
University of Texas at Tyler University of Texas at Tyler

Scholar Works at UT Tyler Scholar Works at UT Tyler

Electrical Engineering Theses Electrical Engineering

Fall 8-2011

A Study of Multiprocessor Systems using the Picoblaze 8-bit A Study of Multiprocessor Systems using the Picoblaze 8-bit

Microcontroller Implemented on Field Programmable Gate Arrays Microcontroller Implemented on Field Programmable Gate Arrays

Venkata Mandala

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Mandala, Venkata, "A Study of Multiprocessor Systems using the Picoblaze 8-bit Microcontroller
Implemented on Field Programmable Gate Arrays" (2011). Electrical Engineering Theses. Paper 21.
http://hdl.handle.net/10950/59

This Thesis is brought to you for free and open access by
the Electrical Engineering at Scholar Works at UT Tyler. It
has been accepted for inclusion in Electrical Engineering
Theses by an authorized administrator of Scholar Works
at UT Tyler. For more information, please contact
tgullings@uttyler.edu.

http://www.uttyler.edu/graduate/
http://www.uttyler.edu/graduate/
https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/ee_grad
https://scholarworks.uttyler.edu/ee
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/59?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu

A STUDY OF MULTIPROCESSOR SYSTEMS USING THE

PICOBLAZE 8-BIT MICROCONTROLLER IMPLEMENTED ON FIELD

PROGRAMMABLE GATE ARRAYS

by

VENKATA CHANDRA SEKHAR MANDALA

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical Engineering

David H. K. Hoe, Ph.D., Committee Chair

College of Engineering and Computer Science

The University of Texas at Tyler

August 2011

Acknowledgements

First of all, I am thankful to my father Mandala Maheswara Rao and mother

Suguna Kumari and sister Geetha Devi for making my dream come true. I would like to

thank Dr. David Hoe, my thesis advisor, for his support in my research in different areas

of Electrical Engineering. I would also thank him for his encouragement, patience and

supervision from the preliminary stages to the concluding level in my thesis. Without his

guidance and persistent help this thesis would not have been possible.

I would like to thank my committee members, Dr. Hector A. Ochoa and Dr.

Mukul V. Shirvaikar for taking the time to review my work. I am thankful to Dr. Mukul

Shirvaikar for supporting and guiding me throughout my Master’s degree. I would like to

thank the entire Electrical Engineering department and the University of Texas at Tyler

for supporting me throughout my Master’s degree. Also, I would like to thank Chris

Martinez, an undergraduate student in Electrical Engineering, for helping me in my

thesis. Finally, I would like to thank all those who supported me in any respect during the

completion of the thesis.

i

Table of Contents

List of Figures .. iv

List of Tables ... vi

Abstract ... vii

Chapter One: Introduction .. 1

1.1 Soft Processor Cores on FPGA .. 1

1.2 Research Objectives ... 2

1.3 Research Method .. 3

1.4 Thesis Outline ... 3

Chapter Two: Background .. 4

2.1 Trend Towards Multicore Processors ... 4

2.1.1 Power Wall Problem ... 4

2.2 Multicore Processor .. 7

2.2.1 Array of Processors ... 8

2.2.2 Array of Functional Units ... 9

2.3 Reconfigurable Computing .. 11

2.3.1 Advantages of Reconfigurable Computing .. 11

2.3.2 FPGAs... 11

2.3.2.1 Microcontroller within an FPGA ... 11

2.3.3 Array of Soft Processors ... 12

2.3.4 PicoBlaze Microcontroller .. 13

2.4 Interprocessor Communication .. 15

2.5 Summary ... 16

Chapter Three: FIFO Style Interprocessor Communication ... 17

3.1 FIFO Style Communication ... 17

3.1.1 FIFO .. 17

3.1.2 PicoBlazes with a FIFO Buffer ... 19

3.1.3 Experimental Verification of the FIFO with Two PicoBlazes 20

ii

3.2 Array of PicoBlazes .. 20

3.2.1 The Wrapper ... 20

3.2.2 Need for an Array of PicoBlaze Units .. 24

3.2.3 Details of the Array .. 25

3.2.4 Routing/Logic Cell Resources Comparison ... 26

3.3 Experiment with Array of PicoBlazes .. 26

3.3.1 Counting Numbers Experiment .. 27

3.3.2 Status Signals and Read/Write Strobe Conditions Setup 27

3.3.3 Validation and Results .. 28

3.4 Application (A 4-tap FIR Filter) ... 29

3.4.1 Algorithm and Simulation of FIR ... 29

3.4.2 Array Structural Flow For FIR ... 29

3.4.3 Validation and Results .. 31

3.5 Summary ... 33

Chapter Four: Shared Memory Inter-Processor Communication 34

4.1 Shared Memory .. 34

4.1.1 Shared Memory Mode of Communication ... 34

4.1.2 Sharing BlockRAM Between Two PicoBlazes .. 35

4.1.3 Shared Memory for Communication Between PicoBlaze Processors 36

4.2 Need for an Arbiter ... 36

4.2.1 Arbitration ... 37

4.3 Round-Robin Arbiter .. 37

4.3.1 Implementation of a Round-Robin Bus Arbiter ... 38

4.3.2 Round-Robin Arbiter with Four Processors ... 39

4.4 PicoBlazes Using Round-Robin Arbiter .. 40

4.4.1 Four PicoBlazes Using Round-Robin Arbiter .. 40

4.4.2 Implementation Description of Shared Memory with Round-robin Arbiter

 ... 40

4.4.3 Observations ... 42

4.5 Summary ... 43

Chapter Five: Conclusions and Future Work ... 44

iii

5.1 Conclusion .. 44

5.2 Future Work .. 44

References ... 46

Appendix A: Assembly Code for Button Press Experiment ... 50

A.1 PicoBlaze 1 to FIFO Assembly Code for Button Press Experiment 50

A.2 FIFO to PicoBlaze 2 Assembly Code for Button Press Experiment 51

Appendix B: Assembly Code for Counting Numbers Experiment 53

B.1 PicoBlaze 4 Assembly Code for Counting Numbers Experiment 53

B.2 PicoBlaze 1 (P1) Assembly Code for Counting Numbers Experiment 55

B.3 PicoBlaze 2 Assembly Code for Counting Numbers Experiment 56

B.4 PicoBlaze 3 Assembly Code for Counting Numbers Experiment 57

B.5 PicoBlaze 5 Assembly Code for Counting Numbers Experiment 58

Appendix C: Code for 14 PicoBlazes FIR Filter Experiment .. 59

C.1 N-tap and T-input FIR Filter Code in C Language .. 59

C.2 PicoBlaze Array Code in VHDL for FIR Filter Design 60

C.3 Four FIFO Wrapper Design Code in VHDL ... 79

C.4 PicoBlaze 1 to PicoBlaze 10 Assembly Code for FIR Filter Design 83

C.5 PicoBlazeU0 to PicoBlazeU3 Assembly Code for FIR filter Design 86

Appendix D : Spartan 3E and Virtex 5 Statistics .. 87

D.1 Logic Cells LEGEND Color on Virtex 5 and Spartan 3E FPGA 87

D.2 Occupation of Logic Cell Resources on Virtex 5 FPGA 87

D.3 Occupation of Logic Cell Resources on Spartan 3E FPGA 88

D.4 Table Showing General Comparison of Virtex 5 and Spartan 3E FPGAs 88

Appendix E: Arbitration Schemes .. 89

E.1 Different Arbitration Schemes: (A Section from Chapter4) 89

Appendix F: Delay Statistics for Spartan 3E and Virtex 5 ... 91

F.1 Place and Route Delay Statistics for Spartan 3E and Virtex 5 FPGAs 91

F.2 Synthesis (Pre-Routing) Report Statistics for Spartan 3E and Virtex 5 FPGAs 92

iv

List of Figures

Figure 2.1: Trend in clock rate and power for Intel uniprocessors (single core)...........

5

Figure 2.2: Plot showing supply voltage () and threshold voltage scaling

transistor size …………………………………………………………………..

7

Figure 2.3: Array of processors where PR is Processor and MEM is memory............. 9

Figure 2.4: Array of Functional Units (FU)…………………………………………... 10

Figure 2.5: Array of Soft Processors (CN stands for Computation Nodes)................... 13

Figure 2.6: PicoBlaze Microcontroller Block Diagram………………………………. 14

Figure 2.7: KCPSM3 Assembler Files……………………………………………….. 15

Figure 3.1: Theoretical view of a FIFO Buffer…………………………..…………… 18

Figure 3.2: Three Possible Cases of a circular FIFO Buffer………………………….. 18

Figure 3.3: Pseudo code for FIFO write and read cases……………………………… 19

Figure 3.4: Two PicoBlazes (PB1 and PB2) communicating through a FIFO Buffer... 19

Figure 3.5: Different topologies in designing a Wrapper…………...………………... 21

Figure 3.6: Wrapper design view in schematic editor (1, 4 and 8 FIFOs from left)… 21

Figure 3.7: Detailed Wrapper with four FIFO buffers and a PicoBlaze Processor…… 22

Figure 3.8: Port map for the Wrapper entity in VHDL……………………………….. 23

Figure 3.9: Wrapper with port id coded in VHDL……………………………………. 24

Figure 3.10: A wrapper that connects to four neighboring Processors……………….. 25

Figure 3.11 Experiment setup with 5 PicoBlazes where PicoBlaze 4 is destination…. 27

Figure 3.12: Destination PicoBlaze holding data in FIFOs…………………………... 28

Figure 3.13: A 4-tap FIR Filter Application on Array of PicoBlaze Units…………… 31

Figure 4.1: Two PicoBlazes sharing one Block RAM……………………………….. 35

Figure 4.2: Two PicoBlazes using two separate 512- instruction memory sections

from BRAM…………………………………………………………………………...

36

Figure 4.3: Round-robin Arbiter……………………………………………………… 39

Figure 4.4: Round-robin Arbiters with Four Processors……………………………… 40

Figure 4.5: Four PicoBlazes with Shared RAM mode communication using Bus

v

Arbiter………………………………………………………………………………… 41

Figure D-1: Legend colors for 14 PicoBlaze cores on FPGA...………………………. 87

Figure D-2: Occupation of logic cells on Virtex 5 FPGA……………………………. 87

Figure D-3: Occupation of logic cells on Spartan 3E FPGA………………………… 88

Figure F-1: delay for Spartan 3E with 14 PicoBlazes (FIFO) setup…………………. 91

Figure F-2: delay for Virtex 5 with 14 PicoBlazes (FIFO) setup…………………….. 91

Figure F-3: delay for Spartan 3E with 4 Picobalzes (shared memory) setup………… 91

Figure F-4: delay for Virtex 5 with 4 PicoBlazes (shared memory) setup…………… 91

Figure F-5: Synthesis delay report for Spartan 3E with 14 PicoBlaze setup……….... 92

Figure F-6: Synthesis delay report for Virtex 5 with 14 PicoBlazes setup…………… 92

Figure F-7: Synthesis delay report for Spartan 3E with Shared memory setup……… 93

Figure F-8: Synthesis delay report for Virtex 5 with 4 Shared memory setup……….. 93

vi

List of Tables

Table 3.1: Statistics for the 1, 4, and 8 FIFO Wrapper in Spartan 3E………………….. 26

Table 3.2: Statistics for the 1, 4, and 8 FIFO Wrapper in Virtex 5……………………... 26

Table 3.3: Logic cell Statistics of the Spartan 3E and Virtex 5 FPGAs implementing an

array of fourteen PicoBlazes……………………………………………………………. 32

Table 4.1: Logic cell Statistics of the Spartan 3E and Virtex 5 FPGAs implementing four

PicoBlaze processors and a shared memory……………………………………………. 42

Table D-1: Comparison of Spartan 3E and Virtex 5 FPGA……………………………. 88

vii

Abstract

A STUDY OF MULTIPROCESSOR SYSTEMS USING THE

PICOBLAZE 8-BIT MICROCONTROLLER IMPLEMENTED ON FIELD

PROGRAMMABLE GATE ARRAYS

Venkata Chandra Sekhar Mandala

Thesis Chair: David H. K. Hoe, Ph.D.

The University of Texas at Tyler

August 2011

As Field Programmable Gate Arrays (FPGAs) are becoming more capable of

implementing complex logic circuits, designers are increasingly choosing them over

traditional microprocessor-based systems for implementing digital controllers and digital

signal processing applications. Indeed, as FPGAs are being built using state-of-the-art

deep submicron CMOS processes, the increased amount of logic and memory resources

allows such FPGA-based implementations to compete in terms of speed, complexity, and

power dissipation with most custom-built chips, but at a fraction of the development

costs. The modern FPGA is now capable of implementing multiple instances of

configurable processors that are completely specified by a high-level descriptor language.

Such arrays of soft processor cores have opened up new design possibilities that include

complex embedded systems applications that were previously implemented by custom

multiprocessor chips. As the FPGA-based multiprocessor system is completely

configurable by the user, it can be optimized for speed and power dissipation to fit a

given application.

viii

The goal of this thesis is to investigate design methods for implementing an array

of soft processor cores using the Xilinx FPGA-based 8-bit microcontroller known as

PicoBlaze. While development tools exist for the larger 32-bit processor from Xilinx

known as MicroBlaze, no such resources are currently available for the PicoBlaze

microcontroller. PicoBlaze benefits in applications that requires only less data bits (less

than 8 bits). For example, consider the gene sequencing or DNA sequencing in which the

processing requires only 2 to 5 bits. In such an application, PicoBlaze can be a simple

processor to produce the results. Also, the PicoBlaze unit offers a finer level of

granularity and hence consumes fewer resources than the larger 32-bit MicroBlaze

processor. Hence, the former will find applications in embedded systems requiring a

complex design to be partitioned over several processors but where only an 8-bit datapath

is required.

