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Osteoporotic fractures are a vital public health concern and create a great economic 

burden for our society. It is estimated that more than 2 million fractures occur in the 

United States at a cost of  $17 billion each year. Deterioration of microarchitecture of 

trabecular bone is considered as a major contributor to bone fragility. Current clinical 

imaging modalities such as Dual-energy X-ray absorptiometry (DXA) are not able to 

describe bone microarchitecture due to their low resolution. The main objective of this 

study was to obtain the relationship between stochastic parameters calculated from bone 

mineral density (BMD) maps of DXA scans and the microarchitecture parameters 

measured from three dimensional (3D) images of human lumbar vertebrae acquired using 

a Micro-Computed Tomography (Micro-CT) scanner. 
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 Eighteen human lumbar vertebrae with intact posterior elements were scanned in 

the posterior-anterior projection using a DXA scanner. Stochastic parameters such as 

correlation length (L), sill variance (C) and nugget variance ( 0C ) were calculated by 

fitting a theoretical model onto the experimental variogram of the BMD map of the 

human vertebrae. In addition, microarchitecture parameters such as bone volume fraction 

(BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number 

(Tb.N), connectivity density (Conn.Dn), and bone surface-to-volume ratio (BS/BV) were 

measured from 3D images of the same human lumbar vertebrae. 

 Significant correlations were observed between stochastic predictors and 

microarchitecture parameters of trabecular bone. Specifically, the sill variance was 

positively correlated with the bone volume fraction, trabecular thickness, trabecular 

number, connectivity density and negatively correlated with the bone surface to volume 

ratio and trabecular separation. This study demonstrates that stochastic assessment of the 

inhomogeneity of bone mineral density from routine clinical DXA scans of human 

lumbar vertebrae may have the potential to serve as a valuable clinical tool in enhancing 

the prediction of risks for osteoporotic fractures in the spine. The main advantage of 

using DXA scans is that it would be cost effective, since most hospitals already have 

DXA machines and there would be no need for purchasing new equipment.  
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CHAPTER ONE 

INTRODUCTION 

 Spine fractures are the most common type of osteoporotic fractures and are a 

major concern in the health care of the elderly population. Therefore, early diagnosis of 

patients with high risk of osteoporotic fractures is essential. Osteoporosis is a skeletal 

disease in which loss of bone mass and deterioration of bone microarchitecture cause a 

reduction in bone stiffness and strength, thus resulting in an increased risk of fragility 

fractures [1].  

1.1 Imaging modalities available in clinical applications and basic science research 

Radiographs and DXA are two major modalities using two dimensional (2D) projection 

images for assessing bone fragility in the clinical setting. Conventional X-ray 

radiography offers higher resolution for diagnosis of fragility fractures, whereas DXA 

images have lower resolution but provide a better estimation of bone mineral density 

(BMD). Dual energy X-ray absorptiometry (DXA) is currently the clinical tool of first 

choice for measuring BMD and for making clinical decisions of osteoporosis patients due 

to its high precision, accuracy, efficiency, low radiation dose, accessible measurement 

sites, and low cost relative to other densitometry techniques. However, these techniques 

are not efficient in the diagnosis of patients with osteopenia. Persons with bone mineral 

density that is lower than normal peak density (usually T-scores range from -1 to -2.5) are 

osteopenia patients.  

BMD is a measure of bone mass or quantity of bone. However, bone fragility is not only 

dependent on its quantity, but also its quality. Bone quality is defined as the totality of 

features and characteristics that influence a bone's ability to resist fracture [2]. In recent 

years, advanced imaging modalities have been explored to assess bone quality using 
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other contributing factors, such as microarchitecture of trabecular bone, mineralization, 

microdamage and bone remodeling rates. The high resolution images, obtained from 

most common 3D imaging modalities such as quantitative computed tomography (QCT) 

and magnetic resonance imaging (MRI) could be directly used to assess the 3D 

microarchitecture of trabecular bone. One of the most promising 3D imaging techniques 

is high resolution peripheral quantitative computed tomography (HR-pQCT, also known 

as Micro-CT technique). However, the general public has limited access to these 

facilities, with affordability being a major concern. Moreover, these are still a high-end 

research tool rather than a diagnostic tool for clinical applications [2]. 

1.2 Various imaging techniques to enhance the prediction of bone fractures from 

2D-projection images 

Fractal texture analysis, a useful image processing technique, has been widely applied to 

high resolution 2D radiography images in both clinical and in-vitro studies [3-12]. This 

technique can be used to extract the hidden geometric and microstructural features of 

bone from the existing 2D projection images. Although texture analysis of high 

resolution radiography images has been performed to identify the parameters that are 

correlated with microarchitecture parameters of trabecular bone, it has rarely been 

applied to 2D projection images of DXA scans. The reason is that fractal texture analyses 

requires a large surface of projection and distinguishable textures whereas DXA images 

do not satisfy such requirements due to their low resolution. 

Finite element analysis, is a technique used to extract stiffness and strength of the bone 

from DXA scans. This technique can be used to generate a 3D proximal femur shape 

from 2D radiographic images and used to construct the 3D finite element models [13]. 

The limitation of this technique is that it is only validated in ex-vivo studies and its 

application to routine clinical DXA images is not yet confirmed [13].  

Topological analysis is another technique that has been applied to 2D DXA images to 

extract topological parameters. In a clinical study, the topological parameter based on the 

Minkowski function, can differentiate 30 postmenopausal women with and without hip 
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fractures [14]. However, the physical meaning of the topological parameter is irrelevant 

to bone strength.    

Trabecular bone score (TBS) is a new parameter which can be extensively used in 

clinical situations [15]. The value of TBS is calculated as the slope at the origin of the 

log-log representation of the experimental variogram of grayscale values of DXA images 

[16-18]. In ex-vivo studies, TBS has been found a correlation with microarchitecture 

parameters of trabecular bone [15, 18, 19]. In retrospective case control studies, TBS has 

been found to complement BMD measured from DXA scans for postmenopausal women 

with hip fractures  [17, 20, 21]. One of the limitations of TBS is that, the physical 

meaning of TBS is still unclear. TBS uses grayscale values and the use of grayscale 

values does not characterize the exact distribution of bone mineral density. Since TBS is 

defined as the initial slope of the log-log representation of the experimental variogram, it 

reflects only the initial trend, rather than a global measure of bone quality. 

In the current study, a novel stochastic method has been used to describe the spatial 

variation of bone properties by quantifying the map of BMD derived from DXA scans. In 

this method, a theoretical semi-variogram model was fitted over the experimental 

variogram to evaluate the stochastic parameters. These stochastic parameters can describe 

the global trend of the experimental variograms and measure bone quality.  

1.3 Objective and framework 

This thesis investigates the relationship between stochastic parameters of BMD maps of 

DXA scans and microarchitecture parameters of Micro-CT images. 2D images of 

vertebrae are obtained using a DXA machine. 3D images of vertebrae are obtained using 

Micro-CT machine. Stochastic parameters of BMD maps were calculated using 

MATLAB (Mathworks, Natick, MA, USA). Microarchitecture parameters of trabecular 

bone were calculated using the ImageJ and Microview software. Statistical analysis of 

stochastic and microarchitecture parameters were performed using SPSS (IBM, Armonk, 

NY) [22] and Excel (Microsoft Office, Windows 8). 
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1.4 Organization of thesis 

This thesis is divided into six chapters. Chapter 2 describes previous studies which are 

related to the current study. Chapter 3 explains the technical terms (variogram, stochastic 

and microarchitecture parameters) and imaging modalities (DXA and Micro-CT) which 

are used in our current study. Chapter 4 describes methods and experimental procedures 

to estimate stochastic and microarchitecture parameters. Chapter 5 lists and analyzes the 

results of statistical analysis of stochastic and microarchitecture parameters. Chapter 6 

consists of conclusions and discussion.       
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CHAPTER TWO 

PAST WORK 

 Texture analysis, a useful imaging technique which has been successfully applied 

to X-ray radiographs of iliac bone is correlated with bone micro-CT in-vitro study [23]. 

In this study, the anterosuperior part of the iliac bone was removed from 24 cadavers 

subjects (14 women and 10 men) [23]. Large samples were prepared consisting of the 

crest and a strip of bone approximately 3 cm wide and 5cm long. 2D projection images of 

the samples were obtained using micro-CT (Skyscan 1072) and 3D reconstructed models 

were obtained using surface rendering algorithms from the stack of 2D projection images. 

Microarchitecture parameters such as bone volume fraction (BV/TV), trabecular 

thickness (Tb.Th), trabecular separation (Tb.Sp), structure model index (SMI), trabecular 

number (Tb.N), trabecular bone pattern factor (Tb.Pf), absolute bone volume 

(C.BV/C.TV)  were determined. A projection image was selected from stack of images 

and it was trimmed  2cm under the top of the iliac crest to perform texture analysis. 

Texture analysis was performed using various techniques such as skeletonization, run-

length distribution, fractal analysis (skyscrapers, blanket). Simple and multiple linear 

regression analysis was performed between the data obtained from texture analysis of 2D 

projection images and microarchitecture parameters of 3D reconstructed volumes. A 

good correlation was found between bone volume fraction and absolute bone volume. 

structure model index and trabecular separation were negatively correlated with 

skeletonization parameters. Trabecular thicknes and trabecular number were positively 

correlated with several fractal dimensions and three groups of texture parameters 

respectively [23]. This study concludes that X-ray texture analysis seems to be suitable 

approach for 2D bone microarchitecture assessment due to a good correlation between 

texture analysis of X-ray radiographs and 3D bone microarchitecture assessed by micro-

CT [23]. In another in-vitro study, texture analysis of bone is correlated with 3D 

microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs
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 [24]. In this study, a total of 31 bone cores were used, which are obtained from 8 femoral 

heads of osteoporotic patients [24]. A high resolution X-ray device ( TMBMA ) was used to 

obtain digitized anterior-posterior radiographs of these bone samples. Texture parameters 

were obtained such as fractal dimension meanH , co-occurrence matrix, and run-length 

matrix [24]. High resolution micro-CT tomography operated in the cone beam method 

was used to image trabecular bone with a resolution of 20 µm. 3D microarchitecture 

parameters such as bone volume fraction (%), trabecular thickness (mm), trabecular 

number (1/mm), trabecular separation (mm) were measured. Uniaxial compression tests 

to failure were performed to estimate failure load and apparent modulus of bone samples. 

After performing statistical analysis, the fractal parameter meanH demonstrated significant 

correlations with failure load ( 2r =0.84) and apparent modulus ( 2r =0.71). Bone volume 

fraction and trabecular thickness were also markedly correlated with failure load ( 2r

=0.85 and 2r =0.72 respectively) and apparent modulus ( 2r =0.72 and 2r =0.64 

respectively) [24]. The fractal parameter meanH was also significantly correlated with 

bone volume fraction and trabecular thickness.  

In a similar in-vitro study, radiographic texture analysis is correlated with 3D 

microarchitecture in the femoral head, and improves the estimation of femoral neck 

fracture risk when combined with bone mineral density [25]. In this study, 25 human 

femoral heads were obtained from 13 osteoporotic patients and 12 osteoarthritis patients. 

Univariate analysis showed that fractal parameter meanH was correlated with 3D 

microarchitecture parameters : bone volume fraction, trabecular number, trabecular 

separation, and fractal dimension. In the same way, bone mineral density measured in 

contralateral femur of total hip and femoral neck were correlated with 3D 

microarchitecture parameters [25]. 

These two vitro studies [24, 25], texture analysis of femoral head have several 

limitations. First, the group of specimens was very small. Second, the results of these 

studies are based on evaluation of femoral head specimens, their generalization to the 

analysis of entire bones ex-vivo or in-vivo was limited [25]. Third, trabecular bone 

analysis was restricted to the femoral head in the two vitro studies. Finally, it is important 
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to recognize that 2D texture parameters do not provide true quantitative measurements of 

the physical bone structure. The two studies on texture analysis of femurs concluded that 

radiographic texture analysis is a suitable approach for trabecular microarchitecture 

assessment [24, 25].      

