
University of Texas at Tyler University of Texas at Tyler

Scholar Works at UT Tyler Scholar Works at UT Tyler

Electrical Engineering Theses Electrical Engineering

Fall 12-1-2015

Virtual Electronics Laboratory for Visualized Education and Virtual Electronics Laboratory for Visualized Education and

Training Training

Sreelatha Aihloor Subramanyam

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Subramanyam, Sreelatha Aihloor, "Virtual Electronics Laboratory for Visualized Education and Training"
(2015). Electrical Engineering Theses. Paper 29.
http://hdl.handle.net/10950/306

This Thesis is brought to you for free and open access by
the Electrical Engineering at Scholar Works at UT Tyler. It
has been accepted for inclusion in Electrical Engineering
Theses by an authorized administrator of Scholar Works
at UT Tyler. For more information, please contact
tgullings@uttyler.edu.

http://www.uttyler.edu/graduate/
http://www.uttyler.edu/graduate/
https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/ee_grad
https://scholarworks.uttyler.edu/ee
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/306?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu

VIRTUAL ELECTRONICS LABORATORY

 FOR VISUALIZED EDUCATION AND TRAINING

 by

SREELATHA AIHLOOR SUBRAMANYAM

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical Engineering.

Dr. David M. Beams, Committee Chair

College of Engineering

The University of Texas at Tyler

December 2015

Acknowledgement

I acknowledge, with gratitude, my debt of thanks to Professor Dr. David M. Beams for his advice

and encouragement and to Dr. James K. Nelson for his contribution towards the animations of

the project, aid and foresight.

I would like to thank Office of Sponsored Research of The University of Texas at Tyler, Tyler,

Texas for its financial support.

Lastly I would like to thank my family and friends for their support.

i

Table of Contents

List of Figures ... iii

Abstract ..v

Chapter 1 Introduction ...1

1.1 Capabilities and Limitations of Present Circuit Simulators1

1.1.1 Capabilities of Present Circuit Simulators ...1

1.1.2 Limitations of Present Circuit Simulation Environment4

1.2 Project VELVET ...4

1.3 Benefits that may be achieved from present Project ...5

1.4 Overview of project VELVET ..5

Chapter 2 Literature survey ...7

2.1 Different approaches of network equation formulation8

Chapter 3 Development of VELVET mathematical model ...11

 3.1 Validation of the Algorithm

 3.1.1 Resistive Circuit ...16

 3.1.2 Circuit with a voltage controlled voltage source (VCVS) 20

 3.1.3 Circuit with a voltage controlled current source (VCCS) 23

 3.1.4 Circuit with a current controlled voltage source (CCVS) 24

 3.1.5 Circuit with a current controlled current source (CCCS) 26

 3.1.6 RLC circuit with sinusoidal excitation ..28

 3.1.7 RLC circuit with square-wave excitation ...30

 3.1.8 RLC circuit with triangle-wave excitation ..32

Chapter 4 Implementation of VELVET ...33

4.1 VELVET Components ...33

4.1.1 Bread board ...33

4.1.2 Oscilloscope ...34

ii

 4.1.3 Multimeter ..35

 4.1.4 Power supply ...36

 4.1.5 Resistive elements ...37

 4.1.6 Main screen of VELVET project ..38

 4.2 Flow of data of animation and proposed algorithm ..38

 4.3 Reconfiguration of circuit ..39

 4.4 Proposed approach to handle failure modes ...39

Chapter 5 Conclusion ...40

 5.1 Future work ...41

References ...42

Appendix-A

A.1 Software documentation ..45

A.2 Text Example Circuit ... 70

iii

List of Figures

Fig. 3.1Depiction of a simple virtual breadboard and connection of resistors11

Fig. 3.2 Flowchart of proposed algorithm ...14

Fig. 3.3 Flowchart of proposed algorithm cont..15

Fig. 3.4 Circuit diagram of example circuit ..16

Fig. 3.5 Matrices , , and A, vectors S and Y .. 18

Fig. 3.6 Matrices A’ and Y’ for resistive network of Fig 3.4 ..19

Fig. 3.7 Matrix

 for resistive network of Fig.3.4 ...20

Fig. 3.8 Example circuit including voltage controlled voltage source 21

Fig. 3.9 Matrix A’ for circuit of Fig. 3.8 ... 21

Fig. 3.10 Matrices

 and

 for circuit of Fig. 3.8 ... 22

Fig. 3.11 Example circuit diagram including voltage controlled current source 23

Fig. 3.12 Matrix A’ for circuit of Fig.3.11 ... 24

Fig. 3.13 Matrices

 and

 for circuit of Fig. 3.11 ..24

Fig. 3.14 Example circuit diagram including current controlled voltage source 25

Fig.3.15 Matrices A’,

 and

 for circuit of Fig.3.14 ..26

Fig. 3.16 Example circuit including current controlled current source 26

Fig.3.17 Matrix A’ for circuit of Fig. 3.16...27

Fig.3.18 Matrices

 and

 for circuit of Fig.3.16 ... 27

Fig. 3.19 Example circuit diagram of an RLC network with sinusoidal excitation 28

iv

Fig.3.20 Matrix A’ for RLC circuit with sinusoidal excitation ..29

Fig. 3.21 Comparison of VELVET and Multisim simulations

 of a RLC network excited by sinusoidal ... 30

Fig. 3.22 Example circuit diagram of an RLC network with square-wave excitation30

Fig. 3.23 Comparison of VELVET and Multisim simulations

 of an RLC network excited by a square wave ...31

Fig. 3.24 Example circuit diagram of an RLC network with triangle-wave excitation32

Fig. 3.25 Comparison of VELVET and Multisim simulations of an RLC network

 with triangle wave excitation ..32

Fig. 4.1 Virtual Breadboard ...33

Fig. 4.2 Virtual Oscilloscope ..34

Fig.4.3 Equivalent circuit of oscilloscope input ...34

Fig. 4.4 Virtual Multimeter ...35

Fig. 4.5 Equivalent voltmeter circuit ..35

Fig. 4.6 Equivalent ohmmeter circuit of Agilent 34410A DMM on 1K-10K scale35

Fig. 4.7 Equivalent circuit of ammeter ..36

Fig. 4.8 Virtual Power supply ...36

Fig. 4.9 Resistor drop-down list and connecting wires ... 37

Fig. 4.10 Resistor with actual resistance value similar to realistic resistor37

Fig. 4.11 Main screen of VELVET ...38

Fig. 5.1 Diode and its equivalent circuit ..41

Fig 5.2 Example op-amp circuit with controlled sources ...41

v

Abstract

VIRTUAL ELECTRONICS LABORATORY

FOR VISUALIZED EDUCATION AND TRAINING

Sreelatha Aihloor Subramanyam

Thesis Chair: Dr.David M.Beams, Ph.D

The University of Texas at Tyler

December, 2015

Virtual laboratories for electronics introductory courses have been developed previously

with static web pages, LabVIEW (National Instruments) software and extra hardware

such as video cameras and video servers. Most of these approaches to building virtual

laboratories for introductory electronics courses were inefficient because of the

unreliability of the service or expensive because third party software had to be adopted.

In the present research work, Microsoft Visual Studio, a sophisticated software

application development environment, is used for the development of a virtual laboratory.

This program has components that are lively therefore; it has the capability of excellent

user interface. In addition to Microsoft Visual Studio C++, MFC (Microsoft Foundation

Classes) were also used to implement the design.

The virtual laboratory uses nodal analysis to derive network equations from user-

connected components. These network equations include Kirchhoff’s current law

equations and accommodate voltage sources and current sources—i.e., those in between

nodes—using constitutive equations of the circuit. These network equations are grouped

to form sub matrices, which are concatenated to form a large matrix of coefficients of

KCL and constitutive relations. Simultaneously the initial voltage sources and current

sources are formed as a matrix. Here, the fact that the voltage in the ground node is equal

vi

to zero allows the program to delete the ground node related row and column of

coefficients related to that node voltage, eventually the unknowns are calculated by using

matrix operations.

The working of proposed algorithm is verified with to a circuit made of passive elements

like resistances, capacitors, inductors and also circuits that contain controlled sources.

And solution of differential equations uses a Runge-Kutta method. The resultant

waveforms are compared with industry standard circuit simulators.

1

Chapter 1

1 Introduction

Technology has brought many changes in educational systems, among which is

online education. Online education permits people to study at their convenience at any

location offering internet access, including their homes. They are not required to travel.

But one of the developments that are yet to be achieved in online education is

introduction of realistic laboratories. While there exist some remote online laboratories

such as iLab [1] (for microelectronics, control systems experiments), Lab Share [2] (for

use in education to gain remote access to lab technologies), Go-Lab [3] (for high school

science experiments), iSchool Remote Labs [4] and UMKC Remote Labs [5] (both are

used to manipulate data remotely on school computers). But none of them are applicable

to introductory electric circuit labs.

 1.1 Capabilities and Limitations of Present Circuit Simulators

1.1.1 Capabilities of Present Circuit Simulators

At present, remote learning in electronics relies on circuit simulator programs. Active

research on electronic circuit simulators was initiated by companies like IBM and

universities like University of California, Berkeley with projects funded by US Defense

department back in 1960’s. IBM ECAP (Electronic Circuit Analysis Program) was

introduced in 1960’s [6].And it was followed by SPICE (Simulated Program with

Integrated Circuit Emphasis), University of California, Berkeley in 1974.SPICE is

basically a circuit simulator program to build a new circuit and simulate it to analyze its

circuit parameters. Most of the current circuit simulators are built on SPICE.

And there exist multiple circuit simulation environments for digital, analog and

mixed-signal circuitry. Some of them are Ngspice, GNU Cap, Circuit Logix, LT Spice,

Top Spice, Circuit simulator1.5j, Mac Spice, 5Spice, Beige Bag Spice, Micro-Cap 10,

2

PECS, Proteus, QUCS, Solve Elec, Xspice, PSpice, Multisim, SiMetrix, TINA, and

PowerSim [7].

Some of them are freely available, while others are licensed versions. Among these

licensed circuit simulators are the widely used PSpice (Cadence Design Systems, San

Jose, CA) and Multisim (National Instruments Austin, TX). PSpice is SPICE ported to

the PC, introduced by MicroSim in 1984. MicroSim was later acquired by Cadence

Design Systems [8] [9]. Multisim is derived from Electronic Workbench [10].

Capabilities of Multisim:

Multisim is widely used by designers, researchers, students, academicians and

professionals. Its rich features are tailored according to the needs of different user

requirements. Multisim is available in two versions, the designer version and the student

version.

The features of the designer’s version are [11]:

Designer’s versions of Multisim have enhanced features that enable designers, to

readily implement their ideas on circuits and analyze them with different variations in

circuit parameters.

(a) Industry standard component list: This helps the design, prepared with these

components to be similar to industry standard designs.

(b) Customized symbols: The designer is given the privilege to create his or her

own symbols and make use of them in designs when standard symbols are not

suitable.

(c) Multiple designs: Designers may create complex circuits in multiple

schematics and still work on all of them together. They can compare their

results.

(d) Interface with other simulation environments [12]: Multisim is capable of

importing OrCAD designs and SPICE netlists. Netlists of SPICE programs

may be imported into Multisim using arbitrary blocks or by saving the Netlist

as a circuit (.cir extension).

3

(e) Advanced analysis of the circuit: Multisim permits users to examine minute

details of the circuit.

(f) Easy debugging: National Instruments (NI) Multisim debugging tools help to

trace errors such as ‘time step too small to simulate’ and disable simulation

when circuits are not properly connected [13].

(g) Schematic Capture: From the given component list, users may easily draw the

circuit. It is easy to locate different components that are readily available

(h) Circuit simulation: Circuit simulation is simple, and users may easily verify

their expected results with circuit simulation results.

(i) Standard Component list: Student version of Multisim is provided with

component lists and components lists that are manufacturer specific.

(j) 3D animations: 3D animations of prototype board, circuit components help

students to easily visualize real components.

The student version of Multisim is made available at no charge but with limited access to

components lists, circuit simulation tools and the like.

(a)Integration with NI ELVIS: Multisim may be integrated with NI ELVIS

(National Instruments Educational Laboratory Virtual Instrumentation Suite).

Capabilities of Cadence PSpice [14] [15]:

Cadence PSpice is an electronic circuit simulation environment that simulates analog

circuits, digital circuits, mixed signal circuits.

(a) PSpice is linked with Math Works MATLAB using Simulink to PSpice

Interface (SLPS) link. The MATLAB Simulink interface is helpful in testing

system level interfaces with electrical designs that are similar to real world

applications.

