010 and 2011 range from $-170 to $-590 per acre for the application of 

pesticides (Guenthner and Greenway, 2010; Guenthner et al., 2011). 

 Cultural control of B. cockerelli refers to the alteration and administration of the 

cropping environment to reduce the risk of pest population and damage associated with 

infestation (Pedigo and Rice, 2006). By shifting the planting time, the damage associated with B. 

cockerelli can be minimized. Eyer and Enzie, (1939) observed that early-planted potato and 

tomato crops developed psyllid yellows as severely as those planted later in the season. Wallis 

(1948) showed significantly higher numbers of B. cockerelli in early planted potato field in 

Wyoming and Nebraska compared to middle or late season planting. Other solanaceous crops 

can also be used as an alternate trap crop to protect the main crop from severe damage. Pepper 

plants were used as a secondary crop or more likely as an alternate trap crop to attract B. 

cockerelli from potatoes in Colorado (Cranshaw, 1994). Researchers have also focused on 

finding B. cockerelli resistant host plants. Of the thirty nine potato varieties screened, none were 

found to tolerate psyllid yellows disease (Babb and Kraus, 1937). All commercial potato 

varieties tested were found to be succeptible to B.cockerelli (Linford, 1928; Starr, 1939). 
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Research on biological control of this pest is still ongoing. The use of natural enemies of this pest 

is one of the environmental managing tactic. There are no practical non-chemical control 

strategies for potato psyllids that have been developed yet (Rondon et al., 2012). Therefore, it is 

important to develop a targeted, long-term management control treatment against B. cockerelli. 

Ribo-Nucleic Acid interference, RNAi, technology is a potential strategy of managing insect 

pests and plant pathogens and is therefore gaining the attention of the scientific community 

(Price and Gatehouse, 2008). 

RNA interference 

 

RNA interference (RNAi) is a technique that uses the introduction of novel, targeted 

double stranded RNA (dsRNA) sequences into organisms to degrade messenger RNA (mRNA) 

complementary to the sequences in the dsRNA, inhibiting gene expression (Mello and Conte, 

2004). A summary of RNA silencing can be seen in figure 5 below. Sequence specific gene 

silencing in some insects can be achieved by feeding double stranded RNA through RNA 

interference (RNAi) technology (Baum et al., 2007). RNAi technology is a potential strategy of 

managing insect pests and plant pathogens therefore gaining attention of the scientific 

community (Price and Gatehouse, 2008). In a 2010 survey of adult and late instar potato psyllid 

transcriptomes, Hail et al. (2010) utilized 454 pyrosequencing (Roche) to identify several 

potential targets for RNAi.  

The efficiency of dsRNA uptake depends on various factors such as, suitable delivery 

system, delivery efficiency, length and stability of dsRNA (Yu et al., 2013). Double stranded 

RNA can be deliver directly to the insect body through microinjection (Fire et al., 1998), 

ingestion (Turner et al., 2006; Baum et al., 2007), soaking (Tabara et al., 1998; Maeda et al., 

2001) and transfection (Johnson et al., 2010). Microinjection is used to deliver the accurate 
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amounts of dsRNA to the specific target organ and is highly efficient way to deliver the dsRNA 

(Yu et al., 2013). Oral delivery of dsRNA construct is a less-invasive and high throughput 

method for delivering dsRNA into the insects (Scott et al., 2013). Wuriyanghan et al. (2011) 

successfully delivered gene specific dsRNAs targeting actin towards B. cockerelli, that led to 

increased mortality and injection of dsRNA corresponding to ATPase reduced 30% endogenous 

ATPase mRNA level.  

Gene silencing by RNAi is a biological process, in which, dsRNA is cleaved by a 

conserved RNase III protein (dicer) into a short RNA duplex of 21 to 23 nucleotide called as 

short interfering RNAs (siRNAs). The siRNA combines with other cellular proteins to form 

RNA induced silencing complex (RISC). The RISC unwinds the duplex of siRNA into two 

single strands; a guide strand and a passenger strand. The guide strand, complimentary to the 

target mRNA sequence, binds to the mRNA halting translation while the passenger strand is 

degraded (Stevenson, 2003). 
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Figure 1.5. Gene silencing by RNA interference. (Stevenson, 2003) 
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Chapter Two 

The systems for the delivery of dsRNA  

1. Introduction 

 

The potato/tomato psyllid, Bactericera cockerelli (Sulc.), is a phytophagous insect and a 

serious pest of solanaceous crops such as potato (Solanum tuberosum), tomato (S. lycopersicum 

L.), eggplant (S. melongena L.) and peppers (Capsicum annum) (Crosslin et al., 2010). B. 

cockerelli is an economical pest associated with the transmission of the bacterial pathogen 

Candidatus Liberibacter solanacearum (Lso) which is the putative causal agent of Zebra Chip 

disease in potato (Liefting et al., 2009; Hansen et al., 2008; Munyaneza et al., 2007). The foliar 

symptoms of Lso infection is characterized by; stunting growth, leaf chlorosis and scorching, 

proliferation of axillary buds, aerial tubers, browning of vascular tissue and premature plant 

death (Crosslin et al., 2010; Munyaneza et al., 2007). When frying the infected tubers, the fried 

tubers show very dark blotches and stripes rendering them unsellable for chipping industries and 

other uses (Munyaneza et al., 2007). Since the first incidence of Zebra Chip in the 1990s this 

disease has caused millions of dollars in losses for the potato industry in the United States, 

Mexico, Central America and New Zealand (Munyaneza, 2012; Nachappa et al., 2012; 

Munyaneza, 2007; Secor and Rivera-Varas, 2004). 

Currently, potato psyllids management is attempted through chemical application (Butler 

and Trumble, 2012; Berry et al., 2009; Gharalari et al., 2009; Goolsby et al., 2007). Management 

of potato psyllids with insecticides is difficult because psyllids are found on the ventral surface 

of the leaves and total coverage by foliar insecticides is impossible, therefore systemic 

insecticides are most effective (Nansen et al., 2010; Butler and Trumble, 2012). Treatment of 

psyllid infestations must begin immediately after first detection of the insect in the field, within a 

few hours these insects can transmit Candidatus Liberibacter solanacearum to healthy plants 
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(Buchman et al., 2011; 2012). Use or overuse of insecticide may lead to resistance in pests 

(McMullen and Jong, 1971; Rondon et al., 2012). Liu and Trumble (2007) found the populations 

of psyllids from California have developed resistance to imidacloprid and spinosad, when 

compared to the psyllids from central USA. 

Management of B. cockerelli by down-regulation of endogenous mRNA using RNA 

interference (RNAi) technology is possible and these strategies are less prone to resistance 

development in their targets. Wuriyanghan et al. (2011) utilized RNAi technology and recorded 

significant mortality of B. cockerelli through oral delivery of gene specific double stranded RNA 

(dsRNA) targeting to Actin. RNA interference (RNAi) is a technique that uses the introduction 

of novel, targeted double stranded RNA (dsRNA) sequences into pest organisms to degrade 

messenger RNA (mRNA) complementary to the sequences of the dsRNA, and finally inhibits the 

gene expression (Mello and Conte, 2004). Sequence specific gene silencing in some insects can 

be achieved by feeding double stranded RNA through RNAi technology (Baum et al., 2007). 

RNAi is a potential technology of managing insect pest which is gaining attention from the 

agricultural community (Price and Gatehouse, 2008).  

The efficiency of dsRNA uptake depends on various factors such as suitable delivery 

system, delivery efficiency, length and stability of dsRNA (Yu et al., 2013). Double stranded 

RNA can be deliver directly to the insect body through microinjection (Fire et al., 1998), 

ingestion (Turner et al., 2006; Baum et al., 2007), soaking (Tabara et al., 1998; Maeda et al., 

2001) and transfection (Johnson et al., 2010). Microinjection is used to deliver the accurate 

amounts of dsRNA to the specific target organ and is high efficient way to deliver the dsRNA 

(Yu et al., 2013). Oral delivery of dsRNA construct is a less-invasive and high throughput 

method for delivering dsRNA into the insects (Scott et al., 2013). Wuriyanghan et al. (2011) 



24 
 

successfully injected the dsRNA corresponding to ATPase that reduced ~30% endogenous 

ATPase mRNA level of B. cockerelli.  

In this study, five different delivery systems were developed and tested for the oral 

delivery of dsRNA (RNAi construct). For the oral delivery of dsRNA/RNAi construct, an 

artificial feeding system, commonly called as sachet has been designed that consists of artificial 

diets [15% sucrose solutions (W: V)] and three different fluorescent compounds (curcumin, 

quinone and riboflavin), contained between two thin layers of stretched parafilm. The purpose of 

using fluorescent compounds as a feeding supplement is to track those compounds making their 

way to gut through oral feeding. Wuriyanghan et al. (2011) utilized CyTM 3-labelled green 

fluorescent protein dsRNA in feeding solution and observed fluorescence around the gut area. 

Another possible feeding system for delivering dsRNA constructs to adult potato psyllids has 

been designed using plants with multiple methods for the administration of the feeding 

supplements. qPCR can be used to confirm the presence of dsRNA in plants used in delivery 

systems. The objective of this study is to determine whether the delivery systems tested can be 

used further for the delivery of dsRNA construct. 

2. Materials and Methods 

 

2.1 Insect colonies 

 

B. cockerelli were initially provided by Dr. Don Henne (Texas A&M University). The 

psyllid colonies were maintained in separate insect cages (36in. x 24in. x 18in.) in the 

insectarium at temperature of 26°C and 70% humidity under 14:10 (light: dark) photoperiod. 

Three different solaneceous crops, tomato plants, potato plants and pepper plants were used to 

maintain the potato psyllid population. Plants were grown in 6-in. pots with autoclaved soil and 

fertilized once a month with the label rate of Miracle-Gro water soluble tomato plant food 
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(Scotts Company, OH) and irrigated with nanopure water. Mixed male/female adult potato 

psyllids were used in this study. 

2.2 dsRNA synthesis 

 

For the feeding assay, one target site for alpha tubulin dsRNA was selected using cDNA 

library data of B. cockerelli (Hail, unpublished). The primer sets were designed to amplify 

desired length of amplicon for respective target gene using Geneious version 7.1.7 (Biomatters 

Limited 2014). For each primer sets, temperature gradient PCR was conducted to determine the 

optimum annealing temperature of the primers in the temperature range 50-60°C using the 

Amplitaq Gold 360 PCR kit as per manufacturer protocol (Applied Biosystems, Foster City, 

CA). Each 25 µl reaction mixture included 12.5 µl AmpliTaq Gold 360 Master Mix (Life 

Technologies, Austin, TX), 1 μl GC enhancer (Life Technologies, Austin, TX), 2.5 μl of each 

forward and reverse primer, 1 μl of total genomic DNA (~100 ng) and 6.5 μl of nuclease free 

water (ThermoFisher Scientific, Grand Island, NY). The thermal profile was run as follows: 

cycle 1, 95°C for 10 min (1x), cycle 2, 95°C for 30s, 50-60°C for 30s, 72°C for 60s (45x), and 

cycle 3, 72°C for 7 min (1x). Amplicons were visualized on a 2% agarose gel stained with 

ethidium bromide. If a single band of correct size was visualized, it was excised and the DNA 

was recovered using QIAquick Gel Extraction kit (QIAGEN, Valencia, CA) following the 

manufacturer protocol. A second PCR was done using the same primer amended with T7 

promoter sequence (5’-TAATACGACTCACTATAGGG-3’) at 5’ end using identical PCR 

protocol. The amplicons visualization and purification was done according to the previous 

described method. The purified product was further used for dsRNA preparation using Hiscribe 

T7 in vitro transcription kit (New England Biolabs, Ipswich, MA) according to the manufacturer 

protocol (Figure 2.1). 
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Figure 2.1. The in vitro transcription of dsRNA using T7 promoter amended amplicon (Hiscribe 

T7 In Vitro Transcription Kit, New England BioLabs, Ipswich,MA). 

