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The subspecies concept was originally introduced as a means to explain geographic 

variation in species with subspecific boundaries normally being designated by morphological 

variation. Because a growing wealth of studies have shown that these morphologically defined 

subspecies are often not reflective of true evolutionary history, it is important to reassess 

subspecific boundaries. Subspecific designations have conservational consequence with regards 

to management practices. I reassessed the subspecific designations of the massasauga 

rattlesnake, S. catenatus, using both ecological niche modeling and molecular phylogenetic 

techniques. The ecological niche modeling determined the western and desert massasauga, S. c. 

tergeminus and S. c. edwardsii occupy completely distinct niches. This is evidence that these two 

subspecies represent evolutionary divergent lineages. There is no obvious isolating geographical 

boundary, but other studies have shown that strong local adaptation to environmental gradients 

can cause ecological divergence in parapatric populations in ectotherms. My genetic data provide 
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differential results dependent upon type of DNA, mitochondrial vs nuclearThe mitchondial DNA 

sequences showed an eastern clade consisting entire of the eastern massasauga, S. c. catenatus, 

and western clade consisting of both the western and desert massasauga, S. c. tergeminus and S. 

c. edwardsii.  Mitochondrial DNA also show strong evidence that the eastern massasauga should 

be elevated to its own species, which is consistent with previous studies (Kubatko et al. 2011; 

Ryberg et al. 2014). Within the western clade using mtDNA there is only slight differentiation 

between S. c. tergeminus and S. c. edwardsii. The nuclear DNA showed only very little 

differentiation between all three subspecies. I feel this is an artifact of recent divergence within 

S. catenatus and that the mtDNA, which has much higher mutation rates, is a better matric for 

assessing the phylogenetic relationship within this species. This study provides evidence that S. 

c. catenatus should be elevated to the sole member of the species of S. catenatus. The other two 

subspecies, S. c. tergeminus and S. c. edwardsii, reflect divergent evolutionary lineages however 

should be separated into their own species, S. tergeminus, and renamed S. t. tergeminus and S. t. 

edwardsii respectively. Keeping the western and desert massasaugas as separate subspecies has 

conservational impacts as they need to be treated as biological separate management units.  

.  
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Chapter 1 

Introduction and Background Information 

What constitutes a distinct species?  This question is the catalyst for one the most debated 

topics in taxonomy fueled by a fundamental disagreement in species concepts (De Queiroz 2007; 

Padial et al. 2010; Frankham et al. 2012). While it is generally agreed upon that a species 

represents a separately evolving metapopulation lineage, the debate lies at what point in the 

evolutionary history of the linage is the species delimiting boundary drawn (De Queiroz 2007; 

Padial et al. 2010; Frankham et al. 2012; Torstrom et al. 2014). Depending on the species 

concept used boundaries can be drawn based on haplotype variation, reproductive isolation, 

ecological divergence, or morphological distinctiveness (De Queiroz 2007; Leaché et al. 2009; 

Padial et al. 2010; Frankham et al. 2012). However, reliance on only one of these criteria is 

problematic as they do not arise in any set order or time. The order that each of the given criteria 

arise is set by the primary mode of speciation that is driving the evolutionary trajectory of a 

given lineage (De Queiroz 2007; Leaché et al. 2009). In recent years, species delimiting studies 

have begun to take into account multiple lines of evidence when determining whether 

conspecific lineages are separately evolving units. This integrative approach to taxonomy 

mitigates the need for any one specific species concept and incorporates multiple concepts when 

setting species boundaries (De Queiroz 2007; Padial et al. 2010; Torstrom et al. 2014), although 

it has yet to bring about a universally accepted species definition.   

Compounded by this lack of agreement in defining what constitutes a species, the 

subspecies concept also remains a subject of debate. Systematists continue to argue over the 

subspecies definition, usefulness and even validity as a taxonomic designation (Wilson and 

Brown 1953; Haig et al. 2006; Sackett et al. 2014; Torstrom et al. 2014). The subspecies concept 
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was originally introduced to explain geographical variation amongst populations of the same 

species (Wilson and Brown 1953; Phillimore and Owens 2006; Torstrom et al. 2014). However, 

since its inclusion into taxonomy in the late 19
th

 century the idea of a subspecies has been fraught 

with controversy, embraced by some systematists and resisted by others (Haig et al. 2006; 

Phillimore and Owens 2006; Torstrom et al. 2014). Wilson and Brown (1953) argue that a 

subspecies is not a real taxon, and therefore the formal trinomial naming system should be 

rejected. This school of thought remains among some systematists today, who argue subspecies 

continue to persist solely out of our need to classify and do not represent real taxonomic 

separation (Torstrom et al. 2014). Others argue that subspecies are a “true taxa” representing 

geographically separated, evolutionarily diverging populations (Phillimore and Owens 2006; 

Sackett et al. 2014; Torstrom et al. 2014). 

Differences in biology of subspecies, such as intraspecific differences in physiology and 

reproductive viability, have real world consequences when making informative species 

management decisions (Phillimore and Owens 2006; Sackett et al. 2014). Government agencies, 

such as the United States Fish and Wildlife Service, use currently assigned subspecies 

designations when making fiscal, legal, and conservation decisions (Haig et al. 2006; Funk et al. 

2007; Gibbs et al. 2011; Sackett et al. 2014). Therefore, it is important that subspecies be 

correctly assigned so those biological groups in need of protection receive the attention needed 

and effort is not misused on groups not in need (Gibbs et al. 2011). Traditionally subspecies were 

designated based on geographically distinctive morphological differences. However, as science 

entered the “genetic revolution,” reevaluation of many morphologically designated subspecies 

have shown morphology is not always an accurate representation of evolutionary history 

(Burbrink et al. 2000; Phillimore and Owens 2006; Leaché et al. 2009; Makowsky et al. 2010; 
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Torstrom et al. 2014). As genetic information became easier to obtain in the late 20
th

 century, 

incorporation of molecular techniques into species and subspecies delimitating studies became 

the status quo. Yet, even using such quantitative methods as genetic divergence debate still 

persists and where to draw the delimiting boundary continues to be an issue (Torstrom et al. 

2014). It has also been argued that a reliance purely on genetic information may confound true 

phylogenetic relationships and give inaccurate evolutionary histories (Losos et al. 2012). 

Lineage divergence driven by ecological speciation will cause a species or subspecies to 

develop ecological dissimilarity prior to pronounced genetic or morphological differentiation 

(Schluter 2009). Under ecological speciation theory, two lineages of a species will develop local 

adaptation to environmental conditions causing a divergence in ecological niches early in the 

speciation process (Van Valen 1976). These divergent niches drive geographic isolation, 

eventually leading to more stark morphological and genetic differentiation (Pyron and Burbrink 

2009; Leaché et al. 2009; Khimoun et al. 2013; Soto-Centeno et al. 2013; Wooten and Gibbs 

2012; Zhang et al. 2014). Therefore, niche differentiation can provide viable evolutionary 

evidence for lineage divergence within a species before the development of genetic or 

morphological discontinuities.  

In the past decade, the taxonomic literature has surged with studies seeking to reassess 

traditionally defined species and subspecies. Among these studies, there has been a growing 

trend to incorporate an integrative taxonomic approach. In integrative delimitation the 

investigators take into account multiple line of evidence, including genetic, ecological, and 

morphological data, in making decisions (Raxworthy et al. 2007; Rissler and Apodaca 2007; 

Leaché et al. 2009; Makowsky et al. 2010; Soto-Centeno et al. 2013; Sackett et al. 2014; Zhang 
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et al. 2014). The integrative taxonomic approach was used in the current study to evaluate the 

current systematics of Sistrurus catenatus, the massasauga rattlesnake.  

Sistrurus catenatus is one of two species of rattlesnake found within the genus Sistrurus, 

which is considered a basal group to the other genus of rattlesnake, Crotalus (Murphy et al. 

2002; Kubatko et al. 2011). Sistrurus catenatus is a wide-ranging species distributed in a series 

of patchy populations from the Great Lakes region of the United States and Canada across the 

Great Plains as far south as South Texas and as far west as Eastern Arizona (Mackessy 2005; 

Kubatko et al. 2011; Wooten and Gibbs 2012; Figure 1). Across that range the species is divided 

into three morphologically-based subspecies (Gloyd 1955; Mackessy 2005; Kubatko et al. 2011; 

Wooten and Gibbs 2012; figure 1). Sistrurus c. catenatus, the eastern massasauga, inhabits the 

northeastern area of the range found throughout the Great Lakes region in Ontario, New York, 

Pennsylvania, Michigan, Ohio, Illinois, Indiana, and Wisconsin. Sistrurus c. catenatus is 

distinguished by a lower number of ventral scales and dorsal blotches, as well as, its overall 

darker coloration.  Sistrurus c. tergeminus, the western massasauga, is marked by a larger 

number of ventral scale and dorsal blotches is found throughout the Central United States in 

Missouri, Kansas, Oklahoma, Nebraska, and North Texas. Sistrurus c. edwardsii, the desert 

massasauga, is lighter in color and the smallest subspecies in terms of overall size, as well as, 

having a fewer number of dorsal blotches, mid-body dorsal scales, and ventral scales. Sistrurus c. 

edwardsii is the most westerly subspecies and found in West and South Texas, Colorado, New 

Mexico, and Arizona. Throughout its entire range, S. c. edwardsii is in decline, a decline 

attributed to habitat fragmentation and other anthropogenic disturbances, which has raised 

concerns by scientists and conservations. 
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Protective statuses of S. catenatus vary by both subspecies and state. The Eastern 

subspecies, S. c. catenatus, is provided the greatest level of protection. Currently S. c. catenatus 

is listed as state endangered in every state in which it occurs (Durbian 2006; Ray et al. 2013). It 

is also a candidate for federal protection under the Endangered Species Act (US Federal Register 

1999; Gibbs et al. 2011). However, the western subspecies, S. c. tergeminus and S. c. edwardsii, 

are not afforded the same level of protection. Only two states give protective statues to S. c. 

tergeminus; Nebraska lists this subspecies as threatened (Panella and Johnson 2014) and 

Missouri lists it as endangered (MO Dept. Conservation). In the other three states S. c. 

tergeminus occurs, Oklahoma, Kansas, and Texas, this species can be legally collected or killed 

with a hunting permit (Ryberg et al. 2014). There is no current push to provide S. c. tergeminus 

with any Federal protection. The desert massasauga, S. c. edwardsii, is also only provided 

protection in part of its range. Arizona lists S. c. edwardsii as protected and Colorado as a species 

of special concern while Texas and New Mexico do not give it any form of protection (Ryberg et 

al. 2014). A petition to the United States Fish and Wildlife Service has been filed to list S. c. 

edwardsii as a candidate for protection under the Endangered Species Act and this petition is 

currently under review (US Federal Register August 9, 2012). Because subspecific designations 

are based on morphological data, an often poor predictor of evolutionary history (Burbrink et al. 

