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Abstract

In this study, we examine the hypothesis that airflow noise can be reduced by adding

metamaterials. The introduction of any obstacle will generate more disturbance in the airflow

and therefore add noise. Hence an efficient metamaterial design is required, capable of reduc-

ing noise even at higher flow disturbance. In order to examine this hypothesis, we developed a

platform to perform isogeometric aeroacoustic analyses to solve Navier stokes equations first.

We obtained the velocity fields from fluid-structure analyses and utilized the light-hill anal-

ogy to calculate the noise generated as a result of airflow. Then the Helmholtz equation was

solved to perform wave propagation analyses using the calculated flow-induced source of the

noise. Hence, the disturbance due to the introduction of the metamaterial was included in

the analyses. The fluid-structure analyses were performed for the unsteady, in-compressible

Naiver–Stokes problem to estimate velocity and pressure fields. The assumptions made can be

viewed as Lid-driven cavity flow. The pressure stabilization technique was used for the treat-

ment of the incomprehensibility constraint for unsteady flow cases. Results are obtained for

a benchmark lid-driven cavity flow. The results were compared with published numerical and

experimental finite element analysis studies for validation.

1 Introduction

1.1 Background

The noise level generated by the rapid passage of air has become an issue for urban communi-

ties[1]. Also, many machines generate a considerable amount of noise that reduces the quality of

life [2]. At the same time, the government started to set regulations to restrict noise; many indus-
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tries are moving towards machines with more acoustic comfort, which motivated the development

of noise reduction strategies for example in aerospace and automobile industry. Primarily the en-

gine noise was targeted by the researchers rather than the frame noise; therefore, the priority in

noise reduction was given to the former. After the significant success in engine noise reduction

over the past twenty-five years, considerable efforts have been made to reduce air-frame noise, and

the field of computational aeroacoustics (CAA) has been actively utilized to achieve this goal [3].

Similarly, in the HVAC [4] industry, generally, the noise generated by the interaction between the

air blown by the blower and the different components in the system such as flaps, thermal ex-

changers [5]. The common startegy to reduce the noise generated is to reduce the flow rates or

increase the duct size which limit the noise generated and increase the customer comfort.

One of the methods to attack noise problems is experimental methods [6]. However, several theo-

ries were developed to estimate the noise generated due to airflow and iteration with HVAC com-

ponents. With the help of numerical methods [7], these theories could be tested and used reducing

the need for experimental methods which are typically more expensive and time consuming. How-

ever, the existing theories face various challenges in physical and numerical aspects, such as scale

disparity [8], simulation of unbounded domain [9], and reflection effects. Each Available aeroa-

coustics methodology addresses only some of these issues, making their accuracy dependent on the

methodologies used.

1.2 Isogeometric Analysis

Isogeometric Analysis (IGA) is a rather new variation of classical Finite Element Analysis (FEA)

with improved properties [10]. It has been developed to eliminate the gap between the worlds of

8



computer-aided design (CAD) and computer-aided engineering (CAE) as it combines the benefits

of Finite Element Analysis (FEA) with the ability of exact and smooth representation of com-

plex computational domains [11]. FEA is a numerical approximation technique that is widely

used in computational mechanics. Recently, IGA has been used for various flow problems and

proved its value within the field of fluid mechanics [12]. At first, some studies were conducted on

steady-state in-compressible Stokes flow in lid-driven square cavity benchmark problem [13]. It

was shown that IGA has many advantages in solving Navier–Stokes equation both in terms of pro-

viding higher continuity of state variables [14] and the ability to accurately represent complicated

dynamic flow domains [15]. IGA was first introduced in[16],[17] to satisfy the need to improve Fi-

nite element analysis, which can be achieved to provide more accurate modeling of complex ge-

ometries and precisely represent common shapes like circles, and spheres and even more complex

shapes, eliminating geometrical errors by representing exact geometry even at the coarsest level,

as well as providing systematic refinements such as h, p, k and r refinements [18,19].

In both conventional iso-parametric FEA as well as IGA the geometry of the computational do-

main and the solution spaces are represented using one set of basis functions. The CAD industry

uses B-Splines, Non-Uniform rational B-Splines or T-spline to represent geometries. IGA adopts

the basis functions used to develop CAD models to both represent the computational domain ac-

curately and to represent the solution field. Both trial and test spaces in the discrete variation for-

mulation of differential problems [11] are developed using these basis functions. As a result, IGA

construct approximation spaces that exhibits higher regularity which is beneficial when compared

to conventional FEA. Cottrell, Hughes, and Reali [20] demonstrated that the superior refinement

and continuity IGA leads to a massive increase in accuracy of the estimated solution when per-
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forming structural analyses using IGA [20]. It was also shown that accurate and smooth represen-

tation of the geometries enhances the accuracy of wave propagation analyses [21].

1.3 Acoustic propagation schemes

In 1952, The beginning of modern acoustics was considered by sir James Lighthill with two pa-

pers [22, 23], stating that the distribution of acoustic quadrupoles produces the sound field gen-

erated by a flow as a result of the instantaneous fluctuations of the velocity field in the flow, mak-

ing him the first to develop the jet noise theory.followed by J. Ffowcs and D. Hawkings [24], they

extend the work to include dipole and monopole distributions, defined as loading noise and thick-

ness noise respectively. The force acting on the fluid determines the loading noise, whereas the

geometry of the body determines the thickness noise. The potential of resolving this issue had

been substantially aided by the emergence of high-performance computers. Equations involving

the Navier-Stokes equation must be solved using a hybrid two-step procedure. First, by resolving

Navier-Stokes equations, the turbulent flow field should be estimated. On the basis of the veloc-

ity fields discovered in the first stage, the source term is then determined. Finally, the calculated

source’s computed Wave or Helmholtz equations are used to estimate the acoustic pressure field.

In the aerospace industry, significant noise reduction levels have already been attained with the

use of contemporary computers and computational aeroacoustic techniques. Due to the imposi-

tion of stricter noise laws in numerous industries, including but not limited to the stricter noise

regulations for the areas near airports, it still remains a difficult subject that requires additional

development. In order to solve the flow field and the propagation of acoustic waves, respectively,

the acoustic propagation and flow simulation are carried out using two different approaches.
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It is often required to solve exterior acoustic problems when dealing with aeroacoustic analyses.