 

2.3. dsRNA/RNAi construct delivery using sachet feeding system 

 

An artificial sachet feeding system (Figure 2.2) was developed for the oral delivery of 

dsRNA (RNAi construct). Four different fluorescent chemicals (Curcumin, Riboflavin, Uranine 

and Quinone) and green food coloring of different concentration were used in feeding assay. In 

this feeding system, the food supplement was a 15% (W: V) sucrose solution and the 

concentrations for all fluorescent compounds were arbitrarily chosen. Adult potato psyllids were 

grouped into one of eleven treatment groups, with ten adult psyllids in each treatment group. The 

treatment group were as follows: (1) psyllids that received 1: 10 (V: V) green food coloring, (2) 

psyllids that received 1: 5 (V: V) green food coloring, (3) psyllids that received 0.1 M curcumin, 

(4) psyllids that received 0.5 M curcumin, (5) psyllids that received 1: 10 (V: V) quinone, (6) 

psyllids that received 1: 5 (V: V) quinone, (7) psyllids that received 0.1 M riboflavin, (8) psyllids 

that received 0.5 M riboflavin, (9) psyllids that received only artificial feeding solution 15% (W: 

V) sucrose solution, (10) psyllids that received autoclaved tap water and (11) psyllids that 

received nothing. Except the treatment groups 10 and 11, all other treatment groups were mixed 

in 15% (W: V) sucrose solution. In each treatment group, 200 μl treatment solution was placed in 

the lid of 1.5 ml microfuge tube partitioned by thinly stretched parafilm and inverted through the 
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hole made in a 15 ml centrifuge tube (Figure 2.2). Ten adult psyllids were housed and offered 

sachet that contained artificial diets amended with fluorescent compounds (above described) and 

monitored for ten days. Each feeding assay was replicated three times. A fluorescence 

microscope (NIKON ECLIPSE Ti series) was used to visualize the psyllids after feeding with 

fluorescent compounds. The exposure time for all images was, auto exposure (AE) 6S (+1.0 EV). 

Blue, red and green filters were used for acquiring images. Psyllid mortality data were analyzed 

by using Graph PadPrism (version 5.0b). 

 

Figure 2.2. Sachet apparatus used for oral delivery of dsRNA. In each treatments, ten adult psyllids 

were housed and offered various concentration of fluorescent compounds mixed with feeding 

solutions (15% sucrose solution W: V) and monitored for ten days. Each treatment was replicated 

three times. 

 

2.4. Sucrose feeding assay 

 

Sucrose solutions of different concentrations; 3% (W: V), 5% (W: V), 7.5% (W: V), 10% 

(W: V), 15% (W: V) and 20% (W: V) were prepared and offered to potato psyllids for feeding 

using sachet feeding system. Each concentrations of sucrose were offered in different treatment 

and replicated three times. Ten adult psyllids were used in each treatment. Psyllid mortality was 

recorded for 10 days. Autoclaved tap water was used as a positive control and empty sachet was 
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used as a negative control. Mortality data was analyzed using Graph PadPrism (version 5.0b) and 

significance was assessed using repeated measures ANOVA. 

2.5. DsRNA/RNAi construct delivery through root soaking method 

 

Four weeks old seedlings of pepper plant (Capsicum annuum) were taken and roots were 

cleaned using sterile water. The roots were allowed to absorb the dsRNA construct, anti-alpha 

tubulin, to determine the ability of C. annuum to deliver the dsRNA construct through vascular 

tissues, xylem and phloem, to the various plant parts. A total volume of 300 μl of dsRNA 

construct (400μg) was put in the 1.5 ml microfuge tube. Pepper plant was allowed to absorb the 

dsRNA construct for 6 hours, and the nanopure water was refilled twice for 48 hours. The whole 

plant was then subjected to total RNA extraction using TRIzol (Life Technologies, Carlsbad, 

CA) reagent as per the manufacture’s protocol. The total RNA was reverse transcribed to 

produce cDNA using M-MuLV Reverse Transcriptase (New England BioLabs) following 

manufacturer protocol. To identify dsRNA construct in plant system, qPCR was performed on 

the resulting cDNA using a specifically-designed qPCR primer set: sense primer (5’- 

GTGGATTCTGGGGTAGGGC) and anti-sense primer (5’- CTTGGACATCGAACGCCCC) to 

amplify a 151-bp product. Each 25 μl reaction mixture included 12.5 μl Amplitaq Gold 360 

Master Mix (Life Technologies, Austin, TX), 1 μl GC enhancer (Life Technologies, Austin, TX), 

1 μl of each forward and reverse primer, 1.25 μl of Evagreen 20 in water (Biotum, Hayward, 

CA), 2 μl of cDNA (~90 ng) and 5.5 μl of nuclease free water (ThermoFisher Scientific, Grand 

Island, NY). qPCR was performed with the following thermal profile: 50°C for 2min, 95°C for 

2min, denatured at 95°C for 15sec, annealed at 60°C for 30sec, a hold at 72°C for 30sec, 

repeated over 40 cycles, followed by a melt curve obtained by ramping from 50°C to 90°C by 

adding 1°C each step for 90s, with five seconds between each step, followed by a hold at 4°C. 
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Cycle Threshold (CT) values obtained after qPCR were compared for the different treatment 

groups.  

2.6. dsRNA/RNAi construct delivery using leaf and stem soaking method 

 

Besides root soaking methods, two other plant based delivery systems were also tested 

for the delivery of dsRNA construct. A freshly cut petiolated leaf and stem were allowed to 

absorb 300μl of dsRNA construct, anti-alpha tubulin (120 μg), amended with 50μl red food 

coloring (McCormick and Co., Inc., Hunt Valley, MD) in 1.5 ml microfuge tube for 6 hours. The 

purpose of adding red food coloring in the dsRNA construct was to confirm the absorption by 

examining the color of the leaf as the leaf color turns red after absorption. The experiment was 

run in full light condition to increase the transpiration rate and absorption. The leaf and stem 

were then subjected to total RNA extraction using TRIzol (Life Technologies, Carlsbad, CA) 

reagent as per the manufacture’s protocol. Similar protocol described in section 2.4.1 was 

followed to produce cDNA and to run qPCR. The obtained CT values were compared across the 

different treatment groups (Figure 2.3). 
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Figure 2.3: Leaf and stem were allowed to absorb 300 μl of dsRNA/RNAi construct (120 μg) 

amended with 50 μl of red food coloring for 6 hrs and nanopure water was refilled twice for 48 

hrs. This experiment was set up in full light condition. 

 

2.7. Delivery of treatment solutions through syringe amended with red food coloring  

 

In this delivery system, 1000 μl of red food coloring (McCormick and Co., Inc., Hunt 

Valley, MD) was drawn into a 3 ml syringe and attached to the stem and petiolated leaf 

separately and sealed with the parafilm then a gentle pressure was applied to the syringe which 

replaced the xylem fluid with the red food coloring and forced out of the terminal end of the 

plant stem and leaf. When the terminal end was dabbed on the white paper towel, the red color 

could easily be observed (Figure 2.4).     
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Figure 2.4. Syringe amended with red food coloring used in delivery system through leaf (A) and 

stem (B). 1000 μl of red food coloring was drawn in a syringe and attached to the leaf (A) and 

stem (B) of juvenile pepper plant and sealed with parafilm. Gentle pressure was applied on the 

syringe and observed the red color coming out of the leaf (A) and stem (B). 

3. Results 

3.1. Efficiency of sachet feeding method 

The mortality of adult psyllids after feeding on highly concentrated green food coloring 

[1: 5 (V: V)] (96.67%±3.33% SEM) was higher than the low concentrated green food coloring 

[1: 10 (V: V)] (43.33%±24.04% SEM) (Figure 2.5A). Similarly, other fluorescent compounds of 

higher concentrations also caused higher mortality when compared with the low concentration 

A
 

B 
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fluorescent compounds (Figure 2.5). Almost all the fluorescent compounds used in the feeding 

assay caused higher mortality of adult psyllid when compared with psyllids fed with artificial 

feeding diet (15% W: V sucrose solution).  

After feeding with fluorescent compounds, imaging of the psyllids was done using 

fluorescence microscope (NIKON ECLIPSE Ti series). Psyllids fed on fluorescent compounds 

showed their gut fluorescing but psyllids fed on non-fluorescent compounds, water, sucrose and 

green food coloring did not show any fluorescence (Figure 2.6). On feeding with green food 

coloring, psyllids showed green coloration along the abdominal area.  
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Figure 2.5: Psyllid mortality percentage and time response after feeding with different 

compounds. (A) Green food coloring (GFC). (B) Curcumin. (C) QUINONE and (D) Riboflavin. 

Ten adult potato psyllids were offered sachet amended with two different concentration of 

fluorescent compounds in artificial feeding diet (15% sucrose solution W: V) and monitored for 

ten days. Psyllids were offered with artificial feeding diet (15% sucrose solution W: V) as a 

positive control and sterile tap water and nothing as a no application control. Each treatment was 

replicated three times. The mortality data was analyzed using Graph PadPrism (version 5.0b). 

Standard error is represented for each day. 

A B 

D C 
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Figure 2.6. Psyllid feds with fluorescent compounds (A) curcumin and (B) quinone shows gut 

fluorescence whereas (C) psyllid fed with only sucrose shows no fluorescence at all. After 

feeding with fluorescent compounds, psyllids were imaged through fluorescence microscope 

(NIKON ECLIPSE Ti series). The exposure time for all images was, auto exposure (AE) 6S 

(+1.0 EV). Blue, red and green filters were used for acquiring images. 

 

3.2. Sucrose feeding assay 

 

Psyllids fed with low concentration sucrose solutions, 3% W: V sucrose (87%±8.82% 

SEM) and 5% W: V sucrose (93.33%±3.33% SEM) caused higher mortality when compared 

with psyllids fed with 7.5% W: V sucrose (70%±5.77% SEM) and 10% W: V sucrose 

(67%±18.26% SEM) (Figure 3.6A, 3.6B, 3.6C and 3.6D). Similarly, psyllids fed with high 

concentrated sucrose solutions, 15% W: V sucrose (90%±5.77% SEM) and 20% W: V sucrose 

(73.33%±17.63% SEM) mortality which is again higher than the psyllids fed with 7.5% W: V 

Gut fluorescence Gut fluorescence 

B 

 

No Gut fluorescence 

A 
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sucrose (70%±5.77% SEM) and 10% W: V sucrose (67%±18.26% SEM) (Figure, 3.6C, 3.6D, 

3.6E and 3.6F). Adult potato psyllids that received autoclaved tap water stayed alive for 6 days 

(100%) whereas psyllids that received nothing stayed alive for only 4 days (Figure 2.7). 

 

 

Figure 2.7. Potato psyllid mortality overtime by oral feeding of (A) 3% sucrose solution W: V, 

(B) 5% sucrose solution W: V, (C) 7.5% sucrose solution W: V, (D) 10% sucrose solution W: V, 

(E) 15% sucrose solution W: V, (F) sucrose solution 20% W: V. Ten adult potato psyllids were 

offered various concentration of sucrose solution through sachet feeding system and monitored 

for ten days. Each treatments were replicated for three times. Graph PadPrism version 5.0b was 

used for statistical analysis. Standard error is represented for each day. 

 

3.3. Detection of DsRNA/RNAi construct in plant tissue in plant delivery system 

 

The cDNAs obtained from the total extracted RNA from every plants used in delivery 

method were subjected individually for the qPCR using specific qPCR primer designed for the 

detection of alpha-tubulin dsRNA construct. The average CT values obtained from qPCR for the 
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root soaking treatment (8.39±0.13 SEM) and leaf soaking (7.57±0.31 SEM) treatment were 

significantly lower than the CT value obtained for no template control (34.68±1.60 SEM) 

(P<0.0001) (Figure 2.7). Whereas, no significant difference in the CT values for positive control 

(5.875±0.34 SEM) were noted when compared with the CT values for the root soaking treatment 

(8.39±0.13 SEM) and leaf soaking (7.57±0.31 SEM) treatment (P<0.0122) (Figure 2.8).   

