
University of Texas at Tyler University of Texas at Tyler

Scholar Works at UT Tyler Scholar Works at UT Tyler

Electrical Engineering Theses Electrical Engineering

Fall 12-1-2015

Automatic License Plate Recognition Using Deep Learning Automatic License Plate Recognition Using Deep Learning

Techniques Techniques

Naga Surya Sandeep Angara

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Angara, Naga Surya Sandeep, "Automatic License Plate Recognition Using Deep Learning Techniques"
(2015). Electrical Engineering Theses. Paper 30.
http://hdl.handle.net/10950/303

This Thesis is brought to you for free and open access by
the Electrical Engineering at Scholar Works at UT Tyler. It
has been accepted for inclusion in Electrical Engineering
Theses by an authorized administrator of Scholar Works
at UT Tyler. For more information, please contact
tgullings@uttyler.edu.

http://www.uttyler.edu/graduate/
http://www.uttyler.edu/graduate/
https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/ee_grad
https://scholarworks.uttyler.edu/ee
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/303?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu

AUTOMATIC LICENSE PLATE RECOGNITION USING DEEP

LEARNING TECHNIQUES

by

NAGA SURYA SANDEEP ANGARA

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering
Department of Electrical Engineering

Melvin Robinson, Ph.D., Committee Chair
College of Engineering

The University of Texas at Tyler
December 2015

Acknowledgements

I am pleased to express my sincere and heartful thanks to everyone who has suppor-

ted and encouraged me. Firstly, I would like to thank my family for supporting and

constantly encouraging me in every phase of my life to achieve my goals. A special

thanks for all the sacrifices that you have made for me. It means a lot to me.

I would like to express my profound gratitude to Dr. Melvin Robinson for his con-

stant support, supervision and encouragement. I would also like to thank him for his

patience and his timely suggestions throughout the research. I would like to express

my sincere thanks to Dr. Ron Pieper and Dr. Mukul V. Shirvaikar for taking time

to be part of my committee and reviewing my work. I would like to thank the entire

Electrical Engineering department and The University of Texas at Tyler for support-

ing me throughout my Masters degree. I would also like to thank Dr. Michael Manry

and Rohit Rawat of University of Texas at Arlington for their valuable suggestions

during this research. Finally, I would like to thank my well-wishers and friends for

their constant support and encouragement throughout the journey of the thesis.

iii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . ix

Chapter One: Introduction . 1

1.1 Automatic license plate recognition system 1

1.1.1 Difficulties . 2

1.2 Machine learning fundamentals . 2

1.2.1 Supervised vs unsupervised learning 2

1.2.1.1 Supervised learning 2

1.2.1.2 Unsupervised learning 4

1.3 Introduction to the deep learning . 4

1.3.1 Deep learning vs conventional learning 5

1.3.2 Cost functions . 6

1.3.3 Numerical optimization . 7

1.4 Organization of thesis . 7

Chapter Two: Background . 9

Chapter Three: License Plate Segmentation 13

3.1 Preprocessing of license plate . 15

3.1.1 Anisotropic diffusion . 16

3.1.2 Histogram equalization . 17

i

3.2 Binarization . 19

3.2.1 Global thresholding using percentage of foreground area . . . 19

3.2.2 Sauvola algorithm . 21

3.2.3 Otsu algorithm . 21

3.2.4 Edge based binarization . 22

3.2.5 Median of images . 24

3.2.6 Selection of best binarization technique 24

3.3 Extraction of state and license number 29

Chapter Four: Convolution Neural Networks 34

4.1 Convolution . 34

4.2 Layers . 35

4.2.1 Convolutional layer . 36

4.2.2 ReLU layer . 38

4.2.3 Subsampling or pooling layer 38

4.2.4 Normalization layer . 40

4.2.5 Fully connected layer . 40

4.2.6 Softmax layer . 41

4.3 Performance optimization of the Convolution Neural Network 41

4.3.1 Data sets . 42

4.3.2 Backpropagation . 42

4.3.3 Momentum . 42

4.3.4 Cross validation . 43

4.3.5 Weight initialization . 44

4.3.6 Dropout method . 44

4.4 Number of convolution layers and features maps 45

ii

4.5 Methodology . 45

4.5.1 Recognition of license number 46

4.5.2 Recognition of state . 47

Chapter Five: Results and Discussions . 50

5.1 Character and state segmentation . 50

5.2 Recognition of extracted information 51

5.2.1 License number recognition 51

5.2.2 State recognition . 55

5.3 Overall performance . 57

Chapter Six: Conclusion and Future work . 60

6.1 Conclusion . 60

6.2 Limitations . 61

6.3 Future work . 61

Bibliography . 62

Appendices

Appendix A: sample codes . 67

A.1 Configuration file for CNN to classify characters using grayscale format 67

A.2 Sauvola binarization technique . 76

A.3 Global thresholding technique . 77

A.4 Edge based binarization . 78

Appendix B: Sample training images for state recognition 80

Appendix C: Sample training images for character recognition using binary and

gray images . 81

Appendix D: Sample results . 82

D.1 Successfully recognized images . 82

iii

D.2 Failed images . 82

iv

List of Tables

Table 4.1 Architectural layout of CNN for license number recognition using

binary images . 47

Table 4.2 Architectural layout of CNN for license number recognition using

gray scale images. 48

Table 4.3 Architectural layout of CNN for state recognition using gray scale

images . 49

Table 5.1 Classification rate of each character and number using CNN trained

with binary images . 52

Table 5.2 Misclassified characters for binary image 53

Table 5.3 Classification rate of each character and number using CNN trained

with gray scale images . 58

Table 5.4 Misclassified characters for gray scale images 59

Table 5.5 Comparison of performance of various architectures 59

Table 5.6 Comparison of performance of various architectures 59

Table 5.7 Independent success rate of each stage for binary and gray scale

images . 59

v

List of Figures

Figure 1.1 Block diagram of supervised learning (Haykin, Simon S., et al. [1]) 3

Figure 1.2 Block diagram of conventional learning mode (LeCun, Yann.,et

al. [2]) . 6

Figure 1.3 Block diagram of deep learning model (LeCun, Yann.,et al. [2]) . 6

Figure 2.1 Block diagram of typical ALPR system 9

Figure 2.2 Error rate on the test set
(
%
)
for various classification methods

(Anagnostopoulos et al. [3]) . 11

Figure 3.1 Degraded license plate with bad illumination 13

Figure 3.2 License plate with colorful background 14

Figure 3.3 License plate where state is located at upper portion of image . . 14

Figure 3.4 License plate where state is located at the lower portion of image 14

Figure 3.5 License plate image degraded by shadow 15

Figure 3.6 License plate containing unwanted symbols 15

Figure 3.7 Block diagram of hybrid binarization technique 28

Figure 3.8 Input image . 29

Figure 3.9 Plots 1-5 display the binarized images for various techniques. The

last plot displays the best chosen technique 30

Figure 3.10 Skeletonized result of license number portion 31

Figure 3.11 Extracted state information from the license plate which shows

‘Texas’ . 31

Figure 3.12 Extracted license number from the license plate 32

Figure 3.13 Segmented characters from license number portion 33

Figure 4.1 Example of Convolutional layer. 36

Figure 4.2 Rectified Linear Unit (ReLU) activation function, which is zero

when x < 0 and then linear with slope 1 when x > 0 38

Figure 5.1 Extracted license number from the given input license plate . . . 51

Figure 5.2 Example of learned invariance . 53

Figure 5.3 Characters with similar geometric properties 54

Figure 5.4 Different representation of same character 54

vi

Figure 5.5 Different representation of same character 55

Figure 5.6 Alabama state license plates showing loss of information after bin-

arization . 56

vii

List of Algorithms

1 Pseudocode for Global Thresholding 20

2 Pseudocode for Otsu algorithm . 22

3 Canny edge detection algorithm . 23

5 Pseudocode for median of images . 24

4 Pseudocode for edge based binarization 25

6 Pseudocode for selection of best binarization technique 27

7 Pseudo code for extraction of state and license number using horizontal

projection . 31

8 Pseudocode for extraction of characters from the license number por-

tion using vertical projection . 32

9 Pseudocode for backpropagation . 43

viii

Abstract

AUTOMATIC LICENSE PLATE RECOGNITION USING DEEP
LEARNING TECHNIQUES

NAGA SURYA SANDEEP ANGARA

Thesis Chair: Melvin Robinson, Ph.D.

The University of Texas at Tyler

December 2015

Automatic License Plate Recognition (ALPR) systems capture a vehicle’s license

plate and recognize the license number and other required information from the cap-

tured image. ALPR systems have number of significant applications: law enforce-

ment, public safety agencies, toll gate systems, etc. The goal of these systems is to

recognize the characters and state on the license plate with high accuracy.

ALPR has been implemented using various techniques. Traditional recognition

methods use handcrafted features for obtaining features from the image. Unlike con-

ventional methods, deep learning techniques automatically select features and are

one of the game changing technologies in the field of computer vision, automatic re-

cognition tasks and natural language processing. Some of the most successful deep

learning methods involve Convolutional Neural Networks. This research applies deep

learning techniques to the ALPR problem of recognizing the state and license number

from the USA license plate.

Existing ALPR systems include three stages of processing: license plate localiz-

ation, character segmentation and character recognition but do little for the state

recognition problem. Our research not only extracts the license number, but also

ix

processes state information from the license plate. We also propose various tech-

niques for further research in the field of ALPR using deep learning techniques.

x

Chapter One

Introduction

Automatic License Plate Recognition (ALPR) technology has seen rapid and wide-

spread adoption by many agencies worldwide to enhance their enforcement, investig-

ative and security capabilities. This technology helps in collecting vehicle information

which reduces tedious and time consuming manual work. ALPR is especially useful

to government agencies in tracking stolen vehicles, persons who violate traffic rules,

vehicles in connection with a crime or other vehicles of interest. Other applications

include private parking lot management, traffic monitoring, automatic traffic ticket

issuing, automatic toll payment and surveillance.

1.1 Automatic license plate recognition system

ALPR systems capture an image of a vehicle’s license plate and extract its license

number, state and other information. The extracted license number portion of the

plate is transformed into alphanumeric characters for recognition. These alphanu-

meric characters are compared to one or more databases to identify the license num-

ber of vehicle of interest of law enforcement agencies or other agencies. This whole

process takes only a matter of seconds. A typical ALPR system employs the following:

1. Plate localization: finds and isolates the license plate from the captured image

by the camera.

2. Plate orientation and resizing: deskews and resizes the image per requirements.

Because the camera captures the image at an angle, the license plate images are

quadrilateral, not rectangular. The deskew process helps in skew-slant–shear

corrections to the captured image.

1

3. Image normalization: changes the intensity values of the image to match the

characteristics of a reference image. Some of the approaches include scaling and

histogram equalization.

4. Character segmentation: extracts the alphanumeric characters from the license

plate.

5. Character recognition: recognizes the license number of the vehicle.

1.1.1 Difficulties

Successful ALPR systems must overcome a number of difficulties, namely:

1. Poor image resolution due to low quality cameras.

2. Poor lighting and low contrast due to overexposure, reflections and shadows.

3. Motion blur due to vehicle speed.

4. Various formats of plate designs, which differ from state to state.

Some of the difficulties can be overcome in some software, while some require hardware

to overcome, others can be avoided by standardizing the license plate format.

1.2 Machine learning fundamentals

1.2.1 Supervised vs unsupervised learning

The learning process is categorized into two different types: supervised and unsu-

pervised learning methods [1]. Supervised learning method is also known as learning

with a teacher and the latter is known as learning without teacher.

1.2.1.1 Supervised learning

In supervised learning the classifier directly learns the relationship between the input

pattern and the desired output. The training data consists of an input vector of data

and corresponding labels.

The block diagram in Fig. 1.1 illustrates supervised learning. The teacher in the

diagram provides a set of input patterns and the desired output
(
class label

)
to build

the model. The system parameters are adjusted under the combined influence of the

2

training set and the error signal using various optimization techniques. The differ-

ence between the desired response and the actual response serves as input to a cost

function which helps to optimize the system parameters. The adjustment of network

parameters occurs iteratively to make the system emulate the teacher. Optimal sys-

tem parameters allow the system to correctly determine the system labels for unseen

instances. Examples of supervised models neural networks, logistic regression per-

ceptron, decision trees etc.

Figure 1.1: Block diagram of supervised learning (Haykin, Simon S., et al. [1])

In supervised learning the training set provided acts like a teacher. The training

set is represented as
{
(x1, y1), (x2, y2), (x3, y3), ..., (xi, yi)

}
, where xi is a feature vec-

tor of i th pattern in the dataset and yi is the desired output class for the respective

feature vector and w is a vector of network parameters. The labelled examples are

given as input for training system. The average loss Etrain

(
w
)
is calculated while

training the system using the training dataset. Finally the learning problem com-

putes w parameters which minimizes Etrain

(
w
)
[2,3]. The performance of the system

is measured using test set which contains different data from the training set. The

training and testing dataset consists of labeled examples, also disjoint sets. Some of

the examples of trainable machines using supervised learning are convolution neural

networks, support vector machines, multilayer perceptrons and decision trees.