2000; Phillimore and Owens 2006; Makowsky et al. 2010), coupled with variable protection 

statutes it is important that the subspecies designations be revaluated in order to provide 

appropriate levels of protection to different populations of S. catenatus.  

Sistrurus catenatus has been the subject of a variety of comparative studies investigating 

phylogenetic difference, as well as, basic ecological variation (Gloyd 1955; Holycross and 

Mackessy 2002; Kubatko et al. 2011; Wooten and Gibbs 2012; Ray et al. 2013). Kubatko et al. 
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(2011) used a large genetic data set consisting of 19 loci (a combination of nuclear and 

mitochondrial gene sequences) in an attempt to delineate between the three subspecies of S. c. 

catenatus. This study provided strong evidence for two divergent clades, one clade consisting of 

the eastern massasauga, S. c. catenatus and another clade consisting of a complex of the two 

western subspecies, S. c. tergeminus and S. c. edwardsii. There was enough differentiation 

between the eastern and western clades that Kubatko et al. (2011) suggested S. c. catenatus 

warranted elevation to its own species. Within the western complex, however, there was a 

smaller degree of genetic variation, a finding corroborated by Ryberg et al. (2014). Kubatko et 

al. (2011) and Ryberg et al. (2014) suggested further investigation was required before making 

any formal decisions regarding reclassification of the two western subspecies. In addition to 

determining the genetic phylogeny, Kubatko et al. (2011) also determined an estimated time of 

divergence between subspecies. Their study placed the split of the eastern clade from the western 

around 1 mya and the divergence between S. c. tergeminus and S. c. edwardsii around 0.5 mya 

(Kubatko et al. 2011). It is important to take into consideration this recent split between the 

western subspecies when investigating their taxonomy because at this earlier stage of divergence 

ecological speciation may be the primary driving mechanism(Schluter 2009; Wooten and Gibbs 

2012). Therefore, ecological differences are likely to accumulate prior to large genetic difference 

and in fact ecological speciation has been shown to be an important mechanism of lineage 

divergence in this genus (Schluter 2009; Wooten and Gibbs 2012).  

The goal of this study was to further investigate the evolutionary history and taxonomic 

status of the massasauga rattlesnake, Sistrurus catenatus sp. Specifically, I focused the majority 

of my efforts on the western subspecies complex, given the somewhat unresolved evolutionary 

history of that complex. Using an integrative approach I attempted to determine whether the 
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current subspecies designations of S. c. tergeminus and S. c. edwardsii should be maintained, 

combined into one subspecies, or elevated to two separate species.  
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Figure 1: Approximate range of Sistrurus catenatus from Mackessy 2005. Green represents the 

eastern massasauga, S. c. catenatus, blue represents the western massasauga, S. c. tergeminus, 

and red represents the desert massasauga, S. c. edwardsii. Note: within respective ranges 

populations are not considered to be as widely distributed as displayed.  
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Chapter 2 

Molecular phylogenetic of the massasauga rattlesnake, Sistrurus catenatus 

Introduction 

The “genetic revolution” has brought with it a wealth of studies seeking to incorporate 

molecular techniques into phylogenetic studies. Many of these studies have indicated that 

morphology is often a poor proxy for establishing the evolutionary heritage within a lineage at 

the lower taxonomic levels. This is problematic because most species and subspecies boundaries 

are were originally drawn based on morphological distinctions (Burbrink et al. 2000; Makowsky 

et al. 2010; Torstrom et al. 2014). Therefore it is important that the phylogeny of 

morphologically designated species and subspecies be reevaluated in order to make the decision 

whether current distinctions are merited or if a change to the species’ taxonomy is warranted. 

Taxonomic reevaluations are particularly essential for those species of conservation concern 

because protection and management decisions are typically made based on the most currently 

recognized taxonomy (Haig et al. 2006).  

The massasauga rattlesnake, Sistrurus catenatus, is a species currently divided into three 

subspecies based on geographic variation in morphological features (as described in Chapter 1). 

Specifically, color and pattern variation are characteristics used to distinguish between S. 

catenatus subspecies. However, these two characteristics can be highly variable and often may 

not be useful indicators of monophyletic lineages in snakes (Burbrink et al. 2000; Makowsky et 

al. 2010). Consequently, it is essential that the subspecific distinctions within S. catenatus be 

reevaluated using modern genetic techniques. 
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A number of studies have assessed the phylogeny of S. catenatus. However the majority 

focused on differentiating between the eastern and western massasaugas, S. c. catenatus and S. c. 

tergeminus (Gibbs and Mackessy 2009; Chiucchi and Gibbs 2010; Gibbs et al. 2011; Kubatko et 

al. 2011; Ray et al. 2013; Ryberg et al. 2014). Kubatko et al. (2011) incorporated samples from 

all three subspecies and using a combination of 19 mitochondrial and nuclear genes created a 

phylogeny of the species. They found strong evidence for two distinctive clades within S. 

catenatus, an eastern and a western clade. The eastern clade is comprised entirely of S. c. 

catenatus and the western clade is comprised of the western, S. c. tergeminus, and the desert 

massasauga, S. c. edwardsii. The eastern clade was genetically distinctive enough from the 

western for Kubatko et al. (2011) to suggest S. c. catenatus to be elevated to its own species. 

This is an important designation because full species are given higher priority than subspecies by 

the Endangered Species Act, and S. c. catenatus is a candidate under review (Ray et al. 2013). 

Within the western clade these authors found only weak evidence of genetic differentiation 

between S. c. tergeminus and S. c. edwardsii and suggested that further investigation is required 

before any taxonomic altering decisions are made. In a follow up study, Ryberg et al. (2014), 

conducted further investigation of the question by increasing the number of samples of S. c. 

tergeminus and S. c. edwardsii in their analysis. Using two mitochondrial genes Ryberg et al. 

(2014) agreed with the separation of S. c. catenatus as its own species, as well as, concluded S. c. 

tergeminus and S. c. edwardsii were genetically indistinguishable. The authors did, however, 

find some limited population level structuring and suggested that the western S. catenatus 

complex is comprised of a single species broken up into a number of large isolated populations.  

In this study I sought to further investigate the phylogeny of the western S. catenatus 

complex by including another eight genes (~8000 base pairs) worth of information, as Ryberg et 
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al. (2014) based their conclusions on less than 1,500 base pairs (one mitochondrial gene and one 

nuclear gene), which may be insufficient in resolving the evolutionary history within the western 

clade (de Queiroz et al. 2002). The questions I looked to answer were 1) Does my data support 

separation of S. c. catenatus in to its own and species? 2) Does my data show any genetic 

distinctiveness between S. c. tergeminus and S. c. edwardsii? 

Methods and Materials 

Data collection 

All three subspecies of Sistrurus catenatus (S. c. catenatus, S. c. tergeminus, and S. c. 

edwardsii) were included in my molecular analysis. Tissues samples were obtained from other 

researchers, museum collections, private parties, or collected during road surveys conducted by 

myself with the aid research assistants (Table 1). Tissue samples consisted of a combination of 

liver, muscle, scale clips or blood depending on the source. On the occasion that a sample was 

obtained without a subspecific designation the sample was tentatively assigned to a subspecies 

based on its collection locality (Dixon 2000; Tennant 2003; Werler and Dixon, 2008). Samples 

from a total of 69 individual S. catenatus were used in this study (i.e., 6 S. c. catenatus, 18 S. c. 

edwardsii, 45 S. c. tergeminus) from nine U.S. states and one Canadian province (Table 1). One 

individual Agkistrodon contortrix collected in Smith County, Texas was used as an outgroup in 

my phylogenetic analyses (Kubatko et al. 2011). Purified genomic and mitochondrial DNA was 

extracted from tissue samples using illustra™ tissue & cells genomicPrep Mini Spin Kit.  

Polymerase chain reactions (PCR) were performed for eight genes in this study including 

3 mitochondrial (mtDNA) and 5 nuclear (nDNA) genes. Genes ranges from 428 to 885 base 

pairs (bp) in length. The three mitochondrial loci included the large and small subunits of the 
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mitochondrial ribosome genes (12S and 16S; 428 and 523bp) and cytochrome b (cytb; 687bp). 

The nuclear genes included brain-derived neutrophic factor (bdnf; 659bp), bone morphogenetic 

protein 2 (bmp2; 615bp), oocyte maturation factor (c-mos; 457bp), ornithine decarboxylase 

intron (odc; 585bp), and recombination-activating protein 1 (rag1; 885bp). All genes except 

bmp2 were amplified in PCRs consisting of 4.0µl 5x Q-solution, 2.0µl 10X CoralLoad PCR 

buffer, 2.0µl 10X PCR buffer, 0.4µl dNTP’s, 1.0µl forward primer, 1.0µl reverse primer, 0.1µl 

Taq DNA polymerase (Qiagen), 7.1µl sterile purified deionized H2O, and 2.4µl DNA extract 

totaling 20µl PCR per sample.  bmp2 was amplified in a PCR consisting of 4.0µl 5x Q-solution, 

2.0µl 10X CoralLoad PCR buffer, 2.0µl 10X PCR buffer, 0.4µl dNTP’s, 0.4µl bovine serum 

albumin, 1.0µl forward primer, 1.0µl reverse primer, 0.1µl Taq DNA polymerase (Qiagen), 6.7 

µl sterile purified deionized H2O, and 2.4µl DNA extract also totaling 20µl PCR per sample. 

Forward and reverse primer sequences and reaction conditions are listed in tables 2 & 3. 

Polymerase chain reaction products were verified for amplification visually via gel 

electrophoresis on a 1% agarose gel including both positive and negative controls.  

Verified PCR products were purified using E.Z.N.A. Cylce Pure kits (OMEGA biotek). 

Purified products were then concentrated to 20-40 ng x µl
-1

 and shipped to Eurofin MWG 

Operon to be sequenced using an automated DNA sequencer (ABI 3730XL). All eight loci were 

sequenced using the same forward and reverse primers used in amplification. Data sequences 

were initially edited using Sequencer (Version 5.2.4; Gene Codes Corporation, Ann Arbor, MI). 