The IGA for exterior acoustic wave propagation was first developed by Khajah et al. [21, 25] and

later combined with local refinement [26] and a novel absorbing boundary conditions (ABCs) which

led to a highly accurate method to solve acoustic wave propagation analyses in IGA [27, 28]. IGA

was compared to high order FEM in solving acoustic scattering problem [29]. It was shown that

IGA suffer less from pollution error and provides considerably higher accuracy. Later, IGA was

used to perform acoustic scattering problem in the context of On Surface Radiation Conditions [30]

at dramatically low computational cost. IGA Collocation was later combined with high order

ABCs [31]. IGA has been proved to be superior in shape optimization of acoustic devices as well [32–

35]. It was shown that representing the boundaries with B-Spline may facilitate the design and

optimization of acoustic devices [36].

Recently, IGA achieved significant success in a wide range of fields of computational mechanics

especially when utilized to solve high-order partial differential equations (PDEs). Variational for-

mulations of high-order PDEs such as Navier–Stokes require piecewise smooth and globally con-

tinuous basis functions. Conventional FEA have minimal continuity and losses accuracy when rep-

resenting complex geometries [37]. The higher continuity of IGA, higher accuracy per degrees of

freedom, and superior shape optimization possibilities makes a natural platform to perform aeroa-

coustic analyses.

1.4 Metamaterials

A metamaterial (MM) is a structure composed of one or many cells that together manipulate

the wave in ways not possible using naturally occurring materials. A MM can manipulate the
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wave in sub-wavelength regimes and may have a periodic or non-periodic design. Previous stud-

ies demonstrated the possibility of regulating waves using MMs [38, 39]. MMs were developed for

elastic waves [39] similar to electromagnetic MMs [40–42] leading the way for rapid improvement

for acoustic MMs. Initial studies were based on phononic crystal [38], but later on, Liu et al.[43]

obtained a locally resonant unit by using a coating a high-density core with rubber which opened

the door to studying acoustic MMs.

Recently, the concept of acoustic MMs has expanded. Torrent et al. suggested that any artificial

acoustic structure that uses a repetitive or random structural unit to significantly modify the

material’s equivalent acoustic parameters can be referred to as an ”acoustic metamaterial.” [44].

In 2012, Liang et al. theoretically obtained a broadband negative refractive index for a spatial

folded structure [45]. They also realized double-negative parameters without using a local reso-

nance mechanism, which compensated for the narrow bandwidth. In 2016, Maurya et al. extended

spatially folded acoustic MMs into three dimensions [46]. Then the concept of 3D double-negative

acoustic MMs was introduced and the broadband characteristics of such MMs were experimentally

verified. In 2018, a spatial curl structure was demonstrated for reducing low-frequency aviation

noise [47]. Khajah et al. demonstrated the possibility of tuning a acoustic MM for noise reduction

and energy harvesting applications [36].

1.5 Fluid schemes

The mathematical theory and numerical methods for solving Navier–Stokes equations have a fun-

damental importance and demand a deep understanding in order to predict and control flow tur-

bulence in nature and in technological applications [48]. Many phenomena that pique the inter-
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est of scientists and engineers, such as combustion dynamics and manufacturing processes, are

described by these equations as physical theories. When developing vehicles, aircraft, and power

plants, Navier-Stokes equations are solved. They are also solved to analyze blood flow, pollution,

and other phenomena. One of the most difficult issues to study is the numerical modeling of the

unstable, viscous, incompressible Navier-Stokes equations. The classical Galerkin method may be

affected from spurious oscillations when used to solve these equations [49].

Navier-Stokes equations are partial differential equations (PDS) that govern fluid flows and re-

flect a mass, momentum, and energy exchange. They are coupled and can only be solved analyt-

ically in a limited number of cases [50]. The turbulent behaviour of the fluid can be predicted by

the dimensionless Reynolds number [51].When solving these equations inside an irregular domain

of complicated geometry with beginning and boundary conditions, numerical methods are neces-

sary [50]. Stokes’s equation needs to be solved using a method called ”discretization,” which turns

PDEs into a system of algebraic equations. The goal is to get a numerical solution that is close to

the real one.

Computational Fluid Dynamics(CFD) provides an approximate solution for the flow by solving

the mathematical models [52, 53] through numerical methods. The most common methods used

are Finite Volume Method (FVM) and FEM [52, 54, 55]. Direct Numerical Simulation (DNS)

is the most powerful and accurate method to solve the turbulence flow. From its definition, the

equation is solved without any approximation, filters, or modeling applied at the original gov-

erning PDEs [56], which can generate highly accuracy solutions but unfortunately, it also results

in very high computational cost when conventional FEMs is used. As a result, it remains a pre-

ferred method but limited to low Reynolds numbers and rather simple geometries [57]. The sec-
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ond common method used is Reynold Averaged Navier stokes (RANS) [58–60] which is an ex-

citing approach. Rather than solving the original equations of Navier stokes, it adopts new fil-

tered equations to be solved that are called the turbulence models [61] and it only solves the mean

flow properties. Too many assumptions has to be made for the turbulence parameters for each

problem [61]. As a result, RANS is not the first option to solve Navier Stock equations. Another

method to solve these equations is Large Eddy Simulation (LES) which is used to solve turbulence

flow [62]. In this method, the large scales are directly resolved, and the effect of the small scales

on the large scales is modeled [63]. As a result, LES can be used to simulate turbulent flows with

high Reynolds numbers and on complex geometry. Although it requires high computational cost,

it is adopted by many researchers as one of the standard methods for computing the turbulent

near field [64]. A detailed literature review of the current CFD methods used for CAA simula-

tions can be found in [3].

1.6 Outline of the thesis

The remainder of the thesis is structured as follows: chapter one provides an introduction to the

problem considered including the background and motivation, and provides a brief literature re-

view on IGA, Acoustic propagation schemes, Metamaterials, and fluid schemes. The formula-

tion of B-splines and NURBS in IGA is discussed briefly in Chapter two including the evalua-

tion of curves and surfaces, calculation of Basis functions, basics of refinements, and analyses over

multi-patch geometries. The strong and weak forms of the Navier stokes equation and discretiza-

tion method are discussed, the finite element formulation of Lighthill’s equation, the strong and

weak forms of the wave equation, and the simulation of the unbounded domain is discussed in
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chapter three. The analyses performed in unbounded domains are validated in chapter four, and

Lighthill’s acoustic Analogy is validated in Chapter four. The numerical analyses of the flow are

validated in four. The use of MMs for noise reduction is discussed in Chapter five to investigate

the possibility of reducing Noise generated by airflow in a duct by adding a MM inside the duct.

Finally, the result and future work are summarized and discussed in Chapter six.