3

1.2.1.2 Unsupervised learning

In unsupervised learning, there is no teacher to supervise the learning process. The

machine learns the solution without a teacher. In this learning the data is provided

and the desired output is not provided. The algorithm tries to find the similarit-

ies between the inputs and classify the inputs that have common properties into a

respective classes. Some of the unsupervised models include clustering of data, Self-

Organized Maps, k means algorithm etc.

1.3 Introduction to the deep learning

Deep learning is a new learning paradigm in deep structured learning or hierarchical

learning [4, 5]. Deep learning is an active research area of neural networks, artificial

intelligence, pattern recognition etc. Deep learning has different high-level definitions:

1. Deep learning has been characterized by learning or exploring automatic feature

extraction from many layers of non-linear functional units. Each successive layer

uses the output of one or more preceding layers as input.

2. High level features are learned from low level features which form a hierarchical

representation for supervised or unsupervised feature extraction and transform-

ation, and for pattern recognition, analysis and classification.

3. Learning where learning of data involves modeling the complex relationships

among data.

Deep learning techniques are based on distributed representation of data. The un-

derlying assumption behind distributed representations is that the data is generated

by the interactions of many different factors on different levels of hierarchy. Deep

learning assumes that these factors are organized into numerous levels, correspond-

ing to different levels of abstraction or composition. The number of layers and sizes

of layers can be varied and provide various levels of abstraction. Some of the reasons

for increase in usage of deep learning in current research is due to the of high per-

formance graphical processing units, advances in machine learning research and the

availability of big data for training and testing.

Examples of recent developments in this research area include:

4

1. GoogLeNet [6] a 22 layer deep network which was presented in ImageNet Large-

Scale Visual Recognition Challenge 2014 (ILSVRC14) stood first in the chal-

lenge with an error of 6.67%. The challenge is to classify the input image into

one of the 1000 classes.

2. R-CNN is one of the state of art technology for object recognition by Girshick

et al. [7]. R-CNN detects the object in an image and segments.

3. Neural network architecture provided by Google X lab [8] with one billion con-

nections using 16, 000 computer processors. The network led to recognize cats

from the youtube videos using deep learning algorithms. The system achieved

an accuracy of 74.8% for identifying cats, 76.7% accuracy in identifying human

body parts and 81.7% in detecting human faces.

Leading researchers in deep learning include Google, Facebook, UC-Berkley, UC-

Irvine, University of Toronto and others, where ongoing research shows an empirical

success in diverse applications of computer vision, voice recognition, pattern recogni-

tion, convolution neural networks.

1.3.1 Deep learning vs conventional learning

Deep learning techniques are powerful machine learning models that accomplish fab-

ulous performance on the learning problems like object recognition [3, 9–11] and

speech recognition [12].

Conventional learning extracts features from the available input and then classifies

features from the previous step with a classifier. Feature extraction is a procedure of

examining and getting valuable data from the given input data. Some feature extract-

ors in the field of computer vision are scale-invariant feature transform
(
SIFT

)
[13]

and histogram of oriented gradients
(
HOG

)
[14]. A typical learning methodology is

a handcrafted feature extractor, where the features are selected manually and the

selection of features is a difficult task which depends on the application. Designing

good feature extractors is a painful job. Fig. 1.2 illustrates the block diagram of

traditional model.

By contrast, deep learning neural networks can be trained using a labeled training

set which have the potential to compute the network parameters. Deep learning mod-

5

Figure 1.2: Block diagram of conventional learning mode (LeCun, Yann.,et al. [2])

els surpass the capabilities of conventional learning models. Deep learning techniques

extract the relevant features from input data and learn from the training set itself.

Fig. 1.3 illustrates a typical deep learning model.

Figure 1.3: Block diagram of deep learning model (LeCun, Yann.,et al. [2])

1.3.2 Cost functions

In machine learning cost functions, also known as loss functions, are a measure of

how well the output of a machine learning system agrees with the desired class of the

training data. The goal in supervised learning is to minimize the loss incurred i.e. the

optimal solution is the one which minimizes the loss function. A machine learning

system computes a function yi = f(xi,w), where xi is the ith input vector and w

represents the network parameters in the system. Here yi represents the recognized

class for the given input vector xi or confidence score or probability associated with

each class, let ti be the desired class and N be the total number of patterns. The

cost function is represented by E(w) where w vector is the weight vector or network

parameters.

A commonly used loss function for the regression problem is Mean Squared Error
(
MSE

)
[15], which is given as follows

6

E(w) =
1

N

N∑
i=1

||ti − yi||2 (1.1)

A commonly used cost function for classification is cross entropy [15] given as:

E(w) =
1

N

N∑
i=1

[ti log yi + (1− ti) log(1− yi)] (1.2)

1.3.3 Numerical optimization

Optimizing a cost function is the process of finding weight parameters w, in order

to minimize E(w). A number of iterations takes place in order to compute the

parameters which minimize the cost function. First note that if we make a small

step in weight space from w to w+∆w to then the change in the error function is

∆E ≈ ∆wT∇E(w), where the vector w points in the direction of greatest rate of

the error function. The error is a smooth continuous function of w, its smallest value

will occur in weight space such that gradient of error function vanishes, so that point

in weight space such that gradient of error function vanishes as otherwise we could

make a small step in the direction of ∇E (w) and thereby further reduce the error to

∇E(w) = 0 (1.3)

The goal of optimization technique is to find a vector w or model parameters such

that E(w) is small. In order to find a solution for ∇E(w) = 0 we often make use

of iterative numerical algorithms. In most techniques w(0) is initialized with some

initial value and later updated by moving in weight space in succession of steps of

the form

w(t+1) = w(t) +∆w(t) (1.4)

Where t represents the iteration step. The values of ∆w(t) depends on the algorithm

selected. After each iteration the weight vector is updated until some stopping cri-

teria is achieved.

1.4 Organization of thesis

This thesis is organized into six chapters. Chapter 2 briefly covers past ALPR re-

search and present our methods. Chapter 3 provides information about segmentation

techniques. Chapter 4 gives an overview of convolution neural networks, optimization

7

of the CNN and our proposed architecture for the ALPR system. Chapter 5 presents

the results acquired in the thesis work. Chapter 6 gives conclusions and out ideas for

future work.

8

Chapter Two

Background

We briefly describe past ALPR research. Most of the research published in ALPR

was conducted on license plates of countries which have strict design standards. As

most of the previous systems concentrate only on license number, they are ineffective

in detecting the state information from USA license plates.

As shown in Fig. 2.1, a typical ALPR system includes image capture, preprocessing,

localization of license number and recognition of the license number. As our research

concentrates on information extraction and recognition from the license plate, we

review license plate segmentation and recognition.

Figure 2.1: Block diagram of typical ALPR system

Part of any ALPR system includes image segmentation which is a process that

labels connected pixels. Image segmentation is a well studied problem. License

plate segmentation is based on features used in the image. Some of the methods are

discussed below:

9

1. Segmentation using pixel connectivity: segmentation is performed using con-

nected pixels in binary image. Labeled pixels with same size and aspect ratio

are considered characters. This method fails to extract joined characters [16].

2. Segmentation using projection profiles: the foreground and background pixels

have opposite values in binary image. This helps to determine the starting and

ending position of characters using vertical projection. The horizontal positon

can be used to extract the license number information. The main advantage of

this method is extraction of character is independent of position and simplest

one. The disadvantage of this method is noise affects the projection values [16].

3. Segmentation using prior knowledge: this method uses the information like

height, width, aspect ratio and color distribution. This method is simple but

limited to prior knowledge. Any change in the license plate results in errors.

Segmentation of binary image can be done using combined features i.e. two or

more features. This method is more reliable but computationally quite complex

[16].

4. Segmentation using contours: contour tracing technique [16] extracts the exact

boundaries in an image. It also extracts information about the boundaries

in the image. This main disadvantage of this technique is slow and generate

incomplete or distoted image.

All ALPR systems have some sort of character recognition. Anagnostopoulos et

al. [17] implemented the system using Probabilistic Neural Network
(
PNN

)
for char-

acter recognition. The PNN is trained to identify alphanumeric characters from

license plate. The system has been tested on various license plates with different illu-

mination conditions with segmentation accuracy of 96.5%, plate recognition accuracy

of 89.1% and the overall accuracy of 86%.

An automatic license plate recognition system must recognize alphanumeric char-

acters. Nikolaos [17] and Anagnostopoulos [17] implemented LPR system using slid-

ing concentric window for segmentation of characters from license plate for faster

detection of region of interest and probabilistic neural networks for recognition of

alphanumeric characters. They tested a segmentation algorithm using 1334 images,

where 1287 images were segmented properly which gives an accuracy of 96.5%. The

authors reported a recognition rate of 89.1% with an overall success rate of 86.0%.

10

Much of the previous research in ALPR systems employs conventional recognition

methods while we use deep learning techniques. Yann LeCun [3] performed some of

the earliest work in the field of deep learning. He developed and applied Convolution

Neural Networks to document analysis. He used a 7 layer CNN called LeNet-5 for

the digits
(
0-9

)
recognition, takes 32 × 32 pixel image as input and resulted 0.35%

error rate. These results were compared with other classifiers and are illustrated in

the Fig. 2.2.

Figure 2.2: Error rate on the test set
(
%
)

for various classification methods
(Anagnostopoulos et al. [3])

The study in Fig. 2.2 compares the test-set error obtained from linear classifier,

Principal Component Analysis, nearest neighborhood classifier, radial basis function

network, one-hidden layer fully connected Multilayer Neural Network, LeNet-5 etc.

11

The linear classifier obtains an error of 12% and on deslant data the test error rate is

8.4%. Deslant indicates that the classifier was trained and tested on deslanted version

of the database. [dist] indicates that the training set was augmented with distorted

example. The Principal Component Analysis and polynomial classifier obtains a 3.3%

on regular testset. In the same way, regular test set error rate for Nearest Neighbor

classifier 5%, Radial Basis Function Network- 3.6%, One-Hidden Layer Fully Connec-

ted Multilayer Neural Network- 4.7%, Two-Hidden Layer Fully Connected Multilayer

Neural Network-3.05% for 28×28 pixel input image, Lenet-1 contribute 1.7% test-set

error, Lenet-4 1.1%, Boosted LeNet-4 provide testset error rate of 0.7%. This study

shows deep learning techniques provides great results in the field of patter classifica-

tion.

Menoti [18] used a convolutional neural network for feature extraction and sup-

port vector machine for classification of characters. He achieved recognition rate of

98% for digits and 96% for characters. However the proposed work was limited to

Brazilian license plates and alphanumeric character recognition.

Chen [19], used convolutional neural networks on Chinese license plates and achieved

an accuracy of 98%. Razdi [20] used CNN for character recognition and with an ac-

curacy of 98.79% on Malaysian license plates. He used 33 classes instead of 36 includes

‘0−9’ numbers and ‘A-Z’ alphabets, with characters ‘I’, ‘O’ and ‘Z’ removed as they

are very uncommon on Malaysian license plates.

12

Chapter Three

License Plate Segmentation

We now cover extracting the number and state from the license plate. Most of the

work published on automatic license plate recognition initiated in countries where

there are standards or strict rules over license plate design. As our research focuses

on American license plates, most of this work is not applicable especially in state re-

cognition. The main difficulty in extracting information from American license plates

is that there are no standard design rules for the license plate and thus the appear-

ance varies from state to state. Some other problems for the ALPR system include:

1. Illumination: due to environmental effects such as headlights lighting, rains

etc, the illumination of the input image varies. Fig. 3.1 shows an image with

poor illumination.

Figure 3.1: Degraded license plate with bad illumination

2. Background License plate backgrounds may contain designs or patterns which

are difficult to separate from the foreground of the image as shown in Fig. 3.2.

3. State location: The location of the state ID in US license plates varies from

state to state. This makes it difficult to generalize the system and requires more

computation. Fig. 3.3 and Fig 3.4 illustrates the variety of state locations.

13

Figure 3.2: License plate with colorful background

Figure 3.3: License plate where state is located at upper portion of image

Figure 3.4: License plate where state is located at the lower portion of image

4. Miscellaneous: Presence of designs, shadows, unwanted symbols etc. Fig. 3.5

shows a license plate with shadow which makes segmentation difficult. Fig.

3.6 contains unwanted symbols in between license numbers which also affects

segmentation accuracy.

14

Figure 3.5: License plate image degraded by shadow

Figure 3.6: License plate containing unwanted symbols

Considering all the above problems and previous research done in the field of ALPR,

our proposed system uses multiple binarization techniques. Multiple binarization

techniques help to obtain efficient results in the extraction of state and license num-

ber in the license plate. The extraction of license plate information is divided into

four stages:

1. Preprocessing the license plate

2. Binarization

3. Separation of state and license number

4. Extraction of license plate

3.1 Preprocessing of license plate

Preprocessing helps to enhance the visual appearance of the license plate and removes

the noise or other unwanted distortion. Preprocessing is generally an important step

in image processing systems, and it helps computationally in further stages of the

15

system. We use anisotropic diffusion and histogram equalization to achieve a higher

quality segmentation.