(b) PSpice may encrypt circuit design models so that Intellectual Property (IP) is

protected.

(c) Smoke Analysis is a feature in PSpice with which warns of electrically over

stressed components.

(d) Component yield failures may be identified with Monte Carlo analysis.

4

1.1.2 Limitations of Present Circuit Simulation Environments

Besides the given capabilities of current circuit simulators there are certain

limitations mentioned below. When any change is made in the schematic view of

Multisim (any addition or deletion of a component) the change is not reflected in the

animation view of Multisim, and vice versa.

(a) Some of the components and equipment in the animation view of the Multisim

do not resemble those in the real laboratory.

(b) NI Multisim auto node naming conventions can unnecessary cause errors such

as ‘circuit not grounded’ and deter simulation even though it is a valid circuit

connection in a real laboratory [16].

(c) PSpice does smoke analysis, to analyze any electrical or thermal stress that

may occur due to short circuit or open circuit. Failure modes are

demonstrated, but smoke analysis is an option for which supplementary

charges must be paid to have these add on.

(d) Learning all the commands for OrCAD PSpice applications is burdensome for

introductory-level students.

(e) PSpice does not have any virtual test equipment such as an oscilloscope,

digital multimeter or a function generator.

(f) The schematic view of Multisim includes failure modes; that are reflected in

the circuit. But this is not reflected in the animation view of Multisim.

Self-contained laboratories:

National Instruments(NI) myDAQ is a portable data acquisition device that consists

of virtual instrument software that includes an oscilloscope, a function generator and a

digital multimeter. And it enables to measure and analyze circuits at anytime and

anywhere. But NI myDAQ requires a hardware USB connection.

And other portable laboratory equipment available is Portable Electronics Experiment

Kit (PEEK) (to virtual electronic instruments outside lab) [17], Lab–in-a-Box kit (to use

virtual electronic instruments and components outside lab) [18].

5

1.2 Project VELVET

We propose a project named Virtual Electronics Laboratory with Visualized

Education Training (VELVET) at University of Texas at Tyler to enable online students

realistically simulate experiments like those in introductory electric circuit laboratory

courses. In this project, we want to animate the process of constructing and analyzing

electric or electronic circuits. Components may be selected from those available and

connected to an animated prototyping board. Components may be added to the circuit or

deleted from the circuit as may occur in construction process of a circuit.

Test equipment such as dual-channel oscilloscope, digital multimeter, waveform

generator and 3-output DC power supply may be realized in the animation. Test

equipment may be connected through animation to desired points in the circuit.

Transient analysis of the Electric Circuit Lab 1 in University of Texas at Tyler

(EENG3104), resistors, capacitors, inductors, op amps (LM741), transistors, connecting

wires, voltage regulators may be realized in animation.

When a component damages and produces smoke as in failure mode, it may be

demonstrated through animation.

As experiments conducted in real labs are inherently transient in nature and so are the

experiments in Virtual Laboratory.

1.3 Expected Benefits of Project VELVET

(a) The VELVET requires no physical lab, so there is no cost for the purchase of

equipment and components. And as there are no physical equipment and

components, the costs incurred due to maintenance will be avoided.

 (b) There is no supplementary charge for features such as failure modes.

(c) VELVET real animation of the circuit-construction process and use of

measurement equipment, whereas Multisim and PSpice begin with schematic

capture, which is not a part of the laboratory experience.

(d) VELVET requires no additional hardware to connect to devices as that is

required for portable kits such as NI myDAQ, PEEK and Lab-in-a-box. Hence

students do not have to purchase a hardware kit that costs about hundreds of

dollars. And these portable kits act as only supplement to regular face to face

laboratory classes.

6

1.4 Overview of Project VELVET

 Project VELVET, animations to build circuits may be implemented with

Microsoft Visual Studio. Building the circuits is accomplished by picking components

and connecting them to the prototyping board. Components may be added or deleted as

required. The animation of test equipment will include an oscilloscope, a function

generator and a digital multimeter.

It is intended that the final implementation of project VELVET include realistic

component failure modes. This feature will enhance the real-time experience of the lab

for online students. If a component experiences extreme electrical stress, it will sustain

damage. This event will be captured in the animation.

In an ongoing circuit simulation, the components may be added or deleted while

working on a circuit. It is very common for students to remove a component or add a

component while a circuit is active.

Compared to a real laboratory, the virtual laboratory includes most real time activities

such as constructing the circuit, connecting test equipment to the circuit, and

manipulating the connections across different components to check readings or take

measurements across different components. Animation of power supply connections and

waveform generators is included. Circuits are re-configurable “on the fly”.

7

Chapter 2

2. Literature survey

A literature survey reveals that research in virtual laboratories has been active

since the 1960’s. Diverse fields analyzed the possibility of implementing online

laboratories, due to the ample advantages presented in many research papers. For this

reason, research work about the implementation of virtual laboratory has been carried out

in many subjects including electrical and electronics teaching was studied. Different

approaches to formulate network equations for building the basic anatomy of virtual

laboratory were also studied.

Many papers on virtual laboratories in diverse areas such as process engineering,

electrical machinery, physics, and chemistry have been published. For instance, Shaheen

et al. [19] describe a remote laboratory for a Process Control unit in the process control

and Automation Laboratory at Case Western Reserve University, accessed via internet.

This system is designed to provide students with remote access to the process control

unit. Therefore, this system uses a personal computer, employing both data acquisition

card and an Ethernet card and connected to a process connected through a PLC

(Programmable Logic Control) interface module and a LabVIEW.

Likewise, Tanyildizi and Orhan [20] discuss virtual instrument program. The

authors specifically develop the virtual laboratory for synchronous machinery using

Hyper Text Markup Language (HTML), Active Server Pages (ASP) and Borland C++

Builder. They explain how to perform the experiment on asynchronous starting of a

synchronous mechanism and Voltage/frequency control in a synchronous motor in the

virtual laboratory. The authors also explain how the use of a virtual laboratory avoids

hazards and risks that can damage expensive machinery due to improper operation.

Xiaoyan et al. [21] describe the teaching electrical and electronics circuits in a

virtual lab. The author uses a three layer Client/Server model consisting of a teaching

8

Environment Layer (Teaching Application Layer), a Network Interactive Layer and a

Physical Layer. The Teaching Environment layer contains web pages with theorems,

experimental content and wiring connections. The Network Layer acts as interface

between the two other layers. The Physical Layer includes the data acquisition, as well as

the network connection of client and server. Once the system has the wiring connections

from the users they are recognized using LabVIEW, for simulation.

In a similarly, Basher et al. [22] outline a virtual laboratory for an introductory

course in circuit analysis in an Electrical Engineering Technology program. It discusses

the integration of LabVIEW with a computer laboratory at the school of Engineering

Technology and Science at South Carolina State University.

Ben et al. [23] detail other virtual laboratory applications. The author describes a

web based virtual oscilloscope laboratory experiment involving both hardware and

software. The hardware used in this experiment consists of a PC (instrument controller),

an oscilloscope and a signal generator. The PC or instrument controller has a GPIB

(General Purpose Instrument Bus) interface card and Ethernet card. The software

component is written in LabVIEW. The software includes Video Server and WWW

Server. While Video Server provides visual feedback, WWW server hosts the virtual lab.

The instruments are connected to the PC (Instrument Controller) through the GPIB card

and the GPIB cable. LabVIEW is used for local instrument control. WWW server

receives parameters from the client and then passes it to a CGI (Common Gateway

Interface) program, which checks for the validity of parameters and establishes TCP

(Transmission Control Protocol) connection with the instrument controller PC. This

program invokes attached instruments such as an oscilloscope via GPIB.

2.1 Different approaches to network equation formulation:

The nodal analysis approach is the most common approach used to formulate

network equations. But this nodal approach has some limitations like difficulty in the

representation of voltage sources and current dependent elements such as inductors. Ho et

al. [24] presents a modified nodal analysis (MNA) represented by

9

 =

 (2.1)

In which is the reduced form of the nodal matrix excluding contributions due

to voltage sources, current controlling elements, etc. B is the matrix with partial

derivatives of KCL equations with respect to additional current variables. The matrices C

and D represent constitutive relations with respect to unknown vector

 . V represents

the node voltage matrix and I represent the branch current vector. Additionally, J and F

are the matrices that include excitations of initial values of inductor currents and

capacitor voltages. The matrix

 dimensions for a given circuit are the number of

nodes minus the ground connection, plus branch currents. And it is a square matrix.

SPICE is a widely used simulator that uses the MNA for network equation

formulation [25]. In SPICE DC analysis, capacitors and inductors are treated as short and

open circuits respectively. For AC analysis, real conductances are replaced by complex

admittances. For transient analysis components are represented in differential or integral

form. For example inductor and capacitor equations are considered as

 =

 =

 (2.2)

 =

 =

 (2.3)

where and are the current and voltage of capacitor C and and are the

current and voltage of inductor L. The branch constituent equation for resistors, Ohm's

law, is time-invariant. A numerical ordinary differential equation (ODE) solution is

performed. Non-linear elements are solved by an iterative method at each time step.

Another widely known circuit analysis program is IBM ECAP (Electronic Circuit

Analysis Program). It also uses the nodal analysis approach for the formulation of

network equations. Branin et al. [26] demonstrate on ECAP, how the ohm’s law is

depicted below.

10

 =

 (2.2)

The diagonal elements of G and R represent self-conductance and self-resistance.

Voltage controlled current sources are represented as off diagonal elements of the G

matrix, while the current controlled voltage sources are represented as off diagonal

elements in the R matrix. The F matrix contains current controlled current sources and N

matrix contains voltage controlled voltage sources. Where , correspond to current

and voltage of matrices G and F. , correspond to current and voltage of matrices N

and R.

11

Chapter 3

3. Development of the VELVET mathematical model

Figure 3.1 depicts a virtual breadboard with eight rows (or strips) of contacts and

the connection of resistors. In the left-hand illustration, a resistor designated R5 has been

connected between breadboard connection 1 and breadboard connection 5. The first lead

of R5 is inserted into breadboard connection 1; since this is the first connection of the

network; electrical node 1(represented in Fig. 3.1 by the circled number 1) is assigned to

this connection. The second lead insertion is made to breadboard connection 5, which is

then assigned to electrical node 2. Since R5 is the first component to be installed current

in this component is designated , flowing into R5 from the first lead (node 1) and

leaving R5 at the second lead (node2). Similarly, the next component (R1) is connected

between breadboard connections 5 and 8. The connection of R1 to breadboard connection

5 does not require designation of a new electrical node since connection 5 is already

associated with electrical node2. However, the connection of the second lead of R1 to

breadboard connection 8 causes connection 8 to be mapped to electrical node 3. The

current in R1 flows into R1 from node2 to flows out node3.

Fig. 3.1 Depiction of a simple virtual breadboard and connection of resistors

The algorithm is designed in such a way that is suitable for networks with reactive

elements and controlled sources as well as resistors. This algorithm also takes care of

12

controlled sources. Networks with reactive elements, controlled sources, and ac voltage

sources are investigated. In the pseudo code, matrices , and Y represent KCL and

matrices , and S are derived from constitutive relations. Figure 3.2 is the flowchart

of proposed algorithm.

Pseudo code for the proposed algorithm

(1) When a new node is added to the circuit add a column to the matrix , add a new

row and column to matrix and .

(2) When a new branch is added to the circuit add a row to the matrix .

(3) When a new component is added, then number of new branches is one and number of

new nodes may be 0 or 1 or 2.

(4) Formation and dimensions of the matrix .

 rows = rows+1

 = columns + number of new nodes

If the branch is resistor, then

 (new_row, from) = 1/R

 (new_row, to) = -1/R

If the branch is voltage source or capacitor

 (new_row, from) = 1

 (new_row, to) = -1

If the branch is current source or inductor

 (new_row, from) = 0

 (new_row, to) = 0

(5) Formation and dimensions of matrix

 = (rows +1, columns+1)

If component is resistor

 (new_node, new_branch)= -1

If component is voltage source or capacitor, then no changes are required

If component is an inductor or current source

 (new_node, new_branch)= -1

(6) Formation and dimensions of matrix

 (rows) = (rows + number of new nodes)

 (columns) = (columns +1)

If a component is added to the circuit

 (from, new_branch) = 1

 (to, new_branch) = -1

13

(7) Formation and dimensions of matrix S

S (rows) = S (rows+1)

If voltage source or capacitor, S (new_row) = voltage

If current source or inductor, S (new_row) = current

(8) Formation of zero matrix A3 of dimensions (nodes x nodes), formation of column

matrix Y of dimensions (nodes, 1).

(9) Concatenate matrices , , , to form matrix A.