2 IGA - a brief introduction

B-Splines and NURBS are used as the most common basis functions in IGA. A bried review of

B-Splines and NURBS follows.

2.1 B-spline basis function

B-Splines are defined over a Knot vector which is a non-decreasing set of coordinates dividing the

parameter space into elements. A knot vector Ξ can be written as Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where

ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, . . . , n + p + 1, p is the polynomial order, and

n is the number of basis functions used to construct the B-spline curve.The equation that defines

B-splines shows as follows, which is called the Cox-de boor formula.

Ni,0(ξ) =


1 if ξi ≤ ξ < ξi+1,

0 otherwise.

(1)

For p = 1, 2, 3, . . ., they are defined by

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2)
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An example of constructing a basis function using the equations (1)and (2), is shown in Fig 1 for

knot vector Ξ = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9, ξ10, ξ11} = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} and degree of

p = 2.

Figure 1: Basis functions for open, non-uniform knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}

2.2 B-Spline curves and surfaces

Similar to construction of basis functions in conventional FEA, B-spline curves are constructed by

as a linear combination of B-splines basis functions. For instance a one-dimensional B-Spline curve

is constructed as:

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi, (3)

where {Bi} , i = 1, 2, . . . , n is a set of control points. the basis function Ni,p is defined over the

knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1} using the basis order p. A B-Spline curve defined using three
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control points is shown in Fig.2. Similarly, a tensor product is used to construct a two-dimensional

domain as;

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η),Bi,j (4)

where {Bi,j} , i = 1, 2, . . . , n, j = 1, 2, . . . ,m is a given set of control points and p and q are the

basis orders in first and second directions. The basis function Ni,p is defined over the knot vectors

Ξ = {ξ1, ξ2, . . . , ξn+p+1}, and H = {η1, η2, . . . , ηm+q+1}. A B-Spline surface and its control net are

shown in Fig.3 which is evaluated using equation (4).

Figure 2: B-spline basis curve of order p = 2 was constructed using knot vector Ξ = {0, 0, 0, .5,

1, 1, 1}

2.3 Non-Uniform Rational B-Splines

The move from non-rational B-splines to Non-Uniform Rational B-splines (NURBS) was crucial

because it enabled the precise representation of a broad variety of objects that cannot be properly

represented by polynomials, including those that are prevalent in engineering design. To prop-
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Figure 3: B-spline surface of order p = 2 was constructed using the knot vectors Ξ1 = {0, 0, 0, .5,

1, 1, 1} and Ξ2 = {0, 0, 0, 1, 1, 1} along the first and second directions.

erly comprehend how to deal with NURBS entities, it is vital to comprehend them both geometri-

cally and algebraically. The NURBS description can be seen as the projection of a B-Spline from

a higher dimension. The control points of a curve constructed with NURBS are given as:

(Bi)j = (Bw
i )j /wi, j = 1, . . . , d (5)

wi = (Bw
i )d+1 , (6)

where (Bi)j is the jth component of the vector Bi and wi is referred to as the ith weight. The
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NURBS is given by

Rp
i (ξ) =

Ni,p(ξ)wi

W (ξ)
=

Ni,p(ξ)wi∑n
î=1 Nî,p(ξ)wî

, (7)

and NURBS curve is given by

C(ξ) =

n∑
i=1

Rp
i (ξ)Bi, (8)

while the two-dimensional NURBS basis function is calculated as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1 Nî,p(ξ)Mĵ,q(η)wî,ĵ

(9)

In order to illustrate the benefit of using NURBS for the geometry, the difference between B-

spline and NURBS curves are shown in Fig. 4. Note that these curves are constructed using the

same control points and knot vectors. It turns out that we can produce a perfect quarter circle by

changing the weight corresponding to the middle control points from 1 to cos(45o) .

2.4 Multi patch geometries

It is necessary to construct the computational domains using multiple NURBS patches in almost

all practical situations. A multi-path domain also facilitates modeling of the multi-material do-

mains as a different material property can be considered for each patch. Additionally, it is more

convenient to perform multi-patch analyses from the perspective of data structures as it facili-

tates the need to split the computational domains and perform parallel computing on a machine

with multiple processors. The scenario when the domain only deviates topologically from a cube is

the most frequent. The tensor product nature of a patch’s parameter space renders it unsuitable

for modeling intricate, multiple-connected domains. By constructing the domain with multiple
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Figure 4: Difference between B-spline basis curve, NURBS curve and quarter circle constructed

using same knot vector Ξ = {0, 0, 0, .5, 1, 1, 1}

patches such geometries are generally handled easier. A computational domain made of five simple

patches is shown in Fig. 5.

2.5 Knot insertion

Knot insertion is the simplest method of refinement and equivalent to h refinement in conventional

FEA. It is possible to increase the number of elements in a computational domain by inserting ad-

ditional knots without altering geometry of the domain. n example of knot insertion Fig.7, Fig.6,

and Fig.8 where the number of elements increased similarly in both parametric directions.
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Figure 5: Multi-patch geometry constructed from 5=simple simple patches

Figure 6: Square geometry represented with a coarse mesh
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Figure 7: Square geometry after four levels of refinement

3 Strong and weak formulations

3.1 Finite Element formulation of Navier-stokes equations

The model of viscous flow of an incompressible, unsteady Newtonian fluid can be described by the

Navier-Stokes equations represented in strong form as:

ρ
∂u

∂t
+ ρ(u · ∇u) = ∇ · τ −∇p,

∇ · u = 0,

Since ρ is the density, u is the velocity vector, p is the isotropic pressure and the stress tensor τ is

given by:

τ = 2ηD

where η is the constant shear viscosity, and D is the rate of the strain tensor given by:

D =
1

2

(
∇u+ (∇u)T

)
.
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Figure 8: Square geometry after eight levels of refinement

From a mathematical point of view, it is preferred to use the dimensionless formulation of the gov-

erning equation as shown:

x∗ =
x

L
, y∗ =

y

L
,u∗ =

u

u∞
, t∗ =

tu∞

L
, p∗ =

p− p∞
ρu∞2

and τ∗ =
τ

ρu∞2
,

where L is a characteristic length, u∞ is the free stream velocity and p∞ is the free stream pres-

sure. Omitting the asterisk (∗) for simplicity, the dimensionless Cartesian form of the governing

equations can be written as:

∂u

∂x
+

∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
where u and v are the horizontal and vertical velocity component respectively, t is the physical

time and Re is the Reynolds number defined as:

Re =
u∞L

v
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where v is the kinematic viscosity.