3.1.1 Anisotropic diffusion

Anisotropic diffusion
(
AD

)
suggested by Perona and Malik [21] aims at lowering

the image noise without removing significant information from the image such as

edges, lines or other details. Anisotropic diffusion is one of the pioneering works in

reducing the noise using by partial derivatives. AD smooths the texture success-

fully without degrading the boundaries and small structures within the image. The

gradient threshold parameter and stopping parameters behavior of anisotropic beha-

vior. Unlike conventional smoothing filters, anisotropic diffusion is like an adaptive

techniques which smooths the image inside a region, but leaves the boundaries or

untouched edges. Let (x, y) be a pixel coordinate, if (x, y) is a part of edge pixel then

AD will apply low smoothing at that coordinate, if not an edge pixel then AD ap-

plies high level of smoothing which exhibits the level of smoothing based on the pixel

values here the level of smoothing of an image varies from pixel to pixel. Anisotropic

diffusion has been used in many applications to enhance image for better results [22].

The basic diffusion equation provided in [21] is

∂I(x, y, t)

∂t
= div[g(||∇I(x, y, t)||)]∇I(x, y, t) (3.1)

Where t is time parameter, I(x, y, t) is the input image, ∇I(x, y, t) is the gradient

of image at time t, g(x) is the conductance function. The function g(x) is chosen to

satisfy

lim
x→0

g(x) = 1 (3.2)

where the diffusion is maximal within the region and

lim
x→∞

g(x) = 0 (3.3)

which means the diffusion is minimal at edges. Two such functions proposed by Per-

ona and Malik are

g1(x) = e−(x
K
)2 and g2(x) =

1

1 + (x
K
)2

(3.4)

16

where K is the threshold parameter which controls the rate of diffusion and serves

as a soft threshold between image gradients that are attributed to noise and those

attributed to edges. The discrete function of anisotropic function is given as

It+1(s) = It(s) +
γ

βs

∑
pϵβs

gk(|∇Is,p|)∇Is,p (3.5)

where I is the discretely sampled image, s denotes the position of pixel in 2D dis-

crete grid, g is the conductance function and K is the gradient threshold parameter.

γ ∈ [0, 1] and βs represents the special 4-pixel neighbor pixels s : βs = N,S,W,E,

where N,S,W,E are North, South, West and East direction of pixel at position s.

Malik and Perona [22] gave two conductance functions, g1 favors in high contrast

edges over low-contrast one and g2 favors wide regions over small ones. The gradient

function is controlled by a parameter κ. Low value of κ gives small intensity gradients

which block conduction and diffusion across step edges. κ values have been chosen as

5 [22] and after a few experiments. Larger values of κ lower the intensity gradients

on conduction, gamma controls the diffusion maximum value is 0.25 [22] and step is

used to scale the gradients in case the spacing between the adjacent pixels differ in x

and y axes.

3.1.2 Histogram equalization

Histogram equalization improves the contrast of the input image. This is important

to ALPR because it helps in enhancing the image when most of the pixels in the

image are confined to region [23]. Basic histogram equalization uses global contrast

which is not a good one for all the images.

Let the image be of N ×M pixels i.e. N rows and M columns, G be the number

of gray levels in the image. The histogram equalization procedure is as follows:

1. Compute the histogram for the given input image. The histogram value or

probability of occurrence intensity level k is given by

pr(k) =
nk

M ×N
(3.6)

17

nk is the number of pixels having intensity k, k = 0, 1, 2, ..., G− 1. The plot of

pr(k) vs k gives the histogram of the input image.

2. The next step is to compute the transform function and the transfer function

calculates the output pixel value for a given input pixel intensity , it is obtained

as follows

ok = T (k) = (G− 1)
n∑

i=0

pr(i) (3.7)

Where ok is the output pixel value. The transformation function T (k) input gray

scale level to output gray scale level, and the function also called as histogram

equalization.

3. The output image is obtained by transforming each pixel in the input image

using the obtained transform function, where the pixels in the obtained image

distributed uniformly.

Histogram equalization is done globally. This improves the contrast in the image

but also lose some information. Unlike histogram equalization the adaptive method

divides the image into small blocks where the size of the block is selected one, com-

putes histogram and transformation function at each block and finally calculates the

transformed pixel values therefore improves local contrast. In the homogeneous re-

gions of the image the histogram will be strongly peaked and the obtained transformed

function will distribute the narrow range pixels to the whole range of image, which

results in amplifying small amounts of noise of the image [24]. To overcome the lim-

itation of adaptive histogram equalization
(
AHE

)
the contrast limiting method has

to been applied for each region and from which transformation function is obtained.

This is known as Contrast Limited Adaptive Histogram Equalization
(
CLAHE

)
[24],

which is an improved version of adaptive histogram equalization techniques. CLAHE

has been developed for medical imaging especially for enhancement of low contrast

images. Degraded license plate images can share the same qualities.

The contrast amplification for a pixel is proportional to slope of transformation

function, which is proportional to cumulative distribution function (CDF) and there-

fore to the value of the histogram at that pixel value. In CLAHE, before computing

CDF the predefined clipping value limits the amplification of histogram which further

limits the slope of CDF and therefore the transformation function.

18

3.2 Binarization

Binarization is the process of converting a gray scale image to a binary image. The

image consists of pixel values 0 or 1, where 0 indicates black and 1 or 255 indicates

white. Binarization is an important step in improving the quality of extraction of li-

cense number and state portion from the number plate. Proper binarization method is

necessary for separating the foreground and background pixels in the image. Primary

step in binarization is selection of optimal threshold value. A pixel with value less

than threshold is classified as background pixel and with value greater than as fore-

ground pixel. For an image I(x, y) where (x, y) is location of pixel, let t be threshold

then the binary image is given as

O(x, y) = 0 if I(x, y) < t (3.8)

O(x, y) = 1 or 255 if I(x, y) > t (3.9)

A number of factors such as ambience light, gray level variance between foreground

and background contrast make the thresholding scheme difficult. If the wrong threshold

is selected foreground and background pixels can be misclassified.

The extraction of license number depends on the quality of binarized image. Selec-

tion of best binarized image provides overall accuracy of the system. In our system

we consider a hybrid binarization method for better segmentation of characters or

license numbers. As the images are captured in different environments, considering a

single binarization technique is not effective, hence we consider multiple binarization

techniques. In this hybrid technique, we apply five binarization methods to the input

license plate and select the best method depending on the quality of results obtained

using the selection criteria. The technique will be further explained in sections below.

In every binarization method computation of threshold plays a key role and it will

be explained in each procedure. Prior to binarization the license plate image in our

system needs to be converted to 128 rows and 256 columns.

3.2.1 Global thresholding using percentage of foreground area

The global binarization technique is one of the simplest binarization methods. It se-

lects a threshold value to classify a pixel of an image as background or foreground [23].

The threshold value is based on the required percentage of background pixels. It is

19

calculated for the license number portion of the image rather than entire image. Li-

cense number portion is approximately obtained by removing the margin from the top

and bottom part license plate image. The margin is considered to be approximated

15% of the height of the image after several experiments. License number portion

is only considered for binarization because selection of best techniques is based on

number of charcaters objects available in the binarized image. Removing of margins

also reduces the cost of computation. The main advantage of global thresholding is

less computations. The pseudocode is as follows

Algorithm 1 Pseudocode for Global Thresholding

1: Import an input image I of size m× n and the pixels range is [0, L− 1], where L
is the maximum gray scale value.

2: Initialize the percentage number of total pixels in image required to be background
area, let it be background where background ∈ [0, 1].

3: pixels← m× n× background.
4: sum← 0
5: for i← 0, L− 1 do
6: bin[i]← 0
7: end for
8: for i← 0,m− 1 do
9: for j ← 0, n− 1 do
10: temp← I[i][j]
11: bin[temp] = bin[temp] + 1
12: end for
13: end for
14: while i ≤ L− 1 and sum ≤ pixels do
15: sum← sum+ bin[i]
16: threshold← i
17: i← i+ 1
18: end while
19: for i← 0,m− 1 do
20: for j ← 0, n− 1 do
21: if I[i][j] ≥ threshold then
22: I[i][j]← 1
23: else
24: I[i][j]← 0
25: end if
26: end for
27: end for

20

3.2.2 Sauvola algorithm

The global thresholding techniques computes the threshold value for the entire im-

age which works well for simple cases. The global techniques fail if the image is de-

graded one, image consists complex backgrounds or poorly illuminated. Unlike global

thresholding, Sauvola [25] method of binarization is adaptive where the threshold

value, T (x, y) at pixel location (x, y) is computed using the mean and standard de-

viation at the same location within a window of size w × w as

T (x, y) = m(x, y)

[
1 + k

(σ(x, y)
R− 1

)]
(3.10)

Where m(x, y) is the mean, σ(x, y) is the standard deviation at location (x, y), R

is the maximum value of standard deviation
(
R = 128 for a grayscale document

)
, k

is a bias which takes positive values in the range [0.2, 0.5].

As previously mentioned, the Sauvola algorithm is adaptive as it calculates the

threshold according to the contrast in the neighborhood pixels. In high contrast loc-

ations σ(x, y) ≈ R and T (x, y) = m(x, y). In low contrast images the threshold goes

below the mean value which removes the relatively black regions in the background.

The parameter k controls the threshold value in the local window. When the k value

is higher, the threshold value in local window is lower than mean value. Experiments

shows k = 0.34 gives best results. We have chosen the value of R to be equal to

the maximum value of deviation obtained in the local window of size 40 × 10 and

k = 0.34. The parameters are chosen by experiments and give optimal results for

Savoula binarization.

3.2.3 Otsu algorithm

The Otsu algorithm [23] is a statistical decision theory problem whose objective is

to minimize the error incurred in assigning pixels to foreground and background or

classes. The method maximizes the variance between the foreground and background

pixels in the image [23]. Otsu method computations entirely depends on the histo-

gram of an image. Otsu’s thresholding method involves iterating through all the

possible threshold values and calculating a measure of spread for the pixel levels each

side of the threshold, i.e. the pixels that either falls in foreground or background. The

aim of Otsu method is to compute the threshold value where the sum of foreground

21

and background spreads to its minimum. The pseudo code is as follows

Algorithm 2 Pseudocode for Otsu algorithm

1: Import the input image.
2: Compute the normalized histogram of the input image. Denote the components

of the histogram by pi, i = 0, 1, 2, ..., L − 1, where L is the maximum gray scale
value in the image.

3: Compute the cumulative sum Pi(k) for k = 0, 1, 2, ..., L−1 using equation P (k) =
k∑

i=0

pi.

4: Compute the cumulative means m(k) for k = 0, 1, 2, ..., L − 1 using equation

m(k) =
k∑

i=0

i× pi.

5: Compute the global intensity mG, using the equation mG =
L−1∑
i=0

i× pi.

6: Compute the variance σ2
b (k) where k = 0, 1, 2, ..., L − 1 using equation

σ2
b =

[mG × P1(k)−m(k)]2

(P1(k)[1− P1(k)])
.

7: Obtain the Otsu threshold, k∗, as the value for which σ2
b (k) is maximum. If the

maximum value is not unique, obtain k∗ by averaging the values of k correspond-
ing to the various maxima detected.

8: Obtain the separability measure, η∗, by evaluating equation η(k) =
σ2
B(k)

σ2
G

at

k = k∗ where σ2
G =

L−1∑
i=0

(i−mG)
2 × pi

9: Binary image is obtained by assigning each pixel value in the input image less
than k∗ value as background pixel and pixel value greater than threshold value
as foreground pixel in the image.

3.2.4 Edge based binarization

Edge detection has been used in various vision applications, for instance the Canny

edge detector has been used in order to find the edges for the input image and also

reduces the amount of data to be processed. The Canny algorithm [23] satisfies the

following criteria:

1. Low error rate: It gives a low error rate which means it detects all the edges in

the image.

2. Good localization: The distance between the real edge pixels and detected edge

pixels have to be minimized.

22

3. Minimal response: Only one detector response per edge.

Algorithm 3 Canny edge detection algorithm

1: Import the input image.
2: Apply Gaussian filter to remove noise from the image. Before locating the edges.
3: Find the intensity gradients of the image by applying the following convolution

pairs at each pixel location in the image

Gx(i, j) =

−1 0 1
−2 0 2
−1 0 1



Gy(i, j) =

 1 2 1
0 0 0
−1 −2 −1


Where (i, j) is the location in the image where the above operation takes place.

4: Compute the gradient value and angle using the following equations at each loc-
ation in the image.

G(i, j) =
√

G2
x(i, j) +G2

y(i, j)

θ(i, j) = tan−1
(Gy(i, j)

Gx(i, j)

)
5: Non-Maximum suppression is applied to remove the pixels which are not part of

an edge, results in thin lines at edges.
6: The final step in Canny edge detector is to use two thresholds i.e. upper and

lower thresholds

1. If the pixel gradient is higher than the upper threshold it is accepted as an
edge.

2. If the pixel gradient is below the lower threshold, then it is rejected.

3. If the gradient is between the upper and lower threshold then it will accepted
as an edge only if it is connected to the pixel whose gradient is above the
threshold.

Then the obtained image and original image are divided into regions of size 10× 5.