Sequence alignments were performed using Clustal X (Thompson et al. 1997). Final sequence 

alignments and editing was performed in Mesquite 3.01 (Maddison and Maddison 2014).  
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Phylogenetic analysis 

A best fit model of molecular evolution using Akaike’s Information Criterion was 

determined for each individual locus, a concatenated matrix of all eight loci, a concatenated 

matrix of the five nuclear loci, and a concatenation of the three mitochondrial loci in jModelTest 

2 (Darriba et al., 2012). Concatenated matrices were assembled using SequenceMatrix (Vaidya 

et al. 2011). Maximum likelihood (ML) gene trees were constructed based on suggested models 

(Table 4) using PhyML 3.1 (Guindon and Gascuel 2003). Node support was determined based on 

100 non-parametric bootstrap replicate samples for each of the three concatenated trees also 

using PhyML 3.1. The generated trees were visualized and edited using Figtree.  

Results 

Gene sequences used in this study ranged from 428 to 883 base pairs (bp) per gene 

depending on specific locus, totaling 4837 bp (Table 5). However, I was not successful in 

sequencing all eight genes across all samples. The average bp sequenced for each sample was 

3007 bp (range 457 – 4827bp) representing an average of 62.3% (9.4 – 100%) total bp data per 

sample. Total and specific genes sequenced for each gene are displayed in table 6.  

Mitochondrial genes showed a greater degree of intersubspecific variation than nDNA 

genes (Table 7). For all three mtDNA loci, divergence estimates were greater for eastern X 

western massasauga ,S. c. catenatus X S. c. tergeminus, (range 2.49-11.1%; mean 5.85%; table 

7) and eastern X desert massasauga, S. c. catenatus X S. c. edwardsii (range 3.06 – 9.61%; mean 

5.55%; table 7) comparisons than for western X desert massasauga, S. c. tergeminus X S. c. 

edwardsii (range 1.16 – 2.62; mean 1.71; table 7). Divergence estimates for nDNA were overall 

much lower than for my mtDNA sequence data. Divergence estimates were lowest for the S. c. 
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tergeminus X S. c. edwardsii pairwise comparison in three of the five nDNA genes sampled 

(table 7). Interspecific nDNA diveregence estimates ranged from 0.45 – 1.71% with a mean 

value of 0.99% for S. c. catenatus X S. c. edwardsii, ranged from 0.45 – 1.75% with a mean 

1.07% for S. c. catenatus X S. c. tergeminus, and ranged from 0.11 – 1.53% with a mean of 

0.74% for S. c. tergeminus X S. c. edwardsii (Table 7). Intraspecific variation was variable 

depending on the gene and did not show any universal trends, however tended be higher in S. c. 

tergeminus (table 8). Ranges varied from 0 – 1.4% for S. c. catenatus, 0.34 – 1.02% for S. c. 

edwardsii, and 0.11 – 2.62% for S. c. tergeminus (table 8).  

The vast majority of the differences observed between samples for nDNA loci consisted 

of ambiguous polymorphic sites within the gene. At every site of intraspecific variation for S. c. 

tergeminus and S. c. edwardsii at least one individual displayed an ambiguous designator.  

Tree topology for all three individual and concatenated mtDNA ML trees recover an 

eastern clade consisting of S. c. catenatus and a western clade consisting of S. c. tergeminus and 

S. c. edwardsii (figures 2 - 5). This separation is supported by strong bootstrap values (96/96%; 

Figure 5). Within the western clade there is little separation between S. c. tergeminus and S. c. 

edwardsii. There is some evidence of population level separation within a few groups; however, 

bootstrap values for most of these population level groups are on average only low to moderate 

(Figure 5).  

Nuclear DNA ML trees display a varying level of support for a separation of the eastern 

and western clades of S. catenatus (Figures 6 - 11). The concatenated nDNA ML tree separates 

the same eastern and the western clades as is in the mtDNA trees, however boot strap value do 
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not support this differentiation. Within the western clade a number of clades separate out again 

with no clear differentiation between S. c. tergeminus and S. c. edwardsii.  

The total eight gene concatenated ML tree divides the samples into two major clades: the 

eastern, consisting of solely S. c. catenatus, and western, consisting of both S. c. tergeminus and 

S. c. edwardsii although with low boot strapping value support (Figure 12). Within the western 

clade there is a further divide into two large clades. However, within those two clades there is 

very little to differentiation between S. c. tergeminus and S. c. edwardsii (Figure 12). 

Discussion 

All three of the mitochondrial genes analyzed in this study corroborate the findings of 

both Kubatko et al. (2011) and Ryberg et al. (2014), in regards to the elevation of the eastern 

massasauga, S. c. catenatus, to its own species from the western, S. c. tergeminus, and the desert, 

S. c. edwardsii, massasauga. Topology of ML trees for all three mitochondrial genes (12S, 16S 

and cytb; Figure 2 - 4) recovered S. c. catenatus as a separate clade from the western clade, 

consisting of S. c. tergeminus and S. c. edwardsii. The concatenated mtDNA tree had similar 

topology to the individual trees also recovering S. c. catenatus as a highly supported (96% ML 

bootstrap support; Figure 5) distinct clade from the western complex. While it might be a cause 

for concern that the concatenated tree does not include sequences from every individual in the 

study, accurate phylogenies can still be constructed via maximum likelihood techniques despite a 

large amount of missing data within the matrix (Pyron et al. 2011).  The separation of S. c. 

catenatus from S. c. tergeminus and S. c. edwardsii is also supported by the mtDNA 

intersubspecific genetic distances. While there is no standardized level of genetic distance for 

elevation of a subspecies to species, the recommendation has been made at as low as 1.0% 
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divergence (Torstrom et al. 2014). In reevaluation of the ratsnake species, Pantherophis (Elaphe) 

obsoletus, using the mitochondrial gene cytb, Burbrink et al. (2000) recommended dividing one 

species with three subspecies into three distinct species based on 2.87-4.37%. In this study, all 

three of the mitochondrial genes fall either within or above the 2.87-4.37% range when 

comparing S. c. catenatus with either of the two western subspecies.   

The mitochondrial gene results were also similar to those in Kubatko et al. (2011) in that 

I found only slight differentiation within the western clade consisting of S. c. tergeminus and S. 

c. edwardsii. I did however; find evidence of local population differentiation in a few instances. 

Specifically, the isolated South Texas population of S. c. edwardsii (SICA 60, 61, 66) clustered 

together in both 12S and cytb (Figures 2 & 4) individual gene trees and was moderately 

supported (83% ML bootstrap value) in the concatenated tree (Figure 5). In the individual 16S 

tree, a number of S. c. edwardsii grouped together from West Texas, New Mexico and Arizona; 

however, not all the West Texas and New Mexico samples were clustered within this grouping 

(Figure 3). This grouping was recovered in the concatenated gene tree, albeit with only very little 

bootstrap support (47%; Figure 5). An interesting finding from the 16S tree is western clade is 

polyphyletic with the two Missouri S. c. tergeminus samples (SICA 41 & 43) separate from the 

rest of the S. c. tergeminus and S. c. edwardsii samples. This is particularly intriguing because 

there has been some debate whether the Missouri populations are S. c. catenatus, S. c. 

tergeminus, or possibly representative of an area of integradation (Gibbs et al. 2011). There were 

also separate populations of S. c. tergeminus distinctive from each other in the 16S gene, one 

population from West Oklahoma and East Kansas and another population from North Texas. 

However, these same populations were not recovered in the concatenated mtDNA tree.  
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In addition to only slight differentiation displayed by tree topology, I found only minor 

differentiation in genetic divergences between S. c. tergeminus and S. c. edwardsii. In a review 

of species delimitation studies, Torstrom et al. (2014) determined the median genetic distance 

used to collapse a subspecies was 1.0%. The genetic distance between S. c. tergeminus and S. c. 

edwardsii for at three mtDNA gene fall above this 1.0% threshold (1.16 – 2.62%), so I do not 

recommend collapsing the subspecies into one based on these data. However, I also do not 

believe there is enough genetic differentiation to warrant elevating the subspecies to their own 

species.  

Analysis of the five nuclear DNA genes (cmos, odc, bdnf, bmp2, and rag1: Figure 6 - 10) 

included in this study the results was not so clear. While tree topology for four of the five nuclear 

genes displayed at least some differentiation of S. c. catenatus from S. c. tergeminus and S. c. 

edwardsii, only one gene (odc; Figure 9) grouped S. c. catenatus as a separate monophyletic 

clade. For the other three nuclear genes, there is only minimal divergence of S. c. catenatus. The 

tree for gene bdnf (Figure 6) displays no genetic difference between S. c. catenatus and S. c. 

tergeminus or S. c. edwardsii. The concatenated tree for all five nuclear genes does recover S. c. 

catenatus as a separate polyphyletic clade from the western subspecies complex; however, there 

is no bootstrap support for this division (Figure 11). Included in the separate S. c. catenatus clade 

is one S. c. tergeminus individual from a population in North Texas. Intersubspecific divergence 

estimates also show only minimal differentiation (0.45 – 1.75%) between S. c. catenatus from 

either of the two western subspecies. According to nuclear data, there is not enough evidence to 

support elevating S. c. catenatus to its own species. In the western subspecies complex there is 

no evidence to warrant elevating S. c. tergeminus or S. c. edwardsii either. There is very little to 

no differentiation between S. c. tergeminus and S. c. edwardsii according the tree topology for all 
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five individual and concatenated trees. There is also very little genetic divergence between these 

two species with percentage estimates ranging from 0.11 to 1.56%. The concatenated ML tree of 

all eight mitochondrial and nuclear genes recovers S. c. catenatus as distinct monoplyletic clade 

and S. c. tergeminus and S. c. edwardsii as a separate complex; however, this distinction is not 

strongly supported by bootstrap values (Figure 12).  

The discrepancy between the nuclear and mitochondrial data may be attributed to 

differences in mutation rates between the two types of DNA. Mitochondrial DNA mutational 

rates Drosophila models tend to be on average ten times higher than mutational rate in nuclear 

DNA (Haag-Liautard et al. 2008). The divergence between S. c. tergeminus and S. c. edwardsii 

in evolutionary time is a relatively recent occurrence (~0.5mya) (Kubatko et al. 2011). It is likely 

that genetic differences between subspecies have not had to time accumulate between S. c. 

tergeminus and S. c. edwardsii. Further evidence for this is the large number of polymorphisms 

present at variable sites between S. c. tergeminus and S. c. edwardsii. This retention of ancient 

polymorphisms occurs when a recently diverged lineage has not had time to achieve reciprocal 

monophyly. This is known as incomplete lineage sorting and is a common source of error in 

phylogenetic analysis, particularly when using nuclear data over mitochondrial because of the 

slower mutation rate (Kubatko et al. 2011). Due to the recent divergence within the western 

clade and because of the propensity of nuclear data to display incomplete lineage sorting, I 

believe that mitochondrial DNA is a much better metric for establishing an accurate phylogeny 

of S. catenatus.  