The main challenge of this research is evaluating efficient schemes for

interprocessor communication suitable for use with an 8-bit microcontroller. Two

standard communication schemes were considered: the Mailbox method and Shared

memory design. The former was found to be suitable for an array of PicoBlaze units that

require nearest neighbor communication. This topology is sufficient for many signal

processing applications. Various degrees of interconnect capability were considered for

the Mailbox method and a wrapper that enables efficient array design was implemented.

A simple Finite Impulse Response (FIR) filter was implemented to verify the design. For

the Shared memory design, a round-robin arbiter design was considered. and four

PicoBlaze units were connected to a single shared memory over a common bus.

 This research provides some guidelines for implementing a multiprocessor system

using the PicoBlaze processors. A comparison of logic and memory resource utilization

indicates that a wrapper design using four FIFO (First In First Out) buffers provides a

good tradeoff between interconnectivity and routing complexity, allowing many common

signal processing applications to be implemented. The shared memory approach is more

suited for designs where scaling to a large number of processors that need to transfer

arbitrary and large blocks of data is required.

1

Chapter One

Introduction

Field Programmable Gate Arrays (FPGAs) are becoming a viable alternative for

digital controllers and Digital Signal Processing (DSP) applications which were

previously dominated by microprocessors and dedicated chips. The primary reason for

the recent increased popularity of FPGA-based designs is that the modern FPGA chip

now has the logic cell and memory resources implemented on advanced processes that

allow them to realize many complex designs that can run more efficiently than regular

microprocessor-based systems. This efficiency is seen in lower power consumption while

maintaining the required clock speed. Also the growth in logic cell resources have

allowed soft processor cores to be implemented on an FPGA.

 Today, multiple soft processor cores can be implemented on an FPGA due to the

increase of logic cells and memory unit resources. The ability to specify the hardware for

implementing an array of processors through the use of a high-level descriptor language

(HDL) allows a high-degree of flexibility for such FPGA-based designs. In general,

Multiprocessor systems-on-a-chip (MPSoC) are being developed to support multiple

applications on modern embedded systems. The ability to create an array of soft

processor cores on a reconfigurable fabric with the associated advantages of flexibility

and optimized run-time efficiency has made the idea of implementing complex embedded

systems with FPGAs an attractive design option [1, 2].

1.1 Soft Processor Cores on FPGA

MPSoC designs are required in applications that perform multiple operations (e.g.

smart phones, PDAs, set-top boxes). The challenge for design occurs when hardware and

software implementations are considered. Due to the increased number of logic cells,

speed and performance, FPGAs can implement multiple soft processor cores. MPSoC is

beneficial in terms of power consumption, as they can be clocked at lower speeds thereby

2

reducing the power consumed. Also, a high degree of parallelism can be maintained

when using soft processor cores [3].

 There have been several VLSI prototypes of arrays of simple processors

developed at both the industrial and university level. Each simple processor in an array

typically has local memory and specialized interconnections to communicate with

neighboring processors. Some design examples include the PicoChip from PicoArray, the

RAW processor developed at MIT, and the Am2045 core from Ambric [4, 5, 6]. Also,

there has been recent research into an asynchronous array of simple processors (AsAP)

chip consisting of processors with an array size of 6 × 6 that is designed to compute DSP

tasks efficiently [7]. Soft processor cores like MicroBlaze from Xilinx, Nios from Altera,

and the Mitrion Virtual Processor from Mitrionics have been implemented as an array of

soft processor cores for various applications [2, 4].

1.2 Research Objectives

This thesis develops a methodology for implementing an array of soft processor

cores using a simple 8-bit microcontroller known as PicoBlaze. While Xilinx provides a

design flow for implementing an array of MicroBlaze processors (a 32-bit RISC-style

processor), no such resources exist for the PicoBlaze processors. The tasks for this thesis

include understanding the utilization of resources available on an FPGA and developing

an application which involves programming the PicoBlaze processor using assembly

language coding and specifying the hardware implementation using a high-level

descriptor language. The templates of different topologies from different architectures

will be examined and the best architecture for the design of an array of soft processor

core will be determined. In summary, a systematic study of an array of soft processor

cores using the PicoBlaze 8-bit microcontroller is undertaken. Unlike the Xilinx

Microblaze processor, which has the resources for optimizing interprocessor

communication, there is a need to build the necessary logic on an FPGA for

communicating between arrayed PicoBlaze processors. A wrapper needs to be designed

that should be flexible enough to be used for a wide range of signal processing

applications.

3

1.3 Research Method

The research method includes the following. Two Xilinx development boards

(Spartan 3E and Virtex 5 – see Appendix D-4 for a specification of the two FPGAs) are

chosen and a PicoBlaze microcontroller is studied and implemented using VHSIC (very

high speed integrated) Hardware Description Language (VHDL) on the two FPGAs.

Then, different architectures for an array of processors and different communication

schemes are studied. A wrapper is designed that is used to produce an array as well used

to keep the flow of resources constant for every unit. Then, an array of PicoBlazes is

designed and implemented on the development boards. Finally, a simple FIR filter is

implemented on the array to verify the functionality of the design. At all stages, the

results are observed on the LEDs of the Spartan 3E and Virtex 5 boards.

1.4 Thesis Outline

The flow of the thesis is as follows: Chapter 2 gives the background information

on arrays built from simple processors, functional units, and soft processor cores. Details

ofthe PicoBlaze soft processor core are also discussed in this chapter. In Chapter 3,

communication between the Picoblaze processor cores is performed using FIFO buffers.

Also, this chapter gives details of the wrapper and array of PicoBlaze units. In Chapter 4,

the shared memory mode of communication for the PicoBlaze processor using an arbiter

is described. Chapter 5 provides some conclusions and gives an overview of future work.

4

Chapter Two

Background

This chapter gives the background information on the need for multicore

processors. The first section of the chapter describes the trend towards multicore

processors. The second section is a discussion about an array of different processors in

different categories. The next section gives the details of the PicoBlaze soft processor.

And, the last section talks about the different modes of interprocessor communication for

a PicoBlaze microcontroller. Finally, a summary is provided for this whole chapter.

2.1 Trend Towards Multicore Processors

This section deals with the issues encountered with advanced processor design.

First, the power wall problem is considered in which different factors and equations are

discussed. This provides the basis for understanding the trend towards multicore

processors.

2.1.1 Power Wall Problem

Since the invention of the microprocessor in 1971, clock rates for processors have

continued to increase until early in the 2000’s. This was accomplished by technology

scaling, where the decrease in integrated circuit (IC) feature sizes have made making

Field effect transistors (FETs) faster and have allowed more transistors to be

implemented on a single chip. In 1965, Gordan E. Moore predicted that the numbers of

transistors on an IC will double every eighteen months. This has become known as

“Moore’s Law,” and has held true to this point. Figure 2.1 illustrates the increase in

clock rate with each succeeding generation of Intel single core processors. What is

notable is the peak frequency of 3.6 GHz reached by the Pentium 4 in 2004. Intel had

planned to implement a 4 GHz version of its Pentium 4 processor but ended up cancelling

its release [8]. The problem is the increasing power dissipation that accompanies each

increase in clock rate.

5

Figure 2.1: Trend in clock rate and power for Intel uniprocessors (single core) [9]

There is a limit to how much power can be dissipated by an integrated circuit due

to the maximum rate of heat removal from an air-cooled micro-chip. This problem,

known as the “power wall,” can be modeled theoretically [10]. For CMOS circuits

(currently the most common technology for implementing ICs), the primary source of

power dissipation is the dynamic power, the power consumed during switching. The

dynamic power dissipation depends on the capacitive loading of the logic gate, the

voltage applied, and the frequency of operation:

 (2.1)

where,

 = dynamic power of the circuit,

 = capacitive load of the circuit

 = supply voltage

 = frequency (clock rate)

6

As feature sizes decrease, the trend is to decrease the power supply voltage (see

Figure 2.2). The main reason is to keep the electric field in the transistors to a

manageable level. This also helps with minimizing the power dissipation. However,

lowering the supply voltage also has a negative impact on circuit speed. This can be seen

by the following sets of equations:

 (2.2)

 (2.3)

where is the drain-to-source current of a MOSFET and is its threshold voltage. To

improve as the supply voltage is decreased, the threshold voltage can be decreased.

However, lowering below 0.5 V makes it increasingly difficult to turn the transistor

off, especially for deep submicron transistors. Indeed, for circuits implemented on a

process in the nanoscale regime, up to 40% of the power dissipation can be due to

“leaky” transistors. The following equation summarizes the total power dissipation for a

CMOS circuit:

 (2.4)

where,

 = activity factor

 = supply voltage

 = static current

 = leakage current

Power per transistor scales with frequency and also scales with . Lower can be

compensated with increased pipelining to keep throughput constant. Power per transistor

is not equal to power per area. Therefore, power density is a serious issue.

7

Figure 2.2: Plot showing supply voltage scaling with

transistor size ([11]

There are two solutions to power wall. The first is to introduce high-performance

cooling technologies as implemented by IBM on their z/10 and z/11 servers [12]. The

second solution is to implement multiple processors per chip. Each processor can run at

lower frequencies, but due to parallel processing, the overall performance is increased.

These ICs that have multiple processors per chip are called “multicore” processors.

Multicore designs have been implemented by Intel and AMD beginning in 2006. The

following subsections review the trend towards multicore processor design.

2.2 Multicore Processor

Intel’s Many Integrated Core (MIC) design has many cores on a single chip which

is used to run platforms at trillions of calculations per second. This architecture is

designed to meet lower power dissipation and achieve higher levels of parallelism and is

targeted for highly parallel applications [13]. Intel’s Tera-scale computing program is

researching methods to build processors with hundreds of cores [14].

8

 In addition, Intel Labs is building a microprocessor called Single-chip Cloud

Computer (SCC) that contains 48 cores (most Intel architecture cores) on a single silicon

chip. Researchers have demonstrated message-passing and shared memory mode of

communication using the SCC architecture [15]. The following section describes the

arrays of different processors.

2.2.1 Array of Processors

In this subsection, recent research into implementing an array of processors on a

single chip is reviewed. An array of processors has simple processors with local

memories and interconnect that helps inter-processor communication as shown in Figure

2.3.The Reconfigurable Architecture Workstation (RAW) from MIT has 16 tiles that are

arranged in 2D-mesh in which each tile consists of a MIPS style compute processor (i.e.,

a pipelined RISC processor) . Each RAW processor consists of a single-issue 8-stage

pipeline, a 32-bit floating point unit, 32KB of instruction and data cache memory in a

RAW processor [4].

The picoArray is a high performance communication processor developed by

Picochip for wireless signal processing applications. PC102, one of the implementations

of picoArray, consists of a heterogeneous array of 322 16-bit Reduced Instruction Set

Computer (RISC) processor Array Elements (PAE) and 14 Functional Accelerator Units

(FAU). Each processor has separate local instruction and data memories organized in a

Harvard Architecture. The array elements in PC102 are arranged in a 2D grid and

communicate over a network consisting of 32-bit buses and programmable bus switches.

Application development for the picoArray involves specifying interactions between

processes in the form of signal flows [4].

AMBRIC, from Ambric Inc. whose basic unit is called a bric. Each bric has two

pairs of units, each pair consisting of a compute unit and a memory unit. The compute

unit consists of two 32-bit Streaming RISC (SR) processors with 64 words of local

memory, two 32-bit streaming RISC processors with DSP extensions, and a 32-bit

channel interconnect for inter-processor and inter-compute unit communications. Each

RAM unit consists of four banks of 1KB RAM and dynamic channel interconnect to

communicate with these memories. The Am2045 core from Ambric consists of 45 brics

9

arranged in a 5 x 9 array. Since each bric has eight processors, the Am2045 encapsulates

a total of 360 processors with 585 KB of on-chip memory [4].

Discussion:

In terms of granularity, the basic building block has one or many simple

processors. RAW has an individual tile which is designed in a MIPS style processor,

while, the picoArray consists of 16-bit RISC processor and Ambric's bric have two 32-bit

Streaming RISC (SR) processors and two 32-bit SRD processors. Overall, Ambric gives

more computational capacity.

In terms of interconnection network, RAW allows packet-oriented routing, while

Ambric has circuit switch interconnect channels and picoArray has programmable

switched buses. In all the above processors, communication patterns are found before

compilation providing flexibility to the compiler for scheduling fine-grain parallelism.

Optimization in terms of power consumption is done by keeping the units in sleep mode

or by varying the clock frequency in different units to save energy [4].

Figure 2.3: Array of processors where PR is Processor and MEM is memory

2.2.2 Array of Functional Units

An array of functional units architecture lacks an on-chip control processor and

there is no central processing unit (see Figure 2.4). In this model, complex algorithms are

10

partitioned into a sequential flow of configurations to be dynamically configured into the

functional units. The dynamic configuration is controlled by the configuration manager,

which does not perform any computations by its own. Some examples include the

following: Multiple ALU architecture with Reconfigurable Interconnect (MATRIX) from

MIT, eXtreme Processing Platform (XPP) from PACT XPP Technologies, and the family

of Field-Programmable Object Array (FPOA) from MathStar.

In all these examples, there is a basic unit called the functional unit (FU),

consisting of a simplified ALU and a small amount of local memory. Each example has

different strategies for configuring and managing the interconnections between functional

units. MATRIX supports nearest neighbor connectivity as well as bypass connections. It

also has the flexibility for arranging functions depending on the application requirement.

The configuration sequencing of the processing array elements in XPP is done by a

configuration manager. In FPOA, eight nearest neighbors can communicate with each

other [4, 5, 6, 7].

Discussion:

In terms of architecture, MATRIX has local memory for each functional unit while XPP

and FPOA have memory banks. In terms of interconnection network, MATRIX and

FPOA uses nearest neighbor connectivity, while XPP communicates through buses.