In one study, microstructural parameters of bone evaluated using HR-pQCT were 

correlated with the DXA-derived cortical index and the trabecular bone score for  

randomly selected postmenopausal women [26]. In total, 72 women (N=69 white 

women) subjects were used in this study [26]. Bone mineral density was measured at the 

lumbar spine (L1-L4), femoral neck, total hip, distal radius, and at the two customized 

sub regions of the distal tibia using DXA (Hologic Discovery TMC ). The DXA derived 

cortical thickness (Ct.Th) was calculated from the DICOM images of the DXA scan at 

the distal tibia [26]. A new parameter cortical index for diaphyseal bone strength (CI) 

was defined as the product of a material (aBMD) and a structure component (pMOI). The 

dimensionless TBS of lumbar vertebrae (L1-L4) were calculated. After scanning distal 

tibia using HR-pQCT, bone morphological parameters such as volumetric bone mineral 

density (vBMD), bone volume fraction, trabecular bone mineral density (Tb.BMD), 

trabecular thickness, trabecular number, trabecular separation, inhomogeneity of 

trabecular network (Tb.l/N.SD), connectivity density, cortical bone density (Ct.BMD) 

and cortical thickness were evaluated [26]. From statistical analysis, a significant 

correlation was found between CI measured at tibia by DXA and HR-pQCT. Trabecular 

bone score was also significantly correlated with the bone volume fraction, trabecular 

bone mineral density, trabecular number, connectivity density, and negatively correlated 

with trabecular separation and inhomogeneity [26]. There was no correlation found 

between trabecular bone score and the trabecular thickness, total volumetric bone mineral 

density, cortical bone density and cortical thickness of different skeletal sites. The 

limitations of this study are that, all subjects are healthy postmenopausal women and only 

one skeletal region was considered. This study has concluded that microstructural 

parameters of bone assessed by the 3D technique were predictable through information 

deducted from regular 2D DXA scans [26].    
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In another study, a significant correlation was established between trabecular bone score 

of 2D projection images and 3D microarchitecture of different anatomical sites [15]. In 

this study, 57 human cadaver bone pieces (13 lumbar spine samples, 7 thoracic spine 

samples, 17 femoral neck samples and 3 distal radius samples) were used. These samples 

were scanned using HR-pQCT (eXplore Locus, GE HealthCare), with a resolution of 93 

µm [15]. The 3D microarchitecture of trabecular bone was characterized in terms of bone 

volume fraction, stereological parameters based upon the parallel plate model, and model 

independent parameters based upon porous material characterization algorithms. 

Stereological parameters, trabecular thickness (mm), trabecular separation (mm), 

trabecular number ( 1mm ) of all above mentioned samples were calculated using 

advanced Bone analysis plugin in Micro View software [15]. Model independent 

parameter, mean solid thickness (mm) was calculated using a chord length distribution 

method. The experimental variogram was calculated by averaging the squared difference 

of gray scale values of 2D projection image which is obtained from HR-pQCT [15]. 

Trabecular bone score was evaluated as the slope at the origin of the log-log 

representation of experimental variogram. High correlations were found between parallel 

plate model-based parameters and model-independent parameters after performing 

statistical analysis [15]. For spine samples, trabecular bone score was significantly 

correlated with trabecular number ( 2 0.84r   ). In the set of femoral neck samples, more 

significant correlation was found between trabecular bone score and trabecular separation 

( 2 0.62r  ). Among distal radius samples, high correlation  was obtained between 

trabecular bone score and trabecular thickness ( 2 0.83r  ). From the stepwise multiple 

linear regression analysis, it is observed that for spine samples, trabecular bone score was 

assessed as a function of trabecular thickness and trabecular number; for femoral neck 

samples, as a function of trabecular thickness and trabecular separation; for distal radius 

samples, as a function of trabecular thickness and trabecular number [15]. This study 

concludes that TBS is a powerful measure to characterize the trabecular bone 

microarchitecture and it is an effective and efficient solution to apply to clinical DXA 

images [15]. 
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 In another ex-vivo study, trabecular bone score evaluated from DXA images of lumbar 

vertebrae was associated with microarchitecture parameters and with vertebral 

mechanical behavior [19]. In this study, 16 lumbar vertebrae specimens (L3) were used, 

which includes 7 men and 9 women [19]. These vertebrae were scanned using DXA 

(Delphi W, Hologic) to measure anteroposterior and lateral vertebral area (Ap. Area and 

Lat. Area, in cm
2
), anteroposterior and lateral bone mineral content (Ap. BMC and Lat. 

BMC, in gram), and anteroposterior and lateral bone mineral density (Ap. BMD and Lat. 

BMD, in gram/cm
2
) [19]. The TBS was calculated using TBS inSight software from 

anteroposterior DXA images of vertebrae. After removing soft tissue and posterior 

elements from individual vertebra, it was scanned using micro-CT (Skyscan 1076) and 

obtained 3D images of lumbar vertebra. Trabecular bone volume per tissue volume (%), 

trabecular thickness (mm), degree of anisotropy (#), and structure model index were 

measured from micro-CT images of lumbar vertebra (L3) [19]. The failure load (Newton) 

and compressive stiffness (Newton/mm) were measured from load displacement data, 

which is obtained from quasi-static uniaxial compressive testing. Statistical analysis was 

performed between data obtained from DXA images and data obtained from micro-CT 

images. Trabecular bone score was significantly correlated with trabecular bone volume 

fraction and structure model index ( 2 0.58r  and 2 0.62r   ) but not associated with 

bone mineral content, bone mineral density, anterior-posterior and lateral area of 

specimen. A good correlation was found between trabecular bone score and stiffness. 

Bone mass parameters such as anterior-posterior bone mineral content, lateral bone 

mineral density and structure model index were significantly correlated with mechanical 

behavior [19]. When BMD is combined with TBS in stepwise linear regression analysis, 

this combination was failed to increase the fracture prediction. One limitation of this 

study is that the number of specimens were small and all specimens were collected from 

older individuals with low bone mass. So, the results of this study might not be 

representative of the normal population. Finally, this study concluded that TBS extracted 

from DXA images reflects trabecular bone microarchitecture and is an independent 

predictor of vertebral mechanical behavior [19].     

In one previous study, biomechanical properties and microarchitecture parameters of 

trabecular bone were correlated with stochastic measures of 2D projection images [27]. 
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In this study, 15 cylindrical specimens of trabecular bone which are cored from the 

proximal tibias of 6 male human cadavers were used [27]. HR-pQCT was used to scan 

these trabecular bone samples with a resolution of 50 µm. Microarchitecture parameters 

(BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp) were calculated from 3D micro-CT images using 

stereological principles. Ultimate strength and elastic modulus of the trabecular bone 

samples were evaluated from stress-strain curves [27]. Ultimate strength was evaluated as 

maximum stress sustained by the sample during compression test and elastic modulus 

was evaluated as the slope of the linear region of stress-strain curve. Spatial variation of a 

BMD of 2D projection images was characterized by experimental variograms. Stochastic 

measures such as correlation length (L), sill variance (C), nugget variance ( 0C ) were 

evaluated by fitting theoretical exponential models over experimental variogram [27].  

Simple linear regression analyses were performed between stochastic measures of 2D 

projection images  and microarchitecture parameters, mechanical properties of trabecular 

bone from human tibias. A significant positive correlation was observed between sill 

variance and elastic modulus ( 2r =0.81) and between sill variance and ultimate strength (

2r =0.82) of trabecular bone [27]. Linear regression analysis indicated that sill variance is 

significantly correlated with bone volume fraction ( 2r =0.56), bone surface to volume 

ratio ( 2r =0.54), trabecular thickness ( 2r =0.54), trabecular number ( 2r =0.48), trabecular 

separation ( 2r =0.50), and anisotropy ( 2r =0.37). No relationships were found between 

correlation length and biomechanical as well as microarchitecture parameters of 

trabecular bone. This study has several limitations; areal bone mineral density was 

represented with gray scale values in 2D projection images; Both high density and low 

density trabecular bone samples were used; 2D projection images of micro-CT scans with 

a resolution of 300 µm may not be exactly the same as DXA images; Finally, the 

cylindrical specimens do not represent irregular bone shapes in clinical applications. This 

study concludes that sill variance has good correlation with microarchitecture parameters 

and biomechanical properties of bone [27]. So, this stochastic assessment of BMD can be 

extended to 2D projection images obtained from DXA to improve the prediction of bone 

fragility.          

 



11 
 

Table 2.1 Summary of selected previous studies 

Author, year Method/Parameter Significance of study 

P. Guggenbuhl,   

2006 [23] 

Texture analysis of X-ray 

radiographs of iliac bone  

Tb.Th and Tb.N were positively 

correlated with texture 

parameters 

Thomas Le 

Corroller, 2013 [24] 

Texture analysis of X-ray 

radiographs of osteoporotic 

femurs 

Fractal parameter meanH was 

significantly correlated with 

BV/TV, Tb.N, Tb.Sp and FD 

Matthieu Ollivier, 

2013 [25] 

Texture analysis of X-ray 

radiographs of femoral head  

Fractal parameter meanH was 

correlated with failure load, 

apparent modulus, BV/TV and 

Tb.Th 

Albrecht W. Popp, 

2014 [26] 

DXA derived cortical index 

and TBS in Postmenopausal 

women 

TBS was significantly correlated 

with Tb.BMD, BV/TV, Tb.N, 

Conn.D  

Laurent Pothuad, 

2008 [15] 

TBS evaluation of human 

cadaver bone specimens 

TBS was correlated with Tb.N, 

Tb.Sp and Tb.Th of spine, 

femoral neck and distal radius 

samples respectively 

J. P. Roux,           

2013 [19] 

TBS calculation of DXA 

image of lumbar vertebrae 

TBS was significantly correlated 

with Tb.BV/TV, SMI and 

stiffness  

Xuanliang N. Dong, 

2013 [27] 

Stochastic assessment of 2D 

projection images of 

trabecular bone 

Sill variance was correlated with 

elastic modulus, ultimate 

strength, BV/TV, BS/BV, Tb.Th, 

Tb.N, Tb.Sp 

 

In the current study, stochastic parameters were calculated by fitting theoretical model 

onto the experimental variogram of BMD map of DXA scans. Mciroarchitecture 

parameters were measured within the vertebral body from 3D images of vertebrae. In 

statistical analysis, stochastic parameters of BMD map of vertebrae are significantly 

correlated with microarchitecture parameters of vertebral body.    
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CHAPTER THREE 

TECHNICAL BACKGROUND  

This chapter describes the technical terms that are used in this study, which mainly 

concentrate on medical imaging of bones. Medical images includes two dimensional 

images (2D) as well as three dimensional images (3D). The imaging modalities that are 

available in clinical applications are capable of producing only 2D images with low 

resolution. Imaging modalities that are available in basic science research such as Micro-

CT are capable of producing 3D images with high resolution. The techniques which have 

been implemented in this study to obtain the required parameters are described in 

following sections.    

3.1 Dual-Energy X-ray absorptiometry (DXA) 

 One of the most important application of DXA is measuring BMD that can be 

used to assess the possibility of bone fractures. DXA has advantages of higher precision, 

shorter scanning times, low radiation dose, and improved calibration stability in the 

clinical environment. Because of these advantages DXA has seen widespread use in 

prospective clinical trials of new therapies for osteoporosis [28, 29]. Usually the spine 

and hip are the two sites chosen for BMD measurement, because these are the most 

common sites for osteoporotic fractures. The fundamental physical principle behind DXA 

is the measurement of the transmission through the body of x-rays with high and low 

photon energies [30].  

The first generation of DXA scanners used a pencil beam technique and the new 

generation DXA scanners use a fan beam technique [30]. Fan beam technique is 

implemented by performing a single sweep across the patients instead of the two 

dimensional raster scan required by pencil beam geometry. The advantages of fan beam 
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systems are higher image resolution and shorter scan times compared to pencil beam 

systems. In our study, new generation DXA (QDR Discovery A) with fan beam mode 

was used to obtain the scans of vertebrae. When a DXA scan is analyzed the basic raw 

data is processed to create a pixel-by-pixel map of BMD over the entire scan.   