 

Figure 2.8. Average CT values for the quantification of dsRNA in plant based delivery system. 

Here the template cDNA, represented as positive control (5.875±0.13 SEM) was obtained from 

the reverse transcription of alpha-tubulin dsRNA using the M-MuLV Reverse Transcriptase 

(New England BioLabs) following manufacturer protocol. Root soaking treatment (8.390±0.13 

SEM) represents the cDNA obtained from the reverse transcription of total RNA obtained from 

the plant sample used in root soaking delivery system. Likewise, leaf soaking treatment 

(7.567±0.31 SEM) represents the cDNA obtained from the reverse transcription of total RNA 

obtained from leaf samples used in leaf soaking delivery system. Finally, NTC (no template 

control) (34.68±1.60 SEM) represents sample without any cDNAs, instead, using nuclease free 

water in place of template. Standard error of the mean is represented in error bars and 

significance was determined using ANOVA. (* indicates P<0.05 and *** indicates P<0.001). 

*** 

*** 

*** 

* 

* 
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3.3. Syringe amended with red food coloring  

In order to assess the validity of syringe amended delivery system, we chose the 

visualization methods to identify the movement of treatment solutions along the plant tissues. To 

deliver the treatment solution, red food coloring was drawn into the syringe and applied towards 

the plant leaf and stem separately. The syringe and plant junction was sealed using parafilm then 

a gentle pressure was applied on the syringe. The red colors forming in the edge of the leaf and 

stem acted as a visual confirmation that fluid from the vascular tissues was being replaced by the 

treatments (Figure 2.4A and 2.4B). 

4. Discussion 

 

In this study, the oral delivery of treatment solutions, amended with the fluorescent 

compounds through sachet feeding system has been successfully achieved. The fluorescence was 

observed around the gut/abdominal area of the psyllids after fed with fluorescent compounds 

compared with sucrose fed psyllids that displayed no florescence. After feeding psyllids with 

various concentrations of fluorescent compounds, mortality was shown to be significantly higher 

than sucrose fed psyllids. The purpose of this study was to determine the efficiency of sachet 

feeding method and to identify whether this is an effective way to orally deliver dsRNA 

constructs. Almost all fluorescent chemicals at higher concentration killed more psyllids, more 

quickly with respect to the lower concentration (Figure 2.5). Feeding with the treatment solutions 

causes ingestion of fluorescent chemicals, this might be one of the reasons contributing to the 

high mortality with respect to the artificial feeding diet (15% W: V sucrose solution). Using 

sachet feeding system, we offered sucrose solutions of various concentration to the adult psyllids 

to find the optimum concentration of sucrose solution. Our study suggest that, sucrose solution of 

7.5% W: V is the optimum concentration for adult potato psyllid. These data showed that 
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psyllids are actively feeding on the provided treatments. Hence, in the next phase of the work, 

we used the sachet feeding method to deliver different dsRNA/RNAi construct designed to 

produce a mortality and downregulation of targeted mRNA sequences. 

All the plant feeding systems studied here support the delivery of dsRNA/RNAi construct 

and treatment solutions. Whenever the root, leaf or stem are allowed to soak the treatment 

solutions, the existing liquid in vascular tissues is replaced by the treatment solutions amended 

with dsRNA/RNAi construct. Delivery of dsRNA/RNAi construct to the target insect is one of 

the crucial steps of applying RNA interference as a tool to manage pest insect species. There are 

various ways to deliver the dsRNA to the particular insect. Microinjection is one of the possible 

way to deliver the exact amount of dsRNA to the particular tissue (Yu et. al, 2013). However, 

microinjection is not a good way of delivering dsRNA in a potential pest management in a field 

experiment (Gu and Knipple, 2012). In addition, microinjection has various limitation including 

non–specific mechanical damage of tissues whereas oral delivery is a less-invasive and high 

throughput method for delivering dsRNA into the insects (Scott et al., 2013). Oral feeding of 

treatment liquids amended with dsRNA construct is one of the practical methods to deliver 

dsRNA constructs towards the target insect (Yu et al., 2013). 
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Chapter Three 

RNA Interference: Potato/Tomato Psyllid, Bactericera cockerelli 

1. Introduction  

The potato/tomato psyllid, Bactericera cockerelli, is phytophagous and exclusively feed 

on phloem (Knowlton and Thomas, 1934; Wallis, 1951). B. cockerelli is an economically 

important pest of crop plants, preferring solanaceous crops for survival and development 

(Munyaneza et al., 2007; Wallis, 1975). Potato psyllids are serious pests of solanaceous crops 

like, potato and tomato and are associated with psyllid yellows and Zebra Chip disease of 

potatoes (Hansen et al., 2008; Munyaneza et al., 2007). B. cockerelli can cause direct damage to 

the plants by feeding, nymphs have been reported to inject a toxin, causing psyllid yellows 

disease in potato which effects tuber yield and quality (Munyaneza et al., 2007; Ramírez-Davila 

et al., 2012; Liefting et al., 2009). Direct feeding by this pest causes the tissue damage and a 

deficit of certain nutrients in plants. The indirect damage due to B. cockerelli are associated with 

the transmission of the bacterium, Candidatus Liberibacter solanacearum (Lso), the causal agent 

of Zebra Chip disease in potato (Ramírez-Davila et al., 2012; Buchman et al., 2011; Liefting et 

al., 2009).   

Zebra Chip is a disease which first arose in potato fields in Saltillo, Mexico in 1994 

(Munyaneza et al., 2007). Now Zebra Chip disease has been reported in as far north as 

Washington Oregon and Idaho, other states such as, California, Nevada, Wyoming, Colorado, 

Nebraska, Kansas, Texas, New Mexico, Arizona and also has been reported into Central 

America as far as Nicaragua, and recently in New Zealand (Secor and Rivera-Varas, 2004; 

Munyaneza et al., 2007; Munyaneza et al., 2012; Secor et al., 2009; Liefting et al., 2009; Bextine 

et al., 2013). This disease causes serious economic issues for the potato industries, because it 

reduces the commercialization of the fresh potatoes for chips as the infected potato tubers show 
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very dark blotches upon frying (Lin et al., 2009; Munyaneza et al., 2007). This disease is 

responsible for millions of dollar in loses for the potato industries in various locations in Unites 

States (Secor and Rivera-Varas, 2004). The management strategies for Zebra Chip disease and 

psyllid yellows disease are targeted against the potato psyllid (Butler and Trumble, 2012). 

Agricultural pests, such as B. cockerelli have been attempted to manage through 

application of chemical insecticides (Goolsby et al., 2007; Berry et al., 2009; Gharalari et al., 

2009; Butler and Trumble, 2012). However, overtime, the use and/or overuse of chemical 

pesticides has promoted the development of resistance against the pesticides through adaptation 

(Li et al., 2013; Rondon et al., 2012). Other risks associated with pesticides includes, killing 

beneficial or non-target insects. Chemical application is not a healthy way to manage agricultural 

pests and has various limitations. There are no practical non-chemical control strategies for 

potato psyllids have been developed (Rondon et al., 2012). RNA interference (RNAi) technology 

is a potential strategy of managing insect pests and plant pathogens, and is therefore gaining the 

attention of the scientific community (Price and Gatehouse, 2008). 

RNAi is a gene silencing process which is induced by the introduction of exogenous 

double-stranded RNA which inhibits the translation of complimentary endogenous messenger 

RNA (Zamore, 2001; xu et al., 1998; Meister and Tuschl, 2004). At the cellular level, the long 

dsRNA is processed by an RNAse III enzyme called Dicer, which cleaved long dsRNA into 

short (21 – 25 nucleotide), small interfering RNAs (siRNAs) (Elbashir et al., 2001). The siRNA 

combines with other cellular protein to form an RNA induced silencing complex (RISC). The 

RISC unwinds the duplex of siRNA into two single strands; a guide strand and a passenger 

strand. The guide strand is complementary to the mRNA and binds to it and halting further 

translation, whereas the passenger strand is degraded (Stevenson, 2003; Hammond et al., 2001).  
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 RNAi is the potential tool for the management of insect pests, and can be triggered by the 

introduction of double stranded RNA via microinjection or from feeding on an artificial diet 

(Whyard et al., 2009; Ghanima et al., 2007; Turner et al., 2006). Microinjection is not a practical 

way to deliver dsRNA as pest management in a field experiment (Gu and Knipple, 2012). The 

efficiency of RNAi depends on, suitable delivery of dsRNA and the genes being targeted (Scott 

et al., 2013). By selecting and suppressing promising genes through RNAi a reduction in fitness 

and increase in mortality could be achieve (Scott et al., 2013). In this study, the primary target is 

the gene encoding for an enzyme, arginine kinase. Arginine kinase is an enzyme which catalyzes 

a reversible transfer of phosphate group from MgATP to arginine to produce phosphoarginine 

(Newsholme et al., 1978). Arginine kinase plays unique role in balancing the cellular energy 

homeostasis in invertebrates, so, it becomes one of the prime target in the study of pest 

management (Newsholme et al., 1978; Brown and Grossman, 2004; Wu et al., 2007).  

The most common delivery systems for RNAi in insects include, delivery of dsRNA to 

the hemolymph through microinjection and oral feeding. Microinjection has various limitation 

including non–specific mechanical damage of tissues whereas oral delivery is a less-invasive and 

high throughput method for delivering dsRNA to insects (Scott et al., 2013). 

 To show the proof of concept, arginine kinase gene was selected as a primary target and 

various other genes were identified, in vitro dsRNA constructs targeting those genes were 

synthesized and orally delivered through a sachet feeding system and a plant delivery system. 

The mortality was recorded overtime and downregulation of target mRNA was assessed using 

qPCR.  
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2. Materials and Methods 

 

2.1. Insect colonies 

 

The potato psyllids were initially obtained from Dr. Don Henne (Texas A &M 

University). The colony was maintained on pepper plants (Capsicum annum) in a bug dorm 

(36in. x 24in x 18in.) within insectarium at 260C, 70% humidity and a 14:10 (day: night) cycle. 

Mixed male/female adult potato psyllids were used in this study. 

2.2. Double stranded RNA/RNAi construct selection and primer designing 

 

To identify the two targets for the gene arginine kinase (Table 3.1), the B. cockerelli 

transcriptome database (Fisher et al., 2014) was examined and primers for double stranded RNA 

constructs against those two genes were designed using NCBI primer blast tool. The primer 

designing settings in NCBI primer blast tool included a PCR product size of 200 to 500 base 

pairs length, primer melting temperature in a range of 50 to 60 °C, and specificity was checked 

against the order hemiptera.  

Table 3.1: List of two targets for gene arginine kinase, their respective primer sequence and 

expected amplicon size (in base pairs).  

Genes Forward primer (5’-3’) Reverse primer (5’-3’) size 

Arginine Kinase –I GGGAGCTCAAGGGTCAGTTC GCTTGGGCAGTTTGATGTGG 387 

Arginine Kinase -II GCAATGCCGTCGTTCATCTC GGGCCTCAGTCCACATCAAA 202 

 

 One dsRNA construct targeted for Diaphorina citri arginine kinase was obtained from 

Dr. Wayne Hunter (USDA – ARS, Florida).  

Using the nucleotide database of B. cockerelli available in NCBI and the expressed 

sequence tag (EST) sequence information from another hemipteran, D. citri available in NCBI 

were utilized to find the potential target for dsRNA/RNAi constructs (Table 3.2).   
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Table 3.2. Target genes for the construction of dsRNA/RNAi construct, their respective primer 

sequence and NCBI accession numbers. 

 
Gene Name NCBI 

accession No. 

Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 

Gyrase XM_0084831

12 

TGGTGATACTTCTGATGGAAC

CG 

CGGTTTTTCTGCGGCAGTTT 

Topoisomerase 2 XM_0084892

64 

GGCGAGATCGACTACTGTGG TCTTCACCTTCAGCTGCCTG 

Wing disc  protein KJ363929 GGCTTCAAGTTGGTGGGACT CCTCTTACGGTTCCTGGAGC 

Cytochrome c 

oxidase subunit I 

EF372597 CGTGCCTATTTCACTTCCGC ACACCTGTTAAACCTCCCAG

TG 

18S rRNA U20416 CGATGGTAGGTTATGCGCCT ACCAGACTTGCCCTCCAATG 

Ecdysone like 

receptor 

XM_0084855

57 

GAGCTGGAGGCTGAACGTAA CTTCTCCACTTTCCACGCCT 

Zinc finger protein 

on ecdysone puffs 

XM_0084778

52 

ACATTTCCTGCACCCCAAGT ACTTTCACCGGAGCTACGTC 

Ecdysone 20-

monooxygenase 

XM_0084891

99 

GTTGACTAGCGGCAGGATCA AGCTTCAAATAGGCAGGCG

T 

Ecdysone induced 

protein 78C 

XM_0084835

28 

TGACACCAAACAGCTGCTCA CTCGTTTGGCGAATTCCACT 

Hexokinase type 

2-like 

XM_0084741

20 

GGACGTCCAAATCGAGGTGT GCAGCGTCCACCTCTCTATC 

Glucose-6-P 1-

dehydrogenase 

XM_0084803

59 

CTACATTTGCTTCGGCCGTG CGCCATGCCTCTGATAGCTC 

Pyruvate 

dehydrogenase  

XM_0084882

13 

CATAACCGCTACAGGACGCA TCTGTGAGTCGCTTGGCAAT 

Glycerol-3-P 

dehydrogenase 

XM_0084792

72 

TCTGCGACGTTCTTCGAGTC TGTTGGGGTTTCATCTCACC

A 

HIF 1b AF154417 ATGGCACTTACAAGCCCTCC TGCGACAGATGAAACCACG 

Glyceraldehyde-3-

P dehydrogenase 2 

XM_0084816

20 

ACGACTCCACTCATGGCAAG GTCGTAGGCGTCCAAGTTGA 

 

Cytochrome 

oxidase subunit I 

KC008074 

 

CAAGGTGTAGGGACAGGTTG

A 

AATAGGGTCTCCTCCTCCGG 

Hormone receptor 

4-like 

XM_0084835

28 

AACCACCGCAGCAACATTTC AAGGTGAGGACGCTGTTGA

G 

Actin-X2 XM_0084704

68 

TTGTCCCGAAGCTCTGTTCC GCCGGACTCGTCGTATTCTT 

 

 

NCBI primer blast tool was used to design the primer for all these construct. PCR product 

size of 200-500 base pair length, melting temperature of range 50 °C – 60 °C were selected to 

narrow down to primer designing. Hemiptera was selected as an organism for primer pair 

specificity checking parameters. 
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Complimentary DNA (cDNA) library data of B. cockerelli (Hail, unpublished) and 

expressed sequence tag (EST) sequence of D. citri were utilized to identify certain potential 

target dsRNA constructs (Table 3.3). Geneious version 7.1.7 (Biomatters Limited 2014) was 

used to design primer pairs to target these genes. 

Table 3.3. Target genes for dsRNA/RNAi construct, their amplicon sizes, and forward and 

reverse primer sets. (NA =Never Amplified) 

Gene Name Forward primer (5’-3’) Reverse primer (5’-3’) size (bp) 

Yellow B GGGGAACACCAGCGTCTCGC CCTGGTGGACACCACCCCCA 550 

Enolase TCGACTCCCGTGGCAACCCA CGCTCAGACCGACATGGGGC 1000 

Alpha tubulin F1/R1 AGTGCACCGGACTGCAAGGC GGCTCGAAGCAGGCGTTGGT 450 

Alpha tubulin F1/R2 AGTGCACCGGACTGCAAGGC CGTGTCGGGGGTCGCACTTC 500 

Alpha tubulin F1/R3 AGTGCACCGGACTGCAAGGC CTTGGCGAGGTCACCGCCTG 650 

Alpha tubulin F2/R1 GCCATCTACCCCGCCCCTCA GGCTCGAAGCAGGCGTTGGT 350 

Alpha tubulin F2/R2 GCCATCTACCCCGCCCCTCA CGTGTCGGGGGTCGCACTTC 400 

Alpha tubulin F2/R3 GCCATCTACCCCGCCCCTCA CTTGGCGAGGTCACCGCCTG 500 

Alpha tubulin F3/R1 GCCATCTACCCCGCCCCTCA GGCTCGAAGCAGGCGTTGGT 350 

Alpha tubulin F3/R2 GCCATCTACCCCGCCCCTCA CGTGTCGGGGGTCGCACTTC 375 

Alpha tubulin F3/R3 GCCATCTACCCCGCCCCTCA CTTGGCGAGGTCACCGCCTG 500 

Integrin ATCAGATCGTCCGCCCCCGT GGGGCCCCCGGGAAGTTTCT 325 

Gelsolin AATGGTGGCGCGTCCGTTGT GTCAACGCCGGCAGAGTCCC 650 

Beta tubulin I AAGGGGAGCAAAGCCAGGC AAGGGGAGCAAAGCCAGGCA NA 

Beta tubulin II GGGTGGGATGTCACACACGG AAGGGGAGCAAAGCCAGGCA NA 

Beta tubulin III TTCCCGGGGCAACTCAACGC CCCCGCCTCCTGGTACTGCT 500 

Inhibitor of apoptosis AACGTCGAGCGCTGGGCAAA TGGCCGGTCGTTGCGATTCC NA 

Actin I GGGCGGCGCGATGATCTTGA CGACGAGGCCCAGAGCAAGC 950 

Actin II GGCGATGCCGGGGTACATGG CGACGAGGCCCAGAGCAAGC 800 

Disulphide isomerase GAAGACCGGCCCTCCCGCTA GCATGCTCGGCACCTCCTCC 290 

Proteasome β4 I TCCACAGTGGGTCAAACTGG ACAGGAACCTCCGTGTTGGGG 300 

Proteasome β4 II TCCACAGTGGGTCAAACTGG CAGAATGGCCCAACTCTTGGC 420 

Ribosomal protein S7e TCACGGACCAGACGAGGTTG CAAGAAGGGTGGGGAGCCCG 220 

RP L18A TGGACGCAAACTGCCCACTG CGCTTGGGCAGAGGGAATCG 430 

Ribosomal protein L7A CCGCAGACTTGGAGCCGAGC CCAGCCCTGTGCCGCAAGAT 220 

Ribosomal protein S8 GCCATCCCCATCGGACGCAG GGCGCGGTTGGAATGGCTCA 300 

Ribosomal protein L7 AAAGCAGCAGCCGCTGGCAA TGCGCCATCCACCAGTTGGG 650 

Ribosomal protein L3 AACGGTGGCTCTGTGGCCGA CCAGCTTGTCAGCCGGGGTC 600 

Ribosomal protein SA TCTGCGCTGACAGGGGTGGT TGCTGGGTGCCCAAACCCAC 860 

Ribosomal protein L34 TGTGGCACAGGACACCTCCA ACCGAAGACTGACAAGCAGT 280 

RP L27Ae GCTGAGAGGTCACGTGAGTC GGTTGCTTTGGGATGCGCCC 330 

ATP carrier protein GCCCATGGCCCCCGCATTAG TCCCGACCAGCACCAGCCTT 500 

 

 



48 
 

2.3. DNA extraction and Double stranded RNA/RNAi construct synthesis 

 

Total B. cockerelli genomic DNA was extracted using the cetyltriethylammonium 

bromide (CTAB) buffer protocol (Zhang et al., 1998). The concentration of extracted DNA was 

measured using the NanoDrop 1000 Spectrophotometer (Thermo Scientific, Waltham, MA).    

For all designed primer sets, the temperature gradient PCR was conducted to determine 

the optimum annealing temperature of the primers in the temperature range 50-60°C using the 

Amplitaq Gold 360 PCR kit as per the manufacturer protocol (Applied Biosystems, Foster City, 

CA). The thermal profile was run as follows: Cycle 1= 95°C for 10min (1x), Cycle 2= 95°C for 

30s, 50°C to 60°C for 30s, 72°C for 60s (35x), Cycle 3= 72°C for 7 minutes (1x), and Cycle 4= 

4°C for 10 minutes (1x). Amplicons were visualized on a 2% agarose gel stained with ethidium 

bromide. Only the prominent and single band size were excised and recovered the DNA through 

QIAquick Gel Extraction kit following manufacturer protocol (QIAGEN, Valencia, CA). The 

second PCR was done using the same primer amended with T7 promoter sequence 

(TAATACGACTCACTATAGGG) at 5’ end using the excised amplicon as a template DNA. 

The amplicons visualization and purification was done same as the previous described method. 

The purified product was then used for dsRNA preparation using Hiscribe T7 in vitro 

transcription kit (New England Biolabs, Ipswich, MA) according to the manufacturer protocol. 

 

2.4. Oral delivery of dsRNA construct using sachet feeding system  

 

 To deliver dsRNA/RNAi construct, fifteen adult psyllids were offered a sachet (Figure 

3.1) that contained artificial diet (15% W: V sucrose solution) amended with dsRNAs construct 

[75 µg] and monitored for five days. The mortality data were analyzed using Graph PadPrism 

(Version 5.0b). The dsRNA constructs selected to feed in this trial are listed in table 3.4. 
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Table 3.4. Lists of dsRNA/RNAi construct used in bioassay 

Gene Name Forward primer (5’-3’) Reverse primer (5’-3’) size (bp) 

Yellow B GGGGAACACCAGCGTCTCGC CCTGGTGGACACCACCCCCA 550 

Alpha tubulin F2/R1 GCCATCTACCCCGCCCCTCA GGCTCGAAGCAGGCGTTGGT 350 

Alpha tubulin F3/R1 GCCATCTACCCCGCCCCTCA GGCTCGAAGCAGGCGTTGGT 350 

Alpha tubulin F3/R2 GCCATCTACCCCGCCCCTCA CGTGTCGGGGGTCGCACTTC 375 

Integrin ATCAGATCGTCCGCCCCCGT GGGGCCCCCGGGAAGTTTCT 325 

RP L7A CCGCAGACTTGGAGCCGAGC CCAGCCCTGTGCCGCAAGAT 220 

Ribosomal protein S8 GCCATCCCCATCGGACGCAG GGCGCGGTTGGAATGGCTCA 300 

Proteasome β4 I TCCACAGTGGGTCAAACTGG ACAGGAACCTCCGTGTTGGGGA 300 

Proteasome β4 II TCCACAGTGGGTCAAACTGG CAGAATGGCCCAACTCTTGGCA 420 

 

Nine dsRNA constructs (Table 3.4) were selected and offered individually. For negative 

application control group, dsRNA construct [75 µg] targeting the viral capsid of Solenopsis 

invicta virus was used, for no treatment control only artificial diets (15% W: V sucrose solution) 

was used. Each treatment group was replicated three times. The psyllid mortality significance 

was assessed using repeated measures ANOVA. 

 

Figure 3.1: Sachet feeding system used to deliver dsRNA constructs. Adult psyllids were placed 

inside the 15 ml centrifuge tube. Double stranded RNA constructs [75 µg] described in table 4.4 

were mixed individually with feeding solution, 150 µL of 15% sucrose solution (W: V), and 

partitioned by thin stretched parafilm and offered to adult psyllids and monitored for five days. 