Figure 2.4: Array of Functional Units (FU)

11

2.3 Reconfigurable Computing

This section deals with reconfigurable computing, FPGAs and soft processor

cores. PicoBlaze, a soft processor core from Xilinx Corporation is discussed. Finally, the

interprocessor communication modes and schemes are reviewed.

2.3.1 Advantages of Reconfigurable Computing

 Reconfigurable computing has many advantages over Application Specific

Integrated Circuits (ASICs) and software-programmed processors. The reasons include:

they fill the gap between hardware and software; higher performance than software; and

higher level of flexibility than hardware.

Reconfigurable computing allows users to write, download and run the program

on a hardware chip. This kind of re-use is achieved by using a special hardware known as

Field-Programmable Gate Arrays (FPGAs) which is discussed in the next section (section

2.3.2).

2.3.2 FPGAs

 FPGAs were first introduced in 1986 by the Xilinx Corporation. As denoted by its

name, FPGAs can be programmed in the “field” by the user based on the type of the

application desired. FPGAs are preferred over application specific integrated circuits

(ASICs) for several reasons: they are cost effective for low volume, high capacity and

offer more flexibility than programmable logic devices (PLDs). The reason for selecting

a FPGA over an ASIC is that complex designs can be implemented at lower engineering

costs with FPGAs.

2.3.2.1 Microcontroller within an FPGA

 While both dedicated microcontrollers and FPGAs are able to successfully

implement practically any digital logic function, the former have a fixed hardware

configuration and can become obsolete with changing application requirements. On the

other hand, as an FPGA-based microcontroller is described by VHDL code. It's

architecture is flexible and can easily be modified by simply updating the code and

reconfiguring the device. In addition, any support logic required by the microcontroller

12

can easily be added within the FPGA by simply adding the pertinent VHDL code [18]

[19].

2.3.3 Array of Soft Processors

 An array of soft processors, often called soft instruction processors, consists of

programmable instruction processors implemented in reconfigurable logic. As the cost

and time to market for ASICs has increased, soft processors have found increased

deployment in FPGA-based embedded systems. Even though the soft processors cannot

meet the area, power and speed characteristics of their corresponding hardware solutions,

they can make use of the reconfigurability option in FPGAs to match the complexity and

implementation requirements of the application. Major FPGA vendors have provided

their own soft processor cores that can be used on their own FPGA platforms. Xilinx

FPGAs are widely used in soft multiprocessor implementations. It supplies three main

processors: a 32-bit RISC soft processor core known as MicroBlaze, the 8-bit soft

microcontroller known as PicoBlaze, and a hard processor core, which is a PowerPC

processor. Soft processor cores can also be used as elements in larger processor arrays

which gives solutions similar to the class of array of processors presented earlier, but in a

more flexible way. A brief overview of the Mitrion platform, which is portable to a

number of FPGA computer platforms, is given below.

The Mitrion virtual processor from Mitrionics has a cluster of soft computing

nodes placed on the same FPGA. It differs from the conventional soft processor cores in

the way it offers parallelism. The Mitrion-C programming language is used to extract

parallelism based on data dependencies rather than on the order of execution. The

optimizations in hardware are achieved by providing virtualized processor architecture in

the form of soft IP cores that are configurable. Figure 2.5 shows an array of different

computing nodes which are implemented as soft processor cores [4].

13

Figure 2.5: Array of Soft Processors (CN stands for Computation Nodes)

2.3.4 PicoBlaze Microcontroller

 There are dozens of 8-bit microcontroller architectures and instruction sets.

Modern FPGAs can efficiently implement any 8-bit microcontroller, and available FPGA

soft processor cores support popular instruction sets such as the PIC, 8051, AVR, 6502,

8080, and Z80 microcontrollers.

 The PicoBlaze soft processor core is called the constant (K) coded Programmable

State Machine (KCPSM3) also known as Ken Chapman’s PSM, after its creator. The

PicoBlaze microcontroller is specifically designed and optimized for the Spartan 3

family. Versions also exist for the Spartan 6 and Virtex 6 family of FPGAs. Its compact

architecture consumes considerably less FPGA resources than comparable 8-bit

microcontroller architectures implemented on an FPGA. Also, the PicoBlaze

microcontroller is provided as a free, source-level VHDL file with royalty-free reuse on

Xilinx FPGAs [20].

 The PicoBlaze microcontroller has many advantages over standalone

microcontrollers. Since it is specified in VHDL code [21], the PicoBlaze microcontroller

can be easily updated to allow the microcontroller to be retargeted for future generations

14

of Xilinx FPGAs, enabling future cost reductions and feature enhancements.

Furthermore, the PicoBlaze microcontroller is expandable and extendable.

 Before the advent of the PicoBlaze and MicroBlaze embedded processors, the

microcontroller resided externally to the FPGA, limiting the connectivity to the other

FPGA functions and restricting overall interface performance. By contrast, the PicoBlaze

microcontroller is fully embedded in the FPGA allowing extensive on-chip connectivity

to other FPGA resources. Signals remain within the FPGA, improving overall system

performance. The PicoBlaze microcontroller reduces system cost because it offers a

single-chip solution that is fully integrated within the FPGA [21].

 The PicoBlaze architecture consists of an 8-bit datapath with a 64-byte scratchpad

RAM, 16 registers and a 1K word (18 bits wide) Instruction PROM. A block diagram

view of the PicoBlaze embedded microcontroller is shown in Figure 2.6 [20].

Figure 2.6: PicoBlaze Microcontroller Block Diagram [20]

The latest version of the PicoBlaze microcontroller is called KCPSM3 which can

be downloaded from the Xilinx PicoBlaze lounge. The PicoBlaze design suite of tools

consists of "KCPSM3.vhd" (the main VHDL microcontroller code) and an assembler

folder containing "KCPSM3.exe", "ROM_form.vhd", "ROM-form.coe" and

"assemblycode.psm". The assembler is used to generate the VHDL code for the Block

RAM from the psm code as shown in Figure 2.7.

15

Figure 2.7: KCPSM3 Assembler Files [20]

 The PicoBlaze microcontroller is resource efficient allowing multiple PicoBlaze

microcontrollers to be implemented on a single FPGA. Consequently, complex

applications can be portioned across several PicoBlaze microcontrollers with each

controller implementing a particular function (for example, keyboard and display control,

and system management) [19].

2.4 Interprocessor Communication

The key challenge for a multicore processor design is developing efficient means

of communication among the cores. In a multiprocessor system, things get difficult when

embedded designers encounter interprocessor connections designed to take advantage of

a particular processor environment. On FPGA processors, the most common

communication schemes are Shared Memory and Mailbox based message passing. Each

interprocessor communication has its advantages and disadvantages. System designers

must choose the most appropriate method for their application. The mailbox tends to be

used to exchange smaller packets of information. It also provides synchronization

between processors. The mailbox forms a channel through which messages are queued in

a First in First Out (FIFO) mode from one end by the senders, and then dequeued at the

other by the receiver [1, 18].

 After multiple processors are connected to the interconnect infrastructure, the

system designer is concerned with the primary modes of communication and

synchronization between the processors. Mailboxes are used to pass messages between

16

senders and a receivers. Typical usage of a mailbox is to send actual data between

processors. There are again two methods of communication in mailbox mode. One is the

synchronous method in which the receiver actively keeps polling the mailbox for new

data. The other method is an asynchronous method where the mailbox sends an interrupt

to the receiver once the data is present in the mailbox. Xilinx provides the XPS Mailbox

inter-processor communication core which has a pair of mailbox FIFOs in each mailbox.

The recommended connection from Xilinx is to use a single mailbox between a pair of

processors. FIFOs are implemented either using distributed Random Access Memory

(RAM) or Block RAM (BRAM) resources [19].

 Shared memory is the other mode of interprocessor communication between

processing subsystems. Any processor can reference any shared memory location directly

in a shared memory scheme. Data could be distributed across multiple processors, whose

details could be abstracted by some particular software Application Program Interface.

Shared memory can be built out of on-chip local memory or external memory. This

scheme is more suitable for sharing large blocks of data between processors [19].

 The following chapters will discuss in detail the implementation of the Mailbox

and Shared Memory schemes suitable for communicating between multiple PicoBlaze

microcontrollers implemented on a single Xilinx FPGA.

2.5 Summary

Overall, this chapter provided background information of the problems and issues

with various types of processor implementations. Also, this chapter explained PicoBlaze:

a soft core processor. The discussion of the chapter ends with the different

communication schemes available between processors. Different interprocessor

communication mechanisms will be addressed in future chapters.

17

Chapter Three

FIFO Style Interprocessor Communication

Having discussed the need for multicore processors and various soft processor

core implementations, the Mailbox scheme for interprocessor communication using the

PicoBlaze microcontroller on Xilinx FPGAs is discussed in this chapter. First, the basic

FIFO buffer is explained and then the implementation of two processors communicating

with a single FIFO buffer is described. Then the wrapper with four FIFO’s, one processor

and four latches is discussed. Finally, two applications that demonstrate the working of

the FIFO buffer and wrapper are described: the counting of numbers and an FIR filter.

3.1 FIFO Style Communication

 Mailboxes are used to send and receive data or messages between systems.

Messages are queued in a FIFO fashion from the sender and then dequeued by the

receiver. The mailbox can be taken as a simplified Transmission Control

Protocol/Internal Protocol (TCP/IP)-like message channel between systems or processors.

Message reception is addressed synchronously or asynchronously. In the synchronous

method, a receiver continuously polls the mailbox for new data, while, in the

asynchronous method, the mailbox sends an interrupt to the receiver once the data is

present in the mailbox.

3.1.1 FIFO

A FIFO buffer is an “elastic” storage between two subsystems (see Fig. 3.1). It typically

has two control signals, rd and wr, for read and write operations, respectively. When wr

is high, the input data is written into the buffer, while the rd signal is used to read data

from the FIFO buffer or flush the data out from the FIFO buffer.

18

Figure 3.1: Theoretical view of a FIFO Buffer

 In many applications the FIFO buffer is a critical component and the optimized

implementation can be complex. In the next section, a simple circular-queue-based

design is introduced. More efficient, device-specific implementations can be found in

the Xilinx literature [22].

 A FIFO buffer can be implemented in various ways. A straightforward approach

is a circular queue-based implementation. In this method, a control circuit is added to a

register file and the registers are arranged in a circular queue with read and write pointers

(see Figure 3.2). The write pointer is at the head of the queue and the read pointer is at

the tail of the queue. The pointer shifts one position for each operation, read or write.

Figure 3.2: Three Possible Cases of a circular FIFO Buffer

 A FIFO buffer has full and empty status signals. A full signal indicates that the

FIFO is full and that data cannot be written. An empty signal states that the FIFO is

empty and data cannot be read from the FIFO [22].

The pseudo code listing algorithm for reading and writing to FIFO is given in Figure 3.3.

19

Write to FIFO Read from FIFO

 read full_flag ;

 while full_flag = = 01

 read full_flag ;

 write data ;

 read empty_flag ;

 while empty_flag = = 01

 read empty_flag ;

 read data ;

Figure 3.3: Pseudo code for FIFO write and read cases

3.1.2 PicoBlazes with a FIFO Buffer

An initial implementation has two PicoBlazes that are communicated using a

single FIFO buffer. The write signal of the FIFO is connected to the write strobe of the

PicoBlaze 1 and the read signal of the FIFO is connected to the read strobe of the

PicoBlaze 2. Also, the output of the PicoBlaze 1 unit is connected to the data input line of

the FIFO buffer and the output of the FIFO buffer is connected to the input signal of the

PicoBlaze 2 unit. Figure 3.4 shows the connections between the PicoBlazes and the

FIFO.

Figure 3.4: Two PicoBlazes (PB1 and PB2) communicating through a FIFO Buffer

20

3.1.3 Experimental Verification of the FIFO with Two PicoBlazes

 The operation of the FIFO buffer is checked by implementing a small program on

two processors. In the first processor, natural numbers are continuously produced and

sent to the FIFO buffer and the status of the FIFO buffer is continuously verified. When

the FIFO buffer is full, it sends a Full status signal to processor PB1. Then, the processor

PB1 pauses at that point and waits until the data is read by processor PB2. The second

processor is programmed so that when a button is pressed, it reads 16 bytes of data from

the FIFO. Now, the first processor can send 16 more bytes of data into it as some data

taken out by processor PB2. This experiment illustrates the working of FIFO as well as

verifies the Mailbox method of interprocessor communication. This whole experiment is

verified on the Xilinx Spartan 3E FPGA development boards. (See Appendix A for the

assembly code.)

3.2 Array of PicoBlazes

 In this section, various nearest neighbor interconnection schemes are considered

for an array of PicoBlazes. A wrapper is designed to allow different topologies. An

experiment is performed to validate the wrapper and at last an array of PicoBlazes are

produced and validated.

 A wrapper is designed in order to allow repeated use of the same structure. The

wrapper is coded in VHDL and its entity is called for n number of times in the top level

file (main file). This facilitates saving time in code development and maintenance. For

example, any change in the wrapper description will automatically makes changes in all

the units of the array which are instances of this wrapper component.

3.2.1 The Wrapper

Before designing the wrapper there are different topologies to be discussed. Consider the

design of the wrapper with one, four and eight FIFOs, as shown in the Figure 3.5. The

wrapper with one FIFO buffer can practically be used from one direction only as one

wrapper can communicate with one PicoBlaze only. A wrapper with 8 FIFO buffers can

communicate with eight neighboring processors. Analyzing data in Table 3.1 taken from

Spartan 3E and Table 3.2 taken from Virtex 5, a wrapper designed with eight FIFO

buffers occupies a lot of logic cell resources. The design of a wrapper with four FIFO

21

buffers provides a good balance between routing complexity and the ability to maintain

adequate communication between processors for most signal processing applications. For

example, in an FIR filter implementation [23], a topology which allows data to flow in

the horizontal, vertical and diagonal directions through different blocks allows the filter

to be easily partitioned into an efficient pipelined architecture [24]. Such a scheme will

be described in detail at the end of this chapter. Shown below in Figure 3.6 is the screen

shot of the wrapper in the schematic editor for three cases (1, 4 and 8 FIFO buffers).