 

Figure 3.1 Dual energy X-ray absorptiometry machine  

3.2 Micro-computed tomography (Micro-CT) 

The major application of Micro-CT is to scan a small specimen and generate high-

resolution 3D images. Small specimens may include human vertebrae separated from 

cadavers spine. Three-dimensional (3D) microarchitecture of bone can also be described 

using Micro-CT images. Due to its high resolution, Micro-CT can obtain precise 3D 

images at the micro-level of trabecular bone structure. Although high resolution is 

achievable using Micro-CT, scanning large specimens such as a whole vertebral body 

may require use of spatial resolution corresponding to a voxel size greater than 100 µm. 

Because 100 µm  is in the order of typical trabecular thickness, partial volume effects 

will cause errors when computing the stereological parameters for trabecular bone. 

Micro-CT machine has its major applications in research areas only, because of its high 

radiation. Using Micro-CT the specimen can be scanned at one voxel size and the raw 

data reconstructed at a different voxel size. Voxel is defined as a volumetric pixel of the 

object in a 3D image similar to a pixel of an object in a 2D image.  
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Figure 3.2 Micro computed tomography machine 

3.3 Experimental variogram 

 The variogram is a descriptive statistic that can be used to characterize the spatial 

variation of bone mineral density over the different regions of bone [31, 32]. A semi-

variance, (h), is defined as the half of the expected squared differences of bone mineral 

density between any two data locations with a lag distance of h. 

21
(h) E[{ (x) (x h)} ]

2
Z Z            (3.1) 

where Z(x) is a function to describe the random field of bone mineral density; Both x and 

h are vectors; x is the spatial coordinates of the data location. Lag distance, h, represents 

the Euclidean distance and direction between any two data locations. 

The experimental variogram is calculated as an average of semi-variance values at 

different locations that have the same value of lag distance (h). 
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       (3.2) 

where m(h) is the number of data pairs for the observations with a lag distance of h. 
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The variogram model is chosen from a set of mathematical functions that describe spatial 

relationships. The appropriate theoretical model is chosen by matching the shape of the 

curve of the experimental variogram to the shape of the curve of the mathematical 

function. The function must therefore be mathematically defined for all real lag distances. 

 

Figure 3.3 Theoretical exponential model (left) and hole-effect model (right) fitted over 

the experimental variogram of the bone mineral density map 

There are a few principal features that a function must be able to represent. These 

include: 

(a) a monotonic increase with increasing lag distance from the ordinate  

(b) a constant maximum or asymptote, or 'sill'  

(c) a positive intercept on the ordinate, or 'nugget' 

(d) periodic fluctuation, or a 'hole' and anisotropy. 

Stochastic parameters (correlation length, sill and nugget variance) are described below 

3.3.1 Correlation length or range (L) 

The lag distance at which semi-variogram reaches the sill value. Correlation length 

describes the degree of smoothness or roughness in the BMD map. A relatively large 

correlation length implies a smooth variation, whereas a small correlation length 

corresponded to rapid variations of the bone mineral density over the spatial domain. 
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3.3.2 Sill variance (C) 

The sill variance is defined as the limit of the experimental variogram tending to infinity 

lag distances. It can be used to refer to the "amplitude" of certain component of the semi-

variogram. The sill of the variogram represents the variance of the BMD map.  

3.3.3 Nugget variance ( 0C ) 

According to theory, the semi-variogram value at the origin should be zero. If it is 

significantly different from zero for lag distance close to zero, then this semi-variogram 

value is referred to as nugget variance. It represents the sum of noise in a image and 

measurement errors of calculations. 

Table 3.1 Stochastic parameters of experimental variogram  

Parameter Formula Meaning 

Correlation length L Lag distance at which semi-

variogram reaches sill value 

Sill variance C Maximum value of the semi-

variogram 

Nugget variance 
0C  Sum of noise in a image and 

measurement errors 

 

3.4 Microarchitecture parameters of trabecular bone 

 The geometric and spatial properties of trabeculae in trabecular bone are 

collectively known as the trabecular bone architecture. Trabecular bone is a highly 

porous or cellular form of bone. Trabeculae is a microscopic tissue element in the form of 

a small beam, strut or rod, generally having a mechanical function. Trabecular bone 

microarchitecture resembles the connectivity of rods and plates in 3D space. This 

structure of trabecular bone can be described by microarchitecture parameters such as 

connectivity and structural model index and is discussed in following sections. 

3.4.1 Bone volume fraction (BV/TV) 

The bone volume fraction, is one of the fundamental architectural properties of trabecular 

bone, and it is defined as the trabecular bone volume per reference volume.  It has 
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negative relationship with porosity. A large bone volume fraction is indicative of high 

bone strength. For a specimen,  

 

  

  
 

                      

                                          
                                     

 

3.4.2 Trabecular thickness (Tb.Th)  

Trabecular thickness is defined as average thickness of trabeculae in trabecular bone. 

Trabecular thickness decreases with increasing age. Decreasing trabecular thickness leads 

to reduces the bone strength.  

3.4.3 Trabecular separation (Tb.Sp) 

Trabecular separation is essentially the thickness of the spaces between two trabeculae. It 

measures marrow space between two trabeculae. Trabecular separation increases with 

increasing age. High trabecular separation represents less bone strength.   

3.4.4 Trabecular number (Tb.N) 

Trabecular number implies the number of traversals across a trabecular or solid structure 

made per unit length on a linear path through a trabecular bone region. Trabecular 

number decreases with increasing age. High trabecular number is indicative of high bone 

strength. 

3.4.5 Connectivity density (Conn.Dn) 

Connectivity reports the number of redundant trabeculae in trabecular bone. A redundant 

trabeculae is a trabeculae that may be cut without increasing the number of separate parts 

of the bone structure. Increasing the number of unconnected trabeculae leads to the 

reduction of bone strength. The central parameter is the Euler Number  , also known as 

Euler characteristic [33]. Euler number in 3D bone structure with 0 separate bone 

particles, 1  redundant connections, 2 fully enclosed marrow cavities isolated from the 

main marrow space is given as, 
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    0 1 2                  (3.4) 

3.4.6 Bone surface to volume ratio (BS/BV) 

The surface to volume ratio characterizes the rate of bone turnover because bone 

desorption and formation can only occur on bone surfaces. A large bone surface to 

volume ratio is indicative of high rate of bone turnover.  

3.4.7 Structure model index (SMI)  

The structure model index is a factor that characterizes the plate or rod like geometry of 

trabecular structures. Typical values of structure model index lie between 0 and 3. Zero 

specifies purely plate shaped trabeculae and three specifies purely rod like trabeculae. 

Structure model index can be  calculated as follows 

2

.
6.

BS BV
SMI

BS

 
  

 
     (3.5) 

where BS and BS stands for the trabecular surface area before and after dilation, BV 

being the initial undilated volume of the trabeculae. 

3.4.8 Trabecular bone pattern factor (Tb. 
fP ) 

Trabecular bone pattern factor is an index of connectivity based on the relative concavity 

or convexity of the total trabecular surface. Trabecular bone pattern factor can be 

calculated by comparing area and volume of trabeculae before and after dilation. 
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     (3.6) 

where the subscript numbers 1 and 2 represent before and after image dilation. 

3.4.9 Degree of anisotropy (DA) 

Degree of anisotropy is a measure of orientation of trabeculae in trabecular bone. 

Trabecular bone varies its orientation depending on mechanical load and it can become 

anisotropic. Mean intercept length (MIL) method can be used to determine degree of 

anisotropy.  
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The mathematical equation of degree of anisotropy is given as,    

1
1

2

MIL
DA

MIL

 
  

 
           (3.7) 

Where MIL1 and MIL2 stands for minimum and maximum mean intercept lengths of 

trabeculae respectively.  

Table 3.2 Microarchitecture parameters of trabecular bone 

Parameter Formula Meaning 

Bone volume fraction BV/TV Trabecular bone volume per 

reference volume 

Trabecular Thickness Tb.Th Average thickness of trabeculae 

Trabecular Separation Tb.Sp Thickness of marrow space 

between two trabeculae  

Trabecular Number Tb.N Number of trabeculae in unit 

length 

Connectibity Density Conn.Dn Number of unconnected 

trabeculae 

Bone surface to 

volume ratio 

BS/BV Rate of bone turnover 

Structure Model Index SMI Characterizes the plate or rod 

like geometry of trabecular 

structures 

Trabecular bone 

pattern factor 
Tb. 

fP  Index of connectivity based on 

the relative concavity or 

convexity 

Degree of Anisotropy DA Orientation of trabeculae 
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CHAPTER FOUR 

METHODS AND EXPERIMENTAL PROCEDURES 

 

 In this study, eighteen fresh human lumbar vertebrae were obtained from five 

tissue donors (4 males and 1 female; 70.0±10.4 years old; range: 57 to 81 years old) 

through The National Disease Research Interchange (NDRI, Philadelphia, PA). Soft 

tissue was removed over cadavers spine and all lumbar vertebrae were dissected out of it. 

The posterior elements were intact and remained with the human vertebrae. The absence 

of prevalent fracture or significant bone disease (i.e, bone metastasis, Paget's disease of 

the bone, major osteoarthritis) was assessed using DXA. The vertebral specimens were 

wrapped with gauze and stored at -25°C until DXA image acquisition and Micro-CT 

image acquisition was performed.  

4.1 DXA image acquisition 

 Two-dimensional images of specimens were obtained using Dual energy X-ray 

absorptiometry (Hologic QDR Discovery W, Bedford, MA) operating in a fan beam 

mode. Before scanning of vertebrae, a quality control (QC) test was performed using the 

manufacturer supplied spine phantom. Long term coefficient of variation was observed. 

One of the major benefits of instigating a QC protocol involving the regular scanning of a 

phantom is that it may allow the early identification of changes in instrument 

performance prior to instrument malfunction, although, not all malfunctions will affect 

BMD data. The procedure to acquire the DXA images is described below: 

 Collect all the required items such as one small plastic container, one large plastic 

container, a pair of Plexiglas wedges, a small foam box for storage of human 

vertebra and reusable ice packs to perform the DXA scans of vertebrae.
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 Fill up the small container with water to simulate the soft tissue and place in a 

large container. 

 Place vertebra under water in Posterior Anterior (PA) direction (Figure 4.1). Two 

Plexiglas wedges were used to stand the vertebra in PA-direction. Adjust 

positions of glass wedges to keep the vertebra in perfect vertical position. 

 Select AP-Lumbar spine mode on the DXA machine to scan the vertebra (Figure 

4.1). The position of the specimen was adjusted without disturbing the equipment 

on the DXA machine by selecting an option called Reposition scan. 

 

Figure 4.1 Gray scale image of DXA scan of lumbar vertebra (L3) in PA-direction  

 Analyze DXA scan according to standard lumbar spine protocol described by 

Hologic to obtain the bone mineral content (g), bone mineral density (g/cm
2
) and 

area (cm
2
) of specimen in PA-direction. 

 The raw data files (i.e, R files) and screen captured images of DXA scan of a 

specimen were copied into flash drive to create a BMD map.  
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 Once required scans of specimen were completed, the specimen should be stored 

in a freezer maintaining at sufficient lower temperatures to obtain the Micro-CT 

images. 

 

Figure 4.2 Sequence of steps to obtain the stochastic parameters of vertebrae DXA scans  

4.2 BMD map extraction from DXA scans 

After completion of DXA scans of vertebrae, raw data files (i.e., R files in Hologic 

densitometers) are extracted from the DXA machine. Code was developed in MATLAB 

(Mathworks, Natick, MA,USA) software to obtain the BMD map (Figure 4.3) of DXA 

scans. The raw data files of DXA consist of low and high energy values of air, bone and 

soft tissue respectively. The BMD map of vertebrae was obtained by directly operating 

on the transmission measurements of low-energy and high-energy X-ray beams [30, 34, 

35]. There were two reasons for extracting the BMD map straightly from the raw data, 

rather than using the DXA image provided by the densitometer. First, grayscale values in 

the DXA image were not the exact value of bone mineral density of human vertebrae. 
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Second, grayscale values in DXA images could be easily affected by varying the 

brightness and the contrast of these DXA images.  