The block size 10×5 is found to be best after testing various images for different block

sizes. This block size helps in existence of partial characters in the given block, which

confirms the existence of edges in most of the block. The blocks or regions are used

to calculate the local threshold. The threshold for a region or block is obtained using

gray scale values from the original image and neighboring pixels of all the edges. The

threshold value for each block is calculated using algorithm 4. The obtained binary

23

blocks are then combined to create complete binary image.

3.2.5 Median of images

The median is the center value of a sorted list of elements. If there are even number

of elements in the list, the median will be the average of the two middle values. This

helps us avoid considering the values that are spurious or outside the range. In image

processing stacking considers all the pixel values to be the same location in a stack

of images. Then choosing the median value from the stacked images at each location

gives the resultant image pixel values. The implementation is provided in algorithm

5.

Algorithm 5 Pseudocode for median of images

1: Import the binary images obtained from global threshold, Sauvola algorithm,
Otsu algorithm and edge based binarization, let them be I1, I2, I3 and I4.

2: let size of the image be m× n.
3: let the output image be O of size m× n
4: for i← 0,m− 1 do
5: for j ← 0, n− 1 do
6: O[i, j] = median

{
I1[i, j], I2[i, j], I3[i, j], I4[i, j]

}
7: end for
8: end for

In this research the binary images obtained by above algorithms are considered as

stack of images i.e. Otsu, Global thresholding, Sauvola algorithm and Edge based

binarization techniques. Median stacking is a powerful method in producing clean

and noise free images. It works well because noise is random and also by combing

multiple images, it can improve signal to noise ratio also. Median of stack images also

helps in removing unwanted or accidental objects from a series of stationary photos

or video frames.

3.2.6 Selection of best binarization technique

Because one binarization technique does not provide efficient results, we consider

multiple binarization techniques. Considering multiple binarization techniques helps

in segmenting the plate regardless of the environment in which plate was captured.

After successfully binarizing the plate using various techniques, the next step is to

24

Algorithm 4 Pseudocode for edge based binarization

1: Import the input image I1.
2: Apply edge based segmentation using canny edge detector on the Input image I1,

let the segmented image be I2.
3: Divide I1 and I2 into blocks of size 10×5. Blocks obtained from I1 are represented

as Ii[r, c] and blocks form I2 are represented by Ei[r, c] where i is the block
number, [r, c] is the location in the respective block.

4: let n be the total number of blocks.
5: i← 1
6: repeat
7: Creating an empty array for holding local threshold values t1 = ∅
8: rows = number of rows in I[i]i
9: cols = number of columns in I[i]i
10: for r ← 3, rows− 2 do
11: for c← 3, cols− 2 do
12: if Ei[r, c] == 255 and Ei[r, c− 1] == 0 and Ei[r, c+ 1] == 0 then
13: m = minimum(Ii[r, c− 2], Ii[r, c+ 2])
14: if m < 128 then
15: t2 = mean(Ii[r, c− 2], Ii[r, c+ 2]), append t2 to t1
16: end if
17: end if
18: if Ei[r, c] == 255 and Ei[r− 1, c] == 0 and Ei[r+ 1, c] == 0 then
19: m = minimum(Ii[r − 2, c], Ii[r + 2, c])
20: if m < 128 then
21: t2 = mean(Ii[r − 2, c], Ii[r + 2, c]), append t2 to t1
22: end if
23: end if
24: if t1 is empty then
25: localthreshold = 0
26: else
27: localthreshold == mean(t1)− variance(t1)
28: end if
29: for r ← 0, rows− 1 do
30: for c← 0, cols− 1 do
31: if Ii[r, c] < localthreshold then
32: BinaryImagei[r, c] = 0
33: else
34: BinaryImagei[r, c] = 1
35: end if
36: end for
37: end for
38: end for
39: end for
40: until i==n
41: The final binary image is obtained by combining all the individual BinaryImagei.

25

choose the best binarized output plate.

To choose the best technique, prior knowledge of the characters is required, in-

cluding height, width and aspect ratio of characters. After examination of several

images, we found that the height of the characters should be approximately be 20%

of the image and maximum height of the image should be 70% of the image height

dimensions and aspect ratio equals to 0.5.

To measure the properties of characters in the binarized images, we use contouring

techniques. The contours of a region R are the set of pixels that are adjacent to the

pixels in the complement of R [23]. The contours technique extract characters from

the binary image and measures the properties of each character found on the license

plate portion. Using contours the height, width, aspect ratio and center coordinates

of the objects in the binarized image can be computed. Features obtained from the

contours helps in computing the number of characters in the binarized image that

satisfy the height, width, aspect ratio and also determine whether the characters

are near to the center. Initially the image having most characters satisfying the as-

sumptions is considered as best binarization technique. If more than one image has

same number of characters then the best technique will be selected using the number

of foreground to background pixel ratio. The image which has more foreground to

background pixel count ratio from the images which has same number of characters

is considered as the best method. The foreground to background pixel ratio helps in

selecting an image with fewer artifacts. Fig. 3.7 and Algorithm 6 clearly illustrates

the procedure. Images 1-5 in Fig. 3.9 show the resultant images obtained from 5

binarization techniques for the input image shown in Fig. 3.8. If we apply contours

technique and find the number of objects that satisfy the assumptions, we will get

equal number of objects in all the binarized images, as the characters are not overlap-

ping. However if we observe the edge based binarized image contains fewer artifacts,

considering the foreground to background pixel count ratio helps in selecting edge

based binarized images as better one among the available.

26

Algorithm 6 Pseudocode for selection of best binarization technique

1: Import the binary images obtained from global threshold, Sauvola algorithm,
Otsu algorithm, edge based binarization and median of stack of images. let them
be I[0], I[1], I[2], I[3], I[4].

2: max← 0
3: max ratio← 0
4: best← 0
5: aspect ratio← 0.5
6: letter height minimum = plateheight ∗ 0.3
7: letter height maximum = plateheight ∗ 0.7
8: i← 0
9: for i← 0, 4 do
10: image← I[i]
11: Find the contours in image and a list of their bounding rectangles.
12: for contour in contours do
13: Compute the coordinates, height and width of each contour.
14: if height > letter height maximum then
15: if height < letter height minimum then
16: if height× aspect ratio− width > height× 0.25 then
17: Compute the center of each contours using parameters ob-

tained in step 14.
18: end if
19: end if
20: end if
21: Remove the objects which does not satisfy the above conditions.
22: Remove the objects that are not nearly available on a horizontal line.
23: num letters[i]← count of objects after removing unwanted objects
24: end for
25: end for
26: count← number of images having maximum number of characters and also save

their i value.
27: if count == 1 then
28: Best binarized image is i
29: else if count > 1 then
30: Calculate foreground pixel to background pixel ratio, r(i)
31: Best binarized image is i, where i gives the images having maximum fore-

ground to background pixel ratio.
32: end if

27

F
ig
u
re

3.
7:

B
lo
ck

d
ia
gr
am

of
h
y
b
ri
d
b
in
ar
iz
at
io
n
te
ch
n
iq
u
e

28

Figure 3.8: Input image

3.3 Extraction of state and license number

For simplicity we assume that the state is available in the upper portion of the license

plate. So the first step in our system is separation of license number and state portion

of the plate. To locate and extract the state and license number, we use horizontal

histogram projection. The horizontal projection calculates the sum of pixels along

the horizontal direction. The summation of all the pixels along each row gives hori-

zontal projection values. We also use vertical projection to extract characters from

the license plate candidate, vertical projection obtains the coordinates of the charac-

ters. The horizontal H(y) and vertical projection V (x) for an image I of dimension

M ×N is given as:

H(y) =
∑
x

I[x, y] (3.11)

V (x) =
∑
y

I[x, y] (3.12)

The horizontal projection profile helps in computing the row numbers in which the

license plate portion exists. Vertical projection helps to extract characters independ-

ent of characters positions and able to deal with some rotations [16]. In order to

achieve fast computation and less memory usage during horizontal and vertical pro-

jection procedure the image is converted to more compact version called the Skeleton.

The skeleton of an image preserves the structure of object but removes all redundant

pixels as shown in Fig. 3.10. Fig. 3.11 displays the extracted state information from

the license plate and Fig. 3.12 displays the extracted license number from the license

29

Figure 3.9: Plots 1-5 display the binarized images for various techniques. The last
plot displays the best chosen technique

30

plate using horizontal projection. The pseudocode for horizontal projection method

is described in Algorithm 7.

Algorithm 7 Pseudo code for extraction of state and license number using horizontal
projection

1: Let the binary image be I
2: Skeletonize the image using morphological operations.
3: r ← number of rows in the image.
4: c← number of columns in the image.
5: for i← 0, r − 1 do
6: for j ← 0, c− 1 do
7: Aray[i] = I[i][j] + Array[i]
8: end for
9: end for
10: window ← [0.33, 0.33, 0.33]
11: Convolution of sum with window, Array ← Array ∗ window
12: 3× 1 column matrix with all the values of matrix equals to 0.33.
13: Z1 ← Array[0 : r/2]
14: Z2 ← Array[r/2 : r − 1]
15: Rstart ← index of array Z1 having minimum value from the end. Rstart is the row

number where license number starts.
16: Rend ← index of array Z2 having minimum value from index 0. Rend is the row

number where license number ends.
17: license number ← I[Rstart : Rend]
18: State← I[0 : Rstart]

Figure 3.10: Skeletonized result of license number portion

Figure 3.11: Extracted state information from the license plate which shows ‘Texas’

31

Figure 3.12: Extracted license number from the license plate

The license plate information is available between the rows Rstart and Rend whose

pixel values are selected from the binary image. As per the assumptions the state

information exists from the first row to Rstart from the input image i.e. gray scale

image. The characters are in binary format and the state information is in gray scale

format. In order to extract characters the license plate region obtained from the

above operation need to be input for the character extraction operation. The pseudo

code for vertical projection is described in algorithm 8 and the results are shown in

Fig. 3.13

Algorithm 8 Pseudocode for extraction of characters from the license number por-
tion using vertical projection

1: Let the license number portion be I, where I ← binaryimage[RStart, Rend].
2: Normalize the image, i.e. convert the pixel value range to [0, 1].
3: r ← number of rows in image I
4: c← number of cols in image I
5: Skeletonize the image using morphological operations.
6: for i← 0, c− 1 do
7: for j ← 0, r − 1 do
8: Array[i] = I[i][j] + Array[i]
9: end for
10: end for
11: Find the minimum values in Array and save their index values into array cols.
12: size← lengthcols
13: for i← 0, size− 2 do
14: if cols[i+ 1]− cols[i] ≥ 9 then
15: Binary Object = I[:, cols[i] : cols[i+ 1]]
16: end if
17: end for

32

Figure 3.13: Segmented characters from license number portion

33

Chapter Four

Convolution Neural Networks

The Convolutional Neural Network
(
CNN

)
, first proposed by LeCun [3] in 1988, is

a neutral network model incorporating the following ideas: receptive fields, weight

sharing and subsampling. It is a special type of multilayer perceptron trained in

supervised mode using backpropagation. It is one of the most successful machine

learning architectures in computer vision and has achieve state-of-the-art results in

tasks as character recognition [3], object recognition, face detection [26] and pose

estimation, speech recognition, license plate recognition [27–29], image preprocessing

and segmentation tasks.

A CNN learns complex, high dimensional features from a large number of examples

which makes it an obvious candidate for pattern recognition tasks. CNN architec-

tures [3] ensure some degree of shift, scale and distortion invariance using some of

the features such as local receptive fields, subsampling, shared weights etc. Unlike

conventional pattern recognition tasks one of the benefits of CNN’s lie in extraction

features itself and which uses images as input for training, testing the network. The

CNN builds complex features from large collection of examples and the complexity of

learning features with more layers. This is done by successively convolving the input

image with filters to build up a hierarchy of feature maps. The hierarchy results in

complex features and learning, as well as translational and distortion invariant. The

whole CNN can be expressed as a score function where raw image pixels are given as

input on one end and determine the category or class score at the other end.

4.1 Convolution

Convolution is an operation on two signals or two 2D images and a critical concept

in many areas of mathematics and engineering. Convolution helps in extracting in-

formation from the image. Two properties of convolution are that it is shift invariant

34

and it is a linear operation.

To illustrate 2D convolution, let the image be x[n1, n2] of N ×N points and kernel

be h[n1, n2] of M ×M points where

x[n1, n2] = 0 ∀ n1 < 0 and n1 > N − 1 (4.1)

∀ n2 < 0 and n2 > N − 1

h[n1, n2] = 0 ∀ n1 < 0 and n1 > M − 1 (4.2)

∀ n2 < 0 and n2 > M − 1

The convolution output y[n1, n2] can be expressed as

y[n1, n2] = x[n1, n2] ∗ h[n1, n2]

=
∞∑

k1=−∞

∞∑
k2=−∞

x[k1, k2]h[n1 − k1, n2, n2 − k2] (4.3)

4.2 Layers

Convolutional Neural Networks
(
CNNs

)
are often used to process 2D images to learn

high dimensional, nonlinear mappings from the large set of examples. This makes

them a good solution for many computer vision tasks. The CNN takes input an image

and convolves it with a 2D kernel of adjustable weights. The same kernel is convolved

with the input image at different points in the image, which is known as weight shar-

ing technique. Weight sharing reduces the number of free parameters. The results of

convolution are added together with an adjustable scalar called a bias. The output is

then fed into an activation function which produces a 2D plane called a feature map.