Figure 3.5: Different topologies in designing a Wrapper

Figure 3.6: Wrapper design view in schematic editor (1, 4 and 8 FIFOs from left)

Hence, the design of a wrapper that can communicate with four PicoBlaze units

around it is the focus of this work. The designed wrapper has four FIFO buffers for each

of the four inputs and four latches for latching the data at the output. Different read and

write signals are taken in and out of the wrapper to maintain communication with the

other processors. Details of the wrapper are shown in the Figure 3.7.

22

Figure 3.7: Detailed wrapper with four FIFO buffers and a PicoBlaze Processor

The signals are defined as follows:

1, 3, 6, 8 are the write strobes from previous PicoBlaze processor

2, 4, 7, 9 are inputs to the current PicoBlaze processor

5 is the set of inputs of FIFO status signals from neighboring PicoBlaze processor

10, 11, 12, 13 are the outputs

Shown in Figure 3.8 are the input (IN) and output (OUT) ports for wrapper, described in

a VHDL entity statement. For example, consider ws_s, ws_e, ws_d and ws_w in the port

map which are called as write strobe in south, write strobe in east, write strobe in

southeast (called as 'diagonal' in the code) and write strobe in south directions

respectively. Consider two PicoBlaze units, PB1 and PB2 where PB1 is writing data in

23

the south direction to PB2. Here, the PB2 south FIFO is written with PB1 south output

and therefore, PB1 write strobe should be sent to PB2 in order to strobe the south FIFO of

PB2. Hence, ws_s is important for sending data from one Output of PB1 to input of PB2

south side FIFO. A similar flow occurs for the remaining directions as well.

entity PicoBlaze is

 port(

 input_1: in std_logic_vector(7 downto 0); -- IN

 input_2: in std_logic_vector(7 downto 0); -- IN

 input_3: in std_logic_vector(7 downto 0); -- IN

 input_4: in std_logic_vector(7 downto 0); -- IN

 output_1: out std_logic_vector(7 downto 0); -- OUT

 output_2: out std_logic_vector(7 downto 0); -- OUT

 output_3: out std_logic_vector(7 downto 0); -- OUT

 output_4: out std_logic_vector(7 downto 0); -- OUT

 clk : in std_logic; -- IN

 address : inout std_logic_vector(9 downto 0); --INOUT

 instruction : inout std_logic_vector(17 downto 0); --INOUT

 status1, status2, status3, status4: out std_logic_vector(7 downto 0); -- OUT

 status1_in, status2_in, status3_in, status4_in: in std_logic_vector(7 downto 0);

 write_strobe_west_in, write_strobe_south_in, write_strobe_diagonal_in,

 write_strobe_east_in: in std_logic; -- IN

 ws_s, ws_e, ws_d, ws_w: out std_logic; -- OUT

 btn : in std_logic -- IN

);

end PicoBlaze;

Figure 3.8: Port map for the Wrapper entity in VHDL

Figure 3.9 contains a code snippet showing the selection of lines depending on the

port id of the associated PicoBlaze processor. In the PicoBlaze assembly program, data

is sent to a particular port and also received from a particular port. For example, if the

24

data is to be taken from FIFO3, port_id of "0010" in binary notation or "2" in decimal

notation should be called.

with port_id(3 downto 0) select

in_port <=

 fifo_out1 when "0000", -- data from FIFO1

 fifo_out2 when "0001", -- data from FIFO2

 fifo_out3 when "0010", -- data from FIFO3

 fifo_out4 when "0011", -- data from FIFO4

 "000000" & full1 & empty1 when "0100", -- FIFO1 empty/full status

 "000000" & full2 & empty2 when "0101", -- FIFO2 empty/full status

 "000000" & full3 & empty3 when "0110", -- FIFO3 empty/full status

 "000000" & full4 & empty4 when "0111", -- FIFO4 empty/full status

 status1_in when "1000", -- status of FIFO1 of neighbor PicoBlaze

 status2_in when "1001", -- status of FIFO2 of neighbor PicoBlaze

 status3_in when "1010", -- status of FIFO3 of neighbor PicoBlaze

 status4_in when "1011", -- status of FIFO4 of neighbor PicoBlaze

 "00000000" when others;

Figure 3.9: Wrapper with port id coded in VHDL

A multiplexer (MUX) is implemented in VHDL code taking port id as the select

line. The PicoBlaze assembly level code uses the port ids defined here and thus sends

the data to that particular port id.

3.2.2 Need for an Array of PicoBlaze Units

 The need for constructing an array comes when Digital Signal Processing (DSP)

applications like an Infinite Impulse Response (IIR) filter or Finite Impulse Response

(FIR) filter design are considered. An array of processors or subsystems is required for a

filter design as the data is needed to be processed in different number of stages.

25

3.2.3 Details of the Array

 An array of PicoBlazes is arranged by using the wrapper designed with four FIFO

buffers. The four FIFO buffers are sufficient to design an FIR filter. Four FIFO buffers

(FIFO1, FIFO2, FIFO3 and FIFO4) are considered to take data coming from the four

directions WEST, SOUTH, South_East (DIAGONAL), and EAST, respectively. An

array of PicoBlaze units is arranged as shown in Figure 3.10

Figure 3.10: A Wrapper that connects to four neighboring Processors

 The data coming from the neighboring PicoBlaze in the south direction is

connected to the FIFO buffer wired to the SOUTH input port. Similarly, the neighbors in

the South_East (DIAGONAL), WEST and EAST directions send the data into those

FIFOs in those directions, respectively.

Each PicoBlaze has four inputs and four outputs. Four inputs are named as

in_west, in_south, in_diagonal and in_east and, four outputs are named as out_east,

out_west, out_south and out_diagonal. Connections between PicoBlazes depend on the

direction of the data flow (see Figure 3.11 for details).

26

3.2.4 Routing/Logic Cell Resources Comparison

Table 3.1 and 3.2 below gives the statistics for 1-FIFO, 4-FIFOs and 8-FIFOs wrappers

implemented on the Spartan 3E and Virtex 5 FPGAs, respectively.

Table 3.1: Statistics for the 1, 4, and 8 FIFO Wrapper in Spartan 3E

Table 3.2: Statistics for the 1, 4, and 8 FIFO Wrapper in Virtex 5

3.3 Experiment with Array of PicoBlazes

 For the verification of consistency in the array as well as FIFO buffers inside the

wrapper, a sample counting of numbers application is implemented on the Array of

PicoBlaze.

27

3.3.1 Counting Numbers Experiment

 The goal of this experiment is to check the FIFO buffer usage and the control that

the PicoBlazes have on FIFOs. The data is continuously fed into four FIFOs of one

destination PicoBlaze wrapper and only eight bits of data at a time is chosen out of four

FIFOs. The FIFOs are fed from four other PicoBlazes. Here, consistency in holding data

by FIFO buffers and status signals are verified at different clock speeds.

3.3.2 Status Signals and Read/Write Strobe Conditions Setup

 Let us consider the communication between PicoBlaze 1 and PicoBlaze 4. The

diagonal output of PicoBlaze 1 is taken into the diagonal input FIFO of the PicoBlaze 4.

The data should be written if and only if the diagonal input FIFO of PicoBlaze 4 is not

FULL. In order to check the condition, PicoBlaze 1 must be able to know the status

signal of FIFO of PicoBlaze 4. Hence, there is a signal connection going out of the

PicoBlaze 4 and also a signal connection going into the PicoBlaze 4. Similarly, if we

consider the other cases too, there will be six more connections: three for the status in and

status out of three other FIFOs; south, west and east.

Figure 3.11 Experiment setup with 5 PicoBlazes where PicoBlaze 4 is destination

 Also, data can be written into FIFO using the write enable signal, which should be

connected to the write strobe of the PicoBlaze that is writing the data into FIFO. So, there

28

is one more connection that is taken in and out of the wrapper for exchanging the strobe

signals. (See Appendix B for the code.)

3.3.3 Validation and Results

 First, five processors named PicoBlaze 1, PicoBlaze 2, PicoBlaze 3, PicoBlaze 4,

and PicoBlaze 5, are assumed to have their places on an FPGA as shown in the Figure

3.12. PicoBlaze 1 is programmed to send numbers starting from one and incremented by

four and so on. Similarly, PicoBlaze 2 starts with two and increments by four and it

continues for PicoBlaze 3 and PicoBlaze 5 counting numbers from three and four and

incrementing by 4 on both PicoBlazes. The output of four PicoBlazes: PicoBlaze 1,

PicoBlaze 2, PicoBlaze 3, PicoBlaze 5 are hardwired to the input of the destination

processor, PicoBlaze 4 as shown in Figure 3.12 below.

Figure 3.12: Destination PicoBlaze holding data in FIFOs

 In this process, the destination processor, PicoBlaze 4 receives the output as one,

two, three, four, five, six and so on. Hence, this is proof of work for array as the data is

taken from PicoBlazes one after the other, holding the data in FIFO until it is being read

by PicoBlaze 4. This example verifies the functionality of the Array, FIFO buffers and

the wrapper.

29

3.4 Application (A 4-tap FIR Filter)

 Digital signal processing is utilized in almost all aspects of today’s modern life

from cell phones to HDTV. The structure of many digital filters allows parallelism to be

exploited for efficient hardware implementation. Also, the common computational units

found in most of the signal processing algorithms (e.g., the Multiply and Accumulate

Unit) helps in implementing them on hardware. The Finite Impulse Response (FIR) filter

is a popular digital filter topology due to case of design and guarantee of stability [23,

24]. A simple FIR filter is implemented as an example.

The FIR filter is described by the simple difference equation shown in equation 3.1.

 ∑
 (3.1)

where,

 denotes the filter coefficients,

 are the filter inputs, and

 are filter outputs.

3.4.1 Algorithm and Simulation of FIR

 An N-tap, T-input FIR is implemented in the C language. The complete C code is

found in the file "FIR.c” (see Appendix C.1). The results of the C program are compared

against the output of the arrayed PicoBlaze microcontrollers to validate the functionality

of the FPGA implementation.

3.4.2 Array structural flow for FIR

 An array of five rows and four columns (5× 4=20) PicoBlaze microcontrollers is

designed to implement a simple FIR filter with 4 inputs (i=3). In this particular

implementation, six of the PicoBlaze microcontrollers are not required for the signal flow

and therefore are not included in the design. Figure 3.13 illustrates the array in which the

six deleted PicoBlaze microcontrollers are shown in a light gray color).

30

 The PicoBlaze microcontrollers labeled PicoBlazeU0, PicoBlazeU1, PicoBlazeU2

and PicoBlazeU3 can generate inputs [], [], [] and []respectively, while,

PicoBlaze 1 to PicoBlaze 10 are used to process the data. Also, PicoBlaze 1, PicoBlaze 2,

PicoBlaze 4 are PicoBlaze 5 fed with coefficient values [], [], [] and []

respectively. Output values of the FIR filter are [], [] [] and [] which are

taken from PicoBlaze 7, PicoBlaze 8, PicoBlaze 9 and PicoBlaze 10 as shown in Figure

3.13.

 The four output values [], [] [] and [] for the simple FIR filter are

given by equations 3.2-3.5 respectively.

 [] [] [] (3.2)

 [] [] [] [] [] (3.3)

 [] [] [] [] [] [] [] (3.4)

 [] [] [] [] [] [] [] [] [] (3.5)

 The PicoBlaze units U0, U1, U2 and U3 continuously generate the filter

inputs [], [], [] and [] values, respectively, and send the data to PicoBlaze

units 1, 3, 6 and 10. PicoBlaze units 1, 2, 4, and 7 take the filter coefficients and the data

is processed in stages. For example, PicoBlaze unit 3 takes the input [] (from the south

direction), [] (from the east direction) and multiplies the value and adds it to the

diagonal FIFO buffered data (i.e., the data in diagonal buffer will be will be the output of

P1 = [] []) and outputs the value in the diagonal direction as shown in Figure 3.13.

This is repeated in stages and the outputs ([] [] [] []) can be observed at the

bottom of the PicoBlaze units.

31

Figure 3.13: A 4-tap FIR Filter Application on an Array of PicoBlaze Units

3.4.3 Validation and Results

 The 4-tap FIR filter was implemented on the Xilinx Virtex 5 and Spartan 3E

development boards. The outputs were connected to the LED displays on the

development boards [25, 26] in order to verify the correct functionality of the filter

32

design. The statistics taken from Virtex 5 and Spartan 3E synthesis reports are given in

the table below. Also, see Appendix D.4 for the difference between the Spartan 3E and

Virtex 5 in terms of logic resources memory resources and I/O resources [27]. Delay

considered in Figure 3.3 is taken from synthesis report rather than the report after place

and route (See Appendix F-1) as our experience with testing complex adder circuits

indicates that the former report provides a more accurate match with experimental

measurements. (See Appendix F-2 for detailed Synthesis report on delay)

Table 3.3: Logic cell Statistics of the Spartan 3E and Virtex 5 FPGAs implementing an

array of Fourteen PicoBlazes

 The array of fourteen PicoBlaze microcontrollers consumes half of the available

logic and memory resources of the Spartan 3E FPGA. This is close to the limit of what

can be achieved on this FPGA chip (for efficient placement and routing on an FPGA,

somewhere between 50% and 70% resource utilization is considered a reasonable upper

limit). As expected, the Virtex 5 FPGA, with its more complex configurable logic block

implementation is able to implement this design using fewer logic slices. In addition, as

the Virtex 5 FPGA has roughly seven times more logic slices available compared with the

Spartan 3E FPGA, only 4% of the logic and memory resources are consumed. Thus, the

Virtex 5 FPGA is able to implement a much larger array of PicoBlaze microcontrollers.