 

Figure 4.3 BMD map of lumbar vertebra (L3) in PA-direction                                                                    

4.3 Stochastic assessment of BMD map  

Stochastic assessment of inhomogeneity or BMD distribution can be described by 

experimental variograms, which are widely used in geosciences [31, 32]. In this study, 

the spatial variation of BMD map from DXA scans was evaluated using a variogram, 

which could be expressed in two parameters: semi-variance and lag. Current techniques 

for quantifying bone heterogeneity consist of descriptive statistics such as mean and 

standard deviation. However, these parameters do not describe the spatial variations of 

bone properties. The stochastic method allows us to assess the quality of bone. 

The semi-variance γ(h) was defined as half of the expected squared difference between 

any paired data values {z(x), z(x+h)}: 
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where z is a random function of the indentation modulus of bone that varies continuously 

in space, x denotes the spatial coordinates of locations and h, also known as lag, is a 

vector representing the Euclidean distance and direction between any two data locations.  

The experimental variogram for BMD map of vertebrae was computed as an average of 

semi-variance values at different locations that have the same value of lag: 
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where m(h) is the number of data pairs { ( ), z(x )}i iz x h  for observations separated by h.  

A hole-effect theoretical variogram model was fitted over the experimental variogram of 

BMD map obtained from DXA scans. The main reason for using hole-effect model is that 

the experimental variogram of the BMD map decreased from its maximum to a local 

minimum and then increased again, indicating fairly regular repetition in the process. 

 

Figure 4.4 Color map of vertebra BMD map in PA-direction (left), hole-effect model is 

fitted over experimental variogram of BMD map (right) 

The mathematical definition of hole effect model is given as 

sin(h / L)
( ) (1 )

(h / )
h c

L





       (4.3) 
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where (h) is the semi-variance as a function of lag (h),  'L' is referred to as the 

correlation length and 'c' is referred to as sill variance of BMD map.  

4.4 Micro-CT image acquisition 

Human lumbar vertebrae (N=18) were scanned using the GE Healthcare Explore Locus 

Micro-CT scanner at The University of Texas Health Science Center at Tyler (UTHSC) 

to obtain 3D images of trabecular bone. These Micro-CT scans were performed by 

following established procedures with a isotropic voxel size of 92 µm. This is the 

smallest available voxel size in this scanning system for the size of vertebrae used in this 

study.  

 

Figure 4.5 Gray scale images of a vertebral body obtained from µCT (a) Coronal cross-

section (left side) (b) Axial cross-section (right side) 

The attenuation values of micro-CT (gray levels) were scaled with a calibrated solid 

phantom and recorded in Hounsfield Units (HU). This low resolution scan of specimen 

took approximately 15 to 20 minutes. The stack of images were reconstructed based on 

specific algorithm with a reconstruction voxel size that is same as scanning voxel size, so 

that each data point of the reconstruction represented a sub-volume of the actual 

specimen. The reconstructed images can be displayed as a stack of gray scale images 

(Figure 4.5). The whole reconstruction process took approximately 45 minutes. The 
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reconstructed images were stored in an external hard drive to obtain the microarchitecture 

parameters. After completion of Micro-CT scans of vertebrae, specimens were stored in 

freezer at sufficient low temperature to perform mechanical testing.  

4.5 Measuring microarchitecture parameters of trabecular bone 

Bones are commonly imaged using computed tomographic (CT) and X-ray micro 

computed tomographic (µCT) systems for research purposes, such as investigating 

trabecular and cortical changes in osteoporosis. Many of the scans were over 1GB, and 

the existing software could not process large datasets, required a per-machine launch fee, 

or did not implement the required features. We needed to open varied image formats 

from diverse instruments, then pre-process, analyze and visualize scans efficiently  on 

several different computers, remote from scanning hardware. We took advantage of the 

existing functionality and flexible plugin architecture of the public domain image 

processing program ImageJ [36].  

In this study, the ImageJ plugin BoneJ was used to obtain the threshold images. 

Threshold images obtained from ImageJ imported into Microview (GE Healthcare, 

London, ON, Canada) to calculate the micorarchitecture parameters of  lumbar vertebrae. 

 

Figure 4.6 Binary images of a vertebra (a) Coronal cross-section (left side) (b) Axial 

cross-section (right side) 
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 Stitched image was opened using plugin Input-Output with option Multi VFF 

Opener. The stitched image consists of three volumes scanned in various regions 

of the whole vertebra. 

 Converted stack of 16-bit images to stack of 8-bit images. Median filter with 

radius of two pixels was used to remove the noise in stack of gray scale images.  

 Stack of threshold images were obtained by adjusting threshold value with a 

threshold option. Tube and phantom were removed from threshold images. 

 Vertebral body separated from posterior elements. Threshold images were 

purified using plugin BoneJ with an option purify. 

 After purification saved all the stack of images of vertebral body in a separated 

folder to convert the format of images. 

 Imported the stack of threshold images (vertebral body) into Microview to 

measure microarchitecture prameters. 

 Cylindrical region of interest (ROI) was used to measure microarchitecture 

parameters of vertebral body using Bone analysis. Maximum volume of vertebral 

body is covered without cortical shell using cylindrical ROI. 

 

Figure 4.7 Sequence of steps to evaluate microarchitecture parameters of specimens 



28 
 

4.6 Statistical analysis 

For statistical analyses, linear regression analysis and correlation test were used to model 

the relationship between stochastic parameters and microarchitecture parameters. Linear 

regression analysis was performed using Excel spread sheet (Microsoft Office, Windows-

8). Bivariate correlation test was performed using SPSS (IBM, Armonk, NY). 

4.6.1 Linear regression analysis 

Main aim of linear regression analysis is to find the relationship between any two 

variables (ex: sill variance and bone volume fraction). Of the two variables included, one 

variable is considered to be an independent variable, and the other is considered to be a 

dependent variable. In linear regression analysis a straight line was fitted with slope and 

intercept for the two data sets. 

 Mathematical expression of a straight line obtained from linear regression analysis is 

given as 

y mx c       (4.5) 

where m represents slope of the line which could be positive or negative, c represents                 

y-intercept, 'x' is a independent variable, 'y' is a dependent variable. The most common 

method used for fitting a straight line in linear regression is least squares method [37].  

One other important parameter in linear regression analysis is coefficient of 

determination ( 2R ) which gives a percentage value. 2R value explains how strong the 

given data sets are correlated. If the value of 2R is more than 0.9, given data sets are 

strongly correlated, if it is around 0.5 given data sets are partially correlated and if it is 

less than 0.5 that considered as given data sets are weakly correlated. 

In Excel sheet, the two data sets are selected and plotted (scatter with only markers). The 

equation of a fitted line and 2R value is displayed on the plot using an option "Add trend 

line" (Display Equation on the chart and Display the R-squared value on the chart). The 

same procedure is repeated for remaining data sets to find the significant results. 
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4.6.2 Correlation test 

The main purpose of correlation test is to determine whether there is a significant 

relationship between any two variables. Bivariate correlation test can be performed using 

Pearson's correlation (Parametric method) or Spearmen's correlation (Non-Parametric 

method) in SPSS [22]. In our study Pearson's correlation test was performed to find the 

relationship between stochastic and microarchitecture parameters. 

Correlation coefficient (r) of Pearson's test always lies between -1 and +1. If correlation 

coefficient is 0 that indicates there is no relationship between two variables. A correlation 

coefficient of +1 means that there is perfect positive correlation between two variables. In 

this case, as one variables increases, the second variable increases in exactly the same 

proportion. If correlation coefficient is -1 that represents perfect negative correlation 

between two variables. Perfect negative correlation or relationship means, as one variable 

increases, the second variable decreases in exactly the same proportion.  

The mathematical expression of Pearson's correlation coefficient (r) is given as 

  
         

                     
                                               

 

where x, y are the two equal data sets. x  and y are the average values of two data sets x 

and y respectively. N is the total number of data pairs. 

One other important parameter in Pearson's correlation test is p-value to determine 

whether the correlation is statistically significant or not. The procedure to calculate or to 

estimate the p-value for correlation coefficient analysis is described in Appendix A. 

Correlation is statistically significant if the p-value is less than 0.05 and it is represented 

by single asterisk ('*') in SPSS. Correlation is statistically highly significant if the p-value 

is less than 0.01 and it is represented by double asterisk ('**') in SPSS.  
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CHAPTER FIVE 

RESULTS 

 In this study, a total of eighteen lumbar vertebrae which include L1 (N=4), L2 (N=4), L3 

(N=4), L4 (N=4), L5 (N=2) are used. DXA, stochastic and microarchitecture parameters 

of all vertebrae and correlation analysis of these parameters were provided in this chapter.     

5.1 Microarchitecture parameters calculated from micro-CT images 

Microarchitecture parameters such as BV/TV, BS/BV (mm
2
/mm

3
), Tb.Th (mm), Tb.N 

(1/mm), Tb.Sp (mm), and Conn.Dn ( 3mm ) were calculated from Micro-CT images of 

each vertebral body and tabulated below. 

Table 5.1 Microarchitecture parameters of lumbar vertebral bodies 

No Specimen BV/TV BS/BV Tb.Th Tb.N Tb.Sp Conn.Dn 

1 69099-L1 0.285078 8.167961 0.244859 1.149912 0.621719 1.29605 

2 69099-L2 0.271276 8.533917 0.234359 1.157523 0.629555 1.33995 

3 69099-L3 0.250239 8.906055 0.224566 1.114323 0.67284 1.2631 

4 69099-L4 0.239621 8.734281 0.228983 1.046458 0.726622 1.08152 

5 69099-L5 0.237176 8.761235 0.228278 1.038979 0.734205 1.14732 

6 69111-L1 0.188431 9.276805 0.215591 0.874021 0.928546 0.77694 

7 69111-L2 0.166298 9.765169 0.20481 0.811963 1.026773 0.7262 

8 69111-L3 0.146029 10.03701 0.199263 0.732846 1.16528 0.58238 

9 69111-L4 0.152348 9.675566 0.206706 0.737028 1.150094 0.63762 

10 69111-L5 0.186262 9.042307 0.221182 0.842119 0.966298 0.79322 

11 69013-L4 0.180221 8.95426 0.223357 0.806872 1.015997 0.63467 

12 01595-L1 0.243544 8.071331 0.247791 0.982863 0.769645 0.93442 

13 01595-L2 0.280634 7.414707 0.269734 1.04041 0.691425 1.00038 

14 01595-L3 0.253995 7.741705 0.258341 0.983176 0.758771 0.87413 

15 01854-L1 0.226677 8.602905 0.23248 0.975042 0.793117 1.02925 

16 01854-L2 0.23002 7.840973 0.25507 0.90179 0.853835 0.85709 

17 01854-L3 0.174049 10.00913 0.199817 0.87104 0.948236 0.78386 

18 01854-L4 0.174745 9.886659 0.202293 0.863823 0.955351 0.82901 
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5.2 DXA and stochastic parameters of vertebrae 

Stochastic parameters of DXA scans were evaluated by fitting hole-effect theoretical 

variogram model over the experimental variogram of the BMD map of vertebrae. DXA 

parameters, BMD calculated from raw data of DXA using MATLAB and stochastic 

parameters evaluated from variogram of BMD maps were tabulated below. 