3.1.1 Pressure stabilization technique

For unsteady, in-compressible fluids, the continuity equation is a constraint equation for the veloc-

ity field rather than an evolution equation for the density field. Therefore, changes in pressure are

no longer affecting the density which breaks the link between the continuity and the momentum

equations. stabilization technique [16, 65] is used to overcome this difficulty and to recover the link

between the continuity and the momentum equations. The continuity equation has been modified

and constructed by adding a Laplacian term as follows:

∂u

∂x
+

∂v

∂y
= ε∇2p

As a result, similar order of interpolation functions can be used for pressure and velocity fields

which decreases the computational cost [66]. With this formulation, the conservation equations

are coupled and the pressure checker boarding can be avoided.

3.1.2 Modifications of the strong form

The velocity and pressure fields are defined in parameter space, while the governing equations

are formulated in physical space. To evaluate the fields in physical space, the modified continuity
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equation in non-dimensional form reads:

∂2p

∂x2
+

∂2p

∂y2
=

1

ϵ

(
∂u

∂x
+

∂v

∂y

)
; ε = O(∆t)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
(10)

3.2 Weak formulation

In order to derive the weak formulation, we used Galerkin method. Starting with Continuity equa-

tion, we gets:

1

ϵ

∫∫
Ni

(
∂u

∂x
+

∂v

∂y

)
dA+

[∫∫
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
dA

]
pj −

∮
Ni

∂p

∂n
dS = 0[∫∫

∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
dA

]
pj −

[∮
Ni

∂Nj

∂n
dS

]
pj = −1

ϵ

∫∫
Ni

(
∂u

∂x
+

∂v

∂y

)
dA

Kijpj = rpi

Kij =

∫∫
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
dA−

∮
Ni

∂Nj

∂n
dS

rpi = −1

ϵ

∫∫
Ni

(
∂u

∂x
+

∂v

∂y

)
dA

(11)

While the x momentum weak form states as follow :

∫∫
Ni

∂u

∂t
dA+

∫∫ (
u
∂u

∂x
+ v

∂u

∂y

)
widA+

∫∫
wi

∂p

∂x
dA+

1

Re

∫∫ (
∂wi

∂x

∂u

∂x
+

∂wi

∂y

∂u

∂y

)
dA−

∮
wi

∂u

∂n
dS = 0

Mijuu
n+1
j = rui

Mij =
∫∫

NiNjdA ==> MLV =
∫∫

NidA

rvi = MLV un
j −∆t

[∫∫ (
u∂u

∂x + v ∂u
∂y

)
widA+

∫∫
wi

∂p
∂xdA+ 1

Re

∫∫ (
∂wi

∂x
∂u
∂x + ∂wi

∂y
∂u
∂y

)
dA
]

rvapproxi = MLV un
j −∆t

[∫∫ (
u∂u

∂x + v ∂u
∂y

)
widA+

∫∫
Ni

∂p
∂xdA+ 1

Re

∫∫ (
∂Ni

∂x
∂u
∂x + ∂Ni

∂y
∂u
∂y

)
dA
]
(12)
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The y momentum equation:

∫∫
Ni

∂v

∂t
dA+

∫∫ (
u
∂v

∂x
+ v

∂v

∂y

)
widA+

∫∫
wi

∂p

∂y
dA+

1

Re

∫∫ (
∂wi

∂x

∂v

∂x
+

∂wi

∂y

∂v

∂y

)
dA−

∮
wi

∂v

∂n
dS = 0

Mijuv
n+1
j = rvi

Mij =
∫∫

NiNjdA ==> MLV =
∫∫

NidA

rvi = MLV vnj −∆t
[∫∫ (

u ∂v
∂x + v ∂v

∂y

)
widA+

∫∫
wi

∂p
∂ydA+ 1

Re

∫∫ (
∂wi

∂x
∂v
∂x + ∂wi

∂y
∂v
∂y

)
dA
]

rvapproxi = MLV vnj −∆t
[∫∫ (

u ∂v
∂x + v ∂v

∂y

)
widA+

∫∫
Ni

∂p
∂ydA+ 1

Re

∫∫ (
∂Ni

∂x
∂v
∂x + ∂Ni

∂y
∂v
∂y

)
dA
]
(13)

3.3 Finite element formulation of Lighthill’s acoustic analogy

In this section, the partial differential equation derived by Lighthill is solved numerically; the

semi-discrete Galerkin formulation is developed first. The resulting transient formulation is then

solved using the Newmark method and the harmonic solution is derived by obtaining the complex

algebraic system of equation by performing Fourier transformation to the semi-discrete Galerkin

nodal forces.

3.4 Strong and weak forms of the inhomogeneous wave equation

The governing PDE for the aeroacoustic problem by the original Lighthill’s inhomogeneous wave

equation is given as [22]:

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2
i

=
∂2Tij

∂xi∂xj
, (14)

where ρ′ representing the acoustic density fluctuation and Tij is the components of the Lighthill’s

tensor [T ] approximated as Tij ≈ ρuivj . To derive the weak form, the governing equation is multi-

plied by test functions then integrated by parts over the domain;
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∫
Ωh

ρ̈′hNhdΩ+ c20

∫
Ωh

∇ρ′h · ∇NhdΩ =−
∫
Ωh

(∇ · Tij) · ∇NhdΩ

+ c20

∫
Γh

Nh
∂ρ′

∂ni
dΓ ∀Nh ∈ ϑh.

(15)

The space of functions, ϑh, defined as

ϑ =
{
ρ′(·, t) | ρ′(x⃗, t) ∈ H1, x⃗ ∈ Ω

}
,

Next, we apply the finite element approximation for the density perturbation described in terms of

basis function as:

ρ′(t) ≈ ρ′h(t) =

neq∑
i=1

Ni(x⃗)ρ
′
i(t) (16)

where Ni(x⃗) denote appropriate interpolation functions. The semidiscrete Galerkin formulation

can now be written in matrix form as:

Mρ̈′(t) +Kρ′(t) = f(t), (17)

where the matrices M and K are computed as follows:

M =[Mij ],

Mij =

∫
Ω

NiNjdΩ, 1 ≤ i, j ≤ neq

K =[Kij ],

Kij =

∫
Ω

c20

(
∂Ni

∂x1

∂Nj

∂x1
+

∂Ni

∂x2

∂Nj

∂x2

)
dΩ, 1 ≤ i, j ≤ neq

(18)
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the right-hand-side vector including the acoustic sources reads:

f = {fi}

fi =−
∫
Ω

(
∂Ni

∂x1
,
∂Ni

∂x2

)
· ∂Tij

∂xj
dΩ+

∫
Γ

c20Ni
∂ρ′

∂ni
dΓ, 1 ≤ i ≤ neq

(19)

and the divergence of Lighthill’s tensor can be calculated as proposed in [67] as follows:

∇ · Tij = ρ

 2u1
∂u1

∂x1
+ u2

∂u1

∂x2
+ u1

∂u2

∂x2

u2
∂u1

∂x1
+ u1

∂u2

∂x1
+ 2u2

∂u2

∂x2

 . (20)

Now, by using the discrete nodal values u
(n)
i of u⃗, the finite element evaluation for the terms of

the first vector component is given by:

2u1
∂u1

∂x1
= 2

(
nen∑
n=1

Nn(x⃗)u
(n)
1

)(
nen∑
n=1

∂Nn(x⃗)

∂x1
u
(n)
1

)
,

u2
∂u1

∂x2
=

(
nen∑
n=1

Nn(x⃗)u
(n)
2

)(
nen∑
n=1

∂Nn(x⃗)

∂x2
u
(n)
1

)
,

u1
∂u2

∂x2
=

(
nen∑
n=1

Nn(x⃗)u
(n)
1

)(
nen∑
n=1

∂Nn(x⃗)

∂x2
u
(n)
2

)
,

where nen corresponds to the number of degree of freedom per element. We can evaluate the

other components of the divergence of Lighthill’s tensor at each time step for the two -dimensional

cases considered. The resulting vector can now be multiplied by the gradient of the basis function

by numerical integration. It is then possible to obtain the acoustic source value for the right hand

side at each degree of freedom.
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3.4.1 Simulation of unbounded domains

A first order approximation of an ABC for solving the wave equation was considered in this study

which resulted in a straightforward implementation in IGA similar to the ABC considered in [67]:

(
c0

∂

∂x1
− ∂

∂t

)
ρ′
∣∣∣∣
x1=0

= 0. (21)

recalling the weak formulation of the problem22 , initially we assumed homogeneous Neumann

boundary conditions which results in natural cancellation of the Neumann boundary integration.

By knowing that Neumann integral applied at the boundary and equation 21 representing that

changing in pressure fluctuation in the outgoing direction is equal to the change in time, it can be

easily substitute 21 in equation 22 yielding to equation :

∫
Ω

ρ̈′wdΩ+ c20

∫
Ω

∇ρ′ · ∇wdΩ = −
∫
Ω

(∇ · Tij) · ∇wdΩ− c0

∫
Γ

w
∂ρ′

∂t
dΓ (22)

The new equation now has new surface integral including changing in time domain that leads to

a new matrix applied only on the boundary, which is called damping matrix C. Hence, the semi

discrete Galerking formulation changes to

Mρ̈′(t) +Cρ̇′(t) +Kρ′(t) = f(t), (23)

and the damping matrix is calculated as :

C =[Cij ], Cij = c0

∫
Γ

NiNjdΓ. (24)
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3.4.2 Time discretization

Newmark scheme[68] usually used for hyperbolic partial differential equations, so we have:

ρ′
n+1

= ρ′
n
+∆tρ̇′

n
+

∆t2

2

((
1− 2βHρ̈

′
n
+ 2βHρ̈

′
n+1

)
ρ̇′
n+1

= ρ′
n
+∆t

(
(1− γH) ρ̈

′
n
+ γHρ̈

′
n+1

)
.

applying in equation

Mρ̈′(t) +Cρ̇′(t) +Kρ′(t) = f(t), (25)

now we can write the solution of the predictor-corrector algorithm as an Effective stiffness formu-

lation [69] as follows :

Effective Stiffness Formulation - Perform predictor step:

ρ̃′ = ρ′
n
+∆tρ̇′

n
+ (1− 2βH)

∆t2

2
ρ̈′
n

˜̇ρ′ = ρ̇′
n
+∆t (1− γH) ρ̈

′
n

(26)

- Solve algebraic system of equations:

K∗ρ′
n+1

= f
n+1

−Cρ′
′
+

(
1

βH∆t2
M+

γH
βH∆t

C

)
˜̃ρ′

K∗ = K+
γH

βH∆t
C+

1

β∆t2
M

(27)

- Perform corrector step:

ρ̈′
′
=

ρ′
n+1

− ρ̃′

β∆t2

ρ̇′
n+1

= ρ̇′ + γH∆tρ̈′

(28)

3.5 Harmonic formulation

In order to obtain the harmonic solution, a Fourier transformation was applied to the semi-discrete

Galerkin equations at the degrees of freedom [67], so it becomes possible to compute the sound ra-
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diation for specific frequency components present in acoustic sources [70], which led to the equa-

tion (29):

(
−ω2M− iωC+K

)
ρ̂ = f̂ , (29)

where f̂ is the complex acoustic source, obtained from the Fourier transform, K, M and C are the

stiffness, mass, and damping matrix respectively. Although time-consuming calculations are re-

quired to transform the transient data, considerable saving is achieved by performing time-harmonic

wave propagation analyses. Computations are performed for the targeted frequency which avoids

the transfer of numerical noise from transient results. Time harmonic analyses also will make it

feasible to target a specific frequency with the maximum amplitude using noise reduction MMs

specifically designed for the targeted frequency in order to eliminate or minimize the noise gener-

ated due to airflow. This will be demonstrated later in Section 5.3.

4 Validation

4.1 ABC for wave equation

In this section, the first-order absorbing boundary condition is tested against a sinusoidal simple

pulse in a square domain, calculations are carried out for both absorbing and Neumann bound-

ary conditions and compared to each other. As a case study as a sinusoidal signal with frequency

f = 10kHz applied at the center of a L × L = 100 mm × 100 mm square where the center coin-

cides with the origin and the acoustic pressure distribution is shown in Fig. 10. Fixing the speed

of sound as c0 = 343 m/s in air, the wave-length was λ = 34.3 mm. The total computation time

was discretized using a time step of ∆t = 2.5µ s corresponding to a discretization ratio of 40-time
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steps per period. Second order Bernstein basis function was used for space discretization, simi-

lar parameters have been used in [67], and the numerical results matched those presented in this

reference. The total number of elements was 2401 corresponding to 2601 degrees of freedom. The

mesh used is shown in Fig.9.

Figure 9: Mesh for the proposed space with 2401 total number of elements.