Overall the results from the genetic analysis of S. c. tergeminus and S. c. edwardsii in this 

study leave room for further investigation. There were some observable differences between S. c. 

tergeminus and S. c. edwardsii, particularly within the mtDNA intersubspecific divergence 
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estimates, although the mtDNA ML gene trees did not fully support the separation of these two 

subspecies. The nDNA used in this study showed essentially no distinction between S. c. 

tergeminus and S. c. edwardsii. In conclusion I believe that my genetic analysis between S. c. 

tergminus and S. c. edwardsii is inconclusive. In the future I recommend any follow up studies 

incorporate more sensitive genetic marker such as microsatellites.  
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Molecular Phylogenetics Tables 

 

 

 

Table 1. Tissue sample localities for Sistrurus catenatus ssp. and sources 

Subspecies ID State County Source Source ID 

S. c. catenatus SICA44 MI Barry J. Moore 27305637 

S. c. catenatus SICA45 MI Barry J. Moore 75539849 

S. c. catenatus SICA46 MI Barry J. Moore 27262123 

S. c. catenatus SICA57 ON Dorcas bay L. Gibbs lab Sca 64 

S. c. catenatus SICA58 NY Bergen L. Gibbs lab Sca 954 

S. c. catenatus SICA59 OH Killdeer Plain L. Gibbs lab Sca 1006 

S. c. edwardsii SICA50 AZ Cochise L. Gibbs lab; A. Holycross Sced036 

S. c. edwardsii SICA51 AZ Cochise L. Gibbs lab; A. Holycross Sced041 

S. c. edwardsii SICA52 AZ Cochise L. Gibbs lab; A. Holycross Sced051 

S. c. edwardsii SICA53 AZ Cochise L. Gibbs lab; A. Holycross Sced053 

S. c. edwardsii SICA54 AZ Cochise L. Gibbs lab; A. Holycross Sced057 

S. c. edwardsii SICA55 NM Belen L. Gibbs lab Sced096 

S. c. edwardsii SICA56 NM Belen L. Gibbs lab Sced029 

S. c. edwardsii SICA60 TX Jim Hogg R. Couvillian  

S. c. edwardsii SICA61 TX Jim Hogg R. Couvillian  

S. c. edwardsii SICA62 TX Ward S.Hein/S.Pitts  

S. c. edwardsii SICA64 NM Roosevelt S. Pitts  

S. c. edwardsii SICA66 TX Nueces NNTRC 838 S.c.e. 

S. c. edwardsii SICA67 NM Otero NNTRC Alb.zoo Sce 

S. c. edwardsii SICA68 NM Eddy BRTC H5143 

S. c. edwardsii SICA69 TX Andrews BRTC CSA169 

S. c. edwardsii SICA71 TX Borden BRTC TJH3503 

S. c. edwardsii SICA73 TX Howard BRTC TJH2489 

S. c. edwardsii SICA75 TX Shackelford BRTC WAR8 

S. c. tergeminus SICA1 TX Parker T. Becker  

S. c. tergeminus SICA2 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA3 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA4 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA5 TX Cottle S.Hein/M.Barazowski  
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S. c. tergeminus SICA6 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA7 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA8 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA9 TX Parker T. Becker  

S. c. tergeminus SICA10 TX Parker T. Becker  

S. c. tergeminus SICA11 TX Runnels TNHC TNHC55941 

S. c. tergeminus SICA12 TX Motley TNHC TNHC66467 

S. c. tergeminus SICA13 TX Dickens TNHC TNHC67573 

S. c. tergeminus SICA14 TX Borden TNHC TNHC89754 

S. c. tergeminus SICA15 KS Chase KU 332081 / WPI 214 

S. c. tergeminus SICA16 KS Chase KU 332080 / WPI 213 

S. c. tergeminus SICA17 KS Barber KU 337105 / DSM 2020 

S. c. tergeminus SICA18 KS Chase KU 332078 / WPI 211 

S. c. tergeminus SICA19 KS Chase KU 332079 / WPI 212 

S. c. tergeminus SICA20 OK Blaine SNOMNH 2612 

S. c. tergeminus SICA21 KS Butler SNOMNH 2613 

S. c. tergeminus SICA22 OK Roger Mills SNOMNH 2615 

S. c. tergeminus SICA23 OK Ellis SNOMNH 2621 

S. c. tergeminus SICA24 OK Dewey SNOMNH 2682 

S. c. tergeminus SICA25 KS Elk SNOMNH 2683 

S. c. tergeminus SICA26 Ok Beckham SNOMNH 7045 

S. c. tergeminus SICA27 KS Chautauque SMNH FHSM 10809 

S. c. tergeminus SICA28 KS Comanche SMNH FHSM 10827 

S. c. tergeminus SICA29 KS Allen SMNH FHSM 11020 

S. c. tergeminus SICA30 KS Barber SMNH FHSM 11151 

S. c. tergeminus SICA31 KS Reno SMNH FHSM 11546 

S. c. tergeminus SICA32 KS Russell SMNH FHSM 11884 

S. c. tergeminus SICA33 KS Kiowa SMNH FHSM 8631 

S. c. tergeminus SICA34 KS Cowley SMNH FHSM 13031 

S. c. tergeminus SICA35 OK Rogers SMNH FHSM 15714 

S. c. tergeminus SICA36 KS Douglas SMNH FHSM 7900 

S. c. tergeminus SICA37 KS Stafford SMNH FHSM 8424 

S. c. tergeminus SICA38 KS Washington SMNH FHSM 8909 

S. c. tergeminus SICA39 KS Meade SMNH FHSM 9539 

S. c. tergeminus SICA40 KS Clark SMNH FHSM 9551 

S. c. tergeminus SICA41 MO Chariton SMNH FHSM 9969 

S. c. tergeminus SICA42 MO Linn SMNH FHSM 9970 

S. c. tergeminus SICA43 MO Linn SMNH FHSM 9971 

S. c. tergeminus SICA47 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA48 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA49 TX Cottle S.Hein/M.Barazowski  

S. c. tergeminus SICA63 TX Parker M. Smith  

S. c. tergeminus SICA65 OK Comanche NNTRC 886 S.c.t. 
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S. c. tergeminus SICA70 TX Archer BRTC TJH3548 

S. c. tergeminus SICA72 TX Clay BRTC TJH3506 

S. c. tergeminus SICA74 TX Motley BRTC TJH3511 

S. c. tergeminus SICA76 TX Hood BRTC CSA TX:Hood 

(NNTRC- Nation Natural Toxin Research Center; BRTC- Texas A&M University’s Biodiversity 

Research and Teaching Collection; TNHC- The University of Texas at Austin’s Texas Natural 

History Collection; SNOMNH- Sam Noble Oklahoma Museum of Natural History; SMNH- 

Sternberg Museum of Natural History)  
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Table 2. List of primers used in polymerase chain reactions  

 

  

Gene Abbreviation Primers (5´ - 3´) Source 

12S ribosomal RNA 12S H1478 - TGACTGCAGAGGGTGACGGGCGGTGTGT 

L1091 - 

AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT 

 

Rawlings et al. 2008 

16S ribosomal RNA 16S 16Sbr - CCGGTCTGAACTCAGATCACGT 

16Sar - CGCCTGTTTATCAAAAACAT  

 

Rawlings et al. 2008 

Cytochrome b cytb cytbL - TCAAACATCTCAACCTGATGAAA 

cytbH - GGCAAATAGGAAGTATCATTCTG 

 

Pook et al. 2000 

Brain-derived neurotrophic 

factor 

bdnf bdnf_F - 

ACCATCCTTTTCCTKACTATGGTTATTTCATACTT 

bdnf_R - 

CTATCTTCCCCTTTTAATGGTCAGTGTACAAAC 

 

Wiens et al. 2008 

Bone morphogenetic 

protein 2 

bmp2 bmp2_f6 - CAKCACCGWATTAATATTTATGAAA 

bmp2_r2 - ACYTTTTCGTTYTCRTCAAGGTA 

 

Wiens et al. 2008 

Oocyte maturation factor  c-mos CMOS_Fsnk - GCTGTAAAACAGGTGAAGAGATGCAG 

CMOS-Rsnk - AGCACGATGGGTGTATGTTCCCCC 

 

Noonan and 

Chippindale 2006 

Ornithine decarboxylase 

intron 

odc  ODC_F - GACTCCAAAGCAGTTTGTCGTCTCAGTGT 

ODC_R - TCTTCAGAGCCAGGGAAGCCACCACCAAT 

 

Friesen et al. 1999 

Recombination-activing 

protein 1 

rag1 MartFL1 -  AGCTGCAGYCARTAYCAYAARATGTA 

AmpR1 -  AACTCAGCTGCATTKCCAATRTCA 

 

Barlow et al. 2009 
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Table 3. Polymerase chain reaction condition used for each gene. After final extension all reaction were held indefinitely at 4°C 

Gene Number of 

cycles 

Initial denature 

 

Denature  Anneal  Extension Final Extension 

12S 35 95°C for 3min 95°C for 30sec 43°C for 45sec 72°C for 1.5min 72°C for 5min 

16S 35 95°C for 3min 95°C for 30sec 43°C for 45sec 72°C for 1.5min 72°C for 5min 

cytb 35 94°C for 4min 94°C for 1min 50°C for 1min 72°C for 2min 72°C for 3min 

bdnf 30 95°C for 2min 95°C for 30sec 50°C for 15sec 72°C for 30sec 72°C for 10min 

bmp2 40 94°C for 3min 94°C for 30sec 50°C for 40sec 72°C for 1min 72°C for 10min 

c-mos 35 94°C for 3min 94°C for 45sec 55°C for 45sec 72°C for 1min 72°C for 6min 

odc  35 95°C for 2min 95°C for 45sec 54°C for 30sec 72°C for 50sec 72°C for 10min 

rag1 35 95°C for 3min 95°C for 30sec 55°C for 45sec 72°C for 1min 72°C for 5min 
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Table 4. Best-fit models of evolution as determined by JmodelTest 2 