Table 5.2 DXA and stochastic parameters of vertebrae 

No. Specimen 

DXA 

Area 

DXA 

BMC 

DXA 

BMD 

BMD 

Calculated Range Sill Nugget 

1 69099-L1 16.38 15.01 0.916 0.70868 31.32 0.12093 0.025684 

2 69099-L2 16.9 17.09 1.011 0.78269 23.454 0.13284 2.21E-02 

3 69099-L3 19.41 19.31 0.995 0.78609 23.727 0.14239 2.25E-02 

4 69099-L4 18.93 18.31 0.967 0.74913 31.33 0.1357 0.024199 

5 69099-L5 20.02 18.47 0.923 0.72292 28.606 0.11096 0.020404 

6 69111-L1 16.73 12.54 0.749 0.57211 28.838 0.07748 0.014037 

7 69111-L2 17.35 15.51 0.894 0.68209 35.325 0.09474 0.02649 

8 69111-L3 19.41 17.49 0.901 0.70322 24.972 0.10758 0.012175 

9 69111-L4 20.94 19.3 0.921 0.73744 26.041 0.09151 0.019809 

10 69111-L5 21.33 16.27 0.763 0.60319 27.959 0.07498 0.005679 

11 69013-L4 18.59 17.65 0.949 0.71852 18.304 0.11961 1.20E-02 

12 01595-L1 14.64 13.6 0.929 0.73244 30.709 0.11585 0.024873 

13 01595-L2 15.6 15.47 0.992 0.75596 30.922 0.13332 0.029204 

14 01595-L3 15.52 16.24 1.046 0.80205 30.359 0.15003 0.032893 

15 01854-L1 14.92 14.15 0.948 0.75974 17.685 0.11159 1.22E-02 

16 01854-L2 19.31 18.74 0.971 0.68216 25.495 0.11671 0.014152 

17 01854-L3 17.86 19.45 1.089 0.87498 35.328 0.11492 0.040751 

18 01854-L4 21.16 20.57 0.972 0.7731 26.924 0.1267 0.015612 

 

Table 5.3 Descriptive statistics of DXA and stochastic parameters 

Parameter Mean ± SD Range 

Area ( 2cm ) 18.05±2.15 14.64-21.33 

BMC (g) 16.95±2.25 12.54-20.57 

BMD (g/ 2cm ) 0.940±0.08 0.749-1.089 

Range (mm) 27.62±4.90 17.68-35.32 

Sill (g/cm
2
)
2
 0.115±0.02 0.074-0.150 

Nugget (g/cm
2
)
2
 0.02±0.008 0.005-0.040 
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Table 5.4 Descriptive statistics of microarchitecture parameters 

Parameter Mean ± SD Range 

BV/TV 0.215±0.045 0.146-0.285 

BS/BV(mm
2
/mm

3
) 8.856±0.809 7.414-10.03 

Tb.Th (mm) 0.227±0.021 0.199-0.269 

Tb.N (1/mm) 0.940±0.133 0.732-1.157 

Tb.Sp (mm) 0.856±0.170 0.621-1.165 

Conn.Dn ( 3mm ) 0.921±0.231 0.582-1.339 

 

BV/TV- bone volume fraction, BS/BV- bone surface to volume ratio, Tb.Th- trbecular 

thickness, Tb.N- trabecular number, Tb.Sp- trabecular separation, Conn.Dn- connectivity 

density, BMC-bone mineral content, BMD-bone mineral density 

5.3 Pearson correlation coefficient analysis of stochastic, microarchitecture and 

DXA parameters  

Sill variance of hole-effect variogram model was significantly positively correlated with 

the bone volume fraction (r=0.621, p=0.006), trabecular thickness (r=0.484, p=0.042), 

trabecular number (r=0.611, p=0.007), connectivity density (r=0.515, p=0.029) and 

negatively correlated with bone surface to volume ratio (r=-0.473, p=0.048), trabecular 

separation (r=-0.614, p=0.007). Significant results of Pearson correlation coefficient 

analysis between stochastic and microarchitecture parameters were tabulated below.       

Table 5.5 Pearson correlation coefficients between stochastic and microarchitecure 

parameters 

 

BV/TV BS/BV Tb.Th Tb.N Tb.Sp Conn.Dn 

Sill **0.621  **0.473  *0.484  **0.611  **0.614  *0.515  

BV/TV 1 **0.862  **0.845  **0.936  **0.966  **0.858  

BS/BV **0.862  1 **0.996  **0.637  **0.735  **0.510  

Tb.Th 
**0.845  **0.996  1 

**0.608  **0.709  *0.472  

Tb.N **0.936  **0.637  **0.608  1 **0.984  **0.972  

Tb.Sp **0.966  **0.735  **0.709  **0.984  1 **0.930  

Conn.Dn **0.858  **0.510  *0.472  **0.972  **0.930  1 

* 0.05;p   ** 0.01;p   *** 0.001p   

Bone volume fraction was significantly correlated with the bone surface to volume ratio 

(r=-0.862, p<0.001), trabecular thickness (r=0.845, p<0.001), trabecular number 
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(r=0.936, p<0.001), trabecular separation (r=-0.966, p<0.001) and connectivity density 

(r=0.858, p<0.001). Bone surface to volume ratio was significantly correlated with the 

trabecular thickness (r=-0.996, p<0.001), trabecular number (r=-0.637, p=0.004), 

trabecular separation (r=-0.735, p=0.001) and connectivity density (r=-0.510, p=0.031). 

Trabecular thickness was significantly correlated with the trabecular number (r=0.608, 

p=0.007), trabecular separation (r=-0.709, p=0.001) and connectivity density (r=0.472, 

p=0.048). Trabecular number was significantly correlated with the trabecular separation 

(r=-0.984, p<0.001) and connectivity density (r=0.972, p<0.001). Trabecular separation 

was significantly correlated with the connectivity density (r=-0.930, p<0.001). 

Table 5.6 Pearson correlation coefficients between DXA, stochastic and 

microarchitecture parameters 

 

BMC Sill Nugget BV/TV BS/BV Tb.Th Tb.Sp 

Area 
**0.746  -0.280 -0.240 

*0.532  *0.548  *0.556  *0.478  

Range -0.081 -0.062 **0.873  0.044 0.043 -0.005 -0.067 

BMD *0.490  **0.820  0.307 0.325 -0.203 0.233 -0.333 

* 0.05;p   ** 0.01;p   *** 0.001p   

Area of vertebrae assessed by DXA was significantly correlated with the bone mineral 

content of vertebrae assessed by DXA (r=0.746, p<0.001), bone volume fraction (r=-

0.532, p=0.023), bone surface to volume ratio (r=0.548, p=0.019), trabecular thickness 

(r=-0.556, 0.017) and trabecular separation (r=0.478, p=0.045). Bone mineral content of 

vertebrae was correlated with the bone mineral density of vertebrae (r=0.490, p=0.039). 

Sill variance was significantly correlated with the bone mineral density (r=0.820, 

p<0.001). Range or correlation length was significantly correlated with nugget variance 

(r=0.873, p<0.001). BMD of vertebrae calculated from BMD map (Figure 4.3) was 

significantly correlated with BMD of vertebrae assessed by DXA (r=0.946, p<0.001).   

5.4 Linear regression analysis of DXA, stochastic and microarchitecture parameters 

Equation of best fit line with slope and y-intercept as well as coefficient of determination 

( 2R ) were obtained for each linear regression analysis and specified in each Figure. 

Results of linear regression analysis of DXA, stochastic and microarchitecture parameters 

were provided below. 
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Figure 5.1 Linear regression analysis of sill variance and bone volume fraction 

In the above linear regression analysis (Figure 5.1), sill variance was positively correlated 

with the bone volume fraction with coefficient of determination ( 2R =0.39), slope of line 

(m=1.35) and y-intercept (c=0.06). 

 

Figure 5.2 Linear regression analysis of sill variance and bone surface to volume  ratio 

In the above linear regression analysis (Figure 5.2), sill variance was negatively 

correlated with the bone surface to volume ratio ( 2R =0.22, m= -18.45, c=10.98). 
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Figure 5.3 Linear regression analysis of sill variance and trabecular thickness 

In the above analysis (Figure 5.3), sill variance of a BMD map was positively correlated 

with trabecular thickness ( 2R =0.23) with slope of line (m=0.49) and y-intercept (c=0.17). 

 

Figure 5.4 Linear regression analysis of sill variance and trabecular number 

In the above analysis (Figure 5.4), sill variance of a BMD map was positively correlated 

with trabecular number ( 2R =0.37) with slope of line (m=3.92) and y-intercept (c=0.48). 
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Figure 5.5 Linear regression analysis of sill variance and trabecular separation 

In the above analysis (Figure 5.5), sill variance of a BMD map was negatively correlated 

with trabecular separation ( 2R =0.38) with slope of line (m=-5.039) and y-intercept 

(c=1.43). 

 

Figure 5.6 Linear regression analysis of sill variance and connectivity density 

In the above analysis (Figure 5.6), sill variance of a BMD map was positively correlated 

with the connectivity density ( 2R =0.27, m=5.75, c=0.25). 
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Figure 5.7 Linear regression analysis of bone volume fraction and surface to volume ratio 

In the above linear regression analysis (Figure 5.7), bone volume fraction was negatively 

correlated with bone surface to volume ratio ( 2R =0.74, m= -15.48, c=12.19). 

 

Figure 5.8 Linear regression analysis of bone volume fraction and trabecular thickness 

In the above linear regression analysis (Figure 5.8), bone volume fraction was 

significantly positively correlated with trabecular thickness ( 2R =0.72, m= 0.397, 

c=0.142). 
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Figure 5.9 Linear regression analysis of bone volume fraction and trabecular number 

In the above linear regression analysis (Figure 5.9), bone volume fraction was 

significantly positively correlated with trabecular number ( 2R =0.88, m= 2.76, c=0.342). 

 

Figure 5.10 Linear regression analysis of bone volume fraction and trabecular separation 

In the above linear regression analysis (Figure 5.10), bone volume fraction was 

significantly negatively correlated with trabecular separation ( 2R =0.93, m=-3.647, 

c=1.643). 
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Figure 5.11 Linear regression analysis of bone volume fraction and connectivity density 

In the above linear regression analysis (Figure 5.11), bone volume fraction was 

significantly positively correlated with connectivity density ( 2R =0.74, m=4.415, c=-

0.032). 

 

Figure 5.12 Linear regression analysis of surface to volume ratio and trabecular thickness 

In the above analysis (Figure 5.12), bone surface to volume ratio was significantly 

negatively correlated with trabecular thickness ( 2R =0.99, m=-0.0261, c=-0.458). 
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Figure 5.13 Linear regression analysis of surface to volume ratio and trabecular number 

In the above linear regression analysis (Figure 5.13), bone surface to volume ratio was 

negatively correlated with trabecular number ( 2R =0.41, m=-0.105, c=1.87). 

 

Figure 5.14 Linear regression analysis of bone surface to volume ratio and trabecular 

separation 

In the above linear regression analysis (Figure 5.14), bone surface to volume ratio was 

positively correlated with trabecular separation ( 2R =0.54, m=0.154, c=-0.512). 
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Figure 5.15 Linear regression analysis of surface to volume ratio and connectivity density 

In the above linear regression analysis (Figure 5.15), bone surface to volume ratio was 

negatively correlated with connectivity density ( 2R =0.26, m=-0.146, c=2.215). 
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Figure 5.17 Linear regression analysis of trabecular thickness and trabecular separation  

In the above linear regression analysis (Figure 5.17), trabecular thickness and trabecular 

separation were significantly negatively correlated ( 2R =0.50, m=-5.69, c=0.50). 

 

Figure 5.18 Linear regression analysis of trabecular thickness and connectivity density 

In the above linear regression analysis (Figure 5.18), trabecular thickness and 

connectivity density were positively correlated ( 2R =0.22, m=5.16, c=-0.25). 
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Figure 5.19 Linear regression analysis of trabecular number and trabecular separation    

In the above linear regression analysis (Figure 5.19), trabecular number and trabecular 

separation were significantly negatively correlated ( 2R =0.97, m=-1.25, c=2.03). 

 

Figure 5.20 Linear regression analysis of trabecular number and connectivity density   

In the above linear regression analysis (Figure 5.20), trabecular number and connectivity 

density were significantly positively correlated ( 2R =0.95, m=1.69, c=-0.669). 
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Figure 5.21 Linear regression analysis of trabecular separation and connectivity density   

In the above linear regression analysis (Figure 5.21), trabecular separation and 

connectivity density were negatively correlated ( 2R =0.86, m=-1.267, c=2.006). 