Instead of imposing ABC an implicit homogeneous Neumann boundary conditions was imposed

on the outer boundary of the domain. A small error is noticeable when comparing the solution

are shown in Fig. 12 with the one obtained with ABC and plotted in Fig. 11. This is because

the wave did not fully reach the outer boundary. Instead to simulating an infinite domain a full

reflection happened when homogeneous Neumann boundary conditions was imposed as seen in

Fig. 14, and Fig. 16 which led to incorrect estimation of the pressure fluctuation. After reaching

t = 195µ[s] ,the reflected wave has already dominated the solution, and the computation had

no physical meaning. The effective reflection rate was R = 1 which means this types of bound-

ary condition acts as solid walls. On the contrary, the results from applying first order absorbing
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Figure 10: The acoustic pressure distribution due to a sinusoidal signal with frequency f = 10kHz

applied at the center of a rectangular domain
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Figure 11: Pressure distribution at t = 1.65E− 4 s with ABC.

boundary condition showing good absorbing properties before and after the wave hits the outer

boundary. There is no visible reflection in Fig. 11 when the waves reaches the end of computa-

tional domain. The wave travels out from the boundary as it is not there. This behaviour did not

change with time as shown in Fig. 13 and Fig. 15 and the wave travels out of computational do-

main mimicking infinite space.

Finally, the variation of pressure distribution with time is shown in Fig. 17 for a fixed point in the

square domain located at (x1, x2) = (50 mm, 25 mm) for both both Neumann boundary condition
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Figure 12: Pressure distribution at t = 1.65E− 4 s without ABC.
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Figure 13: Pressure distribution at t = 1.95E− 4 s with ABC.

and ABC. When imposing homogeneous Neumann boundary conditions, the non-physical reflected

wave directly affects the incoming wave producing a total wave about double the amplitude of cor-

rect solution. As for the Absorbing boundary, no reflection can be observed for the entire compu-

tational time.

4.2 Lighthill’s acoustic analogy

The goal of this section is to validate the implementation of lighthill’s acoustic analogy in this

study which solves the weak form presented in equation (22). A flow field created by the co-rotating

36



Figure 14: Pressure distribution at t = 1.95E− 4 s without ABC.
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Figure 15: Pressure distribution at t = 2.3E− 4 s with ABC.

vortex pairs was considered to analyze and validate a hybrid technique utilized in this study. The

original Lighthill acoustic analogy [23] was implemented and the auditory sources were identi-

fied using the hydrodynamic velocity field. In the numerical examples presented in this section,

the flow field generated by the spinning vortex pair was estimated using a numerical region of

size 10× 10 m in which the acoustic nodal sources and acoustic propagation of the inhomoge-

neous wave equation were determined. In order to assess the fields, the rotating radius was set

to ro = .5m, the circulation intensity to = 12.00531m2/s, and the sound speed to co = 1m/s.
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Figure 16: Pressure distribution at t = 2.3E− 4 s without ABC.

39



Figure 17: Evaluation of the acoustic pressure using homogeneous Neumann and first order ABC,

for a point located at (x1, x2) = (50 mm, 25 mm).

Hence, the wavelength was 1.644 m. This is similar to the previous studies conducted by other au-

thors [67, 71, 72] to validate aeroacoustics simulation platforms developed using other numerical

techniques. To obtain the tangential velocity field, it is necessary to apply the vortex core model

as suggested in [73–75]. At each point vortex for radii, a desingularized kernel based on the Scully

model [76,77] was applied. The equations for the velocity components are given as:

ux = − Γ

2π

y

rcore + x+ y2
;uy =

Γ

2π

x

rcore + x2 + y2
, (30)

The exact solution of this problem is known [78]:

p′ =
ρ0Γ

4

64π3r40c
2
0

[J2(kr) cos(Ψ)− Y2(kr) sin(Ψ)] , (31)

where Y2(kr) and J2(kr) are second order Bessel functions k = 2ω , Ψ = 2(ωt − θ) and p′ is

acoustic pressure.
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A direct implantation of the equation(30) with ro = 0.5 m was considered and the evolution of

the velocity field with time are shown in Fig.18a and Fig. 18b. Furthermore, the corresponding

forces computed as the solution of the discrete equation(19) are shown in Fig. 19a, and Fig.19b.
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(a) time =0s

(b) time =3s

Figure 18: Velocity field for two co-spinning vortex
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Next, the acoustic pressure is solved for using the transient discrete equation (25), and potted in

Fig. 20a, Fig. 20b, Fig. 21a, and Fig. 21b and show the the acoustic pressure as it evolves with

time. The spiral behavior is detected and no artificial reflection is visible from the boundary con-

firming the effectiveness of the ABC used.
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(a) time =0s

(b) time =3s

Figure 19: Acoustic sources field for two co-spinning vortex
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(a) time =1s

(b) time =3s

Figure 20: Acoustic pressure field (Pa/m) for the two co-spinning vortex for different times
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Please note the presence of noise in the solution of the time-dependant wave equation as shown in

Fig. 21b. In contrary when solving the time-harmonic problem equation29 shown in Fig. 22a no

numerical noise is detectable while the computational time is reduced dramatically. The solution

of the time-harmonic problem matches with the analytical solution shown in Fig. 22b very well

which is calculated for time greater than 12s to ensure the time harmonic solution is obtained.
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(a) time =6s

(b) time =9s

Figure 21: Acoustic pressure pa field for The two co-spinning vortex case
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Finally, in order to fully able to compare the analytical and numerical solutions, the decay of the

acoustic pressure is plotted along the x-axis for both numerical and analytical solutions in Fig23.

A good agreement is observed corresponding to an error less than 5%. The phase shift error ob-

served could be due to the discrete evaluation of the sources since the approximate values for ve-

locities were calculated to avoid singularity at the center of the vortex. Also, it is noted that the

acoustic source is decaying by a rate of about 10% along the x-axis as expected.
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(a) Lighthills harmonic solution for the two co-spinning vortex case

(b) Analytical harmonic solution for the two co-spinning vortex case
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Figure 23: The decay of the acoustic pressure along the x-axis

4.3 Solution to Navier-Stocks equations

In order to validate the implementation of the Navier -Stocks equations, the proposed formulation

was used to solve the benchmark problem of Lid-driven cavity flow. The governing equations were

solved for different values of the Reynolds number and the results were compared with published

studies conducted using FEA [79].
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4.3.1 Lid-driven cavity flow

In this section, the standard benchmark the problem, lid-driven cavity flow, is introduced and

solved for unsteady, incompressible fluid flow simulation. We assumed the initial boundary con-

ditions at solid walls as a no-slip boundary condition for velocity components. Pressure is con-

sidered to be zero at the lower left corner point as shown in Fig 24, with zero gradients over the

walls. The Reynolds number is changed based on the side length of the cavity and the speed of

the lid.