(10) Delete column and row of ground node from matrix A to form A’. And also row

corresponding to ground node in Y matrix to form Y’.

(11) Append matrix S and Y’ to form S’.

(12) Solve for from A’ and S’ using Guass elimination method.

(13) If the circuit has reactive elements then Matrix B1 and B2 are formed to hold

constitutive relations of reactive elements.

(14) Matrices B1 and B2 are appended to form B matrix. When the row corresponding

to ground node is deleted then matrix B’ is formed.

(15) A’ matrix is also formed as stated in previous steps.

(16) Compute node voltage and branch currents

(17) Compute xdot (B’ *)

(18) Using Runge- Kutta method K1=xdot * t

(19) Add (initial values x0) x0+K1/2

(20) Substitute (x0 + K1/2) into S’(sources)

(21) Solve for node voltages and branch currents

(22) Compute xdot (B’ *)

(23) Add K2 =xdot * t

(24) Add x0+K2/2

(25) Substitute (x0 + K2/2) into S’

(26) Compute

(27) Compute xdot (B’ *)

(28) Add K3 = xdot * t

(29) Substitute (x0 +K3) into S’

(30) Compute node voltages and branch currents

(31) Compute xdot (B’ *)

(32) Add K4 = xdot * t

(33) = x0 +K1/6 +K2/3 +K3/3 + k4/6

(34) Repeat the process for number of steps.

14

start

Enter in to VELVET.
Make circuit
connections

End of file!=0

YES

Read the values from.txt
file.segregate prototype

board from node,to
node,element type,value of

element

Initialize electrical nodes with -1

Electrical_node(prototyp
efromnode)=-1

YES

Electrical_node(prototypefromnode)=Next
_node

From_node=next_node
Next_node=next_node+1

Num_new_node=num_new_node+!

NO
From_node=electrical_node(pr

ototype_fromnode)

Electrical_node(prototyp
etonode)=-1YES

Electrical_node(prototypetonode)=next_n
ode

To_node=next_node
Next_node=next_node+1

Num_new_node=num_new_node+1

To_node=electrical_node(protot
ypetonode

Formation of
matrix A1

Formation of
matrix A2

Formation of
matrix A4

Formation of
matrix S

Create a matrix A3 of zeroes of size
(num_branches,num_nodes)

Concatenate A1,A2,A3,A4 to form matrix A.
Create a matrix Y with zeroes of

size(num_node,1).Concatenate S matrix with matrix Y.

Deletion of
ground node

Find X=inverseA*B
Find unknown voltages and currents of components.

Display them on oscilloscope /DMM

NO

A

YES

Fig. 3.2 Flowchart of proposed algorithm

15

A

Number of
timesteps

Update state
varaible tag

STOP

Check if the
source is a AC

Update AC voltage
source for every

timestep

Update the reactive elements using
Runge Kutta method

Check for
Reactive
elements

YES

YES

NO

Configuration
change?

YES

YES

NO

Fig. 3.3 Flowchart of proposed algorithm cont.

16

Network equations are assembled as the circuit is built. Figure 2 shows the

flowchart of proposed algorithm. Matrices A1, A2, A4 and S are explained in detail in

below given example.

3.1 Validation of the Algorithm

 The above algorithm is demonstrated for the following circuits

(1) Resistive circuit.

(2) Circuits containing controlled sources.

(3) RLC circuit with sinusoidal excitation

(4) RLC circuit with triangle-wave excitation

(5) RLC circuit with square-wave excitation

The above algorithm is validated with the help of the following examples.

Network equations are assembled from circuit topology, and the unknown values (node

voltages and branch currents) are computed.

3.1.1 Resistive Circuit

Figure 3.1 is a simple example circuit consisting of three meshes involving six

resistors and a DC voltage source. Numbers adjacent to the schematic indicate the

assumed node numbers. There is no ground node shown in the circuit diagram; VELVET

develops the network equations for all nodes and then modifies those equations after one

of the nodes is selected as the reference (ground) node. Arrows indicate flow of currents

in each branch.

Fig. 3.4 Circuit diagram of example circuit

17

Application of Kirchhoff’s Current Law (KCL), at each node gives the following

relationships.

 Node 1: (3.1)

Node 2: (3.2)

Node 3: (3.3)

Node 4: (3.4)

Node 5: (3.5)

The constitutive relations for each branch give the following:

Branch with R5:

 (3.6)

Branch with R1:

 (3.7)

Branch with R3:

 (3.8)

Branch with R4:

 (3.9)

Branch with R6:

 (3.10)

Branch with R2:

 (3.11)

Branch V1: (12V in Fig.3.4) (3.12)

Using both Kirchhoff and constitutive equations we form both a square

coefficient matrix A representing the left-hand sides of the equations and a column vector

of known values representing the right-hand sides. The dimensions of matrix A are

(+) by (+) where is the number of nodes and

 is total number of branches. The matrix A is subdivided into four matrices

(designated as , , and for the purpose of construction). A column vector of

sources (S) and a column vector of zeroes (Y) are also formed and concatenated to form a

18

column vector of known values with (+) elements. From the above

equations, sub-matrices, , and and vectors S and Y can be formed as:

A=

Fig. 3.5 Matrices , , and A ,vectors S and Y .

The combined matrix formulation can be represented as:

= (3.13)

When these equations are solved, vector V contains node voltages and vector I

contains branch currents. Matrices , and Y represent KCL and matrices , and S

are derived from constitutive relations. Once the network equations are formulated,

VELVET chooses a ground node based upon the circuit topology. The rules for selecting

the ground node follow a hierarchy. If a DC power supply is connected to the circuit, the

1 2

3 4

A A

A A

1 2

3 4

A A

A A

S

Y

V

I

19

node connected to the common terminal power supply is designated as ground. If no DC

power supply is present, VELVET checks for the presence of the signal generator. If the

signal generator is present, the node connected to generator reference terminal is

designated as ground. If neither the power supply nor the signal generator is present,

VELVET checks for the presence of the oscilloscope and/or the digital multimeter

(DMM). If one of these test instruments is present, ground is assigned to the node

connected to the reference lead of the instrument. (If both are present, ground is

determined by the reference lead of the oscilloscope probe).

Once the ground node is determined, the column of coefficients in Matrix A

corresponding to voltage at the ground node is deleted and the row representing the KCL

equation at the ground node is also deleted. In the circuit of Fig 3.4, the common lead of

the DC power supply is connected to node 4, and node 4 is thus designated as ground.

This designation causes the modification of matrices A and Y to form new matrices A’

and Y’. These new matrices are given below with deleted elements of the original

matrices shown in light color.

Fig. 3.6 Matrices A’ and Y’ for resistive network of Fig.3.4.

20

The upper left portion of A’ is sub matrix ; the upper right portion is . These

represent constitutive relations. The lower-left portion is and the lower right portion

is These are derived from KCL equations. The values of branch currents and non-

ground node voltages are computed as:

 (3.14)

where represents node voltages (except the reference node) and represent

branch currents. For the circuit of Figure 3.1, the computed node voltages and branch

currents are:

 =

Fig. 3.7 Matrix for resistive network of Fig 3.4

The network equations are re-formulated whenever there is a change in the circuit

topology. This allows students to re-configure their circuits “on the fly” as occurs when a

circuit element is added to or removed in the middle of an experiment.

3.1.2 Circuit with a voltage controlled voltage source (VCVS)

In the circuit of Fig 3.8, the voltage source between nodes 6 and 2 is dependent on

the node voltage that is between nodes 4 and 2. The constitutive relation for the branch

containing the VCVS can be expressed as:

1

2

3

5

1

2

3

4

5

6

7

v

v

v

v

i

i

i

i

i

i

i

1.165

1.5534

3.30

12

0.00019

0.00058

0.00066

0.00038

0.00019

0.00124

0.00124

21

 (3.15)

where is voltage gain.

Two voltage sources V1 and V2 are included in the circuit of Fig 3.8. Ground is

selected as the common terminal of V1 and V2. Final A’ matrix for this circuit is shown

below. The row and column in light type are the row and column that are deleted due to

the designation of node 2 as ground.

 +

 Av

 -

+

v

-

V1
6V

R1

10KW

20KW

R2

R4R3

10KW 20KW

Av =10000v
3V

i1 i2
i7

i5 i6i3

i4

1

2

4 3 65

V2

Fig. 3.8 Example circuit including voltage controlled voltage source

The column corresponding to the coefficients the voltage and the KCL equation

for node 2 are marked in light color to indicate deleted.

 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1/10 0 1/10 0 0 0 0 1 0 0 0 0

0 0 1/ 20 0 0 0 0 0 1 0 0 0

0 1/10 0 1/10 0 0 0 0 0 1 0 0

0 0 0 1/ 20 1/ 20 0 0 0 0 0 1 0

0 0 100000 100000 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0

1

1

0

1/ 20

0

0

1

0

0 0 0 0 0 0 1 1 0 1

0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0

0 0 1

0

1 1 00

K K

K

K K

K

K K

 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0

0

0 0 0 1 10

A’=

09999 -10000

Fig. 3.9 Matrix A’ for circuit of Fig. 3.8

22

Matrix is the column vector of terms from the right side of both KCL

equations and constitutive relations. Column matrix contains the unknown node

voltages and branch currents. These unknowns can be found by Gauss elimination.

Vectors and for the circuit of Fig 3.8 are shown in Fig 3.10

below.

 =

6

3

0

0

0

0

0

0

0

0

0

0

0

 =

1

3

4

5

6

1

2

3

4

5

6

7

v

v

v

v

v

i

i

i

i

i

i

i

=

6

3

4

3.9998

17.998

0.0002

0.000699

0.0002

0.0002

0.000699

0.000699

0.000699

Fig. 3.10 Matrices

 and

 for circuit of Fig.3.8

3.1.3 Circuit with a voltage controlled current source circuit (VCCS)

An example of a circuit containing a VCCS is shown in Fig. 3.11.

The constitutive relationship for VCCS in Fig. 3.11 can be expressed as:

 (3.16)

where is transconductance.

Matrix A’ for the circuit of Fig 3.11 is shown in Fig. 3.12 below with deleted

column and row designated as ground shown in light type. The constitutive relation for

the VCCS is contained in the fifth row of A’.

23

vi
V1

R1

2KW10V

R2

1KW

gm=0.01S

R4

200W

1

2

3
4

i2

i1 i4

i5

i6

i3

R3
2KW

5

gmvi

Fig. 3.11 Example circuit including voltage controlled current source

 1 0 0 0 0 0 0 0 0 0

1/1 1/ 1 0 0 0 1 0 0 0 0

0 1/ 2 1/ 2 0 0 0 1 0 0 0

0 0 1/ 2 0 0 0 0 1 0 0

0 0.001 0.001 0 0 0 0 0 1 0

0 0 0 1/ 200 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0

1

0

0

1/ 2

0

1/ 200

0

0 0 0 0 0 1 0 0 1 1 1

0

0

0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 10

K K

K

K

K

K

A’=

0.01 -0.01

Fig. 3.12 Matrix A’ for circuit of Fig. 3.11

 and for this circuit are shown in Fig. 3.13.

 =

10

0

0

0

0

0

0

0

0

0

0

 =

1

3

4

5

1

2

3

4

5

6

v

v

v

v

i

i

i

i

i

i

=

10

8

4

0.8

0.002

0.002

0.002

0.002

0.004

0.004

Fig. 3.13 Matrices and for circuit of Fig.3.11

24

3.1.4 Circuit with a current controlled voltage source circuit (CCVS)

The example circuit of Fig. 3.14 below includes a current controlled voltage

source, Here branch current i1 controls the voltage source that is located between nodes 3

and 2. The expression for the constitutive relation of the CCVS can be expressed as:

 (3.17)

where is transresistance

 10V

R1

10KW

1KW

R2
V2=1000i1

R3
5KW

5KW

R4

1

2

34

5
i4

i3

i1 i2

i6

i5

Fig. 3.14 Example circuit including current controlled voltage source

Matrices A’, and are given in Fig. 3.15.The constitutive

relation of the CCVS is given in the second row of A’.

 1/0.1 1/0.1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 1000 0 0 0 0 0

1/10 0 1/10 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1/5 0 1/5 0 0 0 0 1 0

0 0 0 1/5 0 0 0 0 0 1

0 0 0 0 1 0 1

0

1

0

1/5

0

0 0 0 0 0 1

0 0 0

0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1

1 0 1 0 1

0

0

0

K K

K K

KK

-10

-1

10

A’=

25

 =

0

0

0

10

0

0

0

0

0

0

0

 =

1

3

4

5

1

2

3

4

5

6

v

v

v

v

i

i

i

i

i

i

=

9.999 5

0.9999

10

0.49995

0.000999

9.999 5

0.000999

0.000999

9.995 5

9.995 5

e

e

e

e

Fig.3.15 Matrices A’,

 and

 for circuit of Fig. 3.14

3.1.5 Circuit with current controlled current source (CCCS)

Shown in Fig. 3.16 below is an example circuit including current controlled

current source. Here a current source between nodes 3 and 2 is controlled by the branch

current that flows from nodes 1 and 2.