 

Figure 5.22 Linear regression analysis of sill variance and bone mineral density   

In the above linear regression analysis (Figure 5.22), sill variance was significantly 

positively correlated with bone mineral density assessed by DXA ( 2R =0.67, m=3.13, 
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Figure 5.23 Linear regression analysis of correlation length and nugget variance  

In the above linear regression analysis (Figure 5.23), correlation length was positively 

correlated with nugget variance ( 2R =0.45, m=0.001, c=-0.012). 

  

Figure 5.24 Linear regression analysis of area of specimen and bone volume fraction  

In the above linear regression analysis (Figure 5.24), area of vertebrae assessed by DXA 

was negatively correlated with bone volume fraction ( 2R =0.28, m=-0.011, c=0.416). 
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Figure 5.25 Linear regression analysis of area of specimen and surface to volume ratio  

In the above linear regression analysis (Figure 5.25), area of vertebrae assessed by DXA 

was positively correlated with bone surface to volume ratio ( 2R =0.30, m=0.205, c=5.14). 

 

Figure 5.26 Linear regression analysis of area of specimen and trabecular thickness  

In the above linear regression analysis (Figure 5.26), area of vertebrae assessed by DXA 

was negatively correlated with trabecular thickness ( 2R =0.31, m=-0.005, c=0.326). 
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Figure 5.27 Linear regression analysis of area of specimen and trabecular separation  

In the above linear regression analysis (Figure 5.27), area of vertebrae assessed by DXA 

was positively correlated with trabecular separation ( 2R =0.23, m=0.0376, c=0.176). 

 

Figure 5.28 Linear regression analysis of area and bone mineral content of the vertebrae  

In the above linear regression analysis (Figure 5.28), area of vertebrae assessed by DXA 

was significantly positively correlated with bone mineral content of vertebrae assessed by 

DXA ( 2R =0.56, m=0.778, c=2.908). 
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Figure 5.29 Linear regression analysis of bone mineral content and bone mineral density   

In the above analysis (Figure 5.29), bone mineral content of vertebrae was positively 

correlated with bone mineral density of vertebrae ( 2R =0.24, m=0.018, c=0.63). 

 

Figure 5.30 Linear regression analysis of DXA-BMD and BMD calculated 

In the above linear regression analysis (Figure 5.30), BMD assessed by DXA and BMD 

calculated from the raw data files of DXA were strongly correlated ( 2R =0.89, m=0.786, 

c=-0.009). 
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CHAPTER SIX 

DISCUSSION AND CONCLUSION 

In this study, eighteen human vertebrae with intact posterior elements were scanned by 

the DXA scanner in the posterior-anterior projection and by the Micro-CT scanner. The 

stochastic predictors were calculated from the BMD map of human vertebrae from DXA 

scans. The microarchitecture parameters were obtained from 3D Micro-CT images of 

trabecular bone within the vertebral body. Significant correlations were observed 

between stochastic predictors and microarchitecture parameters of trabecular bone. The 

sill variance, one of stochastic predictors from DXA scans, was significantly correlated 

with the microarchitecture parameters of trabecular bone. These correlations were 

consistent with the observations reported in the literature [15, 16, 19, 27].  

6.1 DXA measurements of human lumbar vertebrae 

DXA measurements (BMD, BMC and area) of human lumbar vertebrae (L1-L5) in the 

PA projection were in agreement with results reported in literature [19, 38, 39]. 

Submersion of human vertebrae under water simulates the in-vivo environment with soft 

tissue. The unique shapes of the posterior elements of the lumbar vertebrae were 

observed. The posterior elements of L1, L2 and L3 had a U-shaped or Y-shaped 

appearance. The posterior elements of L4 had a H or X shaped appearance and the 

posterior elements of L5 looked like a block I on its side. The significant increase in  

BMC and area from L1 to L4 and the significant increase in BMD between L1 and L2 

was consistent with the data reported in a study of 148 normal women aged 50-60 [39]. 

The contribution of posterior elements to the calcium hydroxyapatite content of whole 

vertebrae measured in the PA projection was as high as 47.0 % [40]. Therefore, current 

BMD measurements (0.941±0.084 g/cm
2
) were higher than the BMD measurements 

(0.567±0.09 g/cm
2
) of the in-vitro DXA scans of human vertebrae without posterior 

elements [19, 41].                                                                                                                                               
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6.2 Microarchitecture parameters within the vertebral body 

Microarchitecture parameters of trabecular bone within the vertebral body obtained in 

this study were in agreement with the data reported in earlier studies [15, 19, 26, 27]. The 

bone volume fraction (0.215±0.045, range from 0.146 to 0.285) of this study was 

comparable to results from a study using Micro-CT scanners with a voxel size of 119 µm 

[42] and a voxel size of 93 µm [16]. However, bone volume fraction from this study was 

greater than the measurement from the studies with higher scanning resolutions. For 

example, the bone volume fraction (0.215±0.045) of this study was greater than those 

(0.062±0.017) from Micro-CT scans with a resolution of 17.4 µm [43] and those in 

another study (0.153±0.051) with a scanning resolution of 35 µm [44]. Trabecular 

thickness measurements in this study (0.227±0.021 mm) were in agreement with the 

previous study of (0.224±0.044 mm) [44] and (0.228±0.046 mm) [16]. Bone volume 

fraction was significantly positively correlated with trabecular thickness, trabecular 

number, connectivity density and negatively correlated with bone surface to volume ratio, 

trabecular separation. The correlations between bone volume fraction and remaining 

microarchitecture parameters were consistent with the results in earlier studies [15, 27].  

6.3 Correlations between stochastic predictors and microarchitecture parameters 

Significant relationships between the sill variance of DXA scans and microarchitecture 

parameters were consistent with the previous study of 2D projections images [27] and 

other studies based on the experimental variogram [15, 16, 19]. In the previous study of 

2D projection images generated from 3D Micro-CT images of trabecular bone, we have 

also observed that the sill variance was positively correlated with bone volume fraction, 

trabecular thickness, and trabecular number, but negatively correlated with bone surface 

to volume ratio and bone separation [27]. Positive relationship between sill variance and 

trabecular thickness and the negative relationship between sill variance and trabecular 

separations indicated that decreases in bone heterogeneity led to the increases in bone 

fragility [45].  

It may not be surprising that significant relationships are observed between stochastic 

predictors of DXA scans and microarchitecture parameters of trabecular bone because 

both stochastic assessment and microarchitecture quantification share the same 
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underlying principles. Microarchitecture parameters of trabecular bone, such as bone 

volume fraction, bone surface to volume fraction, and connectivity density, are evaluated 

by traditional histomorphometry [46], which is based on stereological techniques [47]. 

The underlying principles of stereological techniques come from stochastic geometry 

[48]. In this study, the random field, a major part of stochastic geometry, is also the 

theoretical basis for the stochastic assessment of the BMD map from DXA scans [27, 49]. 

Therefore, it is expected that there are certain connections between stochastic assessment 

and microarchitecture quantification. Nevertheless, such connections need to be further 

studied in the future. 

The sill variance from DXA scans, to some extent, represents the standard deviation of 

bone mineral density within human vertebrae, and characterizes the inhomogeneity of 

bone mineral density within human vertebrae. Such variation of bone mineral density has 

been found to be a good predictor of biomechanical properties of the human vertebral 

body [50]. In the previous study, Cody et al. indicated the surprise that the standard 

deviation of vertebral regional bone mineral density values provided nearly as good as a 

predictor of fracture load as the densities themselves [50]. The authors have concluded 

that local remodeling effects, causing point-to-point variations of bone mineral density in 

specific locations, may ultimately be helpful in predicting fracture risk in conjunction 

with local bone density analysis [50]. Therefore, the sill variance observed in this study 

may reveal the point-to-point variations of bone mineral density due to local bone 

remodeling. 

6.4 Comparison of stochastic assessment with existing imaging techniques 

Stochastic assessment can be distinguished from other imaging techniques to enhance the 

prediction of bone fractures from 2D projection images in the following aspects.  

Fractal texture analysis is a popular image processing technique which can be used to 

extract hidden geometric and microarchitecture features of bone from high resolution 2D 

radiography images. Texture parameters evaluated from X-ray radiographs of iliac bone, 

osteoporotic femurs, femoral head are significantly correlated with microarchitecture 

parameters of bone in earlier studies [23-25]. Although the texture parameters showed 

significant relationships with microarchitecture parameters, texture analysis has rarely 
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been applied to 2D projection images of DXA scans where as the stochastic assessment 

can be successfully apply to the routine clinical DXA scans. 

Topological parameter based on Minkowski function can be evaluated using topological 

analysis that has been applied to 2D-DXA images. An in-vitro study of 100 hip 

specimens demonstrated that the topology-based parameter from DXA images had a 

strong correlation with the failure strength of the specimens [51].  

Both hip structural analysis and finite element analysis of X-ray images are the popular 

techniques implemented by researchers to extract stiffness and strength of the bone from 

DXA scans. The use of hip structural analysis is limited by the precision error of femur 

positioning by the technologist during DXA scans [52, 53]. The stiffness of the proximal 

femur can be numerically estimated from the finite element analysis, which has shown 

significant correlations with the stiffness measured from mechanical testing. This 

approach has only been validated in an ex-vivo study and its application to routine clinical 

DXA images remains to be established in the future [13]. 

In recent years, the Trabecular Bone Score (TBS) has gained the attention of researchers 

in the assessment of fracture risk [54, 55]. TBS is based on the variation of the grayscale 

values of DXA images, rather than a property with direct physical meaning [15, 17]. 

Stochastic predictors are based on the variation of bone mineral density values from the 

BMD map of DXA scans. The value of bone mineral density at each location was 

obtained from the raw data of DXA scans (i.e., R files in Hologic densitometers) using 

the equations of mass attenuation for dual-energy X-ray absorptiometry [34, 35]. The use 

of BMD maps may facilitate the comparison of results when multicenter studies are 

conducted to predict osteoporotic fractures. 

TBS describes only one aspect of experimental variograms whereas the stochastic 

predictors we proposed represent a comprehensive view of experimental variograms. 

TBS is calculated as the slope at the origin of the log-log representation of experimental 

variograms [15-18]. The initial trend of the experimental variogram may be described by 

the TBS. However, the final trend in the experiment variogram is not represented by the 
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TBS. On the other hand, stochastic predictors are derived from a theoretical model of 

random fields that captures the global trend of the experimental variogram.  

Stochastic assessments of bone mineral distribution from DXA scans may supplement the 

clinical use of FRAX in predicting the risk of osteoporotic fractures. FRAX is a fracture 

risk assessment tool that uses clinical risk factors with or without BMD to predict the 

absolute 10-year probability of hip fracture or major osteoporotic fracture in general [56]. 

The prediction of fracture risk through FRAX is useful in clinical practice. However, 

there are several limitations for FRAX in clinical practice. First, questions may not be 

answered accurately by patients. For example, one of questions is whether the patient has 

a history of rheumatoid arthritis. Sometimes patients with osteoarthritis may indicate that 

they have rheumatoid arthritis because they just don’t know the difference between 

rheumatoid arthritis and osteoarthritis [38]. Additionally, FRAX is not applicable to 

patients who have drug therapy for bone [56]. 