33

3.5 Summary

This chapter has explained the method of using FIFO buffers for communicating

between arrayed PicoBlaze units. The optimum number of FIFO buffers in a wrapper

design were considered and the approach for implementing an array PicoBlaze

microcontrollers was explained. Finally, an FIR filter application was implemented and

its synthesis statistics for two types of Xilinx FPGAs are reported. The next chapter will

discuss the shared memory approach for communicating between soft processor cores.

34

Chapter Four

Shared Memory Inter-processor Communication

In this chapter, the shared memory mode of communication between processors is

discussed. First, PicoBlaze processors with two different options of sharing Block RAM

are described. Second, the need for arbitration is discussed. Third, different arbitration

schemes are shown. Finally, a setup is designed which has an efficient arbiter, shared

memory and four PicoBlaze microcontrollers. Also, different statistics from Spartan 3E

and Virtex 5 FGPA development boards are tabulated from the implemented experiment.

4.1 Shared Memory

 Multiprocessor systems may be further divided into either loosely or tightly

coupled systems. In a loosely coupled system, each processor has a private local memory

and the messages including commands and data; communication among processors is

performed by means of message-passing technique using FIFOs as explained in Chapter

3. On the other hand, in a tightly coupled system, i.e., a multiprocessor system, each

processor may access data from a global memory, also called shared memory. It is also

used as a means of communication among the processors [19, 23].

4.1.1 Shared Memory Mode of Communication

Shared memory is the most common way of passing information between

processing subsystems. A shared memory system has different set of properties compared

to normal (e.g. FIFO style) communication modes available. In a shared memory scheme,

any processor can reference any shared memory location directly. Communication takes

place through processor load and store instructions. A programmer is able to see the

location of the data in memory easily. Data could be distributed across multiple

processors, whose details could be abstracted away by some software, as in an

Application Programming Interface (API). Access to the shared memory segment must

be synchronized by some hardware/software protocol between the processors.

35

 Shared memory is typically the fastest asynchronous mode of communication,

especially when the information to be shared is large (> 1000 bytes). Shared memory also

allows possible zero-copy or in-place message processing schemes. Shared memory can

be built out of on-chip local memory or external memory [19].

4.1.2 Sharing BlockRAM Between Two PicoBlazes

 Two PicoBlazes can share a single Block RAM (BRAM) using two procedures:

using a single Block RAM sharing a common code image and using a single BRAM with

separate 512-instruction memories in one BRAM.

 Two PicoBlazes with a common code image is shown in Figure 4.1 below. This

model can be implemented in an FPGA using the core generator in Xilinx ISE [28]. The

Core Generator has different options when creating memory in which the dual port

shared memory is one such option that creates a memory core with two ports. Using the

dual ports, two PicoBlazes can use a common code saving an extra BRAM.

Figure 4.1: Two PicoBlazes sharing one Block RAM [20]

 A second procedure is to use a separate 512-instruction memory in one Block

RAM as shown in Figure 4.2. This approach can also be implemented on an FPGA using

the core generator facility available in the Xilinx ISE suite. From the Figure 4.2, it can be

seen that a single Block RAM is partitioned into two 512-instruction memory sections.

36

Figure 4.2: Two PicoBlazes using two separate 512- instruction memory sections from

BRAM [20]

4.1.3 Shared Memory for Communication Between PicoBlaze Processors

 The two techniques explained above can be used only for sharing instruction

memory, but not for communication between two PicoBlaze microcontrollers. Consider

multiple PicoBlaze units where the units need to read or write to a single location.

Internally, each PicoBlaze processor has a 64-byte scratch pad memory that can be

shared. Access to the scratch pad memory can be done using a special set of Load/Store

instructions that need to guarantee that only one processor modifies the memory at a

time. This approach is not pursued further since it would require changes to the internal

structure of the PicoBlaze architecture and is beyond the scope of this present work.

Another possible approach for customizing a shared memory mode communication is to

use a single custom BRAM connected on a bus having multiple PicoBlaze processors.

This approach is considered further, since it does not require changes to the PicoBlaze

design itself.

4.2 Need for an Arbiter

If a shared memory for data is implemented, there is a problem when two or more

processors may simultaneously request using this shared resource. Therefore, an

arbitration circuit is required to resolve the contention among the competing processors

and allocate the resource to the appropriate requesting processor [29]. Also, an arbiter

judgment scheme and effective interrupt access mechanisms are needed to avoid memory

37

access problems [30]. The arbiter technique or procedure is explained in the following

sections.

4.2.1 Arbitration

 Arbitration is a technique introduced to reduce the burden of data exchange and

also to eliminate competitions between subprocessors. A suitable arbitration scheme that

will assign priority to the memory requesting systems. Good arbitration techniques are

required to avoid the conflict between units accessing the shared memory units.

 Consider a shared memory multiprocessor system, in which there are large

numbers of processors and memory modules. Data is transferred between processor-to-

processor (P2P) or processor-to-memory (P2M) via a single bus or multiple buses. The

activated bus is supervised and arbitrated by a bus arbiter. In a single bus multiprocessor

system, only one processor is allowed to use the bus at any time though a number of

processors may request to use this bus, simultaneously. A predictable arbiter is required

to schedule the memory access groups in order to bound latency [31]. Arbiter should be

designed considering the effective access mechanism and improving resource utilization

ratio. Today, there are plenty of arbitration schemes on the market, out of which a few

are selected and discussed in Appendix E.1.

 In this chapter, the focus will be on a simple scheme known as the round-robin

arbiter. It has two kinds of approaches: the Bus Arbiter and the Switch Arbiter. This

arbiter is considered as the efficient arbiter for implementation with the PicoBlaze

processors and a shared memory scheme. Details of this arbiter model are discussed in

following section.

4.3 Round-Robin Arbiter

A round-robin Bus Arbiter or the Switch Arbiter design guarantees the system

will not suffer from any kind of starvation among the masters (i.e., the units requesting

access to the shared memory). They allow any unused time slot to be allocated to a

master whose turn is later and who is ready in the unused time slot. For several reasons

the Bus arbiter model of Round-robin arbiter is preferred over the Switch arbiter and

38

hence the future sections will deal more with the Bus Arbiter model. The working

protocol of a round-robin Bus Arbiter is described below [32].

In each cycle of the Bus Arbiter, one of the masters (processors) who are in

round-robin order is given a priority. The particular master has to wait until time for the

priority arises for accessing the shared memory resource. In case the token-holding

master does not require access in that cycle, the master or the processor with the next

highest priority (the processor who sends the next request) is chosen and is granted the

permission to access the shared memory. After completing the cycle, the highest priority

master then passes the token in round-robin order to the next master which then will have

the next time slot. This process repeats until all the requests are granted completely.

4.3.1 Implementation of a Round-Robin Bus Arbiter

The Bus Arbiter consists of a D-flip-flop, logic blocks that set the priority, and M

M-input OR gates. M x M priority logic block is implemented in combinational logic

implementing the logic function of Table 1. Also an M-bit ring counter is present in the

Arbiter. The M value as 4 as the experiment to be conducted has four processors and one

global memory unit. Therefore, a 4 × 4 priority block and 4-bit ring counter are used in

arbiter. The priority of inputs is placed in descending order from in[0] to in[3] in the

priority logic blocks having logic 1 through 3. Thus, in[0] always has the highest priority,

in[1] has the next priority, and in[2] has the third highest priority and in[3] has the

lowest priority. In order to implement a Bus Arbiter, a token concept from a token ring in

a network is employed. The possession of a token allows a priority logic block to be

enabled. As the priority logic block has a different order of inputs (request signals), the

priority of request signals varies with the chosen priority logic block [32]. The token is

implemented in a 4-bit ring counter. A Bus Arbiter with four requests is coded in VHDL.

Figure 4.3 shows the Round-robin Arbiter unit with four priority logic blocks.

39

 Figure 4.3: Round-robin Arbiter [28]

 The four output bits of the ring counter act as the enable signals to the priority

logic blocks called token[0], token[1], token[2] and token[3]. Here, only one enabled

priority logic block can get a grant signal. A D flip-flop is used to delay the ack signal by

one arbitration cycle. The delayed ack signal pulls a trigger to the ring counter in order to

make the content of the ring counter get rotated by one bit. Thus, for every cycle the

token bit is rotated left, with 1000 rotating to 0001 and the token is initialized to one at

the reset phase. For a four bit ring counter it will be 0001. The overall concept here is to

have a single '1' output by the ring counter. In the round-robin algorithm, each master

must wait no longer than (M-1) time slots, the period of time allocated to the chosen

master, until the next time it receives the token. If the owner of the time slot has nothing

to send then the time slot can also be used by another master. This protocol guarantees a

dynamic priority assignment to the bus requesters without starvation. The Generated Bus

Arbiter is fair, fast, and has a low and predictable worst-case wait time. Therefore, the

Bus Arbiter is well preferred over the available arbiter techniques [32, 33].

4.3.2 Round-Robin Arbiter with Four Processors

Four processors sharing a memory can be implemented using the round-robin Bus

Arbiter. In this case, there will be four requests and four grants as described above.

40

Consider the case where all processors are requesting the shared memory. At a point in

time only the processor with the highest priority in the ring has the opportunity to access

the shared memory. From Figure 4.4 it can be seen that processor 1 has the higher

priority in the ring counter and hence is granted permission to access the memory. All the

other processors on the bus have to wait until the processor 1 clears the grant or accesses

the memory location.

Figure 4.4: Round-robin Arbiters with four Processors [32]

The same setup can be used for the PicoBlaze processors as well. The whole setup for the

system is explained in the next section.

4.4 PicoBlazes Using Round-Robin Arbiter

This section explains the setup taken as an experiment to make use of the shared memory

mode of communication using the round-robin Bus Arbiter scheme.

4.4.1 Four PicoBlazes Using Round-Robin Arbiter

Consider a setup where four PicoBlaze processors are trying to access a shared

memory using the Round-robin Bus Arbiter architecture. The four processors can send

four requests, request1, request2, request3, and request4, to the arbiter. In return, the Bus

Arbiter can send four grants, grant1, grant2, grant3 and grant4, to the four PicoBlaze

units.

4.4.2 Implementation Description of Shared Memory with Round-robin Arbiter

Consider four PicoBlaze processors trying to access the common shared memory.

Arbitration is maintained for a case where all the four PicoBlaze units should access the

shared memory at the same point in time. The Round-robin Bus Arbiter is connected to

the PicoBlaze units using their I/O ports. Requests and grants are sent and received

41

through the output and input ports respectively. A tri-state buffer is implemented and is

replicated to all four processors. A tri-state buffer is chosen which allows the data and

address lines of the PicoBlaze processor to be connected to the data bus and address bus,

respectively. A memory core is created in Xilinx ISE core generator and is used as a

shared or global memory for all the four PicoBlazes.

The PicoBlaze processors are programmed to access the memory at the same

instant. In this case, the arbiter judges the requests and grants the request to the PicoBlaze

having higher priority in the ring and keeps the other PicoBlaze units in wait state. Once

the PicoBlaze processors receive the grant, they complete the communication with the

memory and clear the request. Once the request is cleared, the arbiter jumps to the next

PicoBlaze processor in the ring counter and grants request to it. This happens in a round

robin cycle mode. The first PicoBlaze unit can expect the grant again after going round

through all the other PicoBlaze units. Thus, the cycle in a circle or ring mode is obtained.

In the case there is no request sent by a particular PicoBlaze unit, the arbiter just skips

that unit and gives the priority to the next PicoBlaze unit.

Figure 4.5: Four PicoBlazes with Shared RAM mode communication using Bus Arbiter

42

Using the Bus arbiter, the shared memory should be accessible by the PicoBlaze

units without any conflicts. But, there are pros and cons involved in this shared memory

mode of communication. Delay considered in Figure 4.1 is taken from Synthesis report as

the delay after place and route (See Appendix F-1) is more and not the best case

possibility in this experiment as there are different resources considered to be optimized

in routing. (See Appendix F-2 for detailed Synthesis report on delay)

Table 4.1: Logic cell Statistics of the Spartan 3E and Virtex 5 FPGAs implementing four

PicoBlaze processors and a Shared memory

The summary of the two interprocessor communications, FIFO and shared memory is

discussed below.

4.4.3 Observations

After implementing the design on the Spartan 3E and Virtex 5 boards, it can be

concluded that the FIFO-style of communication is generally preferred over the Shared

memory mode of communication (provided occupation of resources in the FPGA is not a

restriction). In detail, utilization of routing cell resources and memory units in a FIFO-

style of communication is more as each PicoBlaze unit has its own resources like FIFO

buffers and memory units. If the resources are not a factor, the FIFO-style of

communication is preferred over shared memory. Also, designing a wrapper and

replicating them to form an array is easier than analyzing the details involved in

implementing shared memory, such as optimizing the arbitration scheme. The

neighboring PicoBlaze processors can communicate better using a FIFO buffer.

Furthermore, parallelism is highly maintained in the FIFO-style of communication and

not in the shared memory mode as only one PicoBlaze can access the memory per clock

43

cycle when using shared memory. Furthermore, shared memory reduces the amount of

BRAM available on an FPGA chip. This can be an important consideration as BRAM is

often a scarce resource on an FPGA chip. However, the shared memory scheme does

allow large blocks of data to be shared easily between processors. Unlike the FIFO-style

of communication, shared memory communication is not restricted to the nearest

neighbors allowing this scheme to be easily scaled to a larger number of processors that

share a common memory.

Overall, the PicoBlaze array with a FIFO-style of communication is considered

more efficient in terms of routing logic cell resources and is preferred if nearest neighbor

communication is acceptable. If BRAM resources are not scarce and large amounts of

data need to be shared or scalability is important, then the shared memory mode of

communication should be implemented.

4.5 Summary

This chapter on the whole discussed the shared memory mode of communication.