V1

R1

1KW12V

R2

Ai=100

R3
1KW

i4

i5

i2

i3
i1

Ai i1

1

2

4 3

Fig. 3.16 Example circuit including current controlled current source

The constitutive relationship can be expressed as

 (3.18)

where is current gain of CCCS.

26

Matrix A’ for Fig. 3.16 is shown below in Fig. 3.17.The row and column deleted by the

designation of node2 as ground are shown in light type. The constitutive relation for

CCCS is found in second row of A’.

1 / 0.1 0 0 1 0 0 0 0

0 0 0 100 1 0 0 0

0 1 / 5 0 0 0 1 0 0

1 / 10 0 1 / 10 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 1 0 0

0 0 0 0

1 / 0.1

0

1 / 5

0

1

0

0 0 0 0 1 1 1 0 1

0

0 00 1 1

K K

K K

A’=

Fig.3.17 Matrix A’ for the circuit of Fig. 3.16

Vectors and for the circuit Fig. 3.16 is shown in Fig. 3.18.

 =

0

0

0

0

0

10

0

0

0

 =

1

3

4

1

2

3

4

5

v

v

v

i

i

i

i

i

=

9.99 5

499.995

10

0.000999

0.0999

0.0999

0.00099

0.00099

e

Fig.3.18 Matrices

 and

 for circuit of Fig.3.16

27

3.1.6 RLC circuit with sinusoidal excitation

The circuit of Fig. 3.19 below shown is an RLC circuit with sinusoidal excitation.

This is a practical network like one which may be encountered in electrical circuits

laboratories.R3 represents a jumper wire in Fig. 3.19

R1

R3

R2 L C

75W

150W

0.1W

6.33mH 1mF

5sin(2000p t)

1 2

3
4

i1

i2 i3 i4

i5

Fig. 3.19 Example circuit diagram of an RLC network with sinusoidal excitation.

The I V relationships of the reactive element of Fig. 3.19 are:

 (3.19)

 (3.20)

The constitutive relationships of L and C are:

 (3.21)

 (3.22)

The present value of inductor current and the present value of capacitor voltage

 are included as the elements of S’ matrix.

The differential equations (3.19) and (3.20) are implemented as given below:

28

 (3.23)

Matrix B’ for Fig. 3.19 is shown below. The column in light type contains

coefficients of the voltage at node 3; this column is removed due to the designation of

node 3 as ground.

0

0

0 0 0 0 0 0 1 6 0 0

0 157.97 157.97 0 0 0 0 0 0

e

610
B’=

The first row of B’ expresses (3.20); the second expresses (3.19).

 is found as solution to A’ where S contains values of

and at the time t.

Then equation (3.23) is integrated numerically using fourth order Runge-Kutta method to

find the values of and at time .The S vector is updated with the new values of

 and , and is recomputed at this new point in time. If S

contains time-varying independent sources, they are updated at each time step.

The matrices A’ for Fig. 3.19 is shown in Fig. 3.20.

 1 / 75 1 / 75 0 0 1 0 0 0 0 0

0 0 1 / 0.1 0 1 0 0 0 0

0 1 / 150 1 / 150 0 0 1 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1 0 0

1 / 0.1

0

0

0

1

0

0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 0 1 0 1 1 1 0

0 0

1 0 0 0 1

0 0 0 1 1 1 1 0

0

A’=

Fig.3.20 Matrix A’ for RLC circuit with sinusoidal excitation of Fig.3.19

29

The network of Fig. 3.19 was simulated with VELVET and Multisim. The output

voltages at node 2 from both simulations are shown in Fig. 3.21 below. The agreement is

evident. In both simulations the initial value of capacitor voltage was 2V and the initial

inductor current was 0.

Fig. 3.21 Comparison of VELVET and Multisim simulations

of a RLC network excited by sinusoidal.

3.1.7 RLC circuit with square-wave excitation

The circuit of Fig.3.22 is the network of Fig. 3.19 driven with square wave

excitation

.

R1

R3

R2 L C

75W

150W

0.1W

6.33mH 1mF

1 2

3 4

i1

i2 i3

i4

i5

10Vpp, 2kHz

Fig. 3.22 Example circuit diagram of an RLC network with square-wave excitation.

-4

-3

-2

-1

0

1

2

3

4

0 0.0005 0.001 0.0015 0.002

V
o

lt
a

g
e,

 V

Time, s

Simulated Multisim and Project VELVET voltage at node 2 Vs time for

Fig 3.19
Multisim_output VELVET_output

30

The network of Fig. 3.22 was simulated with VELVET and Multisim. The output

voltages at node 2 from both simulations are shown in Fig. 3.21 below. The agreement is

evident. In both simulations the initial value of capacitor voltage was 2V and the initial

inductor current was 0.

Fig. 3.23 Comparison of VELVET and Multisim simulations

of an RLC network excited by a square wave.

3.1.8 RLC circuit with triangle-wave excitation

Fig. 3.24 below is the network of Fig. 3.19 driven by triangle wave excitation.

R1

R3

R2 L C

75W

150W

0.1W

6.33mH 1mF

1 2

3
4

i1

i2 i3
i4

i5

10Vpp, 2kHz

Fig. 3.24 Example circuit diagram of an RLC network with triangle-wave excitation.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.0005 0.001 0.0015 0.002

V
o

lt
a

g
e,

V

Time, s

Simulated Multisim and Project VELVET voltage at node 2 vs Time

 for Fig 3.22
Multisim VELVET

31

The network of Fig. 3.24 was simulated with VELVET and Multisim. The output

voltages at node 2 from both simulations are shown in Fig. 3.21 below. The agreement is

evident. In both simulations the initial value of capacitor voltage was 2V and the initial

inductor current was 0.

Fig. 3.25 Comparison of VELVET and Multisim simulations of a RLC network excited

by triangle wave.

-4

-3

-2

-1

0

1

2

3

4

0 0.0005 0.001 0.0015 0.002

V
o

lt
a

g
e,

 V

Time, s

Simulated Multisim and Project VELVET voltage at node 2 vs time

for Fig 3.24

Multisim_output VELVET_output

32

Chapter 4

4. Implementation of VELVET

The previous chapter has demonstrated the mathematical development of network

equations and their solution for various electrical networks. The present chapter, will

show how VELVET is developed and what are its different virtual components

(breadboard, oscilloscope, multimeter, power supply, resistive elements). Additionally,

this chapter will discuss how the mathematical solution is linked to the virtual

instruments and how the data from the components connected to breadboard linked with

algorithm.

Care is taken to make virtual components and instruments replicate physical components

and instruments in both appearance and function.

4.1 VELVET components

4.1.1 Breadboard

The virtual breadboard of Fig. 4.1 in model works similarly to a physical

breadboard. It has six columns of connection strips. Each strip has five connection points;

connection to one connection point makes a connection to the whole strip.

Three power supply lines (i.e. positive power supply, negative power supply and

ground) are also provided on the left side of the breadboard.

Fig. 4.1 Virtual Breadboard

33

4.1.2 Oscilloscope

The oscilloscope is a vital instrument in a circuits laboratory. Hence it is

important that the virtual oscilloscope function like a physical oscilloscope. To keep its

operation simple, only those basic functions that are used in a circuits laboratory are

implemented in the virtual oscilloscope.

This oscilloscope displays waveforms versus time on its screen. The screen is

divided into divisions. And each division has 10 units. Both vertical sensitivity and time

base may be adjusted by the user. This oscilloscope presently has single channel.

The image of oscilloscope in VELVET is shown below in Fig. 4.2

Display

Time base

Fig. 4.2 Virtual Oscilloscope

Whenever the oscilloscope is connected to the circuit, its equivalent circuit

(1MW paralleled by 20 pF) is added to the circuit.

1MW 20pF

Fig.4.3 Equivalent circuit of oscilloscope input

34

4.1.3 Multimeter

Another important instrument for digital measurements is digital multimeter. The

virtual digital multimeter has a screen to show the output quantity. The multimeter

measures different parameters such as DC voltage, AC voltage, DC current, AC current

and resistance. The virtual multimeter has two connection points to connect positive and

negative probes.

Fig. 4.4 Virtual Multimeter

When multimeter is connected as voltmeter, its equivalent circuit is a high

resistance (as shown in Fig. 4.5) which will be connected to the circuit.

10MW

Fig. 4.5 Equivalent voltmeter circuit

Similarly when the multimeter is operated as an ohmmeter, its equivalent circuit

(shown in Fig. 4.6), consists of a current source in parallel with a resistance of 10MW.

35

10MW100mA

Fig. 4.6 Equivalent ohmmeter circuit of Agilent 34410A DMM on 1K-10K scale

Likewise when multimeter is operated as an ammeter then its equivalent circuit as

referred in Fig. 4.7, a low resistance connected in series is connected into the circuit.

0.1W

Fig. 4.7 Equivalent circuit of ammeter

4.1.4 Power supply

A virtual power supply as shown in Fig. 4.8 is also developed to be similar to a

real power supply. It has positive, negative supply ranges and a ground. Positive and

negative supply voltages are independently adjustable.

Fig. 4.8 Virtual Power supply

36

At present, the power supply can deliver unlimited currents. In future work, current

limiting of the power supply will be included.

4.1.5 Resistive elements

Refer to Fig. 4.9; VELVET has virtual resistive elements in a separate tab under

the general category of passive components. Different ranges of resistance are available

in the tab.

Fig. 4.9 Resistor drop-down list and connecting wires

When one clicks on the required component a message box pops up as shown in

Fig 4.10 below.

Fig. 4.10 Resistor with actual resistance value similar to realistic resistor.

37

This message box shows the properties of the selected resistors and asks the user

to confirm the component selection. The properties that are shown here are nominal

resistance, tolerance and actual resistance. The distribution of resistance values is done

randomly using Gaussian probability.

4.1.6 Main screen of VELVET project

Different components are discussed. Figure 4.11 below shows the alignment of all

the components. When one opens the VELVET project, the main screen is displayed. To

the left are virtual instruments such as the oscilloscope, multimeter and power supply. To

the right, the breadboard with power supply connection can be seen. Passive and active

components are accommodated by different tabs at the top of the screen.

Fig. 4.11 Main screen of VELVET

4.2 Flow of data of animation and proposed algorithm

The flow of data from simulation to animation has yet to be developed.

38

4.3 Reconfiguration of circuit

In physical laboratories students often remove and add a component to the circuit that is

already connected. This real scenario is implemented via reconfiguration of network

equations whenever there is addition or deletion of a component. Network matrices are

reconstructed whenever a component is added or deleted. This includes connection or

disconnection of test equipment.

4.4 Proposed approach to handle failure modes

Failures of components occur commonly in physical laboratories. Some of the

failures are due to manufacturing defects while some failures occur due to overstress on

components. One such failure that belongs to latter case is electrical overstress of

components. When a component is electrical over stressed for certain time component

burns out.

These failures can also be imitated in the virtual lab to make the lab more realistic. An

approach to handle failure modes is proposed here. Instantaneous power of each resistive

element to be accounted and difference of dissipated power to rated power should be

integrated over time to check if it falls over threshold power. When this quantity is above

threshold power then condition to perform animation of failure is true. This allows users

to observe the failure modes in VELVET.

39

Chapter 5

5.1 Conclusion

In previous chapters we have outlined the benefits and requirements of a virtual

laboratory and described previous work on the virtual laboratory. In addition, we have

outlined the mathematical development of network equations from the circuit topology.

The proposed algorithm has been applied to various circuits, including ones containing

controlled sources and reactive elements. The accuracy of the obtained results has been

verified with industry standard circuit development software solutions.

The proposed algorithm has been tested with circuits that with sinusoidal

excitation, square-wave excitation and triangle-wave excitation. The outputs waveforms

are comparable with output waveforms generated by industry standard circuit

development software. This is documented in Ch. 3.

The project has so far implemented the proposed algorithm in Visual Studio

C++.NET: A virtual breadboard, virtual power supply and virtual instruments such as

virtual oscilloscope, virtual multimeter are also implemented. A separate tab for active

elements and passive elements has been designed. Resistive elements are designed with

typical tolerance of 5% to replicate real components.