Gene Selected Model 

12S HKY+I 

16S HKY+I 

bdnf HKY 

Bmp2 K80+I 

cmos HKY 

cytb HKY+G 

odc HKY+I 

rag-1 F81 

Concatenated 8 genes GTR+I+G 

Concatenated Mitochondrial GTR+I+G 

Concatenated Nuclear HKY+I+G 
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Table 5. Total base pairs sequenced per gene 

Gene Total base pairs 

12S 428 

16S 523 

bdnf 659 

bmp2 615 

c-mos 457 

cytb 687 

odc 585 

rag1 885 
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Table 6. Number of genes sequenced per samples and total number of base pairs sample. Sample 

“AGCO1” represents outgroup Agkistrodon contortrix 

ID Total length Total genes 12S 16S bdnf bmp2 cmos cytb odc rag1 

AGCO1 4837 bp 8 X x x x x x x x 

SCA75 457 bp 1     x    

SICA1 3637 bp 6 x x x  x  x  

SICA2 4837 bp 8 x x x x x x x x 

SICA3 4409 bp 7  x x x x x x x 

SICA4 2382 bp 4  x x x   x  

SICA5 2067 bp 4 x x x  x    

SICA6 2067 bp 4 x x x  x    

SICA7 3267 bp 6 x x x x x  x  

SICA8 3267 bp 6 x x x x x  x  

SICA9 1536 bp 3 x x     x  

SICA10 1536 bp 3 x x     x  

SICA11 4252 bp 7 x x x x x x  x 

SICA12 4837 bp 8 x x x x x x x x 

SICA13 4252 bp 7 x x x x x x  x 

SICA14 3954 bp 7 x x x x x x x  

SICA15 2682 bp 5 x x x x x    

SICA16 4837 bp 8 x x x x x x x x 

SICA17 4837 bp 8 x x x x x x x x 

SICA18 4252 bp 7 x x x x x x  x 

SICA19 2023 bp 4 x x  x x    

SICA20 523 bp 1  x       

SICA21 4837 bp 8 x x x x x x x x 

SICA22 4837 bp 8 x x x x x x x x 

SICA23 4837 bp 8 x x x x x x x x 

SICA24 4837 bp 8 x x x x x x x x 

SICA25 4837 bp 8 x x x x x x x x 

SICA26 4837 bp 8 x x x x x x x x 

SICA27 3369 bp 6 x x x x x x   

SICA28 1087 bp 2 x  x      

SICA29 457 bp 1     x    

SICA30 457 bp 1     x    

SICA31 4252 bp 7 x x x x x x  x 

SICA32 457 bp 1     x    

SICA33 2067 bp 4 x x x  x    

SICA35 3295 bp 6 x x  x x x x  

SICA39 2225 bp 4 x x x x     

SICA40 523 bp 1  x       

SICA41 951 bp 2 x x       
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SICA43 523 bp 1 x x       

SICA44 4837 bp 8 x x x x x x x x 

SICA45 4837 bp 8 x x x x x x x x 

SICA46 4837 bp 8 x x x x x x x x 

SICA47 1340 bp 2     x   x 

SICA48 1340 bp 2     x   x 

SICA50 4252 bp 7 x x x x x x  x 

SICA51 951 bp 2 x x       

SICA52 2682 bp 5 x x x x x    

SICA53 2254 bp 4  x x x x    

SICA54 4252 bp 7 x x x x x x  x 

SICA55 2682 bp 5 x x x x x    

SICA56 2023 bp 4 x x  x x    

SICA57 4837 bp 8 x x x x x x x x 

SICA58 2682 bp 5 x x x x x    

SICA59 523 bp 1  x       

SICA60 1638 bp 3 x x    x   

SICA61 4222 bp 7 x x x  x x x x 

SICA62 4222 bp 7 x x x  x x x x 

SICA63 1610 bp 3 x x x      

SICA64 1638 bp 3 x x    x   

SICA65 4252 bp 7 x x x x x x  x 

SICA66 4837 bp 8 x x x x x x x x 

SICA67 4837 bp 8 x x x x x x x x 

SICA68 3637 bp 6 x x x  x x  x 

SICA69 3637 bp 6 x x x  x x  x 

SICA70 3637 bp 6 x x x  x x  x 

SICA72 1638 bp 3 x x    x   

SICA73 1638 bp 3 x x    x   

SICA75 3180 bp 5 x x x   x  x 

SICA76 2095 bp 4 x x   x x   
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Table 7. Intersubspecific divergence rates (%) for both mtDNA loci (16S, 12S, cytb) and nDNA 

loci (odc, bdnf, bmp2, cmos, rag1) 

Subspecies X Subspecies 12S 16S cytb odc bdnf bmp2 cmos rag1 

S. c. catenatus X S. c. edwardsii 3.97 3.06 9.61 1.71 0.46 0.81 1.53 0.45 

S. c. catenatus X S. c. tergeminus 3.97 2.49 11.1 1.54 0.46 1.14 1.75 0.45 

S. c. tergeminus X S. c. edwardsii 1.16 1.34 2.62 0.8 0.46 0.81 1.53 0.11 
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Table 8. Intrasubspecific divergence rates (%) for both mtDNA loci (16S, 12S, cytb) and nDNA 

loci (odc, bdnf, bmp2, cmos, rag1) 

Subspecies 12S 16S cytb odc bdnf bmp2 cmos rag1 

S. c. edwardsii 0.7 0.57 1.02 0.34 0.45 0.49 0.87 0.11 

S. c. catenatus 1.4 0 0 0 0 0.33 0.66 0.34 

S. c. tergeminus 0.93 0.76 2.62 1.2 0.45 0.81 1.1 0.11 
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Appendix B 

Molecular Phylogenetics Figures 

 

Figure 2. ML gene tree for 12S. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples represent 

the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1” represents 

outgroup copperhead, Agkistrodon contortrix 
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Figure 3. ML gene tree for 16S. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples represent 

the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1” represents 

outgroup copperhead, Agkistrodon contortrix  
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Figure 4. ML gene tree for cytb. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples represent 

the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1” represents 

outgroup copperhead, Agkistrodon contortrix 
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Figure 5. Concatenated mtDNA ML gene tree. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red 

samples represent the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample 

AGCO1” represents outgroup copperhead, Agkistrodon contortrix 
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Figure 6. ML gene tree for bdnf. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples represent 

the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1” represents 

outgroup copperhead, Agkistrodon contortrix 
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Figure 7. ML gene tree for bmp2. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples 

represent the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1” 

represents outgroup copperhead, Agkistrodon contortrix 
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Figure 8. ML gene tree for c-mos. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples 

represent the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1” 

represents outgroup copperhead, Agkistrodon contortrix 
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Figure 9. ML gene tree for odc. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples represent 

the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1”epresents 

outgroup copperhead, Agkistrodon contortrix 
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Figure 10. ML gene tree for rag1. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red samples 

represent the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample “AGCO1” 

represents outgroup copperhead, Agkistrodon contortrix 
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Figure 11. Concatenated nDNA ML gene tree. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red 

samples represent the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample 

“AGCO1” represents outgroup copperhead, Agkistrodon contortrix 
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Figure 12. Concatenated 8 gene ML gene tree. Green samples represent the eastern massasauga, Sistrurus catenatus catenatus, red 

samples represent the desert massasauga, S. c. edwardsii, blue samples represent the western massasauga, S. c. tergeminus. Sample 

“AGCO1” represents outgroup copperhead, Agkistrodon contortrix 
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Chapter 3 

Comparative Ecological Niche Modeling between Sistrurus catenatus tergeminus and 

Sistrurus catenatus edwardsii in Texas 

 

Introduction 

Ecological niche models (ENMs), also known as species distribution models (SDMs), are 

a quantitative form of ecological modeling that incorporates known species occurrence data 

along with environmental data to estimate a species’ distribution across geographic space (Elith 

et al. 2011; Phillips et al. 2006; Warren and Seifert 2010). Ecological niche models have been 

used to address a variety of biological issues including, but not limited to, potential of invasive 

species invasions (Ward 2007; Rodder and Lotters 2010), climate change impacts (Wiens et al. 

2009), species diversity (Graham et al. 2006), cryptozoological claims (Lozier et al. 2009), and 

species diversity at geographic boundaries (Escoriza 2010; Soto-Centeno et al. 2013). 

Specifically within evolutionary and conservation biology, ENMs have been used to understand 

different modes of speciation using comparative studies of niches between taxa (Anadón et al. 

2015; Leaché et al. 2009; Pyron and Burbrink 2009; Wooten and Gibbs 2012; Khimoun et al. 

2013). Information from these comparative studies can then be used in species delimitation, 

allowing the taxonomist to incorporate ecological data, which is particularly useful in recently 

diverged lineages that do not show high levels of molecular or morphological differentiation 

(Raxworthy et al. 2007; Rissler and Apodaca 2007; Leaché et al. 2009; Makowsky et al. 2010; 

Zhang et al. 2014).  

The most commonly used form of ecological niche modeling is maximum entropy 

distributional modeling (MaxEnt; Phillips et al. 2006), which has been used in over 1000 

published studies (Merow et al. 2013). MaxEnt requires “presence-only” data in order to develop 
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models and in general outperforms other modeling techniques such as genetic algorithm for rule 

set prediction (GARP), especially at low sample sizes (Pearson et al. 2007; Phillips and Dudík 

2008). The ability of MaxEnt to produce high performing models using small sample sizes of 

presence-only data is particularly advantageous to studying snakes. Snakes are generally 

considered one of the most difficult taxa to study in nature due to their small size, patchy 

distributions, sporadic activity patterns, often inaccessible habitat, as well as, extremely cryptic 

and often subterranean nature (Durso et al. 2011). A number of recent studies have used MaxEnt 

developed ENMs for snakes and other reptile species to investigate niche conservation or 

divergence, and ecological speciation (Raxworthy et al. 2007; Leaché et al. 2009; Pyron and 

Burbrink 2009; Wooten and Gibbs 2012; Meik et al. 2015). Divergently evolving niches can then 

in turn lead to separate lineage formation by local adaptation (Leaché et al. 2009; Schluter 2009; 

Khimoun et al. 2013; Zhang et al. 2014). 