The whole bioassay were maintained in room temperature in the dark. 
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2.5. dsRNA delivery using plant feeding system 

 The dsRNA construct for anti-arginine kinase, for D. citri, obtained from Dr. Wayne 

Hunter (USDA, ARS, Fort Peirce, Florida) was diluted to different concentrations (as 25 µg, 50 

µg, 75 µg, 100 µg and 200 µg) in 300 uL of nanopure water, placed in 0.5 mL microfuge tube 

and freshly cut petiolated leaf was allowed to absorb the solution for 6 hours then nanopure 

water was added when the water level was low. The whole leaf was placed inside the pertri dish 

and 30 adult psyllids were housed and offered (Figure 3.2). Mortality was recorded in every 24 

hours for 6 days. Each concentration was considered as a single treatments. For the no treatment 

control only nanopure water was applied to the leaf, for negative application control, dsRNA 

targeting the viral capsid protein of Solenopsis invicta virus (SINV) was used. Each treatment 

group was replicated for three times, mortality data was analyzed using Graph PadPrism (version 

5.0b) and significance was assessed by using repeated measures ANOVA. 
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Figure 3.2. Experimental set up for the feeding assay for the oral acquisition of various 

concentration of dsRNA constructs synthesized against D. citri arginine kinase gene. Thirty adult 

psyllids were housed in petri plate and offered various concentrations of dsRNA constructs and 

monitored for six days. Nanopure water was used as no treatment control and dsRNA targeting 

for viral capsid protein for SINV was used as a no application control. 

Two dsRNA anti-arginine kinase constructs (Table 3.1) were mixed in a single treatment 

and systemically delivered to the B. cockerelli through plant feeding system. Groups of fifteen 

psyllids were offered 400 µg of dsRNA constructs (200 µg of Arginine kinase I dsRNA + 200 µg 

of Arginine kinase – II dsRNA) and monitored for five days. For negative application control, 

MEGAscript positive control dsRNA was used and for no treatment control, nanopure water was 

used. Five psyllids were removed from each treatment after 24 hours to assess downregulation of 

targeted genes. Each treatment was replicated for three times, mortality data was analyzed using 

Graph PadPrism (version 5.0b) and significance was assessed by using repeated measures 

ANOVA. 
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2.6. Psyllid RNA isolation, cDNA synthesis and quantitative real time PCR (qRT-PCR) 

Among all of the described treatments downregulation was assessed for the target genes; 

alpha tubulin F2/R1, alpha tubulin F3/R1 and the arginine kinase genes described in Table 3.1. 

Psyllids fed with alpha tubulin F2/R1 and alpha tubulin F3/R1 were subjected to total RNA 

extraction using TRIzol (Life Technologies, Carlsbad, CA) reagent as per the manufacturer 

protocol. The total RNA was reverse transcribed to produce complimentary DNA (cDNA) using 

M-MuLV Reverse Transcriptase (New England BioLabs) following manufacturer Protocol. To 

assess downregulation of target genes, quantitative real time PCR (qPCR) was performed on the 

total cDNA. Each 25 μl reaction mixture included 12.5 μl Amplitaq Gold 360 Master Mix (Life 

Technologies, Austin, TX), 1 μl GC enhancer (Life Technologies, Austin, TX), 1 μl of each 

forward and reverse primer, 1.25 μl of Evagreen 20 in water (Biotum, Hayward, CA), 2 μl of 

cDNA (~90 ng) and 5.5 μl of nuclease free water (ThermoFisher Scientific, Grand Island, NY). 

The thermal profile was run as follows: 94°C for 30s, 60°C for 30s, 72°C for 6s, 60°C for 5 s, 

repeated 40 times, followed by a melt curve obtained by ramping from 50°C to 90°C by adding 

1°C each step for 90s, with five seconds between each step, followed by a hold at 4°C. qPCR 

was performed using a specially-designed qPCR primer sets (Table 3.5). For the no template 

control (NTEC), nuclease free water was used instead of cDNA as a template DNA. A similar 

protocol was followed for quantification of downregulation of two different arginine kinase 

genes. 18S ribosomal RNA was used as an endogenous control. Quantitative PCR normalization 

was performed by dividing CT values obtained from each treatment with the respective CT 

values obtained from the 18S rRNA amplification done in the same run. 
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Table 3.5. A list of Primer sets used for the qPCR  

 
Gene Name Forward primer (5’-3’) Reverse primer (5’-3’) Size 

Alpha tubulin F2/R1 GTGGATTCTGGGGTAGGGC CTTGGACATCGAACGCCCC 151 

Alpha tubulin F3/R1 CCACCCTGGAACACTCTGAC CGTTCGATGTCCAAGTTGCG 85 

Arginine kinase – I TGGTGCAACGAAGAAGACCA ATCGTGCGAGAAGGGGATTC 126 

Arginine Kinase - II GGGCTCTTGGTTGTGTCAGA AGAGTTCGATGCCGTCAAGG 100 

18S rRNA AAGCAGGCAAGCAAAGTGTG  CAAATTAAGCCGCAGGCTCC   

 

3. Results 

3.1. dsRNA/RNAi construct synthesis 

 None of the primer sets mentioned in Table 3.2 provided a single prominent band, they 

gave either multiple bands or no amplification, so they were excluded from the further 

investigation.  

 The amplicons, mentioned in Table 3.3, displayed a band size above 400 base pairs failed 

to produce dsRNA construct except Yellow B (550 bp), and excluded from further investigation.  

3.2. Oral delivery of dsRNA construct using sachet feeding system and mortality recording 

 

Of nine treatments all three targeted at alpha tubulin (alpha tubulin F2/R1, alpha tubulin 

F3R1 and alpha tubulin F3/R2) caused 91.11% ± 5.88% SEM, 82.22% ± 2.22% SEM and 

71.11% + 2.22% SEM of mortality respectively at day 5, which is greater than the mortality 

caused due to no treatment control (15% W: V sucrose solution) 62.22% ± 13.51% SEM and 

control dsRNA treatment 37.78% ± 8.01% SEM. (Figure 3.3A, 3.3B, and 3.3C). A P-value of P 

< 0.0001 was obtained from the repeated measures ANOVA suggested the significance of the 

mortality was due to the three alpha tubulin treatments. The ribosomal protein S8 construct 

caused 28.89% ± 9.69% SEM mortality which is less than both control dsRNA treatment 37.78% 

± 8.01% SEM and no treatment control 62.22% ± 13.51% SEM (Figure 3.3G and 3.3H). This 

treatment did not cause significant mortality with respect to the control treatments (P > 0.05). 
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Four treatments, yellow B, integrin, proteasome B4 F1/R1 and proteasome B4 F1/R2 caused 

46.67% ± 7.70% SEM, 37.78% ± 8.01% SEM, 46.67% ± 3.85% SEM and 51.11% ± 5.88% 

SEM of mortality respectively. These treatments induced a response greater than control dsRNA 

treatment 37.78% ± 8.01%SEM but less than the no treatment control 62.22% ± 13.11% SEM 

(Figure 3.3F, 3.3E, 3.3H and 3.3I). These four treatments also did not cause the significant 

mortality of psyllids (P>0.05) when compared with control treatments. 

 

 

Figure 3.3. Mortality recording of psyllids overtime by oral feeding of dsRNA constructs (A) 

alpha tubulin F2/R1, (B) alpha tubulin F3/R1, (C) alpha tubulin F3/R2, (D) ribosomal protein 

L7A, (E) Integrin, (F) Yellow B, (G) ribosomal protein S8, (H) proteasome B4 F1/R1 and (I) 

proteasome B4 F1/R2. Groups of fifteen adult psyllids were used for each treatment. All the 

experiments were repeated three times. 15% W: V sucrose solution was used as a no treatment 

control and dsRNA targeted for viral capsid protein was used as a dsRNA control. Graph 

PadPrism version 5.0b was used for statistical data analysis. Standard error is represented for 

each day and the psyllid mortality significance was assessed using repeated measures ANOVA. 
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3.3. Oral delivery of dsRNA construct, arginine kinase targeted for D. citri, using plant 

feeding system and mortality recording 

 The average mortality was not significantly higher in the psyllids treated with 75 µg 

dsRNA than the psyllids treated with no treatment control and positive dsRNA control (P = 

0.9471) (Figure 3.4). All other treatments also did not cause significant mortality of psyllids with 

respect to the positive control treatment and no treatment control (P < 0.05). Psyllids fed with 75 

µg of dsRNA construct caused only 15.55% ± 5.88% SEM average mortality whereas psyllids 

fed with 150 µg, 225 µg, 300 µg and 600 µg dsRNA construct caused average mortality of 35% 

± 12.37% SEM, 31.11% ± 4.45% SEM, 42.22% ± 12.37% SEM and 26.66% ± 3.84% SEM 

respectively, which is higher than the average mortality caused due to the positive control 

treatment (20% ± 0% SEM) and no treatment control (24.44% ± 4.44% SEM) (Figure 3.4B, 

3.4C, 3.4D and 3.4E).  

  

Figure 3.4. Average mortality of psyllids in overtime after acquisition of different concentration 

of arginine kinase dsRNA construct (A) 75 µg, (B) 150 µg, (C) 250 µg, (D) 300 µg and (E) 600 

µg through systemic plant delivery system. Fifteen adult psyllids were used for each treatment 

A
 

C B
 

E
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and each treatment was replicated three times. Nanopure water was used as a no treatment 

control and dsRNA construct targeted for viral capsid protein was used as a positive dsRNA 

control. All the data were analyzed using Graph PadPrism (version 5.0b). Standard error is 

represented for each day and the significance of mortality was assessed by using repetitive 

measures ANOVA. 

3.4. Systemic delivery of dsRNA construct, arginine kinase targeted for D. citri, using plant 

feeding system 

 Overall mortality caused due to the oral delivery of mixtures of two arginine kinase 

dsRNA (arginine kinase-I and arginine kinase-II) 57%±3.33% SEM caused significantly higher 

mortality than the psyllids fed with no application control (MEGAscript positive control dsRNA) 

(30%±5.77% SEM) and nanopure water 33.33%±3.33% SEM (P<0.05) (Figure 3.5).  

 

Figure. 3.5. Mortality of adult potato psyllids overtime after systemic delivery of argininine 

kinase dsRNA (AKDSRNA), MEGAscript positive control dsRNA (CDSRNA) and nanopure 

water through plant feeding system. Fifteen psyllids were housed in the petri-dish and allowed to 

feed on pepper systemically treatment with the solutions. Each treatments were replicated three 

times. The mortality of adult psyllids were recorded in every 24 hours. Graph PadPrism (version 

5.0b) was used for statistical analysis. Standard error has been presented for each day and the 

psyllid mortality has been assessed using repeated measures ANOVA. 
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3.5. Down regulation of alpha tubulin mRNA level due to oral feeding of alpha tubulin 

dsRNA construct using sachet feeding system. 

To assess the down-regulation of endogenous mRNA levels in potato psyllids treated 

with alpha tubulin F2/R1 and alpha tubulin F3/R1 in 24 hours, qPCR was used to monitor gene 

expression of reverse transcribed target mRNAs. The CT values obtained from the qPCR, were 

compared and analyzed to identify possible down-regulation over time. There is a significant 

difference in mean CT values among the treatments (P<0.05) this significant increase suggest the 

down-regulation of endogenous mRNA levels over time (Figure 3.6). 

 

Figure 3.6. Average CT values obtained from qPCR done using total cDNA obtained from total 

B. cockerelli RNA treated with dsRNA construct (A) alpha tubulin F2/R1 and alpha tubulin 

F3/R1. Fifteen potato psyllids were orally fed with 15% W: V sucrose solution with dsRNA 

construct and mortality was recorded in every 24 hours. Each treatment was replicated three 

times. The total RNA was extracted from each replication and cDNA was prepared and used to 

run qPCR. CDNA obtained from the psyllids fed with only 15% W: V sucrose solution was 

consider as a no treatment control and the use of nuclease free water instead of template cDNA 

was consider as no template control. All the data were analysed using Graph PadPrism (version 

5.0b). Standard error is represented for each day and the significance of the average CT values 

was assessed by using ANOVA. 