Convolution produces multiple feature maps whose number depends on the number

of kernels which is a function of architecture. Each feature map is then connected

to a subsampling layer which reduces the size of feature maps. These subsampled

feature maps are passed through ReLU, local normalization layer which helps in re-

taining nonlinear properties. The number of 2D planes obtained after subsampling,

ReLU and local normalization layer is same as number of feature maps obtained after

convolution layer. The convolutional, subsampling, ReLU and normalization layers

are stacked together, can be considered as block as shown in Fig. 4.1. The elements

in the block can be changed depending on the application. The number of blocks

depends on the depth of learning which will be discussed in further sections. In the

next subsections we cover different types of layers in more detail

35

Figure 4.1: Example of Convolutional layer.

4.2.1 Convolutional layer

As previously mentioned, a convolutional layer takes an input image and convolves it

with kernels to produce several two dimensional planes of neurons called feature maps.

Each element of a feature map is obtained by convolving the respective kernel with

units in the neighborhood in the previous layer. These outputs obtained after each

convolutional layer are then summed up together with a trainable bias term which

is then passed to an activation function to obtain each unit of a feature maps [30].

The input image could consist of hundreds or thousands of pixels but convolutional

layers act as feature extractor to extract features such as corners, edges, endpoints or

nonvisual features by convolving the input with kernels consisting of weights [3, 26].

As the weights are shared, the number of parameters to train the neural network

are reduced. This also reduces the memory necessary to store these parameters dur-

ing execution. The convolution operation in each convolutional layer makes a CNN

translational and distortion invariant i.e. when the input image is shifted the output

feature map will be shifted in the same amount as input. The number of kernels in

each convolution layer depends upon the number of feature maps and varies from

architecture to architecture. Fig. 4.1 illustrates the concepts in a convolutional layer

Let l be a convolution layer, l − 1 be the previous layer or input layer which con-

sists of feature map m
(l−1)
1 . The size of the feature map is m

(l−1)
2 ×m

(l−1)
3 . If l − 1

is an input layer then l = 1 and input will be an image I consisting of one or more

channels and size of the image is m
(l−1)
2 rows and m

(l−1)
3 columns. The kernel used for

36

computing a particular feature map Y
(l)
i is the same that is K

(l)
(i,j) = K

(l)
(i,j) for j ̸= k

which explains the concept of weight sharing. The ith feature map in layer l, denoted

by Y
(l)
i , is computed as

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
i,j ∗ Y

(l−1)
j (4.4)

Where B
(l)
i is a bias matrix and K

(l)
(i,j) is the filter of size 2h

(l)
1 + 1× 2h

(l)
2 + 1 con-

necting the jth feature map in layer l − 1 with ith feature map in layer l [31]. When

applying discrete convolution only in the so called valid region of the input feature

maps, that is only for pixels where the sum of the product is defined properly, the

output feature map has size

m
(l)
2 = m

(l−1)
2 − 2h

(l)
1 (4.5)

m
(l)
3 = m

(l−1)
3 − 2h

(l)
2 (4.6)

In practice the filters used for computing a fixed feature map Y
(l)
i are the same

that is K
(l)
(i,j) = K

(l)
(i,k) for j ̸= k, which demonstrates the concept of weight sharing.

To represent the above equations for convolution neural networks, each feature map

Y
(l)
i in layer l consists of m

(l)
2 ×m

(l)
3 units arranged in a two dimensional array. The

unit at position (r, s) computes the output

Y
(l)
i = (B

(l)
i)r,s +

m
(l−1)
1∑
j=1

(K
(l)
i,j ∗ Y

(l−1)
j)r,s

= (B
(l)
i)r,s

m
(l−1)
1∑
j=1

h
(l)
1∑

u=−h1(l)

h
(l)
2∑

v=−h2(l)

(K
(l)
i,j)u,v(Y

(l−1)
j)r+u,s+v (4.7)

The trainable weights of the network can be found in the filters K
(l)
(i,j) and the bias

B
(l)
i . Each feature map in layer l is connected to one or more feature maps of the

preceding layer as customized. A connection is associated with a convolution mask,

with is a 2D matrix of adjustable entries called weights. The output feature maps

are connected to ReLU layer individually which is discussed clearly in the next section.

37

4.2.2 ReLU layer

ReLU [32] and is used to model a neuron’s output as a function of input, where f

is the activation function used in layer l and do unit wise computation. The Recti-

fied Linear network
(
ReLU

)
compute the function f(x) = max(0, x), which increase

the nonlinear properties of the overall network. The feature maps obtained from

the convolutional layers enters to the ReLU layer as input. ReLU plays a key role

in obtaining good performance and also trains the network faster [32]. Some of the

activation functions used to increase nonlinearity in CNNs are saturating hyperbolic

tangent (tan(x), |tanh(x)|), sigmoid function f(x) =
1

1 + e−x
. The activation func-

tions that are symmetric around origin are preferred as they results in zero-mean

inputs to the following layer. Fig. 4.2 illustrates ReLU activation function

Figure 4.2: Rectified Linear Unit (ReLU) activation function, which is zero when
x < 0 and then linear with slope 1 when x > 0

4.2.3 Subsampling or pooling layer

Once the features have been detected, the position or exact location of the feature

is less important. Only the features relative to the neighborhood features become

important. Subsampling provides a further translational invariance reduces distor-

tions and noise. The subsampling layer reduces the spatial resolution and sensitivity

to shifts and distortions. Pooling operates by placing the window at each position

in the each feature map and computes one value per window for the output feature

38

map, which results in subsampling and the window size is defined as required. Two

pooling operations are defined below

Average pooling: computes the average of the values available in the window at

each location in the input feature map.

Max pooling: selects the maximum values available in the window.

Let the nth feature map in layer l be

2 2 2 2

4 5 4 5

2 2 2 2

4 5 4 5

Let the operation be average pooling, the feature map is divided into non-overlapping

blocks of 2 × 2 size. The values at which the operation takes place are highlighted.

The average pooling gives the output value as 2+2+3+5
4

= 3. The output feature map

after average pooling operation is follows:

3 3

3 3

Let the operation be max pooling, then max-pooling selects the maximum value

available in operating window and the ouput feature map for max pooling operation

is as follows:

5 5

5 5

As discussed, the reduction in resolution reduces the number of computation and

is done by averaging or selecting maximum or using any other operation applied in

the neighborhood
(
normally 2× 2

)
on the available features from the previous layer.

The idea is to skip the pixel position where the above discussed operation is applied,

the skipping can be done vertical and horizontal direction which depends on the ar-

chitecture and this skipping factor is called stride. After applying stride the output

feature maps size is given by

39

m
(l)
2 =

m
(l−1)
2 − 2h

(l)
2

s
(l)
1 + 1

and m
(l)
3 =

m
(l−1)
3 − 2h

(l)
2

s
(l)
2 + 1

(4.8)

Where s
(l)
1 and s

(l)
2 are the horizontal and vertical stride values.

4.2.4 Normalization layer

Response normalization helps in generalization of convolution neural network [32].

The local contrast normalization layer performs enforces local competitiveness between

the adjacent units within a feature maps and also among units or neurons at same

location in different feature maps. When a unit in a feature map fires at high activ-

ation level, normalization layer suppresses the activation of surrounding units. The

activity of neuron ai(x,y) is computed by applying kernel i at position (x, y), the nor-

malized activity bi(x,y), is given by

bix,y =
aix,y(

k + α
∑min(N−1,i+n

2
)

j=max(0,i−n
2
) (a

j
x,y)2

)β
(4.9)

Where n is the number of adjacent kernel maps at the same special location, N is

the total number of kernels in the layer. The values of constants k, n, α and β are

determined using validation set. The normalization layer reduces the error rate, a

4-layer CNN on CIFAR-10 [32] dataset achieved 13% test error rate without normal-

ization and 11% with normalization.

4.2.5 Fully connected layer

The final layer in CNN architecture is fully connected layer. In this layer, the units of

all feature maps from the previous layer are fully connected to each unit in the current

layer. The fully connected layer acts as a classifier and gives the confidence or class

score to which the input image belongs. Let l be a fully connected layer, where layer

l expectsm
(l−1)
1 features maps and then ith unit in the fully connected layer is given by

y
(l)
i = f(z

(l)
i) where z

(l)
i =

m
(l−1)
1∑
j=1

m
(l−1)
2∑
r=1

m
(l−1)
3∑
s=1

(W
(l)
(i,j,r,s))u,v(Y

(l−1)
j)r,s (4.10)

40

Where W
(l)
(i,j,r,s) are the weights connecting the neuron at position (r, s) in jth fea-

ture map in layer (l − 1) and the ith unit in layer l. If the previous layer is also a

fully connected layer then

z
(l)
i =

m(l−1)∑
k=1

w
(l)
i,k ∗ Y

(l−1)
k or z(l) = w(l)y(l−1) (4.11)

Where w
(l)
(i,k) denotes the weight connecting between the ith neuron in layer l− 1 to

the kth unit in layer l.

The output is a vector where each units gives the class score, if there are n classes

in the output layer then it is given as

y = [y1, y2,, yn]
T (4.12)

4.2.6 Softmax layer

Softmax layer is used at the end of the architecture after fully connected layer. Soft-

max layer [33, 34] is used for classification problems which normalizes the output

and also provides probabilistic interpretation. Softmax function is a vector to vector

transformation which given as

ϕ(ai) = softmax(ai) =
eai∑
j

eaj
(4.13)

where
∑
i

ϕi(a) = 1 and ϕi(a) > 0. This output can be considered a probability

distribution over a set of outcomes.

4.3 Performance optimization of the Convolution Neural Network

There are several techniques that can improve the performance of a CNN. The op-

timization techniques help in following ways

• Faster CNN convergence

• Avoiding the local minima

• Prevent overfitting

41

• Improving accuracy or reducing error rate

There are several factors that affect the Convolution Neural Networks performance

as discussed below.

4.3.1 Data sets

Before going further two terms need to be understood: the training and testing set.

Generally the accuracy of a neural network depends on the size of dataset [35, 36],

which should be as large as possible. The dataset can be expanded by adding several

forms of distorted data. This data helps in learning using different patterns to gener-

alize the neural network. The available examples are divided into two sets, training

and testing set in the ratio of 80 : 20. Each set consists of examples and the class

information to which the respective example belongs, also called labeled data for su-

pervised learning.

4.3.2 Backpropagation

The main idea of backpropagation is to compute gradient for a network consisting of

more than two processing layers. The layers between the input and output layers are

known as hidden layers. If there are only two layers i.e. input and output layer, the

error computation is simply the difference between output value and the target value

and depending upon the error the weights can be changed. However if a network

has more than two layers the computation of error gradient is difficult for the hidden

layers, but can be done using back propagation. In backpropagation the gradients

can be computed by propagating the output to input through the hidden layers, ad-

justing the weights and biases along the way. The amount of adjustments of weights

and biases is calculated through gradient descent algorithm, where gradient descent

seeks to minimize the error function by changing the weights and biases. The general

process to train a neural network with backpropagation when an input vector x and

the target or output value ŷ is given in Algorithm 9

4.3.3 Momentum

Momentum improves the convergence speed, where the current weight change de-

pends on the previous weight change [3, 27]. A momentum is added to improve the

42

Algorithm 9 Pseudocode for backpropagation

1: The input vector x is applied to the neural network and propagated through all
the layers.

2: Calculate the error using any error function. Let us assume the error function be

mean square error and the error is given as EMSE(i, j) =
|ŷ(i,j)−x|2

n
, where ŷ(i, j)

be the expected result, x be the desired output and n be the total number of
patterns provided for training.

3: Calculate the error gradient ∂E
∂w

for each layer.
4: Update weights

convergence speed. It controls the previous weight change on the current weight

change from oscillating. The following shows the weight update formula. The weight

update as follows

w(n+ 1) = w(n) + α△w(n) + η△w(n− 1) (4.14)

Where α is the momentum which lies between 0 ≤ α < 1 and η is the learning

rate [32, 36]. Learning rate is a crucial parameter which determines the rate of con-

vergence and generalization of the neural network. It influences the speed at which

the network attains minimum value of cost function. It is used in updating the hyper-

parameters or weights during each iteration. The learning rate affects the quality of

network, so optimal selection of learning rate is a crucial design constant. A small

learning rate takes more time to converge and can lead to divergence. The optimal

rate is given by

ηopt =
(∂2J

∂w2

)−1

(4.15)

Where ηopt is optimal learning rate, J is the cost function and ∂2J
∂w2 represents the

double differentiation of cost function with the hyper parameters or weights.

4.3.4 Cross validation

Cross validation is a technique which separates data into disjoint sets, training set

and test set. The available labeled examples are randomly divided into training and

test set [1]. The motivation here is to train the CNN with the training data, which

results in a model. The obtained model is tested with the test set i.e. to assess the

performance and chose the best model. The training set and test sets are disjoint, so

43

that new examples are given as input to the model and accuracy is obtained. This

helps in generalization of the model.

4.3.5 Weight initialization

Initialization of CNN weights is a critical task to achieve good performance. Generally

initializing all weights to 0 is ineffective. The initial weights to be initialized for fast

and uniform learning, which helps in weights to reach equilibrium at same time. In

practice the weights should are chosen randomly from same distribution function to

ensure uniform learning [36].