The present study sought to develop ENMs using MaxEnt software for the Texas ranges 

of S. c. catenatus and S. c. tergeminus. In most studies using ENMs the entire range of a species 

is used; however, Gonzalez et al. (2011) and Soto-Centano et al. (2013) have emphasized that 

ENMs developed at smaller population levels can pick up more subtle environmental 

differences. The ENMs developed for this study were compared and used to answer two  

questions: 1) what environmental factors most affect the tolerances/preferences of S. c. 

tergeminus and S. c. edwardsii? 2) Are  S. c. tergeminus and S. c. edwardsii taxonomically 

distinguishable based on ecology? 
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Methods and Materials 

Ecological niche models (ENMs) were generated using MaxEnt (Version 3.3.3k; Phillips 

et al. 2006). MaxEnt works by projecting a list of GPS presence points across a GIS created user-

defined landscape that is divided into cells of a pre-determined size (i.e. 0.5 km X 0.5 km in this 

case). The presence points are then compared to randomly generated background pseudo-absence 

points to determine if the cells occupied by the presence points are more similar to each other 

than these randomly generated background points (Phillips et al. 2006; Warren et al. 2010; 

Merow et al. 2013). The area under the receiver-operator curve (AUC) value generated by 

MaxEnt was used to evaluate the fit of the model to the data (Phillips et al. 2006; Merow et al. 

2013). The higher the AUC value (ranked 0.0 – 1.0) the greater the ability of the model to 

distinguish between input presence locations and randomly generated pseudo-absence points 

(Merow et al. 2013). The level of impact of each variable on the overall construction of the 

model was assessed used the generated test gain values (Phillips et al. 2006) 

Ecological niche models were generated for both S. c. tergeminus and S. c. edwardsii. 

Presence locations were compiled by data-mining VertNet and iNaturalist for locality 

information, taken from museum collection catalogues, provided by collaborators, or collected 

during road surveys conducted by myself with the aid of research assistants (Table 9 & 10). A 

few areas such as the samples collected in Parker, Hood, and Tarrent County from which GPS 

locations were obtained were much higher than other areas and believed to be because of 

sampling bias and not by greater population size. These three examples are from directly outside 

the Dallas-Fort Worth, TX metropolis and are very well known among both academic 

herpetologists and amateur reptile enthusiasts, and provided a very convenient area to collect this 

species. In order to reduce sampling bias, which can have a major impact on accurate modeling 



 

45 

 

efforts (Merow et al. 2013), an average number of GPS localities per county was generated.  

Only a maximum of the generated averages per county, five and four for S. c. tergeminus and S. 

c. edwardsii respectively, were used in the creation of ENMs (Tables 9 & 10). This resulted in a 

total of 60 presence points for S. c. tergeminus and 24 presence points for S. c. edwardsii being 

included in the models.  

Environmental variable layers used by the ENMs were developed using ArcGIS (Version 

10.3). A total of five environmental layers were included in the ENMs, three climatic and two 

landscape characteristics (Table 11), and the extent of each layer was restricted to Texas only. 

Prior to input into MaxEnt, environmental variable layers were set to a cell size of 500 m X 500 

m, projected to NAD 1983 UTM zone 14, and converted to ASCII files. Presence data was also 

projected to NAD 1983 UTM zone 14. Test data were generated by setting run type in MaxEnt to 

the “leave-on-out” or n-1 crossvalidation method, where n is the number of observations. This 

methods was selected to accommodate the relatively low samples sizes used to generate the 

ENMs. Spatial autocorrelation along with further sampling bias was corrected for by only using 

one GPS point were grid cell. All other MaxEnt setting were set to default.  

After ENMs were generated for both subspecies the degree of similarity between the two 

models was quantified using the program ENMtools (Version 1.4.1; Warren et al. 2010). First 

ENMtools was used to generate the “I statistic” described by Warren et al. (2010). The I statistic 

is a numerical value between 0 and 1 used to measure niche overlap (Warren et al. 2010). I then 

used ENMtools to create a null distribution of 100 randomly generated niche overlap values. The 

five percent quantile values of the null distribution were determined and used to access the 

statistical significance of the generated I statistic value. Ecological niche models for both 

subspecies were converted into binary average habitat suitability maps using the equal test 
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sensitivity and specificity logistic threshold value generated by MaxEnt (Phillips et al., 2006). 

These two binary maps were then combined onto a single map in order to better visualize any 

overlap in potential niches between the two subspecies.  

Results 

Ecological niche models for both S. c. tergeminus and S. c. edwardsii had AUC values 

above 0.9, 0.94 and 0.93 respectively, indicating they have strong predictive power (Phillips et 

al. 2006; Figures 13 & 14). However, test gains show the effect of each variable on model 

creation varied between subspecies (Figures 15 & 16). All three climatic variables contributed 

more than either landscape variable for S. c. tergeminus (Figure 13), whereas landform 

contributed the most followed by temperature seasonality and annual precipitation for S. c. 

edwardsii (Figure 16).  

The most highly suitable habitats for S. c. tergeminus were correlated with an annual 

precipitation of approximately 650mm (figure 17). Highly suitable habitat S. c. tergeminus is 

also more likely to be found in areas with a low degree of daily temperature fluctuation and a 

moderate degree of temperature seasonality (Figure 18 & 19). Tablelands were the most 

predictive landform type and limestone/gravel the most predictive rock types to be associated 

with S. c. tergeminus (Table 12 & 13, Figure 20 & 21).  

Sistrurus catenatus edwardsii was most associated with the landform type “plains with 

hills” (Figure 22; Table 14). In contrast to S. c. tergeminus, S. c. edwardsii is more likely to be 

found in habitats with a moderate degree of daily temperature fluctuation and a lower degree of 

temperature seasonality (Figure 23 & 24). Annual precipitation is also much lower in areas 

predicted to be highly suitable for S. c. edwardsii with the optimal values between 50.4 and 
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177.9 mm (Figure 25). Sand was the most commonly associated geology feature to be found in 

association with S. c. edwardsii (Figure 26, Table 15).  

The I statistic (0.25) falls below the 95% permutation threshold (0.92). This indicates the 

ecological niche models for S. c. tergeminus and S. c. edwardsii are significantly different 

(Figure 27).  

Discussion 

The ENMs created for this study show a high degree of niche differentiation between S. 

c. tergeminus and S. c. edwardsii. This suggests there is niche divergence between these 

parapatric subspecies that may be an early stage of the speciation process (Raxworthy et al. 

2007; Pyron and Burbrink 2009; Wooten and Gibbs 2012; Khimoun et al. 2013). Ecological 

speciation has been noted as a possible mechanism of diversification in recently diverged 

lineages, such as S. c. tergeminus and S. c. edwardsii (Kubatko et al. 2011), driving local 

adaptation and further niche divergence (Schluter 2009). Niche divergence creates ecological 

separation between species lineages leading to further reproductive isolation and higher levels of 

genetic differentiation (Wooten and Gibbs 2012; Khimoun et al. 2013). Divergently evolving 

niches are often associated with some type of geographical boundary created by ancient glacial 

events (Placyk et al. 2007; Pyron and Burbrink 2009; Soto-Centeno et al. 2013). However, Pyron 

and Burbrink (2009) indicated in the snake species Lampropeltis getula, parapatric subspecies 

lineages can evolve distinctive ecological niches without any distinctive isolating geographic 

barrier. Other studies have shown similar results in herpetofauna indicating that environmental 

gradients can act as boundaries causing lineages to diverge ecologically (Graham et al. 2004; 

Raxworthy et al. 2007; Leaché et al. 2009; Zhang et al. 2014). It is likely local environmental 
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differences are driving niche divergence between S. c. tergeminus and S. c. edwardsii, as there 

are no obvious or notable physically barrier dividing the two subspecies populations.  

Ectotherms, such as snakes, can show strong physiological responses to local 

environmental factors (Raxworthy et al. 2007; Pyron and Burbrink 2009; Wooten and Gibbs 

2012). The ENMs show evidence for this being the case between S. c. tergeminus and S. c. 

edwardsii. Annual precipitation played a differentiating role between the niche models. Sistrurus 

c. tergeminus preferred habitats with a much higher amount of precipitation than S. c. edwardsii. 

This finding supports previously known ecological differences between these two subspecies. 

Throughout its range S. c. tergeminus is associated with low laying wetter habitats, whereas S. c. 

edwardsii is more associated with dry xeric habitats (Seigel 1986; Holycross and Mackessy 

2002; Wastell and Mackessy 2011). Differences in daily and seasonal temperature fluctuation 

preference between S. c. tergeminus and S. c. edwardsii also indicate local physiological 

adaptations to different environmental factors.  

In addition to adaptations to climatic differences, the ENMs indicate S. c. tergeminus and 

S. c. edwardsii prefer different physical terrains as well, as indicated by their preference for 

different landform and geological features. Previous studies have shown have both S. c. 

tergeminus and S. c. edwardsii require multiple habitat types, where they utilize one type of 

habitat during brumation and another during their active season (Wastell and Mackessy 2011). 

Therefore, the right matrix of habitat types must exist in close proximity to one another in order 

for each subspecies to utilize an area, and these matrices of habitat types are different for the two 

subspecies. The specific habitats utilized by these two subspecies in Texas may only exist under 

certain landform, geological and environmental combinations. Furthermore differences in prey 
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preferences between S. c. tergeminus and S. c. edwardsii have been noted and are closely linked 

to habitat preferences (Holycross and Mackessy 2002).  

My ecological niche modeling results support conclusions drawn by Wooten and Gibbs 

(2012). In a study of both species (which includes six total subspecies) of the genus Sistrurus 

Wooten and Gibbs (2012) concluded that niche divergence is acting a strong driving force in the 

ecological separation of all three subspecies of S. catenatus. However, their study used a much 

larger extent (The Continental United States and Lower Canada) in their ENMs than this study. 