3.6. Downregulation of arginine kinase mRNA levels due to oral acquisition of dsRNA 

constructs against arginine kinase I and arginine kinase II using systemic plant delivery 

system. 

 Psyllids fed with the anti-arginine kinase I dsRNA construct (Table 3.1) did not show 

significant downregulation of endogenous arginine kinase I gene, as indicated by their 

normalized index value (P>0.005) (Figure 3.7A) (Table 3.6). Similarly, no significant 
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downregulation of endogenous arginine kinase II gene was observed when analyzed with the 

normalized index value (P>0.005) (Figure 3.7B) (Table 3.6). 

 

Figure 3.7. 18S gene expression normalization index of Arginine kinase-I (A) and Arginine 

kinase-II (B) gene downregulation in different treatment groups. In figure (A) CDSRNA AK I 

(1.31 ± 0.013 SEM) = psyllids that received MEGAscript control dsRNA, NTRC AK I 

(1.17±0.034 SEM) = psyllids that received nanopure water, AK I (1.24±0.017 SEM) = psyllids 

that received 200 μg arginine kinase I dsRNA and NTEC AK I (1.22±0.005 SEM) = no template 

control. In figure (B), CDRNA AK II (1.42±0.005 SEM) = psyllids that received MEGAscript 

control dsRNA, NTRC AK II (1.33±0.005 SEM) = psyllids that received nanopure water, AK II 

(1.26±0.005 SEM) = psyllids that received 200 μg arginine kinase II dsRNA and NTEC AK II 

(1.34±0.005 SEM) = no template control. Standard error is represented for each treatment and 

significance was determined using one-way ANOVA. 

 

Table 3.6. A list of CT values, replicated CT values and calculated standard deviation for 

replicated CT values obtained by running qPCR on CDNAs obtained from psyllids systemically 

fed with MEGAscript control dsRNA, nanopure water, a total 400 μg dsRNA (200 μg arginine 

kinase I + 200 μg arginine kinase II dsRNA).  

No. Name Ct Rep. Ct Std. Dev. 

1 AK I 17.99 17.44 0.48 

2 AK I 17.11   

3 AK I 17.24   

4 AK I 16.86 16.79 0.24 

5 AK I 16.52   

6 AK I 16.99   

7 AK I 17.11 17.54 0.42 

A
 

B
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8 AK I 17.95   

9 AK I 17.55   

10 CDSRNA AK I 17.14 17.5 0.32 

11 CDSRNA AK I 17.61   

12 CDSRNA AK I 17.74   

13 NTRC AK I 17.37 16.5 0.85 

14 NTRC AK I 16.45   

15 NTRC AK I 15.68   

16 NTEC AK I 16.8 16.6 0.2 

17 NTEC AK I 16.4   

18 NTEC AK I 16.59   

19 AK II 17.54 17.47 0.06 

20 AK II 17.47   

21 AK II 17.42   

22 AK II 17.52 17.75 0.2 

23 AK II 17.83   

24 AK II 17.9   

25 AK II 17.05 17.88 0.73 

26 AK II 18.17   

27 AK II 18.42   

28 CDSRNA AK II 18.66 19 0.39 

29 CDSRNA AK II 18.92   

30 CDSRNA AK II 19.43   

31 NTRC AK II 19.27 18.85 0.41 

32 NTRC AK II 18.46   

33 NTRC AK II 18.83   

34 NTEC AK II 18.02 18.18 0.2 

35 NTEC AK II 18.4   

36 NTEC AK II 18.11   

37 AK 18S 14.77 14.36 0.45 

38 AK 18S 14.44   

39 AK 18S 13.87   

40 AK 18S 14.24 14.19 0.11 

41 AK 18S 14.07   

42 AK 18S 14.27   

43 AK 18S 13.52 13.56 0.04 

44 AK 18S 13.59   

45 AK 18S 13.57   

46 CDSRNA 18S 13.25 13.36 0.1 

47 CDSRNA 18S 13.44   

48 CDSRNA 18S 13.38   

49 NTRC 18S 14.32 14.15 0.16 

50 NTRC 18S 14.13   

51 NTRC 18S 14.01   

52 NTEC 18S 13.97 13.59 0.41 

53 NTEC 18S 13.15   

54 NTEC 18S 13.64   
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Discussion 

 

In this study, significant mortality of adult potato psyllids has been demonstrated after 

feeding of anti-alpha tubulin dsRNA. The results obtained from qPCR show the downregulation 

of endogenous alpha tubulin mRNA. This suggests that introduction of exogenous dsRNA 

complimentary to certain genes can cause the silencing of target endogenous mRNAs.  

All of the dsRNA construct did not cause significant mortality of adult potato psyllids. 

Some other dsRNA constructs caused a slightly greater percentage of mortality compared with 

negative application control, but did not cause significant mortality. By systemic delivery of two 

dsRNA constructs (mixed together) against the target gene (arginine kinase), the treatment 

caused significant mortality of individuals when compared with treatment group that received 

nanopure water and the treatment group MEGAscript positive control dsRNA. By mixing two 

different dsRNA constructs and allowing the insects to feed on such a treatment is a possible way 

to cause the significant mortality of potato psyllids. Significant downregulation of endogenous 

mRNA levels for two arginine kinase genes could not achieved, but comparing the normalized 

index value with other control treatments indicates a slight downregulation of endogenous 

arginine kinases mRNA levels (Figure 3.6). RNAi is a promising gene silencing technology and 

is a novel management tool for insect pests (Gu and Knipple, 2013). One of the limiting factor of 

RNAi is the delivery of dsRNA constructs (Scott et al., 2013). The dsRNA delivery systems 

proposed in this study are more efficient and economically valid.  
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Chapter–Four 

Oral delivery of insecticide, Imadicloprid, and dsRNA/RNAi construct, CYP450 6BQ13, 

towards potato/tomato psyllid, Bactericera cockerelli 

1. Introduction 

 

The potato/tomato psyllids, Bactericera cockerelli (Sulc.), (Order: Hemiptera) are 

hemimetabolous and undergo five nymphal instars (Lehman, 1930; Liu and Trumble, 2007). 

Potato psyllids are phytophagous insects and exclusively feed on phloem. They have been 

observed feeding and residing on more than 20 families of plant but have only been seen 

complete their development on 40 plant species (Knowlton and Thomas, 1934; Wallis, 1951). 

Potato psyllids prefer the plants from solanaceae family for survival and development (Wallis 

1975). Although they will feed on plants besides solaneceous like, bindweed (Convolvulus spp) 

and sweet potato (Ipomoea batatas) (Munyaneza, 2012). B. cockerelli can cause damage to crop 

plants by direct feeding; hence, they have been a serious and economic pest of solanaceous crops 

(Casey and Trumble, 2011).  

B. cockerelli is a serious pest of solanaceous crops like potato and tomato and is 

associated with psyllid yellows disease of potatoes (Munyaneza et al., 2007). B. cockerelli is 

associated with the transmission of the bacterial pathogen, Candidatus Liberibacter 

solanacearum, which is the causal agent of Zebra Chip disease in potato (Munyaneza et al., 2007; 

Hansen et al., 2008; Liefting et al., 2009). This disease had led to for millions of dollars in losses 

in potato industries in various locations in Unites States, Mexico, Central America and New 

Zealand (Munyaneza, 2012; Nachappa et al., 2012; Munyaneza, 2007; Secor and Rivera-Varas, 

2004). Management strategies for Zebra Chip disease and psyllid yellows disease are targeted 

against the potato psyllid employing chemical and cultural strategies (Butler and Trumble, 2012). 
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Currently, the greatest focus in potato psyllids management is on chemical applications 

(Goolsby et al., 2007; Berry et al., 2009; Gharalari et al., 2009; Butler and Trumble, 2012). 

Various classes of insecticides have been registered for use according to the life stage of the 

psyllid (Rondon et al., 2012). The management of potato psyllid with insecticide application is 

difficult; in some cases, insecticides application should be specific. The insecticides that is 

effective against adult stage might not have the same insecticidal activity against nymph stages 

or egg stage (Gharalari et al., 2009; Zens et al., Rondon et al., 2012). There is always a risk of 

insects developing resistance towards chemical pesticides, such risk factors can be mitigate with 

suitable planning; to avoid development of resistance chemical pesticide users should follow 

insecticide resistance management plans (Rondon et al., 2012). Some populations of potato 

psyllids demonstrate resistance to field rates of imidacloprid (Rondon et al., 2012). Psyllids from 

California were found to be resistant to imidacloprid and spinosad compared to psyllids from 

Central USA (Liu and Trumble, 2007). Another risk of use of chemical pesticides is associated 

with killing other beneficial and non-target insects disrupting the polluting the surrounding 

ecosystem. There are no practical non-chemical control strategies for potato psyllids that have 

been made available to growers (Rondon et al., 2012). 

Cultural control of B. cockerelli refers to the alteration and administration of the cropping 

environment to reduce the risk of pest population and damage associated with infestation (Pedigo 

and Rice, 2006). By shifting the planting time, the damage associated with B. cockerelli can be 

minimized. Eyer and Enzie., (1939) observed that early-planted potato and tomato crops 

developed psyllid yellows as severely as those planted later in the season. Wallis, (1948) showed 

significantly higher numbers of B. cockerelli in early planted potato field in Wyoming and 

Nebraska compared to middle or late season planting. Other solanaceous crops can also be used 
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as an alternate trap crop to protect the main crop from severe damage. Pepper plants were used as 

a secondary crop or more likely as an alternate trap crop to attract B. cockerelli from potatoes in 

Colorado (Cranshaw, 1994). Researchers have also focused on finding some B. cockerelli 

resistant host plants. Of the thirty nine potato varieties screened, none were found to tolerate 

psyllid yellows disease (Babb and Kraus, 1937). All commercial potato varieties tested were 

found to be susceptible to B.cockerelli (Linford, 1928; Starr, 1939). The research on biological 

management of this pest is still ongoing. The use of natural enemies of this pest is one of the 

environmental managing tactic (Butler and Trumble, 2012). All the tactics, chemical or cultural, 

should be used to mitigate the possible losses associated with B. cockerelli. RNAi technology is 

a potential strategy of managing insect pests and plant pathogens and is therefore gaining the 

attention of the scientific community (Price and Gatehouse, 2008). 

  RNAi is a technique that uses the introduction of novel, targeted double stranded RNA 

(dsRNA) sequences into pest organisms to degrade mRNA complimentary to the sequences in 

the dsRNA, and finally inhibits gene expression (Mello and Conte, 2004). Sequence specific 

gene silencing can be achieved via RNAi in insects by feeding dsRNA (Baum et al., 2007). All 

management strategies currently used to manage B. cockerelli are relatively expensive and 

pesticide intensive, further study towards integrated pest management (IPM) of this pest is 

required for sustainable pest control. In some cases, the administration of two or more than two 

different compounds/treatments together or sequentially may act synergistically, i.e., might cause 

much more toxicity than the compounds given alone or may act antagonistically, i.e., the effects 

due to the combination of two or more than two treatments might lower the individual toxicity 

effects (Hodgson, 2004). In this study, potato psyllids has been administered with CYP450 
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6BQ13 dsRNA and two different concentration of imidacloprid solutions and monitored for five 

days to identify the synergism between these two different treatments. 

Insecticides have proven the only effective management tool for the management of 

potato psyllid infestations (Goolsby et al., 2007; Gharalari et al., 2009). Imidacloprid is one of 

the pesticides which has been used extensively to manage the potato psyllid (Goolsby et al., 

2007). This compound is a systemic neonicotinoid insecticide and acts as an agonist of 

acetylcholine binding to post–synaptic nicotinic acetylcholine receptors, disrupting feeding 

behaviors and causing tremors, convulsions and finally death of insects (Butler et al., 2012; 

Nauen, 1995; Oliveira et al., 2011). The imidacloprid disrupts feeding behavior of potato psyllids 

reducing the transmission of Candidatus liberibacter solanaceraum (Lso) (Butler et al., 2011). 