5.2 Future work

 Even though virtual resistive elements and virtual instruments are developed the

essential linkage between the animation and proposed algorithm is yet to be done. And

other developments that are to be implemented are the development of animation of

reactive elements, development of failure modes and development of necessary

animation of failure modes.

Future work also includes development of mathematical models for nonlinear

elements such as diodes and operational amplifiers (op-amps). Animation for nonlinear

40

elements, the linkage between the mathematical model and the animation will be

developed.

An approach is proposed to handle diode. When diode is connected to the circuit

its equivalent circuit as shown in Fig. 5.1 is added to the circuit. For a small signal silicon

diode, typical values for resistance, rD may be 10-15 W and typical values for voltage

source VD are 0.6-0.7V while the diode is conducting. In this process a new internal node

which is not present in prototype board is created. In analysis, the diode will initially be

assumed to be conducting; however, if the analysis gives a negative value of diode

current ID, rD will be replaced with a very large value (10 MWand the analysis will be

replaced.

+

+

VD

rD

ID

Internal node

Fig. 5.1 Diode and its equivalent circuit.

As VELVET can handle controlled sources, an example of operational amplifier as

shown in Fig 5.1 with controlled sources can be examined. The mathematical model for

operational amplifiers can be developed as explained in the proposed algorithm and

additionally three internal nodes which are not present in prototype board.

1.v id

+
-

+
-

+

-

+

vid

-

R R0

C

VPos

VNeg

X1 X2 X3

iX1 iX3

iX2
iX5

iX4

Power

Supply

connection
AVoLvid

+

-

VX1
Input

terminals

Fig 5.2 Example op-amp circuit with controlled sources

41

Application of Kirchhoff’s Current Law (KCL), at each node gives the following

relationships.

 Node X1: (5.1)

Node X2: (5.2)

Node X3: (5.3)

The expression for constitutive relations can be expressed as

VX1 = min (VPos, max (AVoL. Vid, VNeg)) (5.4)

where AVoL is the dc open loop gain.

Break frequency of open loop gain =

VX1 is limited to the range of VPos to VNeg. And this model does not draw dc operating

current as the real op amp does. And here diode is used for reverse polarity of power

supply.

42

References

[1] http://icampus.mit.edu/projects/ilabs/(Retrieved on January 16, 2015).

[2] A.Nafalski, Z. Nedic, J. Machotka, Ö. Göl, A. Scarino, J. Crichton, I. Gustavsson, J.

M. Ferreira, D. Lowe, and S. Murray IEEE Transactions on Learning Technologies,

2009. "International Collaboration in Remote Engineering Laboratories: an

Approach to Development.

[3] http://www.go-lab-project.eu/ (Retrieved on January 16, 2015).

[4] https://answers.syr.edu/display/ischool/iSchool+Remote+Lab (Retrieved on January

16, 2015).

[5] http://www.umkc.edu/is/remotelabs/ (Retrieved January 16, 2015).

[6] James Edward Fraser, Master Report on “A Guide for the classroom use of IBM

ECAP/360”.

[7] http://www.circuitstoday.com/circuit-design-and-simulation-softwares (Retrieved on

January 16, 2015).

[8] http://circuit.groups.et.byu.net/Comer_solutions/Spice/history.html (Retrieved on

January 21, 2015).

[9] http://www.orcad.com/about/orcad-history (Retrieved on January 21, 2015).

[10] http://en.wikipedia.org/wiki/National_Instruments_Electronics_Workbench_Group#

History (Retrieved on January 21, 2015).

[11] http://www.ni.com/ (Retrieved on January 16, 2015).

[12] http://www.ni.com/tutorial/11710/en/ (Retrieved on January 30, 2015).

[13] http://digital.ni.com/public.nsf/allkb/4B99B2CD6C0C3B6A86257205005D58E0

http://www.labshare.edu.au/images/site/9.%20International_collaboration_in_remote_engineering_laboratories.pdf
http://www.labshare.edu.au/images/site/9.%20International_collaboration_in_remote_engineering_laboratories.pdf
http://www.circuitstoday.com/circuit-design-and-simulation-softwares
http://circuit.groups.et.byu.net/Comer_solutions/Spice/history.html
http://www.orcad.com/about/orcad-history
http://www.ni.com/

43

[14] http://www.cadence.com/rl/Resources/datasheets/pcb_pspice_simulation_ds.pdf,

(Retrieved on January 16, 2015).

[15] http://community.cadence.com/cadence_technology_forums/f/22/t/27484 (Retrieved

on January 29, 2015).

[16] http://digital.ni.com/public.nsf/allkb/F7C4924C4E33D17A86257BF6006CCC32

(Retrieved on January 30, 2015).

[17] Ac 2011-2781: Using Portable Electronics Experiment Kits for Electronics Courses

in a General Engineering Program.

[18] https://www.eng.vt.edu/news/virginia-tech-s-lab-box-showcased-national-

department-heads-meeting (Retrieved on January 28, 2015).

[19] Mohamed Shaheen, Kenneth A. Loparo and Marcus R.Buchner “Remote Laboratory

Experimentation” Proceedings of the American Control Conference, Philadelphia,

Pennsylvania, June 1998.

[20] E.Tanyildizi and A.Orhan “A Virtual Electric Machine Laboratory for Synchronous

Machine Application” Wiley online publications.

[21] Cui Xiaoyan, Zhang Xiaodong and Chen Xi “A Virtual Laboratory for Electrical

and Electronics Teaching” 2005 IEEE International Symposium on Microwave,

Antenna, Propagation and EMC Technologies for Wireless Communications

Proceedings.

[22] Hasanul A.Basher, Saliman A.Isa, and M’Hamed A.Henini “Virtual Laboratory for

Electrical Circuit Course” 2004 IEEE Southeast Con Proceedings.

44

[23] C.C.Ko, Ben M.Chen, S.H.Chen, V.Ramakrishnan, R.Chen, S.Y.Hu and Y.Zhuang

“A large scale Web-based virtual oscilloscope laboratory experiment” IEEE

Science and Education Journal Vol 9, No 2, pp 69-76, April 2000.

[24] Chung-Wen Ho, Albert E.Ruehli and Pierce A. Brennan “The Modified Nodal

Approach to Network Analysis” IEEE Transactions on circuits and systems, Vol

CAS-22, No 6, June 1975.

[25] Andrei Vladimirescu,”The Spice Book”Jhon Wiley &Sons, Inc.

[26] Franklin H.Branin, Jr, Gerald R.Hogsett, Richard L.Lunde and Lawrence E.Kugel

“ECAP II A New Electronic Circuit Analysis Program” IEEE Journal of Solid State

Circuits, Vol Sc-6, No4, August 1971.

45

Appendix-A

A.1 Software Documentation

/* Name: Sreelatha Aihloor Subramanyam
Project: Virtual Electronics Laboratory Visualized Education and Training(VELVET)
Thesis: December 2015
Date: 10/1/2015

Purpose of Program:This program takes the circuit parameters as a text file and
produces the node voltages and branch currents.

Format of Text file:
X X1 X2 X3 X4 X5 X6
X - Prototype board from node
X1 - Prototype board to node
X2 - Symbol of the component
X3 - Controlled source from node
X4 - Controlled source to node
X5 - Values of reactive elements.If the element is not reactive then 0 is
asserted
X6 - Values of the component

For Eg 4 2 L 0 0 0.1 1 here 4 is prototype board from node,2 is prototype board
to node,L is symbol for inductor ,0 is controlled source from node
 0 is controlled source to node ,0.1 is the value of the inductor,1 is the initial
branch current of inductor.

 Symbols used in this program
 R - Resistor
 L - Inductor
 C - Capacitor
 P - Positive Voltage
 N - Negative Voltage
 Q - Sinusoidal Excitation
 Y - Square-wave Excitation
 Z - Triangle-wave Excitation
 E - Voltage controlled voltage source
 F - Current controlled current source
 G - Voltage controlled current source
 H - Current controlled voltage source

*/
/*Preprocessor derivatives,Header files,file stream header files,string operation
header files */
//#include "stdafx.h"
#include<iostream>
#include<conio.h>
#include<fstream>
#include<stdlib.h>
#include<string.h>

46

#include<sstream>
#include<vector>
#include<string>
#include<math.h>
#include<cstring>
using namespace std;
/* Structure for a two dimensional matrix
 Data Type struct
 Elements pointer to two dimensional array */
struct TwoDMatrix
{
float **a;
int row;
int column;
};
/* Class matrix contains the methods for create matrix,initialize
matrix,horizontal contatenation,vertical concatenation,ground node deletion,
 guass elimination,s matrix update
 */
class Matrix
{
 public:

 struct TwoDMatrix createMatrix(int row, int coumn); //Create matrix
of desired row anf column method
 struct TwoDMatrix initialize_with(float val, struct TwoDMatrix x);
//Matrix initialize method
 struct TwoDMatrix hconcatenate(struct TwoDMatrix x, struct
TwoDMatrix y); // horizontal concatenation method
 struct TwoDMatrix vconcatenate(struct TwoDMatrix x, struct
TwoDMatrix y); // vertical concatenation method
 struct TwoDMatrix Matrix :: mydelete(struct TwoDMatrix x, int r,int
c);//ground node deletion method
 vector <double> Matrix:: gauss(struct TwoDMatrix x,int r);//gauss
elimination method
 struct TwoDMatrix Matrix ::supdate(struct TwoDMatrix x,int
r,vector<double> ysvt,vector<double> K);//s matrix update method
};
/* Vertical Concatenate method
 This method is used to contatenate two rows one on above of other i.e. vertical
concatenation.
 parameters: x,y of data type struct structure TwoDmatrix
 return data type struct a two dimensional array is returned
 */
struct TwoDMatrix Matrix :: vconcatenate(struct TwoDMatrix x, struct TwoDMatrix y)
{
 float **a; //2D matrix a pointer
 int i=0,j; // indexing elements
 struct TwoDMatrix ret_mat; //return 2D matrix of struct data type

 ret_mat.row = x.row + y.row; //rows of two matrices x and y are
added
 a=new float*[ret_mat.row];
 ret_mat.column = x.column;
 for(int i=0;i<ret_mat.row;i++)
 {
 a[i]=new float[ret_mat.column];
 }

47

 while(i < x.row)
 {
 for(j=0;j<x.column;j++)
 {
 a[i][j]=x.a[i][j];
 }

 i++;
 }
 for(i=x.row;i < ret_mat.row;i++)
 {
 for(j=0;j<y.column;j++)
 {
 a[i][j]=y.a[i-x.row][j];
 }

 }
 ret_mat.a=a;
 return ret_mat;

}
/* Horizontal Concatenate method
 This method is used to contatenate two columns side by side i.e. Horizontal
concatenation.
 parameters: x,y of data type struct structure TwoDmatrix
 return data type struct a two dimensional array is returned
*/

struct TwoDMatrix Matrix :: hconcatenate(struct TwoDMatrix x, struct TwoDMatrix y)
{
 float **a;
 int i=0,j;
 struct TwoDMatrix ret_mat;
 if(x.row == y.row)
 {
 ret_mat.row = x.row;
 a=new float*[x.row];

 for(i=0;i<ret_mat.row;i++)
 {
 a[i]=new float[x.column+y.column];
 }
 ret_mat.column=x.column+y.column;
 i=0;
 while(i < ret_mat.row)
 {
 for(j=0;j<x.column;j++)
 {
 a[i][j]=x.a[i][j];
 }
 for(j=x.column;j<ret_mat.column;j++)
 {
 a[i][j] = y.a[i][j-x.column];
 }
 i++;
 }
 ret_mat.a=a;

48

 }

 return ret_mat;
}
/*Create Matrix method:The purpose of this method is to create a two dimensional
matrix of given rows and columns.
 parameters: r(rows),c(columns) of data type int
 Return: A matrix of dimensions r x c is created.The return type is struct
TwoDMatrix
*/
struct TwoDMatrix Matrix :: createMatrix(int r, int c)
{
 float **a;
 a=new float*[r];
 for(int i=0;i<r;i++)
 {
 a[i]=new float[c];

 }
 struct TwoDMatrix ret_matrix;
 ret_matrix.a=a;
 ret_matrix.row=r;
 ret_matrix.column=c;
 return ret_matrix;
}
/*Initialize matrix method:The purpose of this method is to initialize the given
matrix with given value.This is essentially
 used to create zero matrix.This zero matrix is used in updating the size of the
given matrix whenever a new component is
 added to the circuit.
 Parameters; val(value to be used to initialize) of float data type and x (given
two dimensional matrix to be updated)of
 data type struct TwoDMatrix.
 Return:Method returns a 2D matrix of data type struct TwoDMatrix
*/
struct TwoDMatrix Matrix :: initialize_with(float val, struct TwoDMatrix x)
{

 for(int i=0; i<x.row;i++)
 {
 for(int j=0; j<x.column;j++)
 {
 x.a[i][j]=val;
 }
 }
 return x;
}
/* supdate method: This method is exclusively used to update S matrix.The purpose
of this method is to update S matrix at the given index
 of whether the index may be of reactive elements or of sinusoidal /triangle-
wave/square -wave voltage excitation.The respective elements
 of S are updated with given K matrix(where matrix has updated values).