The large extent could possibly have confounding effects by reducing modeling sensitivity. In 

order to increase model sensitivity and tease out more subtle environmental difference the ENM 

I used a smaller extent, but still found similar results. Finally, I conclude that based on the ENMs 

created in this study S. c. tergeminus and S. c. edwardsii lack ecological exchangeability 

indicating that they are separately evolving lineages within the species S. catenatus. This 

supports the current taxonomy.  
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Appendix C 

Ecological Niche Modeling Tables 

 

Table 9. Presence points and sources for Sistrurus catenatus tergeminus locale data used in 

ecological niche modeling 

Subspecies Latitude Longitude County Source 

S. c. tergeminus 33.5494 -98.946 Archer UTEP 

S. c. tergeminus 33.5722 -98.848 Archer iNat 

S. c. tergeminus 33.5415 -98.845 Archer iNat 

S. c. tergeminus 33.70028 -98.8745 Archer iNat 

S. c. tergeminus 33.71157 -98.7299 Archer iNat 

S. c. tergeminus 32.4968 -99.544 Callahan UTEP 

S. c. tergeminus 33.855 -98.347 Clay UTAR 

S. c. tergeminus 31.7167 -99.547 Coleman TAMU 

S. c. tergeminus 31.7095 -99.548 Coleman TAMU 

S. c. tergeminus 34.1118 -100.37 Cottle S.Hein/M.Barazowski 

S. c. tergeminus 34.1181 -100.34 Cottle S.Hein/M.Barazowski 

S. c. tergeminus 34.1379 -100.36 Cottle S.Hein/M.Barazowski 

S. c. tergeminus 34.1265 -100.35 Cottle S.Hein/M.Barazowski 

S. c. tergeminus 34.1096 -100.37 Cottle S.Hein/M.Barazowski 

S. c. tergeminus 33.8673 -101.11 Floyd iNat 

S. c. tergeminus 34.03224 -99.6593 Foard iNat 

S. c. tergeminus 34.7266 -101.44 Hall UTAR 

S. c. tergeminus 33.1815 -99.261 Haskell UTAR 

S. c. tergeminus 33.18758 -99.9678 Haskell iNat 

S. c. tergeminus 33.1713 -99.5004 Haskell iNat 

S. c. tergeminus 33.16181 -99.5716 Haskell iNat 

S. c. tergeminus 33.1404 -99.6968 Haskell iNat 

S. c. tergeminus 32.5331 -97.619 Hood TAMU 

S. c. tergeminus 32.5383 -97.63 Hood UTAR 

S. c. tergeminus 32.5546 -97.662 Hood UTAR 

S. c. tergeminus 32.5468 -97.647 Hood UTAR 

S. c. tergeminus 32.5548 -97.697 Hood UTAR 

S. c. tergeminus 32.5284 -97.614 Johnson UTAR 

S. c. tergeminus 32.2999 -97.564 Johnson UTAR 

S. c. tergeminus 32.3046 -97.554 Johnson UTAR 

S. c. tergeminus 32.306 -97.546 Johnson UTAR 

S. c. tergeminus 32.2789 -97.519 Johnson UTAR 

S. c. tergeminus 32.7447 -99.713 Jones UTAR 
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S. c. tergeminus 33.58369 -99.8294 Knox iNat 

S. c. tergeminus 32.6328 -97.7 Parker UTAR 

S. c. tergeminus 32.585 -97.679 Parker UTAR 

S. c. tergeminus 32.6366 -97.559 Parker UTAR 

S. c. tergeminus 32.6112 -97.583 Parker UTAR 

S. c. tergeminus 32.6028 -97.686 Parker iNat 

S. c. tergeminus 35.7899 -100.74 Roberts UTEP 

S. c. tergeminus 32.5163 -99.561 Shackelford UTEP 

S. c. tergeminus 32.72345 -99.2973 Shackelford iNat 

S. c. tergeminus 33.1858 -99.972 Stonewall UTAR 

S. c. tergeminus 33.20927 -100.337 Stonewall iNat 

S. c. tergeminus 33.12342 -100.082 Stonewall iNat 

S. c. tergeminus 33.20967 -100.359 Stonewall iNat 

S. c. tergeminus 32.679 -97.51 Tarrant UTAR 

S. c. tergeminus 32.688 -97.499 Tarrant UTAR 

S. c. tergeminus 32.693 -97.499 Tarrant UTAR 

S. c. tergeminus 32.6772 -97.489 Tarrant UTAR 

S. c. tergeminus 32.6785 -97.499 Tarrant iNat 

S. c. tergeminus 33.0047 -99.158 Throckmorton UTEP 

S. c. tergeminus 32.9773 -99.186 Throckmorton UTEP 

S. c. tergeminus 33.17968 -99.2268 Throckmorton iNat 

S. c. tergeminus 32.9956 -99.148 Throckmorton iNat 

S. c. tergeminus 34.12499 -98.6741 Wichita iNat 

S. c. tergeminus 33.9664 -99.099 Wilbarger UTAR 

S. c. tergeminus 33.8712 -99.404 Wilbarger iNat 

S. c. tergeminus 33.1844 -98.502 Young UTEP 

(iNat- iNaturalist; UTEP – University of Texas at El Paso; TAMU – Texas A&M University; 

UTAR – University of Texas at Arlington) 
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Table 10. Presence points and sources for Sistrurus catenatus edwardsii used in ecological niche 

modeling 

Subspecies Latitude Longitude County Source 

S. c. edwardsii 32.129 -102.68 Andrews iNat 

S. c. edwardsii 32.3822 -102.42 Andrews iNat 

S. c. edwardsii 32.08822 -102.866 Andrews iNat 

S. c. edwardsii 32.6252 -101.39 Borden iNat 

S. c. edwardsii 32.5564 -101.26 Borden TNHC 

S. c. edwardsii 26.7348 -98.509 Brooks TAMU 

S. c. edwardsii 31.60731 -102.688 Crane iNat 

S. c. edwardsii 32.2929 -101.47 Howard TAMU 

S. c. edwardsii 32.5555 -101.23 Howard iNat 

S. c. edwardsii 32.5568 -101.28 Howard iNat 

S. c. edwardsii 31.0109 -101.17 Irion iNat 

S. c. edwardsii 30.5645 -104.47 Jeff Davis UTAR 

S. c. edwardsii 26.9137 -98.597 Jim Hogg iNat 

S. c. edwardsii 27.18716 -98.6205 Jim Hogg R. Couvillon 

S. c. edwardsii 27.12655 -98.5797 Jim Hogg R. Couvillon 

S. c. edwardsii 27.1269 -98.583 Jim Hogg R. Couvillon 

S. c. edwardsii 27.125 -98.59 Jim Hogg R. Couvillon 

S. c. edwardsii 26.95018 -98.5943 Jim Hogg iNat 

S. c. edwardsii 27.4162 -97.308 Kleberg iNat 

S. c. edwardsii 31.9478 -101.98 Midland iNat 

S. c. edwardsii 32.5182 -101.14 Mitchell TAMU 

S. c. edwardsii 31.4184 -102.95 Ward S.Hein/S.Pitts 

S. c. edwardsii 31.46451 -102.904 Ward iNat 

S. c. edwardsii 31.5368 -102.988 Ward iNat 

S. c. edwardsii 31.50866 -102.984 Ward iNat 

(iNat- iNaturalist; TNCH – Texas Natural History Collection; TAMU – Texas A&M University; 

UTAR – University of Texas at Arlington) 
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Table 11. Environmental layers used in ecological niche modeling 

Environmental layer Source 

Bio3: Isothermality WorldClim 
Bio 4: Temperature seasonality WorldClim 
Bio 12: Annual precipitation WorldClim 
Geology USGS 
Landform USGS 
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Table 12. Unique landform characteristics with corresponding ID value shown in response curves produced by Maxent for Sistrurus 

catenatus tergeminus 

Maxent 
ID 

Predictive 
score 

CLASS 
ID 

Attribute Slope Relief profile type 

1 0.640 B5a Plains with low mountains 50-80% of area gently sloping 1000 - 
3000 ft 

More than 75% of gentle slope is 
in lowland 

3 0.640 D5 Low mountains Less the 20% of area gently 
sloping 

1000 - 
3000 ft 

N/A 

4 0.853 B3c Tablelands moderate relief 50 -80% of area gently 
sloping 

300 - 500 
ft 

50 - 75% of gentle slope is on 
upland 

8 0.588 B3b plains with hills 50 -80% of area gently 
sloping 

300 - 500 
ft 

50 -75% of gentle slope is on 
lowland 

11 0.674 B2c irregular plains,50-75% gentle slope on 
upland 

50 -80% of area gently 
sloping 

100 - 300 
ft 

50 - 75% of gentle slope is on 
upland 

13 0.640 B2b irregular plains, 50-75% gentle slope on 
lowland 

50 -80% of area gently 
sloping 

100 - 300 
ft 

50 -75% of gentle slope is on 
lowland 

14 0.640 A1 Flat Plains More than 80% of area 
gently sloping 

1 - 100 ft N/A 

16 0.640 B4b Plains with high hills 50 -80% of area gently 
sloping 

500 - 1000 
ft 

50 -75% of gentle slope is on 
lowland 

17 0.628 A2c Smooth Plains, 50 - 75% gentle slope on 
upland 

More than 80% of area 
gently sloping 

100 - 300 
ft 

50 - 75% of gentle slope is on 
upland 

18 0.640 C4c Open High Hills, 50 - 75% gentle slope 
on upland 

20 - 50% of area gently 
sloping 

500 - 1000 
ft 

50 - 75% of gentle slope is on 
upland 

19 0.640 B3a Plains with hills 50 -80% of area gently 
sloping 

300 - 500 
ft 

More than 75% of gentle slope is 
in lowland 

20 0.640 C4b Open High Hills, 50 -75% gentle slope 
on lowland 

20 - 50% of area gently 
sloping 

500 - 1000 
ft 

50 -75% of gentle slope is on 
lowland 

23 0.640 A2b smooth plains, 50 - 75% of gentle slope 
on lowland 

More than 80% of area 
gently sloping 

100 - 300 
ft 

50 -75% of gentle slope is on 
lowland 

25 0.640 B5b plans with low mountains 50 -80% of area gently 
sloping 

1000 - 
3000 ft 

50 -75% of gentle slope is on 
lowland 

27 0.640 B6a Plains with high mountains 50 -80% of area gently 
sloping 

>3000 ft More than 75% of gentle slope is 
in lowland 

32 0.640 D4 High hills Less the 20% of area gently 
sloping 

500 - 1000 
ft 

N/A 
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Table 13. Unique geology characteristics with corresponding ID value shown in response curves 

produced by Maxent for Sistrurus catenatus tergeminus 

Maxent ID 
number 

Predictability 
Score 

Rock Type 

1 0.752 sand 

2 0.701 evaporite 

3 0.939 clay or mud 

4 0.701 sandstone 

5 0.849 shale 

6 0.701 water 

7 0.701 terrace 

8 0.701 mixed clastic/carbonate 

9 0.701 fine-grained mixed clastic 

10 0.853 mudstone 

11 0.958 limestone 

12 0.701 silt 

13 0.958 gravel 

14 0.701 alluvial fan 

15 0.701 dolostone (dolomite) 