Figure 24: The boundary conditions for the lid-driven cavity model.

In this thesis, the benefits of using IGA and the possibility of reducing the computational cost

were investigated. As shown in Fig. 25 a steady state velocity magnitude solution for Re = 100

was found using only 8×8 element, and the axial velocity found was validated against the results

presented by G.Hirsch [80, 81] as well as those obtained using conventional FEA [79]. As illus-

trated in Fig. 26 the IGA solution found with only 8×8 elements in less than two minutes matches
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very well with those obtained in previous studies. In particular, conventional FEA results were

found using a 50×50 mesh grid. The reduction in the number of degrees of freedom required demon-

strates the effectiveness of the proposed IGA platform for aeroacoustic analyses.

Figure 25: Velocity field for Reynolds number 100 obtained only with 8×8 elements.

More examples, with a higher level of refinement, were obtained for this problem at a wide range

of the Reynolds number values, Re, to show the effect of the Reynolds number on the primary

vortex location and axial and normal velocities. The velocity and pressure fields has been plotted

for Re =5 in Fig. 27a and Fig. 27b respectively. Next, the solution was found for the Reynolds

numbers Re = 100 and Re = 1000, and the pressure fields are shown in Fig. 28a and Fig. 29a re-

spectively. The corresponding velocity fields are shown in Fig. 28b and Fig. 29b. In order to test

the limits of the codes, the Re = 10,000 has been applied to the cavity problem. Surprisingly re-

liable results were found as shown in Fig. 30a and Fig. 30b. The pressure stabilization factor was
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Figure 26: Axial velocity for different solutions against IGA using only 8×8 elements .
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taken to be 0.01 with a time step of 0.08 s for Reynolds numbers 100, 1,000, and 10,000, and a

stabilization factor of 0.1 with a time step of 0.008 s was considered for Re = 5.
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(a) Pressure field for Reynolds number Re = 5 with

256 elements.

(b) Velocity field for Reynolds number Re = 5 with

256 elements .

Figure 27: Velocity and pressure fields for Reynolds number Re = 5.
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(a) Pressure field for Reynolds number Re = 100

with 256 elements.

(b) Velocity field for Reynolds number Re = 100

with 256 elements .

Figure 28: Velocity and pressure fields for Reynolds number Re = 100.56



(a) Pressure field for Reynolds number Re = 1000

with 256 elements.

(b) Velocity field for Reynolds number Re = 1000

with 256 elements.

Figure 29: Velocity and pressure fields for Reynolds Re = 1000.57



The velocity fields were validated against published results available in the literature for Reynolds

numbers 100 and 1000 and the solutions presented in Fig. 28b, Fig. 31, Fig. 29b and Fig. 32 had a

great match with the published results [79]. Furthermore, a very good resemblance exists for the

solutions presented in Fig. 30b, Fig. 33, and those obtained using commercial CFD software.

It is interesting to note that in all the cases studied the maximum pressure field was consistently

located at the right corner of the lid, which is in the direction of lid cover velocity. Also, the di-

ameter of the vertices increased with increasing the Reynolds number, as well as the negative pres-

sure area.
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(a) Pressure field for Reynolds number Re = 10,000

with 256 elements.

(b) Velocity field for Reynolds number Re = 10,000

with 256 elements.

Figure 30: Velocity and pressure fields for Reynolds Re = 10,000.
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Figure 31: FEA element analysis solution for Reynolds number Re = 100.

The effect of Reynolds number can be also clearly seen from the axial and normal velocity compo-

nents profiles at x = 0.5 and y = 0.5 as shown in Fig. 34 and Fig. 35, respectively. It can be seen

that increasing the Reynolds number increases the maximum axial and normal velocity near the

top of the lid-cavity.
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Figure 32: FEA element analysis solution for Reynolds number Re = 1000.

Figure 33: CFD element analysis solution for Reynolds number Re =10000.

61



Figure 34: Affect of increasing Reynolds number on axial velocity at x=0.5.

At this point, the numerical solution is fully validated and implementation is proven quite reliable.

Hence, a few applications of this numerical method are discussed next. It should be noted that

the proposed platform in IGA considerably reduces the required computational time. For instance,

the analyses performed using IGA code for Reynolds number Re =100 took almost 90 seconds

while it took around two hours to solve the same problem using conventional FEA.

5 Applications

The developed coupled numerical scheme was used to evaluate the acoustic pressure for 2-d cases.

As shown in Fig. 36, we consider a fully developed flow entering a wind tunnel. The tunnel size is

0.4 m in width by 1 m in length and entering velocity 3.3m/s. No slipping boundary conditions

were applied at the walls as the pressure remained atmospheric at the exit. For acoustic analyses,
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Figure 35: Affect of increasing Reynolds number on normal velocity at y = 0.5 m.

the first-order absorbing boundary was applied at all four sides. The domain mesh is shown in

Fig. 37 which is composed of 256 elements.

Figure 36: Schematic of wind tunnel problem
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Figure 37: Mesh of wind tunnel problem

5.1 Fluid-structure interaction analyses and computation of noise sources

The evolution of the velocity fields is shown in Fig. 38, Fig. 39, and Fig. 40. The turbulence flow

is not observed due to the non-existence of any obstacle to urge the flow to act chaotic with a max

speed over 3.5 m/s. In order to get the harmonic solution, as mentioned before, a Fourier trans-

form is applied to the forces computed at degrees of freedom. The most common frequency was

selected, which in this case was 33hz, to compute the right-hand side of the equation(29). A big-

ger 0.8 × 0.8 m computational domain was considered to evaluate the acoustic pressure. First, the

acoustic forces were transferred from the small domain through interpolation. The acoustic source

computed over the extended domain is shown in Fig. 41 and its magnitude is shown in Fig. 42.

Then, the acoustic pressure field was calculated using harmonic formulation (equation (29) and il-
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lustrated in Fig. 43 along with pressure amplitude in Fig. 44 which shows a maximum amplitude

of about 0.00052 pa/m around the entrance of the tunnel.