 Parameters:x(Two dimensional matrix to be updated,in this case S matrix),r(rows
of data type int),vector K(of dta type double)(matrix with
 updated values)
 Return : two dimensional matrix of data type struct(here updated S matrix is
returned)

49

*/
struct TwoDMatrix Matrix ::supdate(struct TwoDMatrix x,int r,vector<double>
ysvt,vector<double> K)
{
 float **a=x.a;
 int i=0;
 int j;
 struct TwoDMatrix ret_mat;
 int k=0;

 for(int i=0;i<x.row;i++)
 {
 for(int j=0;j<x.column;j++)
 {
 while (k<r)
 {
 if(i== ysvt[k])
 {
 a[i][j]=K[k]; k++;
 }
 break;
 }
 }
 }
 ret_mat.row=x.row;
 ret_mat.column=x.column;
 ret_mat.a=a;
 return ret_mat;
 }
/*mydelete: This method is exclusively used to delete rows and columns of the
given matrix.
 Here this method is used to delete column that belongs to ground node and KCL row
that belongs to ground node

Parameters: struct Two dimensional matrix x(matrix that is to be changed),r(row #
of data type int),c(column # of data type int)
Return : two dimenstional matrix of data type struct*/
struct TwoDMatrix Matrix :: mydelete(struct TwoDMatrix x, int r,int c)
{
 float **a=x.a;
 int i=0;
 int j;
 struct TwoDMatrix ret_mat;
 float **d ;
 d=new float*[x.row-1];
 for(i=0;i<x.row-1;i++)
 {
 d[i]=new float[x.column-1];

 }
 int DELETED_ROW=r;
 int DELETED_COLUMN=c;

 for (i = 0; i < x.row; i++)
 if (i != DELETED_ROW)
 {
 for (j = 0; j < x.column; j++)

50

 if (j != DELETED_COLUMN)
 {
 if (i < DELETED_ROW && j < DELETED_COLUMN)
 d[i][j] = x.a[i][j];
 else if (i < DELETED_ROW && j > DELETED_COLUMN)
 d[i][j-1] = x.a[i][j];
 else if (i > DELETED_ROW && j < DELETED_COLUMN)
 d[i-1][j]=x.a[i][j];
 else
 d[i-1][j-1]=x.a[i][j];
 }
 }

 ret_mat.row=x.row-1;
 ret_mat.column=x.column-1;
 ret_mat.a=d;
 return ret_mat;
}
/* guass: Guass method is used to perform guass elimination.This guass elimination
technique is ued to solve matrix unknowns
 X=A/B(AX=B).
 Parameters: x(the matrix A of data type struct TwoD matrix),r(number of rows in
the matrix)(data type int)
 Return: returns a vector of unknowns y(data type vector(double))

*/
vector <double> Matrix:: gauss(struct TwoDMatrix x,int r)
{
 int i=0;
 int j=0;
 int k=0;
 int n=r;

 for (int i=0; i<n; i++) {
 // Search for maximum in this column
 double maxEl = abs(x.a[i][i]);
 int maxRow = i;
 for (int k=i+1; k<n; k++) {
 if (abs(x.a[k][i]) > maxEl) {
 maxEl = abs(x.a[k][i]);
 maxRow = k;
 }
 }

 // Swap maximum row with current row (column by column)
 for (int k=i; k<n+1;k++) {
 double tmp = x.a[maxRow][k];
 x.a[maxRow][k] = x.a[i][k];
 x.a[i][k] = tmp;
 }

 // Make all rows below this one 0 in current column
 for (int k=i+1; k<n; k++) {
 double c = -x.a[k][i]/x.a[i][i];
 for (int j=i; j<n+1; j++) {
 if (i==j) {
 x.a[k][j] = 0;
 } else {

51

 x.a[k][j] += c * x.a[i][j];
 }
 }
 }
 }

 // Solve equation Ax=b for an upper triangular matrix A
 vector<double> y(n);
 for (int i=n-1; i>=0; i--) {
 y[i] = x.a[i][n]/x.a[i][i];
 for (int k=i-1;k>=0; k--) {
 x.a[k][n] -= x.a[k][i] * y[i];
 }
 }
 return y;
}
/* This function trim is used to trim the given string
 parameters: string S
 Return: The resultant string
*/
string trim(const string& s)
 {
 string result(s);
 result.erase(result.find_last_not_of(" ") + 1);
 result.erase(0, result.find_first_not_of(" "));
 return result;
 }

int main()
{
 string list_of_words; //no.of words in each line of text file
 double w[1000],w1[1000];//array of double to store the values of x at
various timesteps.to display them in a plot
 double t3=0;//cycle time for triangle wave
ifstream fin; //file input
 fin.open("cccscircuit.txt"); // opens the text file

 int num_of_new_nodes = 0; // number of nodes in the circuit
 int next_node = 1; // next node
 int prototype_nodes[30]; // array of proto type nodes.it is intialized to
30.i.e it can handle up to 30 nodes
 for(int i=0; i<30; i++) //initialize array of proto type nodes with -1
.for identification that the node is
 //not occupied
 {
 prototype_nodes[i] = -1;
 }

 int pf, pt,nodep,noden; //proto type from node(pf),proto type to
node(pt),controlled source dependent from node (nodep)
 // controlled source dependent to
node (noden)
 float val,ampli,freq; //value(val) of the
component,ampli(amplitude),freq(frequency) of sine/triangle/square wave
 long double pi=3.141592653589793238462643383279502884;//PI value
 char type; //type used for element type
 int from_node, to_node;// electrical from node(from_node),electrical to
node(to_node)

52

 string line;//line in the text file
 int j = 0; //index
 string single_line, spf, spt, sval,snodep,snoden,sval2,stype;//
line(single_line),string prototype from node(spf),string proto type

 // to node(spt)string value,nodep,noden,val2(value of
reactive element),element type
 const int n = 30; // no.of electrical nodes
 char ptype; //element type

 int ground,ground1,ground2;// reference ground node(ground),positive
voltage ground(ground1),neagative voltage ground(ground2)

 struct TwoDMatrix a, a1,a2,a3,a4,s, zeroes,
ones,y,s1,b,c,primea,primea1,primey,s2,u,B1,B2,B,primeB,svt,st;
 //define variables of data type struct
 Matrix m; // class declaration
 /* Initialze two dimensional matrices with size zero*/
 a1=m.createMatrix(0,0);
 a2=m.createMatrix(0,0);
 a4=m.createMatrix(0,0);
 s=m.createMatrix(0,0);
 y=m.createMatrix(0,0);
 s1=m.createMatrix(0,0);
 b=m.createMatrix(0,0);
 c=m.createMatrix(0,0);
 a=m.createMatrix(0,0);
 B=m.createMatrix(0,0);
 B1=m.createMatrix(0,0);
 B2=m.createMatrix(0,0);
 svt=m.createMatrix(0,0);
 st=m.createMatrix(0,0);
 primea=m.createMatrix(0,0);
 //xdot=m.createMatrix(0,0);
 float t=0; // time period
 int new_row = 0; // new row
 int new_branch = 0;// new branch
 float val2;// value of reactive elements
 double vg;//source voltage
 int num_sv=0,num_sv1=0;//num_sv used to index the number of reactive
elements for B1 ,num_sv1 is used to index number of reactive elements for B2
 string word;//each word
 string worda[7];// 7 strings in each line
 int cntr = 0,i=0; //counter(cntr),index(i)
 while(getline(fin, list_of_words)) //get line untill the end is reached
 {
 single_line = list_of_words;
 list_of_words += " ";
 istringstream iss(list_of_words);
 /* Each line is trimed into no.of words*/
 while (getline(iss, word, ' '))
 {
 worda[i] =trim(word);
 i++;
 }
 i=0;
 /* Read each word into respective springs*/

53

 while(i<7)
 {
 // cout<<"the worda"<<worda[i]<<endl;
 spf=worda[0];
 spt= worda[1];
 stype=worda[2];
 snodep=worda[3];
 snoden=worda[4];
 sval2= worda[5];
 sval= worda[6];
 i++;
 }
 i=0;//initialize with 0
 /* convert strings into integers or floats*/

 pf = atoi(spf.c_str());
 pt = atoi(spt.c_str());
 ptype = stype[0];
 nodep= atoi(snodep.c_str());
 noden = atoi(snoden.c_str());

 val=atof(sval.c_str());
 val2=atof(sval2.c_str());

 // cout<<ptype<<endl;
 /* getchar();
 cout<<pf<<endl; /* These statements are used to print values of
pf,pt,ptyoe,nodep,noden,val2,val//
 cout<<pt<<endl;
 cout<<ptype<<endl;
 cout<<nodep<<endl;
 cout<<noden<<endl;
 cout<<val2<<endl;
 cout<<val<<endl;
 getchar();

 */
 /* Extraction of electrical node numbers,electrical from node,to
node and update number of electrical nodes*/
 if(prototype_nodes[pf] == -1)

 {
 prototype_nodes[pf] = next_node;
 from_node = next_node;
 next_node = next_node+1;
 num_of_new_nodes = num_of_new_nodes+1;

 }
 else
 {
 from_node = prototype_nodes[pf];

 }

 // cout<<"num_nodefrom"<<num_of_new_nodes<<endl;// print number of
elelctrical node and from node
 //std::cout<<"from_node"<<from_node<<endl;
 if(prototype_nodes[pt] == -1)

54

 {
 prototype_nodes[pt] = next_node;
 to_node = next_node;
 next_node = next_node+1;
 num_of_new_nodes = num_of_new_nodes+1;
 }

 else
 {
 to_node = prototype_nodes[pt];
 }

 //std::cout<<"to"<<to_node<<endl;

 j++;//increment index

 /*for(int i=0;i<20;i++) // used to print array of electrical nodes
 {
 cout<<prototype_nodes[i];
 }
 getchar();*/

 //###########! A1 matrix
 // formation of A1
 from_node=from_node-1;
 to_node=to_node-1;
 nodep=nodep-1;
 noden=noden-1;

 if(a1.row == 0)
 {
 a1=m.createMatrix(1,2);
 a1=m.initialize_with(0,a1);
 }
 else
 { zeroes=m.createMatrix(1,a1.column);
 zeroes=m.initialize_with(0,zeroes);
 a1=m.vconcatenate(a1,zeroes);
 switch(num_of_new_nodes)
 {
 case 2: zeroes=m.createMatrix(a1.row,2);
 zeroes=m.initialize_with(0,zeroes);
 a1=m.hconcatenate(a1,zeroes);break;
 case 1: zeroes=m.createMatrix(a1.row,1);
 zeroes=m.initialize_with(0,zeroes);
 a1=m.hconcatenate(a1,zeroes);break;
 default: break;
 }
 }

 switch(ptype)
 {
 case 'R': a1.a[a1.row-1][from_node]=(1/val);
 a1.a[a1.row-1][to_node]=-(1/val);break;
 case 'N': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;

55

 case 'E': a1.a[a1.row-1][nodep]=-val;
 a1.a[a1.row-1][noden]=val;
 a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 case 'G': a1.a[a1.row-1][nodep]=val;
 a1.a[a1.row-1][noden]=-val;break;
 case 'P': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 case 'Q': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 case 'X': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 case 'Z': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 case 'Y': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 case 'C': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 case 'H': a1.a[a1.row-1][from_node]=1;
 a1.a[a1.row-1][to_node]=-1;break;
 default: break;
 }

 //############### A2 matrix formation

 if(a2.row == 0)
 {
 a2=m.createMatrix(1,1);
 a2=m.initialize_with(0,a2);
 new_branch=0;
 new_row=0;

 }
 else
 {
 zeroes=m.createMatrix(1,a2.column);
 zeroes=m.initialize_with(0,zeroes);
 a2=m.vconcatenate(a2,zeroes);

 zeroes=m.createMatrix(a2.row,1);
 zeroes=m.initialize_with(0,zeroes);
 a2=m.hconcatenate(a2,zeroes);

 new_row=a2.row-1;
 new_branch=a2.column-1;
 }

 switch(ptype)
 {
 case 'R' : a2.a[new_row][new_branch] = -1;break;
 case 'I': a2.a[new_row][new_branch] = 1;break;
 case 'L': a2.a[new_row][new_branch] = 1;break;
 case 'G' : a2.a[new_row][new_branch] = -1;break;
 case 'F': a2.a[new_row][nodep]=val;
 a2.a[new_row][new_branch]=-1;break;
 case'H': a2.a[new_row][nodep]=-val;break;