This chapter also described the different arbitration schemes available. Also, an

experimental setup for shared memory with PicoBlaze processors using a round-robin

arbiter was discussed. Finally, some observations were given and different statistics were

tabulated for Virtex 5 and Spartan 3E boards. The advantages and disadvantages of

Shared memory and FIFO-mode of interprocessor communications were considered.

44

Chapter Five

Conclusions and Future Work

5.1 Conclusion

This thesis has investigated methods for enabling efficient interprocessor

communication between soft processor cores implemented on FGPAs. The 8-bit

PicoBlaze soft processor core from Xilinx was selected as the soft processor core since it

has established itself as a reliable microcontroller for use in embedded systems

implemented on reconfigurable fabrics. The two most common communication schemes

were examined: Mailboxes and Shared Memory.

 In the FIFO-style of communication, a wrapper is designed and an array of

PicoBlaze units is produced. A simple FIR filter is also implemented and different

statistics are tabulated. In the shared memory style of communication, details of the

required arbitration are studied and an arbiter suitable for use with the PicoBlaze

processor (i.e., round-robin arbiter) is explained. Also, the shared memory mode study

concludes by considering a setup with four PicoBlaze units and a shared memory having

a round-robin bus arbiter as the arbitration scheme. Different statistics between the FIFO

style of communication and shared memory are discussed in which each has their own

advantages depending on the resources and nearest neighbor connection requirements.

Statistics from the Spartan and Virtex FPGAs were presented. Overall, this thesis has

provided guidelines for interprocessor communication for an array of soft processor cores

which will enable a designer to efficiently produce multiprocessor implementations on

FPGAs.

5.2 Future work

The work in this thesis can be extended in several ways. First, the array of

PicoBlaze units should be implemented in an embedded system and analyzed for

performance under real-time conditions. The design method developed for the array of

45

PicoBlazes will allow the designer to easily insert an array of PicoBlazes into such

embedded system applications. In particular, the wrapper for the FIFO-style of

communication allows arrays of arbitrary sizes to be implemented, constrained only by

the resources of the target FPGA. Second, using an array of PicoBlaze processors on

more advanced FPGA platforms can be examined. The new Virtex 6 FPGA boards with

PCI-e interfaces recently acquired by our lab will allow an array of soft processor cores

to communicate easily and rapidly with the host computer. This opens up the possibility

of studying the partitioning of algorithms between a traditional microprocessor-based

system and an array of reconfigurable processors. In addition, Xilinx has also recently

introduced a Virtex 7 FPGA (built at the 28 nm technology node) as well as an upgraded

version of the PicoBlaze processor (KCPSM6). As the PicoBlaze arrays have been

specified in VHDL, the designs can be easily ported to other families of FPGAs. Third,

the development of fault-tolerant systems using an array of PicoBlaze microcontrollers

should be investigated. Fault tolerance is vital for mission critical systems such as

military and space-based systems. An idea is to use one PicoBlaze in an array to monitor

its neighboring PicoBlaze units for correct performance and to take corrective action

when a fault is detected.

46

References

[1] B. Othman, S. Salem, and B. Saoud, "MPSoC design of RT control applications

based on FPGA SoftCore processors," in 15th IEEE International Conference

on Electronics, Circuits and Systems, pp. 404-409, 2008.

 [2] M. Hubner, K. Paulsson, and J. Becker, "Parallel and Flexible Multiprocessor

System-On-Chip for Adaptive Automotive Applications based on Xilinx

MicroBlaze Soft-Cores," in 19th IEEE International Conference on Parallel and

Distributed Processing Symposium, p. 149, 2005.

[3] A. Kumar, S. Fernando, H. Yajun, B. Mesman, and H. Corporaal, "Multi-

Processor System-Level Synthesis for Multiple Applications on Platform FPGA,"

in International Conference on Field Programmable Logic and Applications, pp.

92-97, 2007.

[4] Zain-ul-Abdin and S. Bertil, "Evolution in architectures and programming

methodologies of coarse-grained reconfigurable computing," in Microprocessors

and Microsystems, vol. 33, no. 3, pp. 161-178, 2009.

[5] XPP, XPP III Processor Overview, http://www.pactxpp.com/, 2008.

[6] M.B. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S.

Amarasinghe, A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B.

Greenwald, H. Hoffmann, P. Johnson, and J. Kim, "Evaluation of the Raw

microprocessor: an exposed-wire-delay architecture for ILP and streams," in 31st

Annual International Symposium on Computer Architecture, pp. 2- 13, 2004.

[7] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, T.

Mohsenin, and B. Baas, "Architecture and Evaluation of an Asynchronous Array

http://www.pactxpp.com/

47

of Simple Processors," in Journal of VLSI Signal Processing Systems, vol. 53, no.

3, pp. 243-259, 2008.

[8] Intel Microprocessor, Intel Pentium cancels 4 Ghz P4,

http://www.mpronline.com, 2011.

[9] D. A. Patterson and J. L. Hennessy, Computer Organization and Design. Morgan

kaufmann, Fourth Edition, 1993.

[10] T. Kuroda, "CMOS design challenges to power wall," in Microprocessors and

 Nanotechnology Conference, pp. 6-7, 2001.

[11] W. Zhao and Y. Cao, "New Generation of Predictive Technology Model for Sub-

45 nm Early Design Exploration," in IEEE Transactions on Electron Devices, vol.

53, no. 11, pp. 2816-2823, 2006.

[12] IBM, Z OS, http://www-03.ibm.com/systems/z/os/zos/, 2010.

[13] Intel, Many Integrated Core Architecture,

http://www.intel.com/technology/architecture-silicon/mic/index.htm, 2011.

[14] Intel, Teraflops Research Chip,

http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_O

verview.pdf, 2011.

[15] Intel, Many Integrated Core Architecture,

http://www.intel.com/technology/architecture-silicon/mic/index.htm, 2011.

[16] E. Mirsky, and A. DeHon, "MATRIX: a reconfigurable computing architecture

with configurable instruction distribution and deployable resources," in IEEE

Symposium on FPGAs for Custom Computing Machines, pp. 157-166, 1996.

[17] FPOA Design Flow, Revision 1.5, MathStar, 13th March 2008.

[18] T. Dorta, J. Jimenez, J. L. Martín, U. Bidarte, and A. Astarloa, "Reconfigurable

Multiprocessor Systems: A Review," in International Journal of Reconfigurable

Computing, vol. 2010.

http://www.mpronline.com/
http://www-03.ibm.com/systems/z/os/zos/
http://www.intel.com/technology/architecture-silicon/mic/index.htm
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf
http://www.intel.com/technology/architecture-silicon/mic/index.htm

48

[19] Xilinx, Designing Multiprocessor Systems in Platform Studio,

http://www.xilinx.com/support/documentation/white_papers/wp262.pdf, 2007.

[20] Xilinx, PicoBlaze 8-bit Embedded Microcontroller User Guide,

http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf,

2011.

[21] Xilinx, PicoBlaze Lounge,http://www.xilinx.com/products/intellectual-

property/picoblaze.htm, 2011.

[22] P. Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version.

Hoboken, NJ: Wiley-Interscience, 2008.

[23] H. Ruckdeschel, H. Dutta, F. Hannig, and J. Teich, "Automatic FIR Filter

Generation for FPGAs," in SAMOS, pp. 51-61, 2005.

[24] H. Dutta, D. Kissler, F. Hannig, A. Kupriyanov, J. Teich, and B. Pottier, "A

holistic approach for tightly coupled reconfigurable parallel processors", in

presented at Microprocessors and Microsystems - Embedded Hardware Design,

pp. 53-62, 2009.

[25] Xilinx, Spartan 3E FPGA Starter Kit Board User Guide, www.xilinx.com, June 20,

2008.

[26] Xilinx, Virtex 5 Product Specification, www.xilinx.com, February 6, 2009.

[27] Xilinx, Product Selection Guide,

http://www.xilinx.com/publications/matrix/Product_Selection_Guide.pdf, 2011.

[28] Xilinx, Xilinx Integrated Software Environment

(ISE),http://www.xilinx.com/itp/xilinx5/help/iseguide/iseguide.htm, 2008.

[29] J. Tu and C. Chen, "An effective bus-based arbiter for processors

communication," in 18th International Conference on Advanced Information

Networking and Applications, vol. 2, pp. 236- 240, 2004.

http://www.xilinx.com/support/documentation/white_papers/wp262.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
http://www.xilinx.com/products/intellectual-property/picoblaze.htm
http://www.xilinx.com/products/intellectual-property/picoblaze.htm
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dutta:Hritam.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hannig:Frank.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Teich:J=uuml=rgen.html
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/publications/matrix/Product_Selection_Guide.pdf
http://www.xilinx.com/itp/xilinx5/help/iseguide/iseguide.htm

49

[30] Y. Hu, Y. Liu, and W. Jing, "Design of SSCMP with Arbiter and Shared Data

Memory Interrupt," in International Symposium on High Density packaging and

Microsystem Integration, pp. 1-4, 2007.

[31] B. Akesson, K. Goossens, and M. Ringhofer, "Predator: A predictable SDRAM

memory controller," in 5th IEEE/ACM/IFIP International Conference

onHardware/Software Codesign and System Synthesis, pp. 251-256, 2007.

[32] E.S. Shin, V.J. Mooney, and G.F. Riley, "Round-robin Arbiter Design and

Generation," in 15th International Symposium on System Synthesis, pp. 243- 248,

2002.

[33] A. Zitouni, M. Abid, and R. Tourki, "Arbitration schemes synthesis approach for

multiprocessor systems," in IEEE Workshop on Signal Processing Systems, pp.

499-508, 1998.

50

Appendix A: Assembly Code for Button Press Experiment

A.1 PicoBlaze 1 to FIFO Assembly Code for Button Press Experiment

; PicoBlaze_to_FIFO.PSM

; Button Press Experiment Assembly level Programming code

; Description:

; 1. Generate numbers

; 2. Check FULL flag

; 3. Send data into FIFO

; 4. Jump again to send next data

;---

namereg s0, k

namereg s3, success

namereg s4, fdata

namereg sf, sw_in

namereg s6, dout

;------------input port definitions---------------------

constant sw_port, 02 ;8-bit switches

constant flags, 01 ;

;------------output port definitions---------------------

constant dout_port, 06

;-------------------

constant MAX, 7F

load k, 00

constant MAX1, FF

loop_body:

 load dout,k

fail: ; Load with a value

 call write_to_fifo ; write it into FIFO

 compare success, 00 ; if written proceed next

 jump z, fail ; if failed to write jump to fail,

 add k, 01 ; send next number

 compare k, MAX ; if number reaches 7F halt program there

 jump z, forever

 jump loop_body ; Else be back to loop

forever:

 jump forever

;---------------------

write_to_fifo:

 input fdata, flags ; load flags input to fdata

 and fdata, 02 ; masking the lower bit

51

 Appendix: A (Continued)

 compare fdata, 02 ; test full flag

 jump nz, ok_to_wr ; if not full -->write to fifo

 load success, 00 ; else load failure

 return

ok_to_wr:

 output dout, dout_port ;send switch input to out_port1

 load success, 01 ; success!!

 return

;--

A.2 FIFO to PicoBlaze 2 Assembly Code for Button Press Experiment

; Fifo_to_PicoBlaze 2.PSM

; Button Press Experiment Assembly level Programming code

; Description:

; 1. For first time Check for Full case of FIFO

; 2. After FIFO is full, Check for Button is pressed or not

; 3. Read data when button pressed

; 4. Check Empty status and read data until it is not empty.

;

namereg s3, success

namereg s4, fdata

namereg sf, f_in

namereg s6, bpress

;------------input port definitions---------------------

constant fifo, 02 ;8-bit switches

constant flags, 01 ;

constant btn, 04

;------------output port definitions---------------------

constant dout_port, 06

;---

full_test:

 input fdata, flags ; check full flag

 and fdata, 02

 compare fdata, 02

 jump z, btn_chk ; check button status if Pressed

jump full_test

empty_test:

 input fdata, flags ; load flags input to fdata

 and fdata, 01 ; masking the lower bit

 compare fdata, 01 ; test empty flag

52

Appendix: A (Continued)

 jump nz, btn_chk ; if not empty go to loop

jump empty_test

btn_chk:

 input bpress, btn ; input button status

 compare bpress, 01 ; if pressed goto input_fifo

 jump z, input_fifo

jump btn_chk

input_fifo:

 input f_in, fifo ; input data if pressed

 output f_in, dout_port ; Send data out

jump empty_test

53

Appendix B: Assembly Code for Counting Numbers Experiment

B.1 PicoBlaze 4 Assembly Code for Counting Numbers Experiment

; Code for Destination PicoBlaze (PicoBlaze 4.psm)

; This code continuously reads numbers coming from all directions

; The directions are West, South, East, Diagonal

; Description:

; 1. Check Empty status of all FIFOs(one after the other)

; 2. If not empty proceed next; else be in loop until not empty

; 3. Write data

; 4. go to next FIFO

namereg s1, addr ;reg for temporary mem & i/o port addr

namereg s2, i ;general-purpose loop index

namereg s5, j

namereg s3, success

namereg sf, sw_in

namereg s6, dout

namereg s8, m

namereg s9, n

namereg sa, data1

namereg sb, data2

namereg sc, data3

namereg sd, data4

namereg s4, fdata1

namereg se, fdata2

namereg s7, fdata3

namereg s0, fdata4

;------------input port definitions---------------------

constant west, 00 ;

constant south, 01 ;

constant diagonal, 02 ;

constant east, 03 ;

constant flag_w, 04 ;

constant flag_s, 05 ;

constant flag_d, 06 ;

constant flag_e, 07 ;

;------------output port definitions---------------------

constant dout_port, 00

clr_data_mem:

 load i, 40 ;unitize loop index to 64

 load sw_in, 00

clr_mem_loop:

 store sw_in, (i)