Figure 38: Velocity field at time t=.01 s for the flow passing through tunnel problem

Figure 39: Velocity field at time t=.5 s for the flow passing through tunnel problem
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Figure 40: Velocity field at time t=1 s for the flow passing through tunnel problem
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Figure 41: Harmonic acoustic sources generated from flow passing through tunnel
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Figure 42: Amplitude of acoustic sources generated from flow passing through tunnel
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Figure 43: Harmonic acoustic pressure generated from flow passing through tunnel
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Figure 44: Amplitude of acoustic pressure generated from flow passing through tunnel
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5.2 The effect of adding an obstacle inside the tunnel

In order to investigate the possibility of noise reduction by adding an acoustic MM it is neces-

sary to examine the effect of adding an obstacle and study its interaction with the flow, compute

the noise generated by this obstacle and finally examine the possibility of reducing the noise. We

note that adding an obstacle changes the behavior of the fluid, making it more turbulent and most

likely increasing the noise levels itself. To illustrate the effects of adding an obstacle upfront to the

flow, we are considering adding a cylindrical obstacle, as seen in Fig. 45 with a diameter of 0.04m.

The new case has the same boundary conditions stated in the tunnel problem with the addition of

added no slipping boundary conditions along the surface of the cylinder. For the meshing aspect,

four patches have been used to represent the domain, as shown in Fig. 48a and each patch was

composed of about 270 elements.

Figure 45: Schematic of wind tunnel problem with cylindrical object

The changes of the velocity field with time are shown in Fig. 46, and Fig. 47 along with the evolu-

tion of the vortex behind the cylinder which increases the turbulence of the flow and increases the

noise generated.
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(a) Velocity distribution at time =.001 s

(b) Velocity distribution at time =.1 s

(c) Velocity distribution at time =1 s

Figure 46: Velocity distribution over time before turbulence starts72



A larger computational domain was used for the harmonic acoustic simulations. The acoustic

wave propagation domain was considered to be double the size of the domain used for the veloc-

ity field calculations as shown in Fig. 48b. The computed acoustic source was transferred from

the old space to the new one with linear interpolating at the degrees of freedom and no addi-

tional sources were considered outside the small domain. The acoustic forces calculated using the

Lighthill analogy changed considerably with time which was due to adding obstacles. As a case

study, a point of x = 0.21y = 0 was selected to observe the effect. As shown in Fig. 49 the acous-

tic sources started from zero due to the non-existence of velocity. Then they started fluctuating

as a result of the development of a vortex. Next, a fast Fourier transfer was applied to the sources

for all the degrees of freedom to obtain a harmonic solution; as mentioned before the harmonic

solution is considered the most accurate, and less computation-demanding. The real part of the

computed harmonic forces is depicted in Fig. 50 which represents the right hands side of the equa-

tion (29). Finally, acoustic pressure was computed and the amplitude of the acoustic pressure was

depicted in Fig. 51. It can be observed that most of the pressure is generated by the obstacle with

a maximum amplitude of .0045 Pa/m.
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(a) Velocity distribution at time =1.1 s

(b) Velocity distribution at time =1.3 s

(c) Velocity distribution at time =1.5 s

Figure 47: Velocity distribution over time after turbulence starts
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(a) Mesh used for fluid domain

(b) Mesh used for Acoustic domain

Figure 48: Mesh used for both Fluid and acoustic cases
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Figure 49: Time domain for acoustic force at point x = .21
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Figure 50: Harmonic noise sources in (Kg/s2) for circular object case
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Figure 51: Amplitude of acoustic Pressure(pa/m) resulting from harmonic solution for circular

object case
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5.3 A metamaterial for aeroacoustic noise reduction

In this section, the possibility of reducing aeroacoustic noise by adding a MM is investigated. First,

the cylindrical obstacle is replaced with a tuned MM that works in the same frequency range. The

proposed MM has a similar outer shape to a cylinder, as shown in Fig. 52. The selected MM de-

sign has a cylindrical outer shape very similar to that of a cylinder. Hence, it is reasonable to as-

sume that velocity fields and the acoustic noise around the MM are the same as those obtained for

a cylindrical obstacle. A 0.4 m radius was considered as the computational domain for the acous-

tic calculation, as shown in Fig. 53, to ensure that all the sources are included in the calculation.

The MM domain was generated using 59 patches. To get the acoustic pressure, first, the sources

were transferred to the extended computational domain as shown in Fig. 54. Then, acoustic pres-

sure was computed using equation (29) and its Amplitude is depicted in Fig. 55.

In contrast to the cylinder example, it can be readily observed that the sound pressure is trapped

inside the MM and decoupled from the exterior wave. As a result, acoustic pressure was reduced

considerably elsewhere, especially when compared with Fig. 50. Finally, to summarize, the axial

acoustic pressure is plotted in Fig. 56 for all the cases considered in this study, namely the empty

tunnel, the tunnel with a circular object, and the MM. For the cylindrical obstacle, one can detect

a periodic change in pressure which is consistent with the evolution of the vortex. The acoustic

pressure from the empty tunnel is almost constant. For the MM, however, the analysis shows a

decrease in acoustic pressure along the x− axis. This confirms the possibility of aeroacoustic noise

reduction using MMs in spite of increased flow fluctuations.
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Figure 52: Close image of the acoustic domain that shows the shape of the metamaterial

Figure 53: Acoustic domain
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Figure 54: Interpolated acoustic sources(Kg/s2) for the metamaterial domain
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Figure 55: Acoustic pressure amplitude (pa/m) domain for the metamaterial
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Figure 56: Acoustic pressure amplitude (pa/m) along the x− axis for the three cases
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6 Conclusions

In this thesis, isogeometric analysis is proven to be a powerful method to perform aeroacoustic

analyses offering high accuracy per degree of freedom. The proposed platform also considerably

reduced the required computational time when compared with conventional FEA. The pressure

stabilized technique was suggested for treating the incompressibility constraint. Stable solutions

were obtained, and NURBS interpolation functions were used for all flow variables. Both New-

mark and forward schemes were used for time discretization. Lighthill formulation was proposed

to evaluate the noise induced by the flow. lid-driven cavity benchmark problem was considered

as a means of validation of the proposed platform in solving Navier stokes equations. Co-rotating

vortex pair benchmark problem was used to validate the evaluation of acoustic sources. Further-

more, the noise generated by airflow was studied for a tunnel and the effect of adding obstacles

was investigated. Finally, it was shown that aeroacoustic noise can be reduced by adding a tuned

MM despite increasing the turbulence of the flow field.

Although this thesis provides a numerical tool to predict the noise induced by the interaction of

fluid and objects, it doesn’t eliminate the need for experimental methods, so experimental valida-

tion is recommended as a future study. Moreover, an optimization technique should be developed

to design problem-specific MMs. Another possible improvement is the extension of the analyses

platform from 2- dimensional to three-dimensional.
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