56

 default:a2.a[new_row][new_branch] = 0;break;
 }

 //########### !A4 matrix

 if(a4.row == 0)
 {
 a4=m.createMatrix(2,1);
 a4=m.initialize_with(0,a4);

 a4.a[from_node][a4.column-1]=1;
 a4.a[to_node][a4.column-1]=-1;

 }
 else
 {
 zeroes=m.createMatrix(a4.row,1);
 zeroes=m.initialize_with(0,zeroes);
 a4=m.hconcatenate(a4,zeroes);
 switch(num_of_new_nodes)
 {
 case 2: zeroes=m.createMatrix(2,a4.column);
 zeroes=m.initialize_with(0,zeroes);
 a4=m.vconcatenate(a4,zeroes);break;
 case 1: zeroes=m.createMatrix(1,a4.column);
 zeroes=m.initialize_with(0,zeroes);
 a4=m.vconcatenate(a4,zeroes);break;
 default: break;
 }

 a4.a[from_node][a4.column-1]=1;
 a4.a[to_node][a4.column-1]=-1;
 }

 // ########## S matrix
 if(s.row == 0)
 {
 s=m.createMatrix(1,1);
 s=m.initialize_with(0,s);
 }
 else
 {
 zeroes=m.createMatrix(1,1);
 zeroes=m.initialize_with(0,zeroes);
 s=m.vconcatenate(s,zeroes);
 }
 switch(ptype)
 {
 case 'E':s.a[s.row-1][0]=0;break;
 case 'P':s.a[s.row-1][0]=val;break;
 case 'Q':s.a[s.row-1][0]=val;break;
 case 'Y':s.a[s.row-1][0]=val;break;
 case 'X':s.a[s.row-1][0]=val;break;
 case 'Z':s.a[s.row-1][0]=val;break;
 case 'N':s.a[s.row-1][0]=val;break;
 case 'L':s.a[s.row-1][0]=val;

57

 break;
 case 'C':s.a[s.row-1][0]=val;
 break;
 default:break;
 }
 /* if the source is sinusidal /triangle-wave / square-wave them
amplitude and frequency is derived*/
 if ((ptype =='Y')||(ptype == 'Q')||(ptype == 'Z'))
 {
 ampli=nodep+1;
 freq=noden+1;

 }
 //Indexing the source element in the S matrix (source tag)

 if((ptype =='X') || (ptype =='Y') || (ptype == 'Q') ||(ptype =='Z'))
 {
 if(st.row == 0)
 {
 st=m.createMatrix(1,1);
 st=m.initialize_with(0,st);
 st.a[st.row-1][0]=s.row-1;
 }

 else{
 zeroes=m.createMatrix(1,1);
 zeroes=m.initialize_with(0,zeroes);
 st=m.vconcatenate(svt,zeroes);

 st.a[st.row-1][0]=s.row-1;
 }

 }
 // Indexing for State Variable elements in the S matrix (state
variable Tag)

 if(ptype =='L')
 {
 if(svt.row == 0)
 {
 svt=m.createMatrix(1,1);
 svt=m.initialize_with(0,svt);
 svt.a[svt.row-1][0]=s.row-1;
 }
 else{
 zeroes=m.createMatrix(1,1);
 zeroes=m.initialize_with(0,zeroes);
 svt=m.vconcatenate(svt,zeroes);

 svt.a[svt.row-1][0]=s.row-1;
 }

 }
 if(ptype =='C')
 {
 if(svt.row == 0)
 {
 svt=m.createMatrix(1,1);

58

 svt=m.initialize_with(0,svt);
 svt.a[svt.row-1][0]=s.row-1;

 }

 else
 {
 zeroes=m.createMatrix(1,1);
 zeroes=m.initialize_with(0,zeroes);
 svt=m.vconcatenate(svt,zeroes);
 svt.a[svt.row-1][0]=s.row-1;
 }
 }

 //Designate ground if voltage sources are either sinusoidal/triangle-
wave/square-wave.
 if((ptype=='Q') || (ptype=='X') ||(ptype=='Y') || (ptype =='Z'))
 {
 ground1 = to_node+1; // have to tackle with situation of both dc
and ac supply is given in future

 }
 //to_node of electrical node of element type of positive voltage source is
made reference node.
 //In previous execution statements to_node is decremented by 1 so 1
is added again to to_node.
 if(ptype=='P')
 {
 ground1 = to_node+1;

 }
 //if the voltage source is negative then from_node of the voltage source
is taken as ground
 if(ptype=='N')
 {
 ground2 = from_node+1;
 }
 //If both the grounds are equal then ground is ground corresponding to
positive voltage else ground is the ground
 //of positive voltage source.
 if(ground1 == ground2)
 {
 ground=ground1;
 }
 else
 {
 ground=ground1;
 }

 // B1 matrix formation
 /* B1 matrix is formed to consider reactive elements.It has dimensions of
nodes by branches*/

 if(B1.row == 0)
 {
 B1=m.createMatrix(1,2);
 B1=m.initialize_with(0,B1);
 }

59

 else
 { zeroes=m.createMatrix(1,B1.column);
 zeroes=m.initialize_with(0,zeroes);
 if(ptype =='L')
 {B1=m.vconcatenate(B1,zeroes);
 num_sv++;
 }
 else if (ptype == 'C')
 {B1=m.vconcatenate(B1,zeroes);
 num_sv++;
 }

 switch(num_of_new_nodes)
 {
 case 2: zeroes=m.createMatrix(B1.row,2);
 zeroes=m.initialize_with(0,zeroes);
 B1=m.hconcatenate(B1,zeroes);break;
 case 1: zeroes=m.createMatrix(B1.row,1);
 zeroes=m.initialize_with(0,zeroes);
 B1=m.hconcatenate(B1,zeroes);break;
 default: break;
 }

 }

 switch(ptype)
 {
 case 'L': B1.a[num_sv-1][from_node]=(1/val2);
 B1.a[num_sv-1][to_node]=-(1/val2);break;
 default:break;
 }

 // Formationof B2 matrix
 /* B2 matrix is formed to take care of reactive elements.B1 and B2
are formed from constitutive relations*/
 if(B2.row == 0)
 {
 B2=m.createMatrix(1,1);
 B2=m.initialize_with(0,B2);
 new_branch=0;

 }
 else
 {
 zeroes=m.createMatrix(1,B2.column);
 zeroes=m.initialize_with(0,zeroes);

 if(ptype =='L')
 {B2=m.vconcatenate(B2,zeroes);
 num_sv1++;
 }
 else if (ptype == 'C')
 {B2=m.vconcatenate(B2,zeroes);
 num_sv1++;
 }
 zeroes=m.createMatrix(B2.row,1);
 zeroes=m.initialize_with(0,zeroes);

60

 B2=m.hconcatenate(B2,zeroes);
 new_branch=B2.column-1;
 }

 switch(ptype)
 {
 case 'C' : B2.a[num_sv1-1][new_branch] = 1/val2;break;
 default:break;
 }
 num_of_new_nodes=0;

 } // end of while loop

/* for(int i=0;i<20;i++)
 {
 cout<<prototype_nodes[i];
 }
 getchar();*/
 /*cout<<"svt tag"<<endl;
 for(int i=0;i<svt.row;i++)
 {
 for (int j=0;j<svt.column;j++)
 cout<<svt.a[i][j]<<"\t";
 cout<<endl;

 } getchar();*/
 //getchar();

 /*cout<<"st tag"<<endl;
 cout<<"st row"<<st.row<<endl;
 cout<<"st column"<<st.column<<endl;

 for(int i=0;i<st.row;i++)
 {
 for (int j=0;j<st.column;j++){
 cout<<st.a[i][j]<<"\t";
 cout<<endl;
 }
 }
 getchar();*/
 /*for(int i=0;i<B1.row-1;i++)
 {
 for(int j=0;j<B1.column;j++)
 {
 cout<<B1.a[i][j]<<"\t";
 }
 cout<<endl;
 }*/
 //getchar();
 //cout<<"############"<<endl;
/*for(int i=0;i<B2.row-1;i++)
 {
 for(int j=0;j<B2.column;j++)
 {
 cout<<B2.a[i][j]<<"\t";
 }
 cout<<endl;
 }

61

 */
 // #########! B matrix Formation
 B=m.hconcatenate(B1,B2); // concatenate B1 and B2
 /* for(int i=0;i< B.row;i++)
 {
 for(int j=0;j<B.column;j++)
 {
 cout<<B.a[i][j] <<"\t";
 }
 cout<<endl;
 }
 getchar();*/
 //cout<<"###########################"<<endl;
 // delete ground column

 primeB = m.mydelete(B,B.row-1,ground-1); // delete the column corresponding
to ground
 /*for(int i=0;i< primeB.row;i++)
 {
 for(int j=0;j<primeB.column;j++)
 {
 cout<<primeB.a[i][j] <<"\t";
 }
 cout<<endl;
 }
 getchar();*///print B' matrix

 //######! A3 matrix Formation

 a3=m.createMatrix(a1.column,a1.column);
 a3=m.initialize_with(0,a3);

 //############! Y matrix formation
 y=m.createMatrix(a1.column,1);
 y=m.initialize_with(0,y);

 //#############! Formation of S1 matrix
 s1=m.vconcatenate(s,y);

 //################! After deletion of RHS element corresponding to ground node
 primey=m.createMatrix(a1.column-1,1);
 primey=m.initialize_with(0,primey);

 // ##############! Formation of A matrix
 b=m.hconcatenate(a1,a2);
 c=m.hconcatenate(a3,a4);
 a=m.vconcatenate(b,c);
 /*
 for(int i=0;i<a2.row;i++)
 {
 for(int j=0;j<a2.column;j++)
 {
 cout <<a2.a[i][j]<<"\t";
 }
 cout<<endl;
 }*/ // print A2 matrix

62

 /*cout<<a4.row<<endl;
 cout <<a4.column<<endl;
 for(int i=0;i<a4.row;i++)
 {
 for(int j=0;j<a4.column;j++)
 {
 cout <<a4.a[i][j]<<"\t";
 }
 cout<<endl;
 }*/ // print A4 matrix

 /*cout<<a1.row<<endl;
 cout <<a1.column<<endl;
 for(int i=0;i<a1.row;i++)
 {
 for(int j=0;j<a1.column;j++)
 {
 cout <<a1.a[i][j]<<"\t";
 }
 cout<<endl;
 }*/ // Print A1 matrix

 //cout<<s.row<<endl;
 //cout<<s.column<<endl;
 /*for(int i =0;i<s.row;i++)
 {
 for(int j=0;j<s.column;j++)
 {
 cout<<s.a[i][j]<<"\t";
 }
 cout<<endl;
 }getchar();*/ // Print S matrix
//cout<<"##############################"<<endl;

/* cout<<a.row<<endl;
 cout<<a.column<<endl;
 for(int i =0;i<a.row;i++)
 {
 for(int j=0;j<a.column;j++)
 {
 cout<<a.a[i][j]<<"\t";
 }
 cout<<endl;
 }
 getchar();*/ //Print A matrix

 //Delete row and column corresponding to ground node
 primea=m.mydelete(a,a1.row+ground-1,ground-1);
 /*for(int i=0;i<primea.row;i++)
 {
 for(int j=0;j<primea.column;j++)
 {
 cout<<primea.a[i][j]<<"\t";
 }
 cout<<endl;
 }
 getchar();*/ //Print A matrix after deletion of ground node