54

Appendix: B (Continued)

sub i, 01 ;dec loop index

 jump nz, clr_mem_loop ;repeat until i=0

;-------------------

constant MAX1, FF

wes:

 input fdata4, flag_w ; check FIFO 2 for Empty Condition

 and fdata4, 01

 compare fdata4, 01

 jump z, wes

 input data4, west ; Input data from FIFO2 if not empty

 output data4, dout_port ; output FIFO1 data

sout:

 input fdata2, flag_s ; check FIFO 2 for Empty Condition

 and fdata2, 01

 compare fdata2, 01

 jump z, sout

 input data2, south ; Input data from FIFO2 if not empty

 output data2, dout_port ; output FIFO1 data

diag:

 input fdata1, flag_d ; Check FIFO 1 for Empty condition

 and fdata1, 01

 compare fdata1, 01

 jump z, diag

 input data1, diagonal ; Input data from FIFO1 if not empty

 output data1, dout_port ; output FIFO1 data

eas:

 input fdata3, flag_e ; check FIFO 2 for Empty Condition

 and fdata3, 01

 compare fdata3, 01

 jump z, eas

 input data3, east ; Input data from FIFO2 if not empty

 output data3, dout_port ; output FIFO1 data

jump wes

;---

55

Appendix: B (Continued)

B.2 PicoBlaze 1 (P1) Assembly Code for Counting Numbers Experiment

;PICOBLAZE 1.psm

; description: This Program sends the data from PB1(Diagonal) to Destination (P4)

; 1. generate numbers

; 2. check FULL case

; 3. If not FULL send data into FIFO

namereg s0, k

namereg s3, success

namereg s4, fdata

namereg sf, sw_in

namereg s6, dout

;------------input port definitions---------------------

constant flags, 0A

;------------output port definitions---------------------

constant dout_port, 02

;-------------------

constant MAX, 17

load k, 03

loop_body:

 load dout,k

fail:

 call write_to_fifo ; call routine write into fifo

 compare success, 00 ; if data sent proceed to next number

 jump z, fail ; if not written try to write

 add k, 04 ; increment number by integer 4 everytime

 compare k, MAX ; if maximum value reached then terminate

 jump z, forever

 jump loop_body ; else be in loop "loop_body"

forever:

 jump forever

;---------------------

write_to_fifo:

 input fdata, flags ; load flags input to fdata

 and fdata, 02 ; masking the lower bit

 compare fdata, 02 ; test full flag

 jump nz, ok_to_wr ; if not full -->write to fifo

 load success, 00 ; else load failure

 return

ok_to_wr:

 output dout, dout_port ;send switch input to out_port1

 load success, 01 ; success!!

 return

56

Appendix: B (Continued)

B.3 PicoBlaze 2 Assembly Code for Counting Numbers Experiment

;PICOBLAZE 2.psm

; description: This Program sends the data from PB1(South) to Destination (P4)

; 1. generate numbers

; 2. check FULL case

; 3. If not FULL send data into FIFO

namereg s0, k

namereg s3, success

namereg s4, fdata

namereg sf, sw_in

namereg s6, dout

;------------input port definitions---------------------

constant flags, 09

;------------output port definitions---------------------

constant dout_port, 03

;-------------------

constant MAX, 16

load k, 02

loop_body:

 load dout,k

fail:

 call write_to_fifo ; call routine write into fifo

 compare success, 00 ; if data sent proceed to next number

 jump z, fail ; if not written try to write

 add k, 04 ; increment number by integer 4 everytime

 compare k, MAX ; if maximum value reached then terminate

 jump z, forever

 jump loop_body ; else be in loop "loop_body"

forever:

 jump forever

;---------------------

write_to_fifo:

 input fdata, flags ; load flags input to fdata

 and fdata, 02 ; masking the lower bit

 compare fdata, 02 ; test full flag

 jump nz, ok_to_wr ; if not full -->write to fifo

 load success, 00 ; else load failure

 return

ok_to_wr:

 output dout, dout_port ;send switch input to out_port1

 load success, 01 ; success!!

 return

57

Appendix: B (Continued)

B.4 PicoBlaze 3 Assembly code for Counting Numbers Experiment

;PICOBLAZE 3.psm

; description: This Program sends the data from PB3(East) to Destination (P4)

; 1. generate numbers

; 2. check FULL case

; 3. If not FULL send data into FIFO

namereg s0, k

namereg s3, success

namereg s4, fdata

namereg sf, sw_in

namereg s6, dout

;------------input port definitions---------------------

constant flags, 0B

;------------output port definitions---------------------

constant dout_port, 01

;-------------------

constant MAX, 18

load k, 04

loop_body:

 load dout,k

fail:

 call write_to_fifo ; call routine write into fifo

 compare success, 00 ; if data sent proceed to next number

 jump z, fail ; if not written try to write

 add k, 04 ; increment number by integer 4 everytime

 compare k, MAX ; if maximum value reached then terminate

 jump z, forever

 jump loop_body ; else be in loop "loop_body"

forever:

 jump forever

;---------------------

write_to_fifo:

 input fdata, flags ; load flags input to fdata

 and fdata, 02 ; masking the lower bit

 compare fdata, 02 ; test full flag

 jump nz, ok_to_wr ; if not full -->write to fifo

 load success, 00 ; else load failure

 return

ok_to_wr:

 output dout, dout_port ;send switch input to out_port1

 load success, 01 ; success!!

 return

58

Appendix: B (Continued)

B.5 PicoBlaze 5 Assembly code for Counting Numbers Experiment

;PICOBLAZE 5.psm

; description: This Program sends the data from PB5(West) to Destination (P4)

; 1. generate numbers

; 2. check FULL case

; 3. If not FULL send data into FIFO

namereg s0, k

namereg s3, success

namereg s4, fdata

namereg sf, sw_in

namereg s6, dout

;------------input port definitions---------------------

constant flags, 08

;------------output port definitions---------------------

constant dout_port, 00

;-------------------

constant MAX, 15

load k, 01

loop_body:

 load dout,k

fail:

 call write_to_fifo ; call routine write into fifo

 compare success, 00 ; if data sent proceed to next number

 jump z, fail ; if not written try to write

 add k, 04 ; increment number by integer 4 everytime

 compare k, MAX ; if maximum value reached then terminate

 jump z, forever

 jump loop_body ; else be in loop "loop_body"

forever:

 jump forever

;---------------------

write_to_fifo:

 input fdata, flags ; load flags input to fdata

 and fdata, 02 ; masking the lower bit

 compare fdata, 02 ; test full flag

 jump nz, ok_to_wr ; if not full -->write to fifo

 load success, 00 ; else load failure

 return

ok_to_wr:

 output dout, dout_port ;send switch input to out_port1

 load success, 01 ; success!!

 return

;-----------------------

59

Appendix C: Code for 14 PicoBlazes FIR Filter Experiment

C.1 N-tap and T-input FIR Filter Code in C Language

#include<stdio.h> //Header files

//#include<conio.h>

//venkata mandala Code for FIR FILTER Design May/27/2011

main()

{

int T,N;

int i=0,j=0,k,l;

float Y[127], A[127], U[127], Z[127], Y_OUT[127];

printf("---FIR FILTER Design--- \n");

printf("Enter the Number of Filter Inputs \n"); //accepting Taps

scanf("%d",&T);

printf("Enter the Number of Filter Taps \n"); //accepting Inputs

scanf("%d",&N);

 for(i=0; i<T; i++)

 {

 printf("Enter coefficient for U[%d]",i);

 scanf("%f",& U[i]);

 }

 for(j=0; j<N; j++)

 {

 printf("Enter coefficient for A[%d]",j);

 scanf("%f",&A[j]);

 }

 for(i=0; i<T; i++)

 {

 for(j=0; j<N; j++)

 {

 k=i-j;

 if(i<j)

 {

 U[k] =0;

 }

 if(i==0 && j==0)

 {

60

Appendix: C (Continued)

Z[j] = A[j] * U[k];

 Y_OUT[j] = Z[j];

 }

 if(i==0 && j>0)

 {

 Z[j] = A[j] * U[k];

 Y_OUT[j] = Y_OUT[j-1] + Z[j];

 }

 if(i>0)

 {

 Z[j] = A[j] * U[k];

 Y_OUT[j] = Y_OUT[j-1] + Z[j];

 }

 if(j==N-1)

 {

 printf("Output Y[%d] --> %f \n",i,Y_OUT[j]);

 printf("---------------- \n");

 }

 }

 }

}

C.2 PicoBlaze Array Code in VHDL for FIR filter Design

---Thesis Report by Venkata Mandala----------

-- This is the Top level PicoBlaze Array declaration VHDL file--

-- Final Version Submitted on July 8th 2011-----

--

-- Name: picoArray. Vhdl------------------------

--DESCRIPTION: This top level Array should have different sources given below.

-- 1.picoblaze.vhd (Wrapper code used for Wrapper instantation)

-- 2. KCPSM3. vhd (Picoblaze 8-bit microcontroller code)

-- 3. FIFO.vhd (main FIFO file that holds the Data)

-- 4. CLKDIV.vhd (clk_rate settings file)

-- 5. PINS.UCF (pin declaration FILE)

--DETAILS: This array has 14 picoblazes

61

Appendix: C (Continued)

--picoblazeU0, picoblazeU1, picoblazeU2,picoblazeU3--> generates the FIR "U[x]"

values

--PicoBlaze 1 to picoblaze 10 are different stages of PicoBlazes interconnected

--OUPUTs Y [0], Y[1], Y[2], Y[3] :taken from PicoBlaze 7 to PicoBlaze 10 Respectively

-- Declaration of Libraries

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

-- Main Pin declaration File--

entity picoArray is

 port(

 clk : in std_logic;

 btn : in STD_LOGIC;

 led : out std_logic_vector(7 downto 0)

);

end picoArray;

-- Architecture declaration of File starts here

architecture arch of picoArray is

-- Input Signals of Each picoblaze is given below--

signal in_westU0, in_westU1, in_westU2, in_westU3, in_west1, in_west2, in_west3,

in_west4, in_west5, in_west6, in_west7, in_west8, in_west9, in_west10 :

std_logic_vector(7 downto 0);

signal in_eastU0, in_eastU1, in_eastU2, in_eastU3, in_east1, in_east2, in_east3, in_east4,

in_east5, in_east6, in_east7, in_east8, in_east9, in_east10 : std_logic_vector(7 downto 0);

signal in_southU0, in_southU1, in_southU2, in_southU3, in_south1, in_south2,

in_south3, in_south4, in_south5, in_south6, in_south7, in_south8, in_south9, in_south10

: std_logic_vector(7 downto 0);

signal in_diagonalU0, in_diagonalU1, in_diagonalU2, in_diagonalU3, in_diagonal1,

in_diagonal2, in_diagonal3, in_diagonal4, in_diagonal5, in_diagonal6, in_diagonal7,

in_diagonal8, in_diagonal9, in_diagonal10 : std_logic_vector(7 downto 0);

-- Output Signals of Each picoblaze is given below--

signal out_westU0, out_westU1, out_westU2, out_westU3, out_west1, out_west2,

out_west3, out_west4, out_west5, out_west6, out_west7, out_west8, out_west9,

out_west10 : std_logic_vector(7 downto 0);

signal out_eastU0, out_eastU1, out_eastU2, out_eastU3, out_east1, out_east2, out_east3,

out_east4, out_east5, out_east6, out_east7, out_east8, out_east9, out_east10 :

std_logic_vector(7 downto 0);

62

Appendix: C (Continued)

signal out_southU0, out_southU1, out_southU2, out_southU3, out_south1, out_south2,

out_south3, out_south4, out_south5, out_south6, out_south7, out_south8, out_south9,

out_south10 : std_logic_vector(7 downto 0);

signal out_diagonalU0, out_diagonalU1, out_diagonalU2, out_diagonalU3,

out_diagonal1, out_diagonal2, out_diagonal3, out_diagonal4, out_diagonal5,

out_diagonal6, out_diagonal7, out_diagonal8, out_diagonal9, out_diagonal10 :

std_logic_vector(7 downto 0);

-- Address and Instruction Declaration for each ROM

signal addressU1, addressU0, addressU2, addressU3, address1, address2, address3,

address4, address5, address6, address7, address8, address9, address10 :

std_logic_vector(9 downto 0);

signal instructionU1,instructionU0, instructionU2, instructionU3, instruction1,

instruction2, instruction3, instruction4, instruction5, instruction6, instruction7,

instruction8, instruction9, instruction10 : std_logic_vector(17 downto 0);

-- Clocks used

signal clr, clk190, clk48: STD_LOGIC;

signal led_reg: std_logic_vector(15 downto 0);

-- Status signals taken from Wrapper--

signal status_west1_in, status_south1_in, status_diagonal1_in, status_east1_in:

std_logic_vector(7 downto 0);

signal status_west2_in, status_south2_in, status_diagonal2_in, status_east2_in:

std_logic_vector(7 downto 0);

signal status_westU0_in, status_southU0_in, status_diagonalU0_in, status_eastU0_in:

std_logic_vector(7 downto 0);

signal status_westU1_in, status_southU1_in, status_diagonalU1_in, status_eastU1_in:

std_logic_vector(7 downto 0);

signal status_westU2_in, status_southU2_in, status_diagonalU2_in, status_eastU2_in:

std_logic_vector(7 downto 0);

signal status_westU3_in, status_southU3_in, status_diagonalU3_in, status_eastU3_in:

std_logic_vector(7 downto 0);

signal status_west3_in, status_south3_in, status_diagonal3_in, status_east3_in:

std_logic_vector(7 downto 0);

signal status_west4_in, status_south4_in, status_diagonal4_in, status_east4_in:

std_logic_vector(7 downto 0);

signal status_west5_in, status_south5_in, status_diagonal5_in, status_east5_in:

std_logic_vector(7 downto 0);

signal status_west6_in, status_south6_in, status_diagonal6_in, status_east6_in:

std_logic_vector(7 downto 0);

signal status_west7_in, status_south7_in, status_diagonal7_in, status_east7_in:

std_logic_vector(7 downto 0);

signal status_west8_in, status_south8_in, status_diagonal8_in, status_east8_in:

std_logic_vector(7 downto 0);