4.3.6 Dropout method

Convolutional neural networks contain a large number of parameters due to multiple

nonlinear hidden layers, these parameters model the complicated relationship between

the inputs and outputs and also makes it a very powerful machine learning system.

A model with large number of parameters is prone to overfitting. Over fitting is a

problem in neural networks where the error rate on new test set is much higher than

the error rate on training data.

Dropout helps to prevent overfitting and stops training a neural network when the

error rate decreases in the test data set. Overfitting can be reduced by randomly

omitting half of the kernels on each training set or omitting with a predefined ratio.

Each kernel unit is retained with a fixed probability p which is independent of other

kernel units, where p can be set using a validation set or simple 0.5, which seems to

be optimal for a wide range of architectures [37]. The probability for the input layer

feature maps must be higher than 0.5 because the lower probability makes to drop

the input feature maps which further reduces the information in the input.

After reducing the number of nodes on the training data, dropout reduces overfit-

ting and also improves the speed of training. The training of neural network with

dropout layer shows a better error rate when compared to the network without dro-

pout layer [38].

44

4.4 Number of convolution layers and features maps

When using CNNs for computer vision applications, the input unit is an image and

number of output units depends on number of classes or categories. The number of

convolution layers depends on the complexity of the dataset. In general, convolu-

tional layers helps to learn more features deeply. Unfortunately often the accuracy

gain becomes small after two or three layers, so it can be decided based on training

time or generalization accuracy. The more the convolution layer more the training

time. The number of convolution layers depends upon the application or task, so the

best method is to increase the number of layers untill obtaining satisfying results.

There is no analytical way to determine the number of feature maps in each con-

volutional layer. A rough estimate is to double the number of feature maps than

the previous layer and also depends on the dataset. A commonly used strategy is to

use excessive number of feature maps and then removing them depending upon the

training time, memory usage etc. In the same way sub sampling, the window size

depends on the application as it throws most of the data away. For larger window

sizes more data will be thrown away, so an appropriate window size should be se-

lected. The best way to find a suitable network architecture is to perform trial and

error tests, by applying pruning and constructive techniques as there is no standard

analytical methods. Pruning techniques include selection of large network initially

and then reducing the number of hyper parameters successively, whereas constructive

technique includes selection of small network and then adding layers successfully [39].

4.5 Methodology

In this research a convolutional neural network
(
CNN

)
is used as feature extractor and

classifier to recognize the alphabets
(
A-Z

)
, numbers

(
0-9

)
and state information. The

state and license plate numbers are recognized by separate CNN models. Training a

CNN requires a lot of data and obtaining license plate samples of different states is a

painful task. Our CNNs are implemented using Caffe, Scipy, Numpy, OpenCv librar-

ies in Python and Linux environment. Caffe is a deep learning framework, developed

by the Berkeley Vision and Learning Center
(
BVLC

)
[40]. The reasons behind im-

plementation of CNN on Caffe is because of expressive architecture, computation

speed which makes it suitable for research and industrial development, availability of

resources, online community.

45

Graphics Processing Units
(
GPUs

)
are playing a key role in the field of high per-

formance computing especially in the field of computer vision, machine learning prob-

lems [41]. CNNs include lots of computation which includes storage of model variables

on memory and have to be updated for every iteration. To speed up executions, high

speed memory access is required in order to simulate neural networks as normal CPU

takes a lot of time for training the network. So CNNs have been implemented on

GPU’s using NVIDIA’s GeForce GTX 980. GTX 980 is the world’s most advanced

GPU powered by NVIDIA R⃝ MaxwellTM architecture. GTX 980 specifications in-

clude 2048 CUDA cores, base clock 1126 MHz, boost clock 1216 MHz, 4 GB memory

with 7.0 Gbps memory clock. The hardware used for training the CNN is installed

with Fedora 21 which runs on 12 core i7 5860 processor. The processor clock speed

is 3 GHz and consists 64GB RAM, two 4GB GTX 980 graphic cards. In general

training of CNN takes 1-6 days, which depends on the neural network architecture.

The architecture of CNN are discussed in the next section.

4.5.1 Recognition of license number

This section describes the architecture of the convolution neural network for the re-

cognition of characters A-Z and numbers 0 − 9. The characters obtained from the

segmentation process are fed as an input to the CNN for recognition. In this archi-

tecture number ‘0’, ‘Q’ and alphabet ‘O’ are assumed as same class, hence the output

categories is equal to 34. The dataset consists of images of alphabets and numbers

and is divided in 13000 for training set and 3000 images for testing. All the images

have been size-normalized and centered in a fixed size image 32× 32 pixels. All the

images are in binary format. Table 4.1 briefly provides information about each layer

in the CNN. In Table 4.1 Conv + ReLU means the feature maps obtained from Conv

layer are passed through ReLU layer, in the same way Pool+Norm layer. The result

obtained from fully connected layer
(
ip1

)
is forwarded to ReLU4 and passed through

Dropout layer
(
Dropout4

)
. The fully connected layer provides the confident score of

the image to be classified.

The number and alphabets are trained on two different architectures. The second

architecture is trained using gray scale images of size 24× 14. The training set con-

sists of 9324 images testing set consists of 2318 images. This architecture consists of

36 output classes includes A-Z and 0 − 9. The complete details of the architecture

46

Layer Input size
(height×
width)

Filter size
(height×
width)

Number
of filters

Pad
(height×
width)

Stride

Conv1 32× 32 3× 5 60 1× 1 1

Conv2 + ReLU2 32× 30 5× 7 120 2× 3 1

Pool2 + Norm2 32× 30 8× 8 120 - 2

Conv3 + ReLU3 32× 30 5× 1 384 2× 0 1

Pool3 + Norm3 32× 30 2× 2 384 - 1

Fully
connected(ip1)
+ ReLU4 +
Dropout4

32× 30 - 584 - -

Fully
connected(ip2)

584 - 34 - -

Softmax layer 34 - 34 - -

Table 4.1: Architectural layout of CNN for license number recognition using binary
images

are provided in Table 4.2

4.5.2 Recognition of state

This section describes the CNN architecture for recognition of state. The extracted

state portion of the license plate is fed as an input to the convolution neural network.

The input image is a gray scale image of size 128 × 256. The architecture consists

of 20 layers excluding the input layer. The architecture consists of 4 convolution

layers. Each convolution is followed by subsampling layer, ReLU layer and local nor-

malization layer, and can be expressed as single block
[
conv - pool - ReLU - LRN]

Four blocks are arranged and at the end there are two fully connected layers with a

dropout layer after the first fully connected layer. As there are 50 states in USA, the

output layer finally consists of 50 classes. The proposed architecture for recognizing

47

Layer Input size
(height×
width)

Filter size
(height×
width)

Number
of filters

Pad
(height×
width)

Stride

Conv1 24× 14 5× 5 74 2× 2 1

Conv2+ReLU2 24× 14 5× 3 150 2× 1 1

Pool2+Norm2 24× 14 4× 4 150 - 1

Conv3 24× 14 3× 1 384 2× 0 1

Conv4+RelU4 24× 14 3× 3 680 1× 1 1

Pool4+Norm4 24× 14 4× 4 680 - 1

Conv5 24× 14 3× 3 784 1× 1 1

Conv6+ReLU6 24× 14 3× 3 784 1× 1 1

Fully
connected(ip1)
+ ReLU7 +
Dropout7

24× 14 - 500 - -

Fully
connected(ip2)

500 - 36 - -

Softmax layer 36 - 36 - -

Table 4.2: Architectural layout of CNN for license number recognition using gray
scale images.

state is described in Table 4.3.

48

Layer Input size
(height×
width)

Filter size
(height×
width)

Number
of filters

Pad Stride

Conv1+ReLU1 128× 256 5× 11 20 0 1

Pool1+Norm1 124× 246 2× 2 20 0 2

Conv2+ReLU2 62× 62 7× 7 80 0 2

Pool2+Norm2 28× 28 2× 2 80 0 2

Conv3+ReLU3 14× 14 3× 3 180 0 2

Pool3+Norm3 6× 6 1× 1 384 0 1

Conv4+ReLU4 1× 1 1× 1 384 0 2

Pool4+Norm4 14× 14 3× 3 180 0 1

Fully
connected(ip1)
+ ReLU5 +
Dropout5

14× 14 - 384 - -

Fully
connected

(
ip2

) 384 - 50 - -

Softmax layer 50 - 50 - -

Table 4.3: Architectural layout of CNN for state recognition using gray scale images

49

Chapter Five

Results and Discussions

We now present the results of our ALPR system on various convolution neural net-

works architectures and compute the accuracy at various stages. A successful auto-

matic license plate recognition system extracts information and recognizes it correctly.

License plate data used to train the convolution neural network are obtained through

Google images. We expanded dataset by generating additional images using distor-

tions such as rotations, translations, skewing generated by affine transforming, adding

contrast etc [42]. The complete results of our research are presented in the following

sections.

5.1 Character and state segmentation

As discussed in Chapter 3, segmentation is one of the important steps of our system.

The overall accuracy of the system is heavily influenced by this stage. Difficulties

faced in this stage are

1. Unwanted objects such as handicapped symbols, state symbols

2. Illumination problems

3. Blurry images

Problems arose while dealing with the degraded images. When binarized the char-

acters are overlap and extraction of characters fails most of the time.

The segmentation is evaluated by testing the segmentation algorithm on a data-

base of 395 images. We manually evaluate the segmentation results by comparing the

license number and the extracted information. The database of images also includes

50

degraded images. To compute the accuracy, 394 are considered. Out of 394 images

372 images are segmented satisfactorily and 22 images failed. Some of the failed

images segmented partially. This gives an accuracy of 94.4% for license number seg-

mentation. The state portion has been extracted correctly for most of these images.

Successfully segmented images include unwanted objects such as state symbols,

handicapped symbols as shown in Fig. 5.1.

Figure 5.1: Extracted license number from the given input license plate

The state symbol is included because of inclusion of vertical projection technique

as discussed in section 3.3 for character extraction.

5.2 Recognition of extracted information

The recognition part of our ALPR system features convolutional neural networks.

The recognition of license number and state information is done separately using two

separate architectures and are trained separately using different datasets.

5.2.1 License number recognition

The license number CNN has been trained using the architecture shown in Table 4.1

using binary images of size 32 × 32. The training set consists 6290 images and test

dataset consists of 2804 images. The learned model has been validated with a set of

680 images where each class consists of 20 images. We consider characters ‘Q’,‘O’and

the number 0 as one class because of geometrical similarities. Thus our system has

34 classes which include digits 0 − 9 and characters A-Z. Table 5.1 illustrates the

accuracy in each class.

51

Class Number of
images classified

correctly

Number of
images

misclassified

Accuracy (%)

0 20 0 100
1 19 1 95
2 19 1 95
3 18 2 90
4 9 11 45
5 19 1 95
6 20 0 100
7 4 16 20
8 20 0 100
9 20 0 100
A 20 0 100
B 15 5 75
C 18 2 90
D 9 11 45
E 19 1 95
F 20 0 100
G 18 2 90
H 20 0 100
I 20 0 100
J 19 1 95
K 4 16 20
L 20 0 100
M 16 4 80
N 20 0 100
P 19 1 95
R 20 0 100
S 18 2 90
T 20 0 100
U 20 0 100
V 20 0 100
W 20 0 100
X 20 0 100
Y 20 0 100
Z 1 19 5

Overall
accuracy

584 96 85.88

Table 5.1: Classification rate of each character and number using CNN trained with
binary images

52

Misclassification for some of the characters is caused by similar geometric proper-

ties. Table 5.2 illustrates the misclassification among some classes. The first column

in Table 5.2 shows the character class and the second column shows the estimated

class by the neural network.

Desired class Estimated class

I 1
D 0
J L
M W or H
Z 2
K X
7 T

Table 5.2: Misclassified characters for binary image

Fig. 5.2 displays different rotations of templates ‘5’. When convolution is applied to

all the images using same kernel, results in similar properties as convolution operation

invariant to rotation [33]. Hence the main problem for misclassification is similar

geometrical properties.

Figure 5.2: Example of learned invariance

Fig. 5.3 displays the extracted binarized characters from a license plate. We can

53

observe ‘W’ is almost similar to ‘H’, ‘D’ is similar to ‘O’ or ‘0’. The other problems

includes multiple formats of representation such as ‘I’ and ‘4’ which is displayed in

Fig. 5.4. Some of the badly or partially segmented characters are also included i.e.

like ‘F’ in Fig. 5.3.

Figure 5.3: Characters with similar geometric properties

Fig. 5.4 shows representation of number 4 in two different ways. The character

‘I’ can also be represented in two different ways. The neural network is trained by

including two different geometric structures into same category. This is one of the

reasons for misclassification.