Boina et al. (2009) observed negative effects on development, reproduction, survival and 

longevity of Asian citrus psyllid, Diaphorina citri, when exposed to sub lethal concentration of 

imidacloprid (0.1 µg/ml). 

This study aims to advance the integrated pest management technique against the B. 

cockerelli. The B. cockerelli transcriptome has been examined to identify cytochrome p450s 

family genes involved in insecticide resistance and designed a dsRNA construct against one of 

the cyp450s gene. Anti-CYP450 6BQ13 dsRNA has been synthesized in vitro and offered to 

potato psyllids along with commonly used insecticide, imidacloprid, through artificial systemic 

plant feeding system. The mortality was recorded every 24 hours for five days and possible 

downregulation of cytochrome P450 6BQ13 gene was assessed using qRT-PCR. 
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2. Materials and methods 

 

2.1. Insect colonies 

 

Potato psyllids used in this experiment were obtained from Adrian Silva (Zebra Chip 

monitoring Program, Texas A&M Agrilife Research, Weslaco, Texas) and were maintained on 

pepper plants (Capsicum annum) in a bug dorm (36in x 24in x 18in) within insectarium at 26°C, 

70% humidity and a 14:10 (day: night) cycle. The colony was maintained without any exposure 

to pesticides. Mixed male/female adult potato psyllids were used in this experiment. 

2.2. Imidacloprid 

 

The insecticide formulation, Tree & Shrub Protect & Feed (Bayer Advanced, Kansas 

City, MO 64120) was used as an imidacloprid source. The insecticide solution used in this 

experiment was provided by Mr. Irfan Vafaie (Texas A&M Agrilife Research & Extension 

Center at Overton). According to the manufacturer’s protocol, the dosage for containerized 

plants (one teaspoon of insecticide solution in one gallon of water) was chosen. Converting this 

dosage amount into standard milliliter form, we calculated 4.928 ml (one teaspoon) of 

insecticides in 3785.41 ml (one gallon) of water. This concentration is equivalent to 1.3 uL of 

insecticide solution in 1 ml of water. In this experiment, we have considered this concentration 

as 1X imidacloprid solution and 10 fold dilution of the 1X imidacloprid solution has been named 

as 0.1X, 10 fold increase in concentration of the 1X imidacloprid solution has been named as 

10X and 100 fold increase in concentration of the 1X imidacloprid solution has been named as 

100X. All the solutions were made in nanopure water. 

2.3. Double stranded RNA/RNAi construct selection, primer designing and synthesis 

 

 The B. cockerelli transcriptome database (Fisher et al., 2014) was examined to find the 

CYP450 6BQ13 gene, this gene is known to be involved in insecticide resistance. The NCBI 
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primer blast tool was used to design primers for CYP4506BQ13 gene. The settings in NCBI 

primer blast tool included a PCR product size of 200 to 500 bp length, primer melting 

temperature in a range of 500C to 600 C, and specificity was checked against the order hemiptera. 

 Cetyltriethylammonium bromide (CTAB) buffer protocol (Zhang et al., 1998) was used 

to extract total B. cockerelli genomic DNA. The quality of the extracted DNA was assessed 

using NanoDrop 1000 Spectrophotometer (Thermo Scientific, Waltham, MA) and visualized on 

a 2% agarose gel stained with ethidium bromide. The temperature gradient PCR was conducted 

using the Amplitaq Gold 360 PCR kit as per the manufacturer protocol (Applied Biosystems, 

Foster City, CA). The thermal profile was run as follows: cycle 1, 95°C for 10 minutes (1x), 

cycle 2, 95°C for 30s, 50-60°C for 30s, 72°C for 60s (45x), and cycle 3, 720 C for 7 min (1x). 

Amplicons were visualized on a 2% agarose gel stained with ethidim bromide. The prominent 

and single band size was excised and recovered DNA through QIAquick Gel Extraction kit 

following manufacturer protocol (QIAGEN, Valencia, CA). A second PCR was done using the 

same primer amended with T7 promoter sequence (TAATACGACTCACTATAGGG) at the 

5’end. The excised amplicon visualization and purification was done the same as the previously 

described method. The purified product was analyzed using the NanoDrop 1000 

Spectrophotometer (Thermo Scientific, Waltham, MA) and used for dsRNA synthesis via the 

MEGAscript RNA kit (Ambion, Austin, TX, USA) as per the manufacturer protocol.  

2.4. Mortality bioassay of potato psyllids fed with various amount of imidacloprid solutions 

 

 For the preliminary study, potato psyllids were grouped into four treatment groups of ten 

psyllids. Each treatment group was replicated three times. The treatment groups were as follows: 

(1) psyllids that received 0.1X imidacloprid solution, (2) psyllids that systemically received 1X 

imidacloprid solution, (3) psyllids that received 10X imidacloprid solution and (4) psyllids that 
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systemically received nanopure water as no treatment conrol. To deliver the treatment solutions 

orally, the freshly cut petiolate pepper leaf was allowed to absorb the treatment solution put in 

1.7 mL microfuge tube for six hours then refilled with nanopure water when the water level was 

low. The whole leaf was placed inside the petri dish and ten psyllids were housed. Mortality was 

recorded every 24 hours for five days. The data were analysed using Graph PadPrism (version 

5.0b). The psyllid mortality significance was assessed by using repeated measures ANOVA.  

2.5. Mortality bioassay of potato psyllids fed with Imidacloprid in conjunction with dsRNA 

targeted for CYP 450 6BQ13 gene 

 

Potato psyllids were grouped into six treatment groups with fifteen psyllids in each 

groups. The treatment groups were as follows: (1) psyllids that systemically received 10X 

imidacloprid, (2) psyllids that systemically received 10X imidacloprid and 400 microgram 

CYP450 6BQ13 dsRNA (500 uL of 800 ng/uL), (3) psyllids that systemically received 100X 

imidaclorpid solutions, (4) psyllids that systemically received 100X imidacloprid solution and 

400 microgram CYP450 6BQ13 dsRNA, (5) psyllids that received only nanopure water and (6) 

psyllids that systemically received 400 µg of MEGAscript positive control dsRNA (Figure 4.1). 

The oral delivery for this bioassay was similar as above described systemic method (2.4). To 

assess the particular downregulation of CYP450 6BQ13 gene, five psyllids from each treatments 

were removed and mortality was recorded for rest of the psyllids. The mortality was recorded 

every 24 hours for five days. The mortality data was analyzed using Graph PadPrism Version 

5.0b. The psyllid mortality significance was assessed using repeated measures ANOVA.  
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Figure 4.1. Experimental set up for the mortality study of B. cockerelli through systemic delivery 

of six different treatments, nanopure water, 10X imidacloprid solution, 10X imidacloprid 

solution + CYP450 6BQ13 dsRNA, 100X imidacloprid solution, 100X imidacloprid solutions + 

CYP450 6BQ13 dsRNA and MEGAscript positive control dsRNA. Each treatment was 

replicated three times. 10 psyllids were housed in each treatment. The mortality data was 

analysed using Graph PadPrism (version 5.1b). 

 

2.6. Psyllid RNA isolation, cDNA synthesis and quantitative real time PCR (qRT-PCR) 

 

The five psyllids removed from each treatment were pooled and subjected to total RNA 

extraction using TRIzol (Life Technologies, Carlsbad, CA) reagent as per the manufacturer 

protocol. The total RNA was reverse transcribed to produce complimentary DNA (cDNA) using 

M-MuLV Reverse Transcriptase (New England BioLabs) following manufacturer protocol. To 

assess the possible downregulation of endogenous CYP450 6BQ13 mRNA level, quantitative 

real time polymerase chain reaction (qRT-PCR) was performed on the total cDNA. The reaction 

mixture was 12.5 μL Amplitaq Gold 360 Master mix (Life Technologies, Austin, TX), 1 μL GC 

enhancer (Life Technologies, Austin, TX), 1 μL of each forward and reverse primer, 1.25 μL of 

Evagreen 20 in water (Biotium, Hayward, CA), 2 μL of extracted cDNA as a template DNA 
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(~90 ng) and 5.5 μL of nuclease free water (ThermoFisher Scientific, Grand Island, NY). The 

total volume was 25 μL per reaction. The thermal profile was run as follows: 94°C for 30s, 60°C 

for 30s, 72°C for 6s, 60°C for 5 s, repeated 40 times, followed by a melt curve obtained by 

ramping from 50°C to 90°C by adding 1°C each step for 90s, with five seconds between each 

step, followed by a hold at 4°C. qPCR was performed using a specially-designed qPCR primer 

set: sense primer (5’-CCCTCAATTGTGTGGGACGA-3’) and reverse primer (5’–

TGACGGGGACTTCAAAGGTG-3’) to amplify a 126-bp product. For the no template control 

(NTEC), nuclease free water was used instead of cDNA as a template DNA. 18S ribosomal RNA 

was used as an endogenous control. CT values obtained from each treatments were compared 

and normalized to the 18S rRNA. 

3. Results 

 

3.1. Potato psyllids mortality fed with imidacloprid solutions 

 

 Psyllids fed with high concentrated imidacloprid solution (10X) caused comparatively 

high mortality (73% ± 16.68% SEM) than psyllids fed with lower concentrated imidacloprid 

solutions; 1X imidacloprid solution caused only 37% ± 8.83% SEM and 1X imidacloprid 

solution caused 37% ± 17.66% SEM mortality and nanopure water fed psyllids caused mortality 

of 40% ± 5.78% SEM. (Figure 4.2). The two lower concentration imidacloprid solutions, 1X and 

0.1X did not cause significant mortality with respect to psyllids fed with nanopure water 

(P>0.05) (Figure 4.2A and 4.2B).  
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Figure 4.2. Potato psyllid mortality overtime by oral feeding of (A) 0.1X imidaclorid solution, 

(B) 1X imidacloprid solution and (C) 10X imidacloprid solution. Groups of ten adult psyllids 

were used for each treatment. Each treatment was replicated three times. Only nanopure water 

was used as a no treatment control. Graph PadPrism version 5.0b was used for statistical data 

analysis. Standard error is represented for each day and the psyllid mortality significance was 

assessed using repeated measures ANOVA. 

 

3.2. Mortality bioassay of potato psyllids fed with Imidacloprid solution and CYP 450 

6BQ13 dsRNA. 

 

Cumulative mortality was significantly higher in the potato psyllids fed with both, 10X 

imidacloprid solution (93% ± 3.41% SEM) and 10X imidacloprid solution + CYP450 6BQ13 

dsRNA treatments (100% ± 0% SEM) than psyllids fed with control dsRNA (23% ± 3.41% 

SEM) and nanopure water (17% ± 6.68% SEM) (P<0.001) (Figure 4.3). Psyllids treated with 

10X imidacloprid solution + CYP450 6BQ13 dsRNA caused 100% ±0% SEM mortality but 

could not able to cause significant mortality than 10X imidacloprid solution (93% ± 3.41% 

SEM) (P>0.005) (Figure 4.3A). 

 Psyllids fed with 100X imidacloprid solution (97% ± 3.41% SEM) and 100X 

imidacloprid + CYP450 6BQ13 dsRNA (100% ± 0% SEM) caused significantly higher mortality 

of psyllids when compared to psyllids fed with control dsRNA (Mortality = 23% ± 3.41% SEM) 

and nanopure water (17% ± 6.68% SEM) (P<0.0001) (Figure 3 B). After 24 hours, 100X 

imidacloprid solution + CYP450 6BQ13 dsRNA treatment caused 33% ± 8.83% SEM mortality 

of psyllids whereas on the same day 100X imidacloprid solution caused only 13% ±3.34% SEM 

A
 

C B 
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of psyllid mortality but for remainder of the assay, except on day 5, when the 100X imidacloprid 

solution caused slightly higher mortality than 100X imidacloprid + CYP450 6BQ13 dsRNA 

treatment (Figure 4.3B).  