63

Appendix: C (Continued)

signal status_west9_in, status_south9_in, status_diagonal9_in, status_east9_in:

std_logic_vector(7 downto 0);

signal status_west10_in, status_south10_in, status_diagonal10_in, status_east10_in:

std_logic_vector(7 downto 0);

-- Write strobes sent/recieved from wrapper for neighbour picoblaze status's

signal write_strobe_west1_in, write_strobe_south1_in, write_strobe_diagonal1_in,

write_strobe_east1_in: std_logic;

signal write_strobe_west2_in, write_strobe_south2_in, write_strobe_diagonal2_in,

write_strobe_east2_in: std_logic;

signal write_strobe_westU0_in, write_strobe_southU0_in, write_strobe_diagonalU0_in,

write_strobe_eastU0_in: std_logic;

signal write_strobe_westU1_in, write_strobe_southU1_in, write_strobe_diagonalU1_in,

write_strobe_eastU1_in: std_logic;

signal write_strobe_westU2_in, write_strobe_southU2_in, write_strobe_diagonalU2_in,

write_strobe_eastU2_in: std_logic;

signal write_strobe_westU3_in, write_strobe_southU3_in, write_strobe_diagonalU3_in,

write_strobe_eastU3_in: std_logic;

signal write_strobe_west3_in, write_strobe_south3_in, write_strobe_diagonal3_in,

write_strobe_east3_in: std_logic;

signal write_strobe_west4_in, write_strobe_south4_in, write_strobe_diagonal4_in,

write_strobe_east4_in: std_logic;

signal write_strobe_west5_in, write_strobe_south5_in, write_strobe_diagonal5_in,

write_strobe_east5_in: std_logic;

signal write_strobe_west6_in, write_strobe_south6_in, write_strobe_diagonal6_in,

write_strobe_east6_in: std_logic;

signal write_strobe_west7_in, write_strobe_south7_in, write_strobe_diagonal7_in,

write_strobe_east7_in: std_logic;

signal write_strobe_west8_in, write_strobe_south8_in, write_strobe_diagonal8_in,

write_strobe_east8_in: std_logic;

signal write_strobe_west9_in, write_strobe_south9_in, write_strobe_diagonal9_in,

write_strobe_east9_in: std_logic;

signal write_strobe_west10_in, write_strobe_south10_in, write_strobe_diagonal10_in,

write_strobe_east10_in: std_logic;

-- Write strobes of wach picoblazes are communicated using the below signals

signal ws_sU0, ws_dU0, ws_eU0, ws_wU0: std_logic;

signal ws_sU1, ws_dU1, ws_eU1, ws_wU1: std_logic;

signal ws_sU2, ws_dU2, ws_eU2, ws_wU2: std_logic;

signal ws_sU3, ws_dU3, ws_eU3, ws_wU3: std_logic;

signal ws_s1, ws_d1, ws_e1, ws_w1: std_logic;

signal ws_s2, ws_d2, ws_e2, ws_w2: std_logic;

signal ws_s3, ws_d3, ws_e3, ws_w3: std_logic;

signal ws_s4, ws_d4, ws_e4, ws_w4: std_logic;

64

Appendix: C (Continued)

signal ws_s5, ws_d5, ws_e5, ws_w5: std_logic;

signal ws_s6, ws_d6, ws_e6, ws_w6: std_logic;

signal ws_s7, ws_d7, ws_e7, ws_w7: std_logic;

signal ws_s8, ws_d8, ws_e8, ws_w8: std_logic;

signal ws_s9, ws_d9, ws_e9, ws_w9: std_logic;

signal ws_s10, ws_d10, ws_e10, ws_w10: std_logic;

--status signals taken out from each Picoblaze here

signal status_west1_out, status_south1_out, status_diagonal1_out, status_east1_out:

std_logic_vector(7 downto 0);

signal status_west2_out, status_south2_out, status_diagonal2_out, status_east2_out:

std_logic_vector(7 downto 0);

signal status_westU0_out, status_southU0_out, status_diagonalU0_out,

status_eastU0_out: std_logic_vector(7 downto 0);

signal status_westU1_out, status_southU1_out, status_diagonalU1_out,

status_eastU1_out: std_logic_vector(7 downto 0);

signal status_westU2_out, status_southU2_out, status_diagonalU2_out,

status_eastU2_out: std_logic_vector(7 downto 0);

signal status_westU3_out, status_southU3_out, status_diagonalU3_out,

status_eastU3_out: std_logic_vector(7 downto 0);

signal status_west3_out, status_south3_out, status_diagonal3_out, status_east3_out:

std_logic_vector(7 downto 0);

signal status_west4_out, status_south4_out, status_diagonal4_out, status_east4_out:

std_logic_vector(7 downto 0);

signal status_west5_out, status_south5_out, status_diagonal5_out, status_east5_out:

std_logic_vector(7 downto 0);

signal status_west6_out, status_south6_out, status_diagonal6_out, status_east6_out:

std_logic_vector(7 downto 0);

signal status_west7_out, status_south7_out, status_diagonal7_out, status_east7_out:

std_logic_vector(7 downto 0);

signal status_west8_out, status_south8_out, status_diagonal8_out, status_east8_out:

std_logic_vector(7 downto 0);

signal status_west9_out, status_south9_out, status_diagonal9_out, status_east9_out:

std_logic_vector(7 downto 0);

signal status_west10_out, status_south10_out, status_diagonal10_out, status_east10_out:

std_logic_vector(7 downto 0);

-- Main Program with entity declaration begins here

begin

-- Picoblaze U0 used for sending the U[0] numbers for FIR--

picoblazeU0: entity picoblaze

 port map(

 input_1 => in_westU0,

65

Appendix: C (Continued)

 input_2 => in_southU0,

 input_3 => in_diagonalU0,

 input_4 => in_eastU0,

 output_1 => out_westU0,

 output_2 => out_eastU0,

 output_3 => out_diagonalU0,

 output_4 => out_southU0,

 clk => clk190,

 address => addressU0,

 instruction => instructionU0,

 status1 => status_westU0_out,

 status2 => status_southU0_out,

 status3 => status_diagonalU0_out,

 status4 => status_eastU0_out,

 status1_in => status_westU0_in,

 status2_in => status_southU0_in,

 status3_in => status_diagonalU0_in,

 status4_in => status_eastU0_in,

 write_strobe_west_in => write_strobe_westU0_in,

 write_strobe_south_in => write_strobe_southU0_in,

 write_strobe_diagonal_in => write_strobe_diagonalU0_in,

 write_strobe_east_in => write_strobe_eastU0_in,

 ws_s => ws_sU0,

 ws_d => ws_dU0,

 ws_e => ws_eU0,

 ws_w => ws_wU0,

 btn => btn

);

U0_RAM: entity U0_RAM

 port map(

 clk => clk190,

address=>addressU0,

 instruction=>instructionU0

);

-- Picoblaze U1 used for sending the U[1] numbers for FIR--

picoblazeU1: entity picoblaze

 port map(

 input_1 => in_westU1,

 input_2 => in_southU1,

 input_3 => in_diagonalU1,

 input_4 => in_eastU1,

 output_1 => out_westU1,

 output_2 => out_eastU1,

66

Appendix: C (Continued)

 output_3 => out_diagonalU1,

 output_4 => out_southU1,

 clk => clk190,

 address => addressU1,

 instruction => instructionU1,

 status1 => status_westU1_out,

 status2 => status_southU1_out,

 status3 => status_diagonalU1_out,

 status4 => status_eastU1_out,

 status1_in => status_westU1_in,

 status2_in => status_southU1_in,

 status3_in => status_diagonalU1_in,

 status4_in => status_eastU1_in,

 write_strobe_west_in => write_strobe_westU1_in,

 write_strobe_south_in => write_strobe_southU1_in,

 write_strobe_diagonal_in => write_strobe_diagonalU1_in,

 write_strobe_east_in => write_strobe_eastU1_in,

 ws_s => ws_sU1,

 ws_d => ws_dU1,

 ws_e => ws_eU1,

 ws_w => ws_wU1,

 btn => btn

);

U1_RAM: entity U1_RAM

 port map(

 clk => clk190,

address=>addressU1,

 instruction=>instructionU1

);

-- Picoblaze U2 used for sending the U[2] numbers for FIR--

picoblazeU2: entity picoblaze

 port map(

 input_1 => in_westU2,

 input_2 => in_southU2,

 input_3 => in_diagonalU2,

 input_4 => in_eastU2,

 output_1 => out_westU2,

 output_2 => out_eastU2,

 output_3 => out_diagonalU2,

 output_4 => out_southU2,

 clk => clk190,

 address => addressU2,

67

Appendix: C (Continued)

instruction => instructionU2,

 status1 => status_westU2_out,

 status2 => status_southU2_out,

 status3 => status_diagonalU2_out,

 status4 => status_eastU2_out,

 status1_in => status_westU2_in,

 status2_in => status_southU2_in,

 status3_in => status_diagonalU2_in,

 status4_in => status_eastU2_in,

 write_strobe_west_in => write_strobe_westU2_in,

 write_strobe_south_in => write_strobe_southU2_in,

 write_strobe_diagonal_in => write_strobe_diagonalU2_in,

 write_strobe_east_in => write_strobe_eastU2_in,

 ws_s => ws_sU2,

 ws_d => ws_dU2,

 ws_e => ws_eU2,

 ws_w => ws_wU2,

 btn => btn

);

U2_RAM: entity U2_RAM

 port map(

 clk => clk190,

 address=>addressU2,

 instruction=>instructionU2

);

-- Picoblaze U3 used for sending the U[3] numbers for FIR--

picoblazeU3: entity picoblaze

 port map(

 input_1 => in_westU3,

 input_2 => in_southU3,

 input_3 => in_diagonalU3,

 input_4 => in_eastU3,

 output_1 => out_westU3,

 output_2 => out_eastU3,

 output_3 => out_diagonalU3,

 output_4 => out_southU3,

clk => clk190,

 address => addressU3,

 instruction => instructionU3,

 status1 => status_westU3_out,

 status2 => status_southU3_out,

 status3 => status_diagonalU3_out,

68

Appendix: C (Continued)

status4 => status_eastU3_out,

 status1_in => status_westU3_in,

 status2_in => status_southU3_in,

 status3_in => status_diagonalU3_in,

 status4_in => status_eastU3_in,

 write_strobe_west_in => write_strobe_westU3_in,

 write_strobe_south_in => write_strobe_southU3_in,

 write_strobe_diagonal_in => write_strobe_diagonalU3_in,

 write_strobe_east_in => write_strobe_eastU3_in,

 ws_s => ws_sU3,

 ws_d => ws_dU3,

 ws_e => ws_eU3,

 ws_w => ws_wU3,

 btn => btn

);

U3_RAM: entity U3_RAM

 port map(

 clk => clk190,

address=>addressU3,

 instruction=>instructionU3

);

-- PicoBlaze 1 declaration--

PicoBlaze 1: entity picoblaze

 port map(

 input_1 => in_west1,

 input_2 => in_south1,

 input_3 => in_diagonal1,

 input_4 => in_east1,

 output_1 => out_west1,

 output_2 => out_east1,

 output_3 => out_diagonal1,

 output_4 => out_south1,

 clk => clk190,

 address => address1,

 instruction => instruction1,

 status1 => status_west1_out,

 status2 => status_south1_out,

 status3 => status_diagonal1_out,

 status4 => status_east1_out,

 status1_in => status_west1_in,

 status2_in => status_south1_in,

 status3_in => status_diagonal1_in,

 status4_in => status_east1_in,

 write_strobe_west_in => write_strobe_west1_in,

69

Appendix: C (Continued)

 write_strobe_south_in => write_strobe_south1_in,

 write_strobe_diagonal_in => write_strobe_diagonal1_in,

 write_strobe_east_in => write_strobe_east1_in,

 ws_s => ws_s1,

 ws_d => ws_d1,

 ws_e => ws_e1,

 ws_w => ws_w1,

 btn => btn

);

p1_RAM: entity p1_RAM

 port map(

 clk => clk190,

address=>address1,

 instruction=>instruction1

);

-- PicoBlaze 2 declaration--

PicoBlaze 2: entity picoblaze

 port map(

 input_1 => in_west2,

 input_2 => in_south2,

 input_3 => in_diagonal2,

 input_4 => in_east2,

 output_1 => out_west2,

 output_2 => out_east2,

 output_3 => out_diagonal2,

 output_4 => out_south2,

 clk => clk190,

 address => address2,

 instruction => instruction2,

 status1 => status_west2_out,

 status2 => status_south2_out,

 status3 => status_diagonal2_out,

 status4 => status_east2_out,

 status1_in => status_west2_in,

 status2_in => status_south2_in,

 status3_in => status_diagonal2_in,

 status4_in => status_east2_in,

write_strobe_west_in => write_strobe_west2_in,

 write_strobe_south_in => write_strobe_south2_in,

 write_strobe_diagonal_in => write_strobe_diagonal2_in,

 write_strobe_east_in => write_strobe_east2_in,

 ws_s => ws_s2,

 ws_d => ws_d2,

 ws_e => ws_e2,

70

Appendix: C (Continued)

 ws_w => ws_w2,

 btn => btn

);

p2_RAM: entity p2_RAM

 port map(

 clk => clk190,

address=>address2,

 instruction=>instruction2

);

-- PicoBlaze 3 declaration--

PicoBlaze 3: entity picoblaze

 port map(

 input_1 => in_west3,

 input_2 => in_south3,

 input_3 => in_diagonal3,

 input_4 => in_east3,

 output_1 => out_west3,

 output_2 => out_east3,

 output_3 => out_diagonal3,

 output_4 => out_south3,

 clk => clk