6.5 Limitations and future work  

This study has several limitations that can be addressed in future work. First, the number 

of subjects (cadavers spines) used in this study is small, even though the total number of 

vertebral specimens are eighteen. Second, only Hologic QDR Discovery W is used in this 

study, we can extend our study to other manufacturers of densitometers. Third, low 

resolution (92 µm) micro-CT images of specimens are used. This suggests that accuracy 

of measuring microarchitecture parameters of trabecular bone can be improved using 

high resolution (20 µm) micro-CT images. Fourth, currently this study establishes the 

relationship between stochastic parameters and microarchitecture parameters only. In the 

future, biomechanical properties (elastic modulus and ultimate strength) of trabecular 

bone in lumbar vertebrae can be measured to determine the relationship between 

stochastic parameters and biomechanical properties of bone. Finally, stochastic 

parameters are currently evaluated on DXA scans of human vertebrae in the posterior 

anterior (PA) projection. This method can be applied to the DXA scans of specimens in 

the lateral projection.   
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6.6 Conclusion 

This study has described the stochastic assessment of bone mineral density variation in 

human vertebrae and demonstrated the relationship between stochastic assessment and 

bone microarchitecture. Sill variance, a stochastic measure of vertebrae BMD map 

establishes strong correlations with microarchitecture parameters of vertebral body. This 

study demonstrates that the stochastic assessment of the inhomogeneity of bone mineral 

density from routine clinical DXA scans of human lumbar vertebrae may have the 

potential to serve as a valuable clinical tool in enhancing the prediction of risks for 

osteoporotic fractures in the spine.  The main advantage of using DXA scans is that it 

would be cost effective, since most hospitals already have DXA machines and there 

would be no need for purchasing new equipment. Therefore, the stochastic method can 

provide an effective and economic solution for the prediction of osteoporotic fractures in 

the lumbar spine. 
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APPENDIX A 

CALCULATION OF P-VALUES FOR CORRELATION ANALYSIS 

The estimated probability of rejecting the null hypothesis (H0) is called p-value [57]. A major 

goal of statistical analysis is to draw inferences about particular data by examining a sample 

from that data set. A very common example of this is the desire to draw conclusions about one or 

more means of that data set. For example, a null hypothesis about a mean (µ) of particular data 

set might assert that µ is equal to zero. If it is concluded that it is likely that null hypothesis is 

false, then an alternate hypothesis (HA) is assumed to be true (rejecting the null hypothesis 

means accepting the alternate hypothesis) [57].  Example conditions for null hypothesis and 

alternate hypothesis in one tailed and two tailed statistical analyses can be given as, 

H0: µ = 0, HA: µ > 0               (One tailed)    A.1 

H0: µ = 0, HA: µ ≠ 0            (Two tailed)     A.2 

The probability of 5% or less is commonly used as the criterion for rejection of null hypothesis 

and the probability used as the criterion for rejection is called the significance level (α). This 

means the corresponding correlation is statistically significant when the p-value is less than the 

significance level (5%). The value of the test statistic corresponding to α is termed the critical 

value of the test statistic.   

The p-value can be estimated using student's t distributions in correlation coefficient analyses. In 

the correlation coefficient analysis the null hypothesis is rejected when the calculated t value is 

greater than or equal to the critical t value (which is from the table Critical Values of the t 

Distributions) [57]. 't' value can be calculated as, 

r

r
t

s
         A.3 

where r is the correlation coefficient and sr is the standard error of correlation coefficient. 
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Appendix A (continued) 

 The standard error of correlation coefficient may be computed as 
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       A.4 

where r
2
 is the correlation index and n is the sample size.

 
 

In the correlation coefficient analysis, the null hypothesis is rejected [57] if 

(2),vt t        A.5 

where α is the significance level (0.05 or less), v is the degrees of freedom (n-2) and 2 specifies 

two tailed statistical analysis. 

For example, the correlation coefficient (r) 

is equal to 0.870 and n is equal to 12 for 

particular data set. Then p-value is 

calculated as follows 
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Fig. A.1 Student's t distribution curve 

 

Here the calculated t value is greater than the critical t value. Hence, the null hypothesis is 

rejected and the p-value should be less than 0.05. The p-value can be estimated from the Critical 

Values of the t Distributions [57] or it can be computed as 
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      A.6 

where v is the degrees of freedom, x is the calculated t value, Г is the gamma function. 
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APPENDIX B 

MATLAB CODE 

%%%%%%%%%%%% Calculation of experimental variogram %%%%%%%%%%%%%%%  
function S = variogram(x,y,varargin) 
 

% error checking 
if size(y,1) ~= size(x,1); 
    error('x and y must have the same number of rows') 
end 
% check if consolidator and ipdm are available 
if exist('ipdm.m','file') ~= 2; 
    error('IPMD is not available. See help variogram for more infos') 
end 

  
% check for nans 
II = any(isnan(x),2) | isnan(y); 
x(II,:) = []; 
y(II)   = []; 

  
% extent of dataset 
minx = min(x,[],1); 
maxx = max(x,[],1); 
maxd = sqrt(sum((maxx-minx).^2)); 
nrdims = size(x,2); 

  
% check input using PARSEARGS 
params.nrbins      = 20; 
params.maxdist     = maxd/2; 
params.type        = {'default','gamma','cloud1','cloud2'}; 
params.plotit      = false; 
params.anisotropy  = false; 
params.thetastep   = 30; 
params = parseargs(params,varargin{:}); 

  
if params.maxdist > maxd; 
    warning('Matlab:Variogram',... 
            ['Maximum distance exceeds maximum distance \n' ...  
             'in the dataset. maxdist was decreased to ' num2str(maxd) 

]); 
    params.maxdist  = maxd; 
end 
 if params.anisotropy && nrdims ~= 2  
    params.anisotropy = false; 
    warning('Matlab:Variogram',... 
            'Anistropy is only supported for 2D data'); 
end 
% calculate bin tolerance 
tol      = params.maxdist/params.nrbins; 

   
% calculate euclidean interpoint distances using ipdm 
d = ipdm(x,'Result','Structure',... 
           'Subset','Maximum',... 
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           'Limit',params.maxdist); 
  

% remove distances were d.columnindex = d.rowindex 
iid = [d.rowindex d.columnindex d.distance]; 

 
% clear workspace variable 
clear d 

  
% remove double entries in iid 
iid(iid(:,1) == iid(:,2),:) = [];  
[m,m] = unique(sort(iid(:,[1 2]),2),'rows'); 
iid = iid(m,:); 

  
% calculate squared difference between values of coordinate pairs 
lam      = (y(iid(:,1))-y(iid(:,2))).^2; 

  
% anisotropy 
if params.anisotropy  
    nrthetaedges = floor(180/params.thetastep); 

   
    % calculate with radians, not degrees 
    params.thetastep = params.thetastep/180*pi; 

  
    % calculate angles, note that angle is calculated clockwise from 

top 
    theta    = atan2(x(iid(:,2),1)-x(iid(:,1),1),... 
                     x(iid(:,2),2)-x(iid(:,1),2)); 

     
    % only the semicircle is necessary for the directions 
    I        = theta < 0; 
    theta(I) = theta(I)+pi; 
    I        = theta >= pi-params.thetastep/2; 
    theta(I) = 0; 

         
    % create a vector with edges for binning of theta 
    % directions go from 0 to 180 degrees; 
    thetaedges = linspace(-params.thetastep/2,pi-

params.thetastep/2,nrthetaedges); 

     
    % bin theta 
    [ntheta,ixtheta] = histc(theta,thetaedges); 

     
    % bin centers 
    thetacents = thetaedges(1:end)+params.thetastep/2; 
    thetacents(end) = pi; %[]; 
end 
% calculate variogram 
switch params.type 
    case {'default','gamma'} 
        % variogram anonymous function 
        fvar     = @(x) 1./(2*numel(x)) * sum(x); 
    % distance bins 
        edges      = linspace(0,params.maxdist,params.nrbins+1); 
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        edges(end) = inf; 

  
        [nedge,ixedge] = histc(iid(:,3),edges); 

         
        if params.anisotropy 
            S.val      = accumarray([ixedge ixtheta],lam,... 
                                 [numel(edges) 

numel(thetaedges)],fvar,nan); 
            S.val(:,end)=S.val(:,1);  
            S.theta    = thetacents; 
            S.num      = accumarray([ixedge 

ixtheta],ones(size(lam)),... 
                                 [numel(edges) 

numel(thetaedges)],@sum,nan); 
            S.num(:,end)=S.num(:,1);                  
        else 
            S.val      = accumarray(ixedge,lam,[numel(edges) 

1],fvar,nan);      
            S.num      = 

accumarray(ixedge,ones(size(lam)),[numel(edges) 1],@sum,nan); 
        end 
        S.distance = (edges(1:end-1)+tol/2)'; 
        S.val(end,:) = []; 
        S.num(end,:) = []; 

  
    case 'cloud1' 
        edges      = linspace(0,params.maxdist,params.nrbins+1); 
        edges(end) = inf; 

         
        [nedge,ixedge] = histc(iid(:,3),edges); 

         
        S.distance = edges(ixedge); 
        S.val      = lam;   
        if params.anisotropy             
            S.theta   = thetacents(ixtheta); 
        end 
    case 'cloud2' 
        S.distance = iid(:,3); 
        S.val      = lam; 
        if params.anisotropy             
            S.theta   = thetacents(ixtheta); 
        end 
end 

  
% create plot if desired 
if params.plotit 
    switch params.type 
        case {'default','gamma'} 
            marker = 'o--'; 
        otherwise 
            marker = '.'; 
    end 
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    if ~params.anisotropy 
        plot(S.distance,S.val,marker); 
        axis([0 params.maxdist 0 max(S.val)*1.1]); 
        xlabel('h'); 
        ylabel('\gamma (h)'); 
        title('(Semi-)Variogram'); 
    else 
        [Xi,Yi] = 

pol2cart(repmat(S.theta,numel(S.distance),1),repmat(S.distance,1,numel(

S.theta))); 
        surf(Xi,Yi,S.val) 
        xlabel('h y-direction') 
        ylabel('h x-direction') 
        zlabel('\gamma (h)') 
        title('directional variogram') 
%         set(gca,'DataAspectRatio',[1 1 1/30]) 
    end 
end 

         
end 

   
% subfunction parseargs 

  
function X = parseargs(X,varargin) 
remaining = nargin-1; % number of arguments other than X 
count = 1; 
fields = fieldnames(X); 
modified = zeros(size(fields)); 
% Take input arguments two at a time until we run out. 
while remaining>=2 
    fieldname = varargin{count}; 
    fieldind = find(strcmp(fieldname,fields)); 
    if ~isempty(fieldind) 
        oldvalue = getfield(X,fieldname); %#ok 
        newvalue = varargin{count+1}; 
        if iscell(oldvalue) 
            % Cell arrays must contain strings, and the new value must 

be 
            % a string which appears in the list. 
            if ~iscellstr(oldvalue) 
                error(sprintf('All allowed values for "%s" must be 

strings',fieldname));  %#ok 
            end 
            if ~ischar(newvalue) 
                error(sprintf('New value for "%s" must be a 

string',fieldname));  %#ok 
            end 
            if isempty(find(strcmp(oldvalue,newvalue))) %#ok 
                error(sprintf('"%s" is not allowed for field 

"%s"',newvalue,fieldname));  %#ok 
            end 
        elseif ~isempty(oldvalue) 
            % The caller isn't allowed to change the data type of a 

non-empty property, 
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            % and scalars must remain as scalars. 
            if ~strcmp(class(oldvalue),class(newvalue)) 
                error(sprintf('Cannot change class of field "%s" from 

"%s" to "%s"',... 
                    fieldname,class(oldvalue),class(newvalue))); %#ok 
            elseif numel(oldvalue)==1 & numel(newvalue)~=1 %#ok 
                error(sprintf('New value for "%s" must be a 

scalar',fieldname));  %#ok 
            end 
        end 
        X = setfield(X,fieldname,newvalue); %#ok 
        modified(fieldind) = 1; 
    else 
        error(['Not a valid field name: ' fieldname]); 
    end 
    remaining = remaining - 2; 
    count = count + 2; 
end 
% Check that we had a value for every name. 
if remaining~=0 
    error('Odd number of arguments supplied.  Name-value pairs 

required'); 
end 

  
% Now find cell arrays which were not modified by the above process, 

and select 
% the first string. 
notmodified = find(~modified); 
for i=1:length(notmodified) 
    fieldname = fields{notmodified(i); 
    oldvalue = getfield(X,fieldname); %#ok 
    if iscell(oldvalue) 
        if ~iscellstr(oldvalue) 
            error(sprintf('All allowed values for "%s" must be 

strings',fieldname)); %#ok 
        elseif isempty(oldvalue) 
            error(sprintf('Empty cell array not allowed for field 