Figure 5.4: Different representation of same character

The main reason for misclassification of characters is due to binarization of de-

graded images. Binarization of degraded images leads to misclassification of pixels

into foreground and background pixels, which changes the geometrical properties of

characters. As an attempt to increase the accuracy, CNN described in Table 4.2 has

been trained using gray scale images. The usage of gray scale images reduces loss of

information during binarization. At the same time, a larger range of values for gray

scale image pixels [0, 255] should help classification. This CNN architecture consists

54

of 36 classes, whereas the CNN trained with binary images consists of 34 classes,

as the loss of information is minimized. The architecture is trained using gray scale

images of size 24 × 14. The CNN for license number recognition has been trained

using 9324 images and test dataset consists of 2318 images. The learned model has

been validated with a set of 720 images where each class consists of 20 images. Table

5.3 displays the accuracy results obtained for CNN trained with gray scale images of

size 24× 14.

Figure 5.5: Different representation of same character

As shown in Table 5.3 the accuracy obtained for the gray scale images is better

than the binary images. Most of the characters show an accuracy of more than 80%

and the least is 60%. The misclassification is due to degraded images and due to

similar geometrical properties as discussed before. Table 5.4 illustrates the misclas-

sification among some classes. The accuracy is low for only two characters ‘M’ and

‘X’. The usage of gray scale images helps CNN to differentiate ‘Q’, ‘O’ and ‘0’ which

is difficult with binary images.

5.2.2 State recognition

For state recognition we use the architecture described in Table 4.3. We train using

59469 images and with 19857 test images in gray scale format. The major problem in

extraction of license of state from the license plate is localization of state information

on the license plate. We assume the state portion lies above to the license number.

The other problem includes the degraded license plates, presence of shadows results

in loss during binarization as shown in Fig. 5.5. The loss of information during

binarization of state portion effects the overall accuracy of the system. Hence for

the state portion gray scale images has been considered for training, where a loss of

information can be avoided. The following images in Fig. 5.5 shows binarized state

portion of different plates of Alabama state, where we can clearly observe the loss of

information after binarization. Loss of information effects the accuracy of the system

55

and this is the major reason for training the system using gray scale images.

Figure 5.6: Alabama state license plates showing loss of information after binarization

State training has been done in various stages. The CNN has been trained using

3 architectures, where the number of convolution layers varies. The first architecture

consists of 2 convolution layers, the second one consists of 3 convolution layer and

the last one consists of 4 convolution layer. The three CNN has been trained with

the same datasets where the training set consists of 58000 images and the testing

dataset consists of around 19000 images. The image size is considered as 128× 256.

The CNN’s has been trained for 100000 iterations where the accuracy is calculated

using a cross validation set. The cross validation set consists of 100 images for each

state, it is used to select the final model for each architecture. Table 5.5 displays the

accuracy at every 10000 iterations for all the three CNN architectures.

As shown in Table 5.5, the best accuracy given by a CNN consisting of 2 convolution

layers is 72.32%, whereas the CNN consisting of 4 convolution layers gives an accur-

acy of 80.08%. The primary reason for getting good accuracy on 4-convolutional layer

is due to ability to learn the state better. For example at 50000 iterations the study

shows the 4 convolutional layer architectures give an accuracy of 80.08%, whereas

the other two architectures recorded low accuracy. The accuracy of each architecture

increases up to some iteration but after that the accuracy is getting decreases, this

shows that CNN gets overfits. Overfitting means the CNN is becoming adaptive to the

training set and this makes to increase the error on new set or cross validation images.

The training of the CNN has been done using different sizes of the images like

40 × 256 and 128 × 256. The best results are obtained by using 128 × 256. The

main reason behind this nature is due to availability of information. As the size the

increase the information will also increase which helps to extract best features on

convolution. The architecture described in the Fig. 5.2 consists of 4 convolution lay-

ers, which helps to learn more complex features. The study was also done on various

56

architectures. The CNN has been trained for 100000 iterations and took a snapshot

of the model for every 10000 iterations. The final model has been selected based on

the best accuracy obtained on a cross-validation set. A cross validation dataset is

a set of images which are not included in the training or testing dataset. The set

consists of 5000 images, 100 for each class. The final model of an architecture has

been selected based on the performance on cross validation set. The performance of

various image sizes are given in Table 6.2

5.3 Overall performance

The recognition rate of license number using binary characters is 15.3% where 57

license plates are recognized correctly out of 372 satisfactorily segemented images.

The state recognition accuracy for successfully segmented images is 88.97% where

331 images are correctly recognized out of 372 images. The overall accuracy consid-

ering all the stages is 13%. The overall includes all the correctly segmented images

and incorrectly segmented images.

The accuracy for license number recognition using CNN trained with gray scale im-

ages is 91.12% where 339 license plate numbers are correctly recognized and 33 images

recognized incorrectly. Though the architecture has ability to distinguish ‘0’ and ‘O’,

they are considered as same class while manually validating the results which is due

to similar geometrical properties. The state recognition accuracy is 88.97% where 331

images are correctly recognized out of 372 images. The overall accuracy of the system

considering all the stages is 81.1%, where 302 out of 394 successfully segmented and

recognized correctly. The results are embedded in Table 5.7.

The overall accuracy of binary images is very low when compared to gray scale

images. The reason behind this is due to character recognition stage, where all the

characters in the license number should be recognized correctly. The classification

rate for binary images according to Table 5.1 is 85.58%, when it comes to overall

recognition the system fails when compared to gray scale images because of the mis-

classified characters. Table 5.2 shows the misclassification of characters, where the

classifier confuses between most of the characters. This is avoided in gray scale im-

ages as binarization technique plays a minimum role in usage of gray scale images.

57

Class Number of
images classified

correctly

Number of
images

misclassified

Accuracy (%)

0 20 0 100
1 20 0 100
2 20 0 100
3 20 0 100
4 20 0 100
5 19 1 95
6 19 1 95
7 20 0 100
8 20 0 100
9 20 0 100
A 18 2 90
B 20 0 100
C 17 3 85
D 20 0 100
E 16 4 80
F 19 1 95
G 19 1 95
H 19 1 95
I 18 2 90
J 18 2 90
K 17 3 85
L 19 1 95
M 12 8 60
N 20 0 100
O 20 0 100
P 20 0 100
Q 19 1 95
R 16 4 80
S 18 2 90
T 17 3 85
U 20 0 100
V 18 2 90
W 20 0 100
X 12 8 60
Y 19 1 95
Z 15 5 95

Overall
accuracy

665 55 92.36

Table 5.3: Classification rate of each character and number using CNN trained with
gray scale images

58

Desired class Estimated class
M W
X K

Table 5.4: Misclassified characters for gray scale images

Iteration
number

(
×1000

) 2-convolution
layer CNN

accuracy
(
%
) 3-convolution

layer CNN
accuracy

(
%
) 4-convolution

layer CNN
accuracy

(
%
)

10 2 4.94 2
20 2 47.58 66.88
30 4.7 66.88 69
40 20.88 70.82 76.58
50 35.38 71.98 80.88
60 57.42 72.18 79.38
70 69.8 72.14 78.62
80 72.32 71.86 78.34
90 72.18 72.32 78.98
100 72.14 71.72 77.92

Table 5.5: Comparison of performance of various architectures

Image size
(
rows × columns

)
Accuracy

(
%
)

40× 256 66.32
128× 256 80.88

Table 5.6: Comparison of performance of various architectures

Stage Binary license
number

accuracy
(
%
) Gray scale

license number
accuracy

(
%
)

Character and state
segmentation stage

94.41 94.41

Character recognition stage 15.3 91.12

State recognition stage 88.97 88.97

Overall accuracy 13 81.1

Table 5.7: Independent success rate of each stage for binary and gray scale images

59

Chapter Six

Conclusion and Future work

6.1 Conclusion

This thesis has investigated the use of deep learning techniques in the field of auto-

matic license plate detection system. We proposed a system which consists of two

stages: character segmentation and character recognition. An important aspect of

this system is to incorporate a hybrid binarization technique which helps to improve

quality of segmentation. This technique helps in the segmentation of degraded images.

Another important aspect incorporated in this research is using convolutional

neural networks for feature extraction and license plate recognition. The recognition

task includes recognition of license number and state information from the license

plate. Our study also includes how the data format impacts the recognition system

and different techniques to optimize convolution neural networks. Our experiments

show an overall accuracy of 81.1% using gray scale images. Our CNNs are implemen-

ted using Caffe, Scipy, Numpy, OpenCv libraries in Python and Linux environment.

The hardware used for training the CNN is installed with Fedora 21 which runs on

12 core i7 5860 processor. The processor clock speed is 3 GHz and consists 64GB

RAM, two 4GB GTX 980 graphic cards. In general training of CNN takes 1-6 days,

which depends on the neural network architecture. Our results show the usage of

deep learning techniques in the field of ALPR system. This system can be used for

practical use by the following improvements

1. Usage of real time data to train the convolution neural networks. Real time data

includes images collected from the toll gates, parking lots and other agencies

etc.

2. Inclusion of localization of license plate, de-skewing stage.

60

3. Localizing and segmenting the state information automatically.

6.2 Limitations

The system shows satisfactory results in segmentation stage and recognition stage.

There are certain limitation on the system as it is developed with certain assumption.

The limitations are as follows:

1. The state information is assumed to be at upper portion of license plate. The

license plate with state information at lower portion of license plate fails, but

recognizes license number successfully.

2. For binary images ‘0’, ‘O’ and ‘Q’ are considered as same class.

3. Recognition of unwanted symbols are ignored in this research and are included

in future study.

4. ‘0’ and ‘O’ are considered as same class for gray scale images because of similar

geometric structure.

5. Need for more data.

6.3 Future work

The automatic license plate recognition system proposed in this research has several

limitations. Most major being that the state information position is assumed to be at

top part of license plate. Though most of the plates consists of state information at

the upper part of license plate, the proposed system will not be able to recognize the

state information if the position of state information is changed. Inclusion of recog-

nizing unwanted symbols improves the accuracy of the system. Future work includes

localization and detection of state information [43]. It also might locate and detect

the license number from the license plate. Future work also includes implementa-

tion of license plate segmentation using deep learning techniques, expected to have

good accuracy. Implementation of an ALPR system completely using deep learning

techniques might consume lot of execution time and is challenging due to limited

availability of datasets. Deep learning techniques are providing efficient solutions in

the field of Artificial intelligence, pattern recognition etc with the incorporation of

graphic processing units.

61

Bibliography

[1] S. Haykin, Neural Networks and Learning Machines. Pearson Education, 2011.

[Online]. Available: https://books.google.com/books?id=faouAAAAQBAJ

[2] Y. LeCun and M. Ranzato, “Deep learning tutorial,” in Tutorials in Int. Conf.

on Mach. Learning (ICML’13), 2013.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[4] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach.

Learning, vol. 2, no. 1, pp. 1–127, Jan. 2009. [Online]. Available:

http://dx.doi.org/10.1561/2200000006

[5] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” arXiv

preprint arXiv:1409.4842, 2014.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in Comput. Vision and

Pattern Recognition (CVPR), 2014 IEEE Conf., pp. 580–587.

[8] Q. V. Le, “Building high-level features using large scale unsupervised learning,”

in Acoust., Speech and Signal Processing (ICASSP), 2013 IEEE Int. Conf., pp.

8595–8598.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105.

62

[10] R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng, “Groun-

ded compositional semantics for finding and describing images with sentences,”

Trans. Assoc. Computational Linguistics, vol. 2, pp. 207–218, 2014.

[11] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks

for image classification,” in Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on, pp. 3642–3649.

[12] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition,” Audio, Speech,

and Language Processing, IEEE Trans. on, vol. 20, no. 1, pp. 30–42, 2012.

[13] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int.

Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[14] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Comput. Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Comput.

Soc. Conf., vol. 1, pp. 886–893.

[15] G. E. Nasr, E. Badr, and C. Joun, “Cross entropy error function in neural

networks: Forecasting gasoline demand.” in FLAIRS Conference, 2002, pp. 381–

384.

[16] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license plate re-

cognition (alpr): A state-of-the-art review,” IEEE Trans. Circuits and Syst. for

Video Technol, vol. 23, no. 2, pp. 311–325, 2013.

[17] C.-N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos,

and E. Kayafas, “License plate recognition from still images and video sequences:

A survey,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 3, pp. 377–391, 2008.

[18] R. Prates, G. Cámara-Chávez, W. R. Schwartz, and D. Menotti, “Brazilian li-

cense plate detection using histogram of oriented gradients and sliding windows,”

arXiv preprint arXiv:1401.1990, 2014.

[19] Y.-N. Chen, C.-C. Han, C.-T. Wang, B.-S. Jeng, and K.-C. Fan, “The application

of a convolution neural network on face and license plate detection,” in Pattern

Recognition, 2006. ICPR 2006. 18th Int. Conf., vol. 3. IEEE, 2006, pp. 552–555.

[20] S. A. Radzi and M. Khalil-Hani, “Character recognition of license plate number

using convolutional neural network,” in Visual Informatics: Sustaining Research

and Innovations. Berlin: Springer, 2011, pp. 45–55.

63

[21] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic dif-

fusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp. 629–639,

1990.

[22] J. Weickert, “A review of nonlinear diffusion filtering,” in Scale-space Theory in

Computer Vision. Berlin: Springer, 1997, pp. 1–28.

[23] R. Gonzalez and R. Woods, Digital Image Processing. Pearson Education, 2011.

[Online]. Available: https://books.google.com/books?id=MaYuAAAAQBAJ

[24] K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics

gems IV. San Diego: Academic Press Professional, Inc., 1994, pp. 474–485.