 

Figure 4.3. Mortality of potato psyllids overtime by oral feeding of (A) 10X imidacloprid 

solution and CYP450 6BQ13 and (B) 100X imidacloprid solution and CYP450 6BQ13. Groups 

of fifteen psyllids were used for each treatment. Each treatment was replicated for three times. 

Psyllids fed with only nanopure water was used as no treatment control. Psyllids fed with 

MEGAscript control dsRNA was used as a positive control dsRNA. Graph PadPrism version 

5.0b was used for statistical data analysis. Standard error is represented for each day and the 

psyllid mortality significance was assessed using repeated measures ANOVA. 

 

3.3. CYP450 6BQ13 gene downregulation analysis 

 

Overall, there was no significant difference between CYP450 6BQ13 gene 

downregulation in all treatment groups as indicated by their normalized index value (P>0.005) 

(Figure 4) (Table 4.1). Psyllids that received 10X imidacloprid solution + 400 µg CYP450 

6BQ13 dsRNA and Psyllids that received 100X imidacloprid solution + 400 µg CYP450 6BQ13 

dsRNA did not show any endogenous CYP450 6BQ13 genes downregulation when compared 

with psyllids that received only control dsRNA and nanopure water (P>0.05) (Figure 4.4). 

 

B A 
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Figure 4.4. 18S gene expression normalization index of CYP450 6BQ13 gene downregulation in 

different treatment groups, where CDSRNA CYP450 = psyllids that received MEGAscript 

dsRNA, NTRC CYP450 = psyllids fed with only nanopure water, 10X CYP450 = psyllids fed 

with 10X imidacloprid solution and 400 milligram CYP450 6BQ13 dsRNA, 100X CYP450 

6BQ13 = psyllids fed with 100X imidacloprid solution and 400 milligram CYP450 6BQ13 

dsRNA, and NTEC CYP450 = no template control, instead of cDNA, nuclease free water was 

used. Standard error is represented for each day and significance was determined using one-way 

ANOVA. Index: CDSRNA CYP450 = 1.394 ± 0.045 SEM, NTRC CYP450 =1.222 ± 0.02 SEM, 

10X CYP450 = 1.327 ± 0.009 SEM, 100X CYP450 = 1.257 ± 0.028 SEM and NTEC CYP450 = 

1.557 ± 0.13 SEM. 

 

Table 4.1. A list of CT values, replicate CT values, and calculated standard deviation obtained by 

running qPCR on cDNAs obtained from psyllids systemically fed with control dsRNA, nanopure 

water, 10X imidacloprid solution + 400 µg CYP450 6BQ13 dsRNA and 100X imidacloprid 

solution + 400 µg CYP450 6BQ13 dsRNA. 

No. Name Ct Rep. Ct Std. Dev. 

1 10X I CYP 19.53 19.69 0.15 

2 10X I CYP 19.72   

3 10X I CYP 19.82   

4 10X II CYP 20.35 20.47 0.25 

5 10X II CYP 20.30   

6 10X II CYP 20.75   
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7 10X III CYP 20.68 20.36 0.29 

8 10X III CYP 20.22   

9 10X III CYP 20.16   

10 100X I CYP 18.19 18.76 0.49 

11 100X I CYP 19.07   

12 100X I CYP 19.00   

13 100X II CYP 16.84 18.44 1.77 

14 100X II CYP 18.14   

15 100X II CYP 20.34   

16 100X III CYP 21.07 20.86 0.21 

17 100X III CYP 20.87   

18 100X III CYP 20.64   

19 CDSRNA 20.85 21.25 1.17 

20 CDSRNA 20.33   

21 CDSRNA 22.57   

22 NTRC CYP 18.57 18.71 0.52 

23 NTRC CYP 18.28   

24 NTRC CYP 19.29   

25 10X I 18S 15.37 15.28 0.31 

26 10X I 18S 14.93   

27 10X I 18S 15.53   

28 10X II 18S 15.01 15.21 0.22 

29 10X II 18S 15.17   

30 10X II 18S 15.46   

31 10X III 18S 14.65 14.6 0.25 

32 10X III 18S 14.83   

33 10X III 18S 14.32   

34 1OOX I 18S 15.60 15.58 0.14 

35 1OOX I 18S 15.44   

36 1OOX I 18S 15.71   

37 1OOX II 18S 15.19 15.45 0.23 

38 1OOX II 18S 15.59   

39 1OOX II 18S 15.58   

40 1OOX III 18S 15.54 15.17 0.32 

41 1OOX III 18S 15.04   

42 1OOX III 18S 14.94   

43 CDSRNA 18S 14.83 15.24 0.37 

44 CDSRNA 18S 15.56   

45 CDSRNA 18S 15.32   

46 NTRC 18S 15.28 15.31 0.14 

47 NTRC 18S 15.46   
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48 NTRC 18S 15.19   

49 NTEC CYP 23.60 26.36 3.83 

50 NTEC CYP 24.75   

51 NTEC CYP 30.73   

52 NTEC 18S 18.57 16.93 1.43 

53 NTEC 18S 15.92   

54 NTEC 18S 16.29   

 

4. Discussion 

 

In this study, a protocol to study the synergism between RNAi through oral acquisition of 

dsRNA against one of the xenobiotic metabolizing genes, CYP450 6BQ13, and commonly used 

insecticide, imidacloprid towards B. cockerelli was attempted. We hypothesized that, the 

systemically administered dsRNA against CYP450 6BQ13 gene would downregulate the 

CYP450 6BQ13 gene, and the B. cockerelli receiving the dsRNA would not able to oxidize the 

supplied insecticide, imidacloprid, hence the toxicity due to this chemical would be more 

effectively increases and causes more psyllid mortality. Our first attempt suggested that there 

was no such significant downregulation of CYP450 6BQ13 gene, after systemic acquisition of 

dsRNA construct targeted against CYP450 6BQ13 gene. However, there are a many possible 

reasons behind it. RNAi occurs only when the dsRNA is delivered or up taken into the cells of 

the targeted tissue (Yu et al., 2012). Another limiting factor of the RNAi could be the 

concentration or amount of administered dsRNA construct. 

Though the significant downregulation of CYP450 6BQ13 gene could not achieved in 

this study, the oral acquisition of two different treatments, 10X imidacloprid solution + CYP450 

6BQ13 dsRNA and 100X imidacloprid solution + CYP4506BQ13 dsRNA caused 100% 

mortality of potato psyllid, which is greater than the mortality caused due to single treatment, 

10X imidacloprid solution (Mortality = 93% ± 3.41% SEM) and 100X imidacloprid solution 
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(Mortality =97% ± 3.41% SEM). There is no antagonism effects for two different treatments 

otherwise the mortality due to both treatments, 10X imidacloprid solution + CYP450 6BQ13 

dsRNA and 100X imidacloprid solution + CYP4506BQ13 dsRNA, would have caused lower 

mortality than that of the single treatment, 10X imidacloprid solution and 100X imidacloprid 

solution.  

Enzyme-based metabolism of xenobiotics consists of involvement of the various 

detoxifying enzymes, such as esterases, cytochrome P450s (CYP5450s), and glutathione S-

transferases (GSTs) (Hardy 2014; Li et al., 2013). Cytochrome P450s (CYP450s) are a large 

class of enzymes involve in the detoxification and/or activation of xenobiotics (Liu et al., 2015). 

Studies have revealed that multiple CYP450s genes are involved in the xenobiotics metabolism 

or detoxification. Hence, in this study we have targeted only one gene from CYP450s family, 

therefore this could be one of the limitations of this study. For the future study, multiple genes 

involved in the xenobiotic metabolism from CYP450s family, GSTs family and esterases family 

should be targeted to observe the significant synergism between insecticides application and 

RNAi against xenobiotic detoxifying genes. 

Microbial communities, especially the secondary endosymbionts in the potato psyllids 

are responsible for providing resistance to insecticides (Arp et al., 2014; Hail et al., 2012). 

Bautista et al. (2008) mentioned that, in insect species the cytochrome family of enzymes 

(Cytochrome P450s) is highly involved in insecticide metabolism. In insects the increase in 

expression of cytochrome P450s may enhance the xenobiotic metabolism of insecticides, and 

lead to the resistance towards various insecticides (Carino et al., 1992; Liu and Scott 1997; Li et 

al., 2006).  
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Chapter Five 

Conclusions and Future Research 

 

Plant-feeding insects utilizing a plant’s nutrition can cause nutritional deficiency and 

mechanical injuries to the host plants. These pests can also be associated with the transmission of 

various phytopathogens. Nowadays, this phenomenon is globally affecting the agricultural 

industries. The crop loss due to insect pests is causing a threats in global food security. 

Currently, major insect pests are attempted to manage by insecticide application; however, the 

use of chemical pesticides can pollute the surrounding ecosystem when chemical persist in the 

environment and they can kill beneficial insects and off-target insects. Also, pests may develop 

resistance against the chemical pesticides overtime. It is therefore important to develop a targeted 

long-term management treatment against insect pests. 

These studies aimed to investigate the biological management tool against the 

potato/tomato psyllid (Bactericera cockerelli Sulc.), which is an economically important insect 

pest that prefers to feed on solaneceous crops. Feeding by B. cockerelli can cause the condition 

known as psyllid yellows, this disease can cause crop loss of potato. B. cockerelli is also 

associated with the transmission of Candidatus Liberibacter solanacearum, the causal agent of 

Zebra Chip disease, in potato.  

RNA interference (RNAi) has been widely used in entomological research in a variety of 

insects and has a potential for RNAi-based pest management technique. Introduction of 

exogenous double-stranded RNA, which is complementary to the endogenous messenger RNA 

(mRNA) triggers the RNA interference process by silencing the mRNA expression. Utilizing this 

cellular process, RNAi technology has been developed against B. cockerelli. Various sources of 

genomic database of B. cockerelli were utilized to identify some potential genes, which has 
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essential role in fitness, phenotypic characteristics and common cellular activities. Double 

stranded RNA (dsRNA) constructs were designed against the mRNA of the potential genes. 

These dsRNA constructs were orally fed to the potato psyllid. To deliver the dsRNA constructs 

we have developed various delivery system and tested their efficiencies. Successful delivery of 

dsRNA constructs using the delivery systems was achieved, also the introduced dsRNA caused 

significant mortality of psyllid and induced gene silencing through downregulation of 

endogenous mRNA level.  

Moreover, insecticide metabolizing genes could be one of the best targets, hence, 

downregulation of such genes would make insects more susceptible towards the insecticides and 

application of even low doses of insecticides could incapacitate or kill the insects. Utilizing this 

information, this study also attempted investigation of identifying genes responsible for 

insecticide metabolism. Double stranded RNA was constructed against one of the genes from the 

family of insecticide metabolizing gene and offered to potato psyllids along with insecticides. 

This study should be replicated and focused on identification of more potential genes. 

Future study also could estimate the lowest dsRNA concentration needed to incapacitate or kill a 

potato psyllid. In this study, according to the delivery systems and treatments, the average 

concentration of dsRNA ranged from 25 µg to 400 µg. The total costs associated with the in vitro 

synthesis of dsRNA is way high when compared with the amounts of dsRNA needed to treat a 

single plant in the wild or even massively high to treat the entire fields. Another possible area of 

research should also be focused on determining the approximate time the plant takes to distribute 

the dsRNA constructs throughout different parts and eventually clearing from all points of plant. 

In conclusion, the success in the management of one insect species, B. cockerelli, through 

RNAi technology will have potential application to other insect pests. This could be an effective 
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ways to mitigate the loss associated with the insect pests. The downregulation of insecticides 

metabolism through RNAi technology could be one of the efficient tool towards integrated pest 

management technique.  
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