16 0.701 basalt 

17 0.701 playa 

18 0.701 landslide 

20 0.701 granite 

21 0.701 rhyolite 

22 0.701 conglomerate 

23 0.701 siltstone 

24 0.701 indeterminate 

25 0.701 trachyte 

27 0.701 phyllite 

28 0.701 paragneiss 

29 0.701 amphibole schist 

33 0.701 claystone 

35 0.701 medium-grained mixed clastic 

36 0.701 chert 

37 0.701 tuff 

39 0.701 ash-flow tuff 
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Table 14. Unique landform characteristics with corresponding ID value shown in response curves produced by Maxent for Sistrurus 

catenatus edwardsii 

Maxent 
ID 

Predictive 
score 

CLASS 
ID 

Attribute Slope Relief profile type 

1 0.099 B5a Plains with low mountains 50-80% of area gently sloping 1000 - 
3000 ft 

More than 75% of gentle slope is 
in lowland 

3 0.099 D5 Low mountains Less the 20% of area gently 
sloping 

1000 - 
3000 ft 

N/A 

4 0.099 B3c Tablelands moderate relief 50 -80% of area gently 
sloping 

300 - 500 
ft 

50 - 75% of gentle slope is on 
upland 

8 0.919 B3b plains with hills 50 -80% of area gently 
sloping 

300 - 500 
ft 

50 -75% of gentle slope is on 
lowland 

11 0.857 B2c irregular plains,50-75% gentle slope on 
upland 

50 -80% of area gently 
sloping 

100 - 300 
ft 

50 - 75% of gentle slope is on 
upland 

13 0.099 B2b irregular plains, 50-75% gentle slope on 
lowland 

50 -80% of area gently 
sloping 

100 - 300 
ft 

50 -75% of gentle slope is on 
lowland 

14 0.099 A1 Flat Plains More than 80% of area 
gently sloping 

1 - 100 ft N/A 

16 0.099 B4b Plains with high hills 50 -80% of area gently 
sloping 

500 - 1000 
ft 

50 -75% of gentle slope is on 
lowland 

17 0.659 A2c Smooth Plains, 50 - 75% gentle slope on 
upland 

More than 80% of area 
gently sloping 

100 - 300 
ft 

50 - 75% of gentle slope is on 
upland 

18 0.099 C4c Open High Hills, 50 - 75% gentle slope 
on upland 

20 - 50% of area gently 
sloping 

500 - 1000 
ft 

50 - 75% of gentle slope is on 
upland 

19 0.099 B3a Plains with hills 50 -80% of area gently 
sloping 

300 - 500 
ft 

More than 75% of gentle slope is 
in lowland 

20 0.099 C4b Open High Hills, 50 -75% gentle slope 
on lowland 

20 - 50% of area gently 
sloping 

500 - 1000 
ft 

50 -75% of gentle slope is on 
lowland 

23 0.099 A2b smooth plains, 50 - 75% of gentle slope 
on lowland 

More than 80% of area 
gently sloping 

100 - 300 
ft 

50 -75% of gentle slope is on 
lowland 

25 0.099 B5b plans with low mountains 50 -80% of area gently 
sloping 

1000 - 
3000 ft 

50 -75% of gentle slope is on 
lowland 

27 0.267 B6a Plains with high mountains 50 -80% of area gently 
sloping 

>3000 ft More than 75% of gentle slope is 
in lowland 

32 0.099 D4 High hills Less the 20% of area gently 
sloping 

500 - 1000 
ft 

N/A 
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Table 15. Unique geology characteristics with corresponding ID value shown in response curves 

produced by Maxent for Sistrurus catenatus edwardsii 

MAXENT 
ID 

Predictive 
score 

Rock Type 

1 0.652 sand 

2 0.213 evaporite 

3 0.213 clay or mud 

4 0.213 sandstone 

5 0.213 shale 

6 0.213 water 

7 0.213 terrace 

8 0.213 mixed clastic/carbonate 

9 0.620 fine-grained mixed clastic 

10 0.213 mudstone 

11 0.241 limestone 

12 0.213 silt 

13 0.213 gravel 

14 0.213 alluvial fan 

15 0.213 dolostone (dolomite) 

16 0.213 basalt 

17 0.213 playa 

18 0.213 landslide 

20 0.213 granite 

21 0.213 rhyolite 

22 0.213 conglomerate 

23 0.213 siltstone 

24 0.213 indeterminate 

25 0.213 trachyte 

28 0.213 paragneiss 

29 0.213 amphibole schist 

30 0.213 coarse-grained mixed clastic 

32 0.213 diorite 

33 0.213 claystone 

35 0.213 medium-grained mixed clastic 

36 0.213 chert 

37 0.213 tuff 
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Appendix D 

Ecological Niche Modeling Figures 

 

 

Figure 13. Ecological niche model for the western massasauga, Sistrurus catenatus tergeminus; 

AUC = 0.94 
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Figure 14. Ecological niche model for the desert massasauga, Sistrurus catenatus edwardsii; 

AUC = 0.93 
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Figure 15. Test gains of each environmental variable for the western massasauga, Sistrurus 

catenatus tergeminus 
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Figure 16. Test gains of each environmental variable for the desert massasauga, Sistrurus 

catenatus edwardsii 
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Figure 17. Mean response curve with 58 replicate Maxent runs (red) of environmental variable: 

annual precipitation for the western massasauga, Sistrurus catenatus tergeminus. Blue area 

represent +/- one standard deviation  
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Figure 18. Mean response curve with 58 replicate Maxent runs (red) of environmental variable: 

isothermality (Mean diurnal temperature range/temperature annual range) for the western 

massasauga, Sistrurus catenatus tergeminus. Blue area represent +/- one standard deviation.  
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Figure 19. Mean response curve with 58 replicate Maxent runs (red) of environmental variable: 

temperature seasonality for the western massasauga, Sistrurus catenatus tergeminus. Blue area 

represent +/- one standard deviation  
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Figure 20. Mean response curve with 58 replicate Maxent runs (red) of environmental variable: 

landform for the western massasauga, Sistrurus catenatus tergeminus. Blue area represent + one 

standard deviation. X-axis corresponds to unique values found in Table 12  

  



 

66 

 

 

Figure 21. Mean response curve with 58 replicate Maxent runs (red) of environmental variable 

geology for the western massasauga, Sistrurus catenatus tergeminus. Blue area represent + one 

standard deviation. X-axis corresponds to unique values found in Table 13 
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Figure 22. Mean response curve with 58 replicate Maxent runs (red) of environmental variable 

landform for the desert massasauga, Sistrurus catenatus edwardsii. Blue area represent + one 

standard deviation. X-axis corresponds to unique values found in Table 14 
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Figure 23. Mean response curve with 58 replicate Maxent runs (red) of environmental variable: 

isothermality (Mean diurnal temperature range/temperature annual range) for the desert 

massasauga, Sistrurus catenatus edwardsii. Blue area represent +/- one standard deviation 
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Figure 24. Mean response curve with 58 replicate Maxent runs (red) of environmental variable: 

temperature seasonality for the desert massasauga, Sistrurus catenatus edwardsii. Blue area 

represent +/- one standard deviation 
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Figure 25. Mean response curve with 58 replicate Maxent runs (red) of environmental variable: 

annual precipitation for the desert massasauga, Sistrurus catenatus edwardsii. Blue area 

represent +/- one standard deviation 
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Figure 26. Mean response curve with 58 replicate Maxent runs (red) of environmental variable 

geology for the desert massasauga, Sistrurus catenatus edwardsii. Blue area represent + one 

standard deviation. X-axis corresponds to unique values found in Table 15 
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Figure 27. Comparative binary ecological niche model displaying areas of suitable habitat for 

both the western massasauga, Sistrurus catenatus tergeminus and the desert massasauga, S. c. 

edwardsii 
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Chapter 4 

Concluding Remarks 

 

 

This study has provided very useful insight into the evolutionary history of the 

massasauga rattlesnake, Sistrurus catenatus as well as the usefulness and power of taking an 

integrative approach to taxonomy and conservation. My study found strong genetic evidence 

within the mitochondrial DNA sequences to support the previously suggested elevation of the 

eastern massasauga, S. c. catenatus, to its own species separated from the two western 

subspecies. This is a particularly important change in taxonomy for this species because the 

elevation to species from subspecies will increase its priority level as per the Endangered Species 

Act. 

Additionally, I found evidence of ecological lineage distinction within the western 

subspecies complex containing the western, S. c. tergeminus, and the desert massasauga, S. c. 

edwardsii. The ecological data shows that these two subspecies are likely undergoing ecological 

speciation, which is supported by the previous findings of Wooten and Gibbs (2012). Taking into 

account the recent divergence of these two subspecies, ecological differentiation provides the 

strongest evidence that S. c. tergeminus and S. c. edwardsii are representative of two distinct 

evolutionary lineages within the western S. catenatus complex. However, this differentiation is 

only weakly supported by the mitochondrial DNA and not supported by the nuclear DNA. 

Mitochondrial intersubspecific divergence estimates show there is some genetic distinction 

between S. c. tergeminus and S. c. edwardsii, although this distinction is less clear in the ML 

gene trees. Therefore, I recommend in order to further elicit the genetic relationship between S. 
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c. tergeminus and S. c. edwardsii more sensitive genetic markers such as microsatellites be 

employed in future research. While I agree with Ryberg et al. (2014) that S. c. tergeminus and S. 

c. edwardsii are genetically not divergent enough to consider separate species, I disagree that the 

subspecies should be collapsed into one. There is some evidence that these two subspecies are 

genetically distinctive and very strong evidence that they are ecologically divergent.  

In conclusion, I believe the eastern massasauga, S. c. catenatus, should be elevated to be 

the sole member of the species S. catenatus. This elevation will resurrect the species S. 

tergeminus to represent the two westerns subspecies, reclassifying these subspecies as S. 

tergeminus tergeminus and S. t. edwardsii. These subspecific designations, based off the strong 

ecological evidence, accurately represent a divergence in evolutionary history between S. t. 

tergeminus and S. t. edwardsii. Therefore, S. t. tergeminus and S. t. edwardsii, should remain as 

viable subspecies and not be collapsed into one species. The decision to keep the subspecific 

distinction between S. c. tergeminus and S. c. edwardsii bring with it important biological and 

conservation decisions. The current petition to afford Federal protection to S. c. edwardsii 

remains valid, whereas, collapsing S. c. edwardsii into a single species with S. c. tergeminus 

would likely invalidate the petition. At the very least, collapsing S. c. edwardsii into a single 

species with S. c. tergeminus would require the petition to be rewritten and resubmitted, 

restarting a long evaluation process by the United States Fish and Wildlife Agency. Another 

important implication is, if or when, any conservation decisions are made in regards to S. c. 

tergeminus or S. c. edwardsii they must be treat as biologically distinct entities. These two 

subspecies respond differently to their environment and are under different selective pressures; 

therefore, management practices must be matched to the distinct subspecies in question.  
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