[25] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pat-

tern Recognition, vol. 33, no. 2, pp. 225–236, 2000.

[26] S. Duffner, “Face image analysis with convolutional neural networks,” Ph.D.

dissertation, University of Freiburg Freiburg, Germany, 2008.

[27] Z. Zhao, S. Yang, and X. Ma, “Chinese license plate recognition using a convo-

lutional neural network,” in Computational Intell. and Ind. Application, 2008.

PACIIA’08. Pacific-Asia Workshop on, vol. 1. IEEE, 2008, pp. 27–30.

[28] Y.-N. Chen, C.-C. Han, C.-T. Wang, B.-S. Jeng, and K.-C. Fan, “The application

of a convolution neural network on face and license plate detection,” in Pattern

Recognition, 2006. ICPR 2006. 18th Int. Conf., vol. 3. IEEE, 2006, pp. 552–555.

[29] C.-C. Han, C.-T. Hsieh, Y.-N. Chen, G.-F. Ho, K.-C. Fan, and C.-L. Tsai, “Li-

cense plate detection and recognition using a dual-camera module in a large

space,” in Security Technol., 2007 41st Annual IEEE Int. Carnahan Conf., pp.

307–312.

[30] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability of gpu-based

convolutional neural networks,” in Parallel, Distributed and Network-Based Pro-

cessing (PDP), 2010 18th Euromicro Int. Conf. IEEE, 2010, pp. 317–324.

[31] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and ap-

plications in vision,” in Circuits and Syst. (ISCAS), Proc. of 2010 IEEE Int.

Symp., pp. 253–256.

64

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances Neural Inform. Proc. Syst.,

2012, pp. 1097–1105.

[33] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” 2015, book in

preparation for MIT Press. [Online]. Available: http://www.iro.umontreal.ca/

∼bengioy/dlbook

[34] Y. Tang, “Deep learning using linear support vector machines,” arXiv preprint

arXiv:1306.0239, 2013.

[35] C. Bishop, Pattern Recognition and Machine Learning, ser. Information

Science and Statistics. New York: Springer, 2006. [Online]. Available:

https://books.google.com/books?id=kTNoQgAACAAJ

[36] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. New York:

John Wiley & Sons, 2012.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” The J.

Mach. Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[38] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation of fea-

ture detectors,” arXiv preprint arXiv:1207.0580, 2012.

[39] S. Theodoridis and K. Koutroumbas, Pattern Recognition. New York:

Elsevier Science, 2008. [Online]. Available: https://books.google.com/books?

id=QgD-3Tcj8DkC

[40] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-

ding,” arXiv preprint arXiv:1408.5093, 2014.

[41] E. László, P. Szolgay, and Z. Nagy, “Analysis of a gpu based cnn implement-

ation,” in Cellular Nanoscale Networks and Their Applications (CNNA), 2012

13th Int. Workshop. IEEE, 2012, pp. 1–5.

[42] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional

neural networks applied to visual document analysis,” in Advances in Neural

Information Processing Systems 5 (NIPS’92). IEEE, 1992, p. 958.

65

[43] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Over-

feat: Integrated recognition, localization and detection using convolutional net-

works,” arXiv preprint arXiv:1312.6229, 2013.

66

Appendix A: sample codes

A.1 Configuration file for CNN to classify characters using grayscale

format

name : ” lprStateNet ”

l ay e r {
name : ” l p r ”

type : ”Data”

top : ”data”

top : ” l a b e l ”

in c lude {
phase : TRAIN

}
transform param {

s c a l e : 0 .00390625

}
data param {

source : ” examples /lprNum/lprNumTrainGray2414C1”

ba t ch s i z e : 128

backend : LMDB

}
}
l a y e r {

name : ” l p r ”

type : ”Data”

top : ”data”

top : ” l a b e l ”

in c lude {
phase : TEST

}
transform param {

s c a l e : 0 .00390625

}
data param {

67

source : ” examples /lprNum/lprNumTestGray2414C1”

ba t ch s i z e : 30

backend : LMDB

}
}
l a y e r {

name : ”conv1”

type : ”Convolution ”

bottom : ”data”

top : ”conv1”

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
convolut ion param {

pad h : 3

pad w : 2

num output : 74

ke rne l h : 5

kerne l w : 5

s t r i d e : 1

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

}
}

}
l a y e r {

name : ”conv2”

type : ”Convolution ”

bottom : ”conv1”

top : ”conv2”

68

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
convolut ion param {

pad h : 2

pad w : 1

num output : 150

ke rne l h : 5

kerne l w : 3

s t r i d e : 1

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

}
}

}
l a y e r {

name : ” r e l u2 ”

type : ”ReLU”

bottom : ”conv2”

top : ”conv2”

}
l a y e r {

name : ” pool2 ”

type : ” Pool ing ”

bottom : ”conv2”

top : ” pool2 ”

pool ing param {
pool : MAX

k e r n e l s i z e : 4

s t r i d e : 1

69

}
}
l a y e r {

name : ”norm2”

type : ”LRN”

bottom : ” pool2 ”

top : ”norm2”

lrn param {
l o c a l s i z e : 5

alpha : 0 .0001

beta : 0 .75

}
}
l a y e r {

name : ”conv3”

type : ”Convolution ”

bottom : ”norm2”

top : ”conv3”

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
convolut ion param {

num output : 384

pad h : 2

pad w : 0

s t r i d e : 1

ke rne l h : 3

kerne l w : 1

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

70

}
}

}
l a y e r {

name : ”conv4”

type : ”Convolution ”

bottom : ”conv3”

top : ”conv4”

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
convolut ion param {

pad : 1

num output : 680

k e r n e l s i z e : 3

s t r i d e : 1

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

}
}

}
l a y e r {

name : ” r e l u3 ”

type : ”ReLU”

bottom : ”conv4”

top : ”conv4”

}
l a y e r {

name : ” pool3 ”

type : ” Pool ing ”

71

bottom : ”conv4”

top : ” pool3 ”

pool ing param {
pool : MAX

k e r n e l s i z e : 4

s t r i d e : 1

}
}
l a y e r {

name : ”norm3”

type : ”LRN”

bottom : ” pool3 ”

top : ”norm3”

lrn param {
l o c a l s i z e : 5

alpha : 0 .0001

beta : 0 .75

}
}
l a y e r {

name : ”conv5”

type : ”Convolution ”

bottom : ”norm3”

top : ”conv5”

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
convolut ion param {

num output : 584

s t r i d e : 1

pad : 1

group : 2

k e r n e l s i z e : 3

72

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

}
}

}
l a y e r {

name : ”conv6”

type : ”Convolution ”

bottom : ”conv5”

top : ”conv6”

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
convolut ion param {

pad : 1

num output : 784

k e r n e l s i z e : 3

s t r i d e : 1

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

}
}

}
l a y e r {

name : ” r e l u6 ”

type : ”ReLU”

bottom : ”conv6”

73

top : ”conv6”

}
l a y e r {

name : ” ip1 ”

type : ” InnerProduct ”

bottom : ”conv6”

top : ” ip1 ”

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
inner product param {

num output : 500

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

}
}

}
l a y e r {

name : ” r e l u5 ”

type : ”ReLU”

bottom : ” ip1 ”

top : ” ip1 ”

}
l a y e r {

name : ”Drop5”

type : ”Dropout”

bottom : ” ip1 ”

top : ” ip1 ”

dropout param {
dropou t ra t i o : 0 . 5

74

}
}
l a y e r {

name : ” ip2 ”

type : ” InnerProduct ”

bottom : ” ip1 ”

top : ” ip2 ”

param {
l r mu l t : 1

}
param {

l r mu l t : 2

}
inner product param {

num output : 36

w e i g h t f i l l e r {
type : ” xav i e r ”

}
b i a s f i l l e r {

type : ” constant ”

}
}

}
l a y e r {

name : ” accuracy ”

type : ”Accuracy”

bottom : ” ip2 ”

bottom : ” l a b e l ”

top : ” accuracy ”

inc lude {
phase : TEST

}
}
l a y e r {

name : ” l o s s ”

type : ”SoftmaxWithLoss”

75

bottom : ” ip2 ”

bottom : ” l a b e l ”

top : ” l o s s ”

}

A.2 Sauvola binarization technique

import numpy as np

def a v e r a g e f i l t e r (image , window=[3 , 3]) :

m = window [0]

n = window [1]

i f m % 2 == 0 :

m = m − 1

i f n % 2 == 0 :

n = n − 1

(rows , columns) = image . shape

pad width = (((m + 1) / 2 , (m − 1) / 2) , ((n + 1) / 2 , (n − 1) / 2))

imageP = np . pad (image , pad width , ’ edge ’)

imageD = np . array (imageP , dtype=np . double)

t = np . cumsum(np . cumsum(imageD , ax i s =0) , ax i s =1);

imageI = (t [m: rows + m, n : columns + n] +

t [0 : rows , 0 : columns] −
t [m: rows + m, 0 : columns] −
t [0 : rows , n : columns + n])

imageI = imageI / (m ∗ n)

return imageI

def sauvo la (image , window=[3 , 3] , th r e sho ld =0.34) :

Convert to doub le

76

imageD = np . array (image , dtype=np . double)

Mean va lue

mean = a v e r a g e f i l t e r (image , window)

Standard d e v i a t i on

meanSquare = a v e r a g e f i l t e r (np . square (imageD) , window)

dev i a t i on = (meanSquare − np . square (mean)) ∗∗ 0 .5

Sauvola

R = np .max(d ev i a t i on)

th r e sho ld = mean ∗ (1 + thre sho ld ∗ (dev i a t i on / R − 1))

output = imageD > th r e sho ld

return output

A.3 Global thresholding technique

import numpy as np

def th r e sho ld (block , pe r c entage b la ck) :

Finds a t h r e s h o l d f o r b i n a r i z i n g an image based on a requ i r ed percentage

of foreground p i x e l s

bin count = 256

he ight = block . shape [0]

width = block . shape [1]

area = he ight ∗ width

pe r c en tage a r ea = np . f l o o r (pe r c entage b lack ∗ area) ;

cumulat ive intens i ty sum , theshold , found = 0 , 0 , 0

imhist , b ins = np . histogram (block . f l a t t e n () , range=[0 , b in count] , b ins=bin count)

cumula t ive in t ens i ty sum = np . cumsum(imhi s t)

Ca l cu l a t i n g b i n a r i z a t i o n t h r e s h o l d

for index in range (b in count) :

77

i f cumula t ive in t ens i ty sum [index] >= percentage a r ea :

th r e sho ld = index

break

return th r e sho ld

A.4 Edge based binarization

import numpy as np

import cv2

def edg e ba s ed b i na r i z a t i on (image) :

b i n a r i z e s the image based on t h r e s h o l d determined from edge reg i ons

edge image = cv2 . Canny(image , 0 , 255)

binary image = np . z e r o s (shape=image . shape)

Hblocks = 10

Vblocks = 5

blockH = np . f l o o r (image . shape [0] ∗ 1 .0 / Vblocks)

blockW = np . f l o o r (image . shape [1] ∗ 1 .0 / Hblocks)

debug = False

for r in range (Vblocks) :

for c in range (Hblocks) :

r0 = r ∗ blockH + 1

c0 = c ∗ blockW + 1

imgblock = image [r0 : r0 + blockH , c0 : c0 + blockW]

edgeblock = edge image [r0 : r0 + blockH , c0 : c0 + blockW]

t = f i nd t h r e s h o l d (imgblock , edgeblock) ;

b inary image [r0 : r0 + blockH , c0 : c0 + blockW] = imgblock < t ;

b inary image = np . array (binary image , dtype=np . u int8)

return binary image

78

def f i n d t h r e s h o l d (imgblock , edgeblock) :

f i nd s the t h r e s h o l d f o r a b l o c k us ing g r ay s ca l e va l u e s from the

ne ighbour ing p i x e l s o f a l l edges

t1 = []

for r in range (3 , imgblock . shape [0] − 2) :

for c in range (3 , imgblock . shape [1] − 2) :

i f (edgeblock [r , c] == 255 and

edgeblock [r , c − 1] == 0 and

edgeblock [r , c + 1] == 0) :

m = min(imgblock [r , c − 2] , imgblock [r , c + 2])

i f m < 128 :

t2 = np .mean(imgblock [r , c − 2 : c + 2]) ∗ 1 .0

t1 . append (t2)

i f (edgeblock [r , c] == 255 and

edgeblock [r − 1 , c] == 0 and

edgeblock [r + 1 , c] == 0) :

m = min(imgblock [r − 2 , c] , imgblock [r + 2 , c])

i f m < 128 :

t2 = np .mean(imgblock [r−2: r+2,c]) ∗ 1 .0

t1 . append (t2)

i f len (t1) == 0 :

t = 0

else :

t = np .mean(t1) − np . std (t1)

return t

79

Appendix B: Sample training images for state recognition

80

Appendix C: Sample training images for character

recognition using binary and gray images

81

Appendix D: Sample results

D.1 Successfully recognized images

D.2 Failed images

82

	Automatic License Plate Recognition Using Deep Learning Techniques
	Recommended Citation

	tmp.1459907986.pdf.yAwYM