63

 //If there are no reactive elements in the circuit
 if (svt.row == 0)
 {
 s2=m.vconcatenate(s,primey); //concatenate S matrix and Y' matrix
and store in S2 matrix
 primea1=m.hconcatenate(primea,s2);//concatenate matrix A' and S2
matrix
 vector <double>x(primea.row); // Initialize a vector x (unknown node
voltages and branch current
 //vector of size primea.row
 x=m.gauss(primea1,primea.row);//Using guass method find unknown
values of vector x
 cout<<"##########################"<<endl;
 cout<<"The Results are:"<<endl;
 for(int i=0;i<primea.row;i++) //Print the output values of vector x
 {
 cout<<x[i]<<endl;
 }
 cout<<"###########################"<<endl;
 }
 else //If there are reactive elements in the circuit
 {
 float t1=0; //timestep
 for(int i=0;i<1000;i++){ //This fir loop is used for 1000 timesteps

 if(st.row > 0){ //If the voltage source doesnot include
sinusoidal/triangle-wave/square-wave

 if (ptype =='Q'){ //If voltage source is of sinusoidal type
then Vg=Asin(2*PI*f)

 vg = ampli*sin(freq*2*pi*t1);
 }
 if(ptype=='X'){//
 vg=val;
 }
 if((ptype =='Y') ||(ptype == 'Z'))
 {
 double T=1/freq;

 if (t3 <= T/2)
 {
 if (ptype =='Y')
 vg= -ampli+(t3*((4*ampli)/T));
 else if (ptype =='Z')
 vg=ampli;
 }
 if((t3 > T/2) && (t3 <= T))
 {
 if(ptype =='Y')
 vg= ampli -((t3-T/2)*((4*ampli)/T));
 else if (ptype =='Z')
 vg= -ampli;
 }

 t3=t3+0.00001; //Increment timestep of triangle -wave
within
 if(t3>T){

64

 t3=t3-T;
 }

 }

 t1=t1+0.00001; //Increment Timestep of the whole circuit

 vector <double>yst(st.row); //st tag in vector form(st tag is used
to indexing source element in S matrix
 //cout<<"st.row"<<st.row<<endl;
 //cout<<"st.column"<<st.column<<endl;getchar();
 for(int i=0;i<st.row;i++) // convert two dimenstional column matrix into a
vector for easy manipulation
 {
 for(int j=0;j<st.column;j++){
 yst[i]=st.a[i][j];

 }

 }
 /* Updating S matrix at the source element at every timestep*/
 for(int i=0;i<s.row;i++)
 {
 for(int j=0;j<s.column;j++)
 {

 if(i== yst[0])
 {
 s.a[i][j]=vg;

 }

 }
 }
 /* Print newly formed S matrix*/
 /* for(int i=0;i<s.row;i++)
 {
 for(int j=0;j<s.column;j++)
 {
 cout<<s.a[i][j]<<"\t";
 }
 cout<<endl;
 }getchar();*/
 }

 s2=m.vconcatenate(s,primey); // Concatenate Y' matrix with new s matrix

 primea1=m.hconcatenate(primea,s2); // Concatenate s2 and A' matrices
 /* Print newly formed A' matrix*/
/* for(int i=0;i<primea1.row;i++)
 {
 for(int j=0;j<primea1.column;j++)
 {
 cout<<primea1.a[i][j]<<"\t";
 }
 cout<<endl;

65

 }getchar();*/
 //cout<<"The above matrix is prime A with attached prime S(s2)"<<endl;
 vector <double>x(primea.row); //output of unknown values
 vector <double>xdot(primeB.row);//xdot contains values of the reactive
elements

 x=m.gauss(primea1,primea.row); //Find intermittent unknown values of node
voltages and Branch currents

 cout<<"##########################"<<endl;
 cout<<"The Results are:"<<endl;
 for(int i=0;i<primea.row;i++)
 {
 cout<<x[i]<<endl;
 }
 w[i]=x[0]; //This array is used to store values of input at various
timesteps
 w1[i]=x[1]; //This array is used to store values of output at
various timesteps.In this particular case node 2 represents output

 cout<<"###########################"<<endl;

 for(int i=0;i<primeB.row;i++)
 {
 xdot[i]=0;
 for(int j=0;j<primeB.column;j++)
 {
 xdot[i]+= primeB.a[i][j] *x[j]; // xdot= B'*x
 }
 }
 //cout<<"##############################"<<endl;
/* for(int i=0;i<primeB.row;i++)
 {
 cout<<xdot[i]<<endl;
 }
 */ //Print xdot
 vector <double>ysvt(svt.row); //svt tag in vector form
 for(int i=0;i<svt.row;i++) //SVT tag that formed in two dimensional column
matrix is converted into vector form
 { //for easy manipulation
 for(int j=0;j<svt.column;j++){
 ysvt[i]=svt.a[i][j];
 //cout<<"ysvt"<<ysvt[i]<<endl;
 }
 }

 //cout<<"########################"<<endl;
 vector<double>sv(s.row); //s column in vector form
 for(int i=0;i<s.row;i++) // Convert two dimensional S matrix into a vector
for easy manipulation
 {
 for(int j=0;j<s.column;j++)
 {
 sv[i]=s.a[i][j];
 }
 }
 /* K1,K2,K3,K4 values are found for adopting Runge-Kutta method*/

66

 vector<double>ini(svt.row); //initial values of reactive elements that are
present in s matrix at the index of svt tag are

 for(int i=0;i<svt.row;i++) //stored vector ini of size (svt.row)
 {
 ini[i]=sv[ysvt[i]];

 }

 vector<double> K1(primeB.row); //K1 = x'* timestep(t)

 vector<double> K12(primeB.row);
 for(int i=0;i<primeB.row;i++)
 {
 K1[i]=xdot[i]*t;
 }
 /*cout<<"old K1=xdot*t"<<endl;
 for(int i=0;i<primeB.row;i++)
 {

 cout<<K1[i]<<endl;

 }
 */
 /* for(int i=0;i<svt.row;i++)
 {
 xdot[i]=xdot[i]+ini[i];
 cout<<xdot[i]<<endl;
 }*/

 for(int i=0;i<primeB.row;i++) //K1= initialvalues+K1/2
 {
 K12[i]=ini[i]+(K1[i]*0.5);
 }
 /*
 cout<<"new K1"<<endl;
 for(int i=0;i<primeB.row;i++)
 {

 cout<<K12[i]<<endl;

 }
 */
 // updating S with new state variables
 s=m.supdate(s,primeB.row,ysvt,K12);
 /* cout<<"S new matrix with newK1 updated"<<endl;
 for(int i=0;i<s.row;i++)
 {
 for(int j=0;j<s.column;j++)
 {
 cout<<s.a[i][j]<<"\t";
 }
 cout<<endl;
 }
 getchar();
 */

 s2=m.vconcatenate(s,primey); // Concatenate s and Y'

67

 primea1=m.hconcatenate(primea,s2); // concatenate s2 and A'
 x=m.gauss(primea1,primea.row); // find intermitent unknowns with updated
s matrix

 for(int i=0;i<primeB.row;i++)
 {
 xdot[i]=0;
 for(int j=0;j<primeB.column;j++) // xdot = B'*x
 {
 xdot[i]+= primeB.a[i][j] *x[j];
 //cout<<"xdot"<<xdot[i]<<endl;
 }
 }

 vector<double> K2(primeB.row); //K2
 vector<double> K22(primeB.row);
 for(int i=0;i<primeB.row;i++) //K2 = xdot *t
 {
 K2[i]=xdot[i]*t;
 }

 for(int i=0;i<primeB.row;i++)
 {
 K22[i]=ini[i]+(K2[i]*0.5); //K2= initial values +K2/2
 }

 s=m.supdate(s,svt.row,ysvt,K22); // Update s matrix with newreactive
elements
 //cout<<"new uopdated S with K2"<<endl;
 /*for(int i=0;i<s.row;i++)
 {
 for(int j=0;j<s.column;j++)
 {
 cout<<s.a[i][j]<<"\t";
 }
 cout<<endl;
 }*/
 s2=m.vconcatenate(s,primey); // Concatenate s and Y'
 primea1=m.hconcatenate(primea,s2); //Concatenate s and A'
 x=m.gauss(primea1,primea.row); // find intermitent unknown values

 for(int i=0;i<primeB.row;i++)
 {
 xdot[i]=0;
 for(int j=0;j<primeB.column;j++)
 {
 xdot[i]+= primeB.a[i][j] *x[j]; // xdot= B' * x
 //cout<<"xdot"<<xdot[i]<<endl;
 }
 }
 vector<double> K3(primeB.row);
 vector<double> K31(primeB.row);
 for(int i=0;i<primeB.row;i++)
 {
 K3[i]=xdot[i]*t; //K3=xdot*t
 }
 for(int i=0;i<primeB.row;i++)
 {

68

 K31[i]=ini[i]+(K3[i]); //K3= initial values +K3
 }

 s=m.supdate(s,svt.row,ysvt,K31); //Update S matrix with new K3 values
 // cout<<"s updated with K3"<<endl;
 /* for(int i=0;i<s.row;i++)
 {
 for(int j=0;j<s.column;j++)
 {
 cout<<s.a[i][j]<<"\t";
 }
 cout<<endl;
 }*/
 s2=m.vconcatenate(s,primey); //Concatenate s and Y'
 primea1=m.hconcatenate(primea,s2);//Concatenate A' and s2
 x=m.gauss(primea1,primea.row); //find intermitent unknown values

 for(int i=0;i<primeB.row;i++)
 {
 xdot[i]=0;
 for(int j=0;j<primeB.column;j++)
 {
 xdot[i]+= primeB.a[i][j] *x[j]; //xdot=B'*x
 //cout<<"xdot"<<xdot[i]<<endl;
 }
 }
 vector<double> K4(primeB.row);
 // cout<<"value of K4:"<<endl;
 for(int i=0;i<primeB.row;i++)
 {
 K4[i]=xdot[i]*t; //K4=xdot*t
 //cout<<K4[i]<<endl;
 }

 vector<double> xn(primeB.row);
 //cout<<"value of xn:"<<endl;
 for(int i=0;i<primeB.row;i++)
 {
 xn[i]=ini[i]+(K1[i]/6)+(K2[i]/3)+(K3[i]/3)+(K4[i]/6); //
xn=initial values + K1/6 + K2/3 + K3/3 + K4/6
 //cout<<xn[i]<<endl;

 }
 s=m.supdate(s,svt.row,ysvt,xn); //Update S matrix with new xn

 //cout<<"##########################"<<endl;
 // cout<<"s updated with xn"<<endl;
 /*for(int i=0;i<s.row;i++)
 {
 for(int j=0;j<s.column;j++)
 {
 cout<<s.a[i][j]<<"\t";
 }
 cout<<endl;
 }*/
 // Repeat the cycle
 if(t==0)

69

 {
 t=0.00001;
 }

 } //end of for loop
 }//end of else loop
 //This data.txt file is created to store values of input and output of
circuit with reactive elements and sinusoidal/
 //triangle- wave excitation or square-wave excitation.This file just
created to check results.this can be deleted in main program.
 ofstream outputFile;
 outputFile.open("data.txt");
 double t2=0;
 for(int i=0;i<1000;i++)
 {

 outputFile<<t2<<"\t";
 outputFile<<w[i]<<"\t";
 outputFile<<w1[i]<<"\n";
 t2+=0.00001;

 }
 outputFile.close();
 getchar();
 return 0;
}

70

A.2 Text Files for Example Circuits

Current controlled current sources (cccs.txt)

1 2 R 0 0 0 0.1

3 2 F 1 2 0 100

3 2 R 0 0 0 5000

4 1 R 0 0 0 10000

4 2 P 0 0 0 10

Current controlled voltage sources (ccvs.txt)

1 2 R 0 0 0 0.1

3 2 H 1 0 0 1000

4 1 R 0 0 0 10000

4 2 P 0 0 0 10

3 5 R 0 0 0 5000

2 5 R 0 0 0 5000

Voltage controlled voltage sources (vcvs.txt)

1 2 P 0 0 0 6

2 3 N 0 0 0 3

1 4 R 0 0 0 10000

4 2 R 0 0 0 20000

3 5 R 0 0 0 10000

5 6 R 0 0 0 20000

6 2 E 4 5 0 100000

Voltage controlled current sources (vccs.txt)

71

1 2 P 0 0 0 10

1 3 R 0 0 0 1000

3 4 R 0 0 0 2000

4 2 R 0 0 0 2000

5 2 G 3 4 0 0.001

5 2 R 0 0 0 200

Sinusoidal excitation

1 2 R 0 0 0 75

5 6 R 0 0 0 0.1

2 6 R 0 0 0 150

6 2 C 0 0 0.000001 -2

2 6 L 0 0 0.00633 0

1 5 Q 5 2000 0 10

Triangle-wave excitation

1 2 R 0 0 0 75

5 6 R 0 0 0 0.1

2 6 R 0 0 0 150

6 2 C 0 0 0.000001 -2

2 6 L 0 0 0.00633 0

1 5 Y 5 2000 0 10

Square-wave excitation

1 2 R 0 0 0 75

5 6 R 0 0 0 0.1

2 6 R 0 0 0 150

6 2 C 0 0 0.000001 -2

72

2 6 L 0 0 0.00633 0

1 5 Z 5 2000 0 10

	Virtual Electronics Laboratory for Visualized Education and Training
	Recommended Citation

	tmp.1459907986.pdf.yea4r