"%s"',fieldname)); %#ok 
        end 
        X = setfield(X,fieldname,oldvalue{1}); %#ok 
    end 
end 
end 
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%%%%%%%%% Theoritical model fitting over experimental variogram %%%%%%% 
function [a,c,n,S] = variogramfit(h,gammaexp,a0,c0,numobs,varargin) 

 
% check input arguments 
if nargin == 0 
    help variogramfit 
    return 
elseif nargin>0 && nargin < 2; 
    error('Variogramfit:inputargs',... 
          'wrong number of input arguments'); 
end 
if ~exist('a0','var') || isempty(a0) 
    a0 = max(h)*2/3; 
end 
if ~exist('c0','var') || isempty(c0) 
    c0 = max(gammaexp); 
end 
if ~exist('numobs','var') || isempty(a0) 
    numobs = []; 
end 

       
% check input parameters 
params.model       = 'spherical'; 
params.nugget      = []; 
params.plotit      = true; 
params.solver      = {'fminsearchbnd','fminsearch'}; 
params.stablealpha = 1.5; 
params.weightfun   = {'none','cressie85','mcbratney86'}; 
params.nu          = 1; 
params = parseargs(params,varargin{:}); 

  
% check if fminsearchbnd is in the search path 
switch lower(params.solver) 
    case 'fminsearchbnd' 
        if ~exist('fminsearchbnd.m','file')==2 
            params.solver = 'fminsearch'; 
            warning('Variogramfit:fminsearchbnd',... 
            'fminsearchbnd was not found. fminsearch is used instead') 
        end 
end 

  
% check if h and gammaexp are vectors and have the same size 
if ~isvector(h) || ~isvector(gammaexp) 
    error('Variogramfit:inputargs',... 
          'h and gammaexp must be vectors'); 
end 

  
% force column vectors 
h = h(:); 
gammaexp = gammaexp(:); 

  
% check size of supplied vectors  
if numel(h) ~= numel(gammaexp) 
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    error('Variogramfit:inputargs',... 
          'h and gammaexp must have same size'); 
end 

  
% remove nans; 
nans = isnan(h) | isnan(gammaexp); 
if any(nans); 
    h(nans) = []; 
    gammaexp(nans) = []; 
    if ~isempty(numobs) 
        numobs(nans) = []; 
    end 
end 

  
% check weight inputs 
if isempty(numobs); 
    params.weightfun = 'none'; 
end 

 
% create options for fminsearch 
options = optimset('MaxFunEvals',1000000); 
% create vector with initial values 
% b(1) range 
% b(2) sill 
% b(3) nugget if supplied 
b0 = [a0 c0 params.nugget]; 

  
% variogram function definitions 
switch lower(params.model)     
    case 'spherical' 
        type = 'bounded'; 
        func = @(b,h)b(2)*((3*h./(2*b(1)))-1/2*(h./b(1)).^3); 
    case 'pentaspherical' 
        type = 'bounded'; 
        func = @(b,h)b(2)*(15*h./(8*b(1))-

5/4*(h./b(1)).^3+3/8*(h./b(1)).^5); 
    case 'blinear' 
        type = 'bounded'; 
        func = @(b,h)b(2)*(h./b(1)); 
    case 'circular' 
        type = 'bounded'; 
        func = @(b,h)b(2)*(1-

(2./pi)*acos(h./b(1))+2*h/(pi*b(1)).*sqrt(1-(h.^2)/(b(1)^2))); 
    case 'exponential' 
        type = 'unbounded'; 
        func = @(b,h)b(2)*(1-exp(-h./b(1))); 
    case 'gaussian' 
        type = 'unbounded'; 
        func = @(b,h)b(2)*(1-exp(-(h.^2)/(b(1)^2))); 
    case 'stable' 
        type = 'unbounded'; 
        stablealpha = params.stablealpha; 
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        func = @(b,h)b(2)*(1-exp(-

(h.^stablealpha)/(b(1)^stablealpha)));   
    case 'whittle' 
        type = 'unbounded'; 
        func = @(b,h)b(2)*(1-h/b(1).*besselk(1,h/b(1))); 
    case 'matern' 
        type = 'unbounded'; 
        func = @(b,h)b(2)*(1-(1/((2^(params.nu-1))*gamma(params.nu))) * 

(h/b(1)).^params.nu .* besselk(params.nu,h/b(1))); 
    case 'hole-effect' 
        type = 'unbounded'; 
        func = @(b, h)(b(2)*(1-(sin(h.*pi/b(1))./(h.*pi/b(1))))); 
    otherwise 
        error('unknown model') 
end 

 
% check if there are zero distances  
% if yes, remove them, since the besselk function returns nan for 
% zero 
switch lower(params.model)  
    case {'whittle','matern' 
        izero = h==0; 
        if any(izero) 
            flagzerodistances = true; 
        else 
            flagzerodistances = false; 
        end 
    otherwise 
        flagzerodistances = false; 
end 

 
% if model type is unbounded, then the parameter b(1) is r, which is 
% approximately range/3.  
switch type 
    case 'unbounded' 
        b0(1) = b0(1)/3; 
end 

 
% nugget variance 
if isempty(params.nugget) 
    nugget = false; 
    funnugget = @(b) 0; 
else 
    nugget = true; 
    funnugget = @(b) b(3); 
end 

  
% generate upper and lower bounds when fminsearchbnd is used 
switch lower(params.solver) 
    case {'fminsearchbnd'}; 
        % lower bounds 
        lb = zeros(size(b0)); 
        % upper bounds 
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        if nugget; 
            ub = [inf max(gammaexp) max(gammaexp)]; % 
        else 
            ub = [inf max(gammaexp)]; 
        end 
end 

  
% create weights (see Webster and Oliver) 
switch params.weightfun 
    case 'cressie85' 
        weights = @(b,h) 

(numobs./variofun(b,h).^2)./sum(numobs./variofun(b,h).^2); 
    case 'mcbratney86' 
        weights = @(b,h) 

(numobs.*gammaexp./variofun(b,h).^3)/sum(numobs.*gammaexp./variofun(b,h

).^3); 
    otherwise 
        weights = @(b,h) 1; 
end 
% create objective function: weighted least square 
objectfun = @(b)sum(((variofun(b,h)-gammaexp).^2).*weights(b,h)); 

  
% call solver 
switch lower(params.solver) 
    case 'fminsearch'                 
        % call fminsearch 
        [b,fval,exitflag,output] = fminsearch(objectfun,b0,options); 
    case 'fminsearchbnd' 
        % call fminsearchbnd 
        [b,fval,exitflag,output] = 

fminsearchbnd(objectfun,b0,lb,ub,options); 
    otherwise 
        error('Variogramfit:Solver','unknown or unsupported solver') 
end 

 
% prepare output 
a = b(1); %range 
c = b(2); %sill 
if nugget; 
    n = b(3);%nugget 
else 
    n = []; 
end 

  
% Create structure array with results  
if nargout == 4;     
    S.model     = lower(params.model); % model 
    S.func      = func; 
    S.type      = type; 
    switch S.model  
        case 'matern'; 
            S.nu = params.nu; 
        case 'stable'; 
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            S.stablealpha = params.stablealpha; 
    end 

    
    S.range     = a; 
    S.sill      = c; 
    S.nugget    = n; 
    S.h         = h; % distance 
    S.gamma     = gammaexp; % experimental values 
    S.gammahat  = variofun(b,h); % estimated values 
    S.residuals = gammaexp-S.gammahat; % residuals 
    COVyhaty    = cov(S.gammahat,gammaexp); 
    S.Rs        = (COVyhaty(2).^2) ./... 
                  (var(S.gammahat).*var(gammaexp)); % Rsquare 
    S.weights   = weights(b,h); %weights 
    S.weightfun = params.weightfun; 
    S.exitflag  = exitflag; % exitflag (see doc fminsearch) 
    S.algorithm = output.algorithm; 
    S.funcCount = output.funcCount; 
    S.iterations= output.iterations; 
    S.message   = output.message; 
end 

 
% if you want to plot the results... 
if params.plotit 
    switch lower(type) 
        case 'bounded' 
            plot(h,gammaexp,'rs','MarkerSize',10); 
            hold on 
            fplot(@(h) funnugget(b) + func(b,h),[0 b(1)]) 
            fplot(@(h) funnugget(b) + b(2),[b(1) max(h)]) 

             
        case 'unbounded' 
            plot(h,gammaexp,'rs','MarkerSize',10); 
            hold on 
            fplot(@(h) funnugget(b) + func(b,h),[0 max(h)]) 
    end 
    axis([0 max(h) 0 max(gammaexp)]) 
    xlabel('lag distance h') 
    ylabel('\gamma(h)') 
    hold off 
end 

 
% fitting functions for  fminsearch/bnd 
function gammahat = variofun(b,h) 

     
    switch type 
        % bounded model 
        case 'bounded' 
            I = h<=b(1); 
            gammahat     = zeros(size(I)); 
            gammahat(I)  = funnugget(b) + func(b,h(I)); 
            gammahat(~I) = funnugget(b) + b(2);         
        % unbounded model 
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       case 'unbounded' 
            gammahat = funnugget(b) + func(b,h); 
            if flagzerodistances 
                gammahat(izero) = funnugget(b); 
            end     
    end 
end 
end 
% subfunction parseargs 
function X = parseargs(X,varargin) 

  
remaining = nargin-1; % number of arguments other than X 
count = 1; 
fields = fieldnames(X); 
modified = zeros(size(fields)); 
% Take input arguments two at a time until we run out. 
while remaining>=2 
    fieldname = varargin{count}; 
    fieldind = find(strcmp(fieldname,fields)); 
    if ~isempty(fieldind) 
        oldvalue = getfield(X,fieldname); %#ok 
        newvalue = varargin{count+1}; 
        if iscell(oldvalue) 
            % Cell arrays must contain strings, and the new value must 

be 
            % a string which appears in the list. 
            if ~iscellstr(oldvalue) 
                error(sprintf('All allowed values for "%s" must be 

strings',fieldname));  %#ok 
            end 
            if ~ischar(newvalue) 
                error(sprintf('New value for "%s" must be a 

string',fieldname));  %#ok 
            end 
            if isempty(find(strcmp(oldvalue,newvalue))) %#ok 
                error(sprintf('"%s" is not allowed for field 

"%s"',newvalue,fieldname));  %#ok 
            end 
        elseif ~isempty(oldvalue) 
            % The caller isn't allowed to change the data type of a 

non-empty property, 
            % and scalars must remain as scalars. 
            if ~strcmp(class(oldvalue),class(newvalue)) 
                error(sprintf('Cannot change class of field "%s" from 

"%s" to "%s"',... 
                    fieldname,class(oldvalue),class(newvalue))); %#ok 
            elseif numel(oldvalue)==1 & numel(newvalue)~=1 %#ok 
                error(sprintf('New value for "%s" must be a 

scalar',fieldname));  %#ok 
            end 
        end 
        X = setfield(X,fieldname,newvalue); %#ok 
        modified(fieldind) = 1; 
    else 
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        error(['Not a valid field name: ' fieldname]); 
    end 
    remaining = remaining - 2; 
    count = count + 2; 
end 
% Check that we had a value for every name. 
if remaining~=0 
    error('Odd number of arguments supplied.  Name-value pairs 

required'); 
end 

  
% Now find cell arrays which were not modified by the above process, 

and select 
% the first string. 
notmodified = find(~modified); 
for i=1:length(notmodified) 
    fieldname = fields{notmodified(i)}; 
    oldvalue = getfield(X,fieldname); %#ok 
    if iscell(oldvalue) 
        if ~iscellstr(oldvalue) 
            error(sprintf('All allowed values for "%s" must be 

strings',fieldname)); %#ok 
        elseif isempty(oldvalue) 
            error(sprintf('Empty cell array not allowed for field 

"%s"',fieldname)); %#ok 
        end 
        X = setfield(X,fieldname,oldvalue{1}); %#ok 
    end 
end 
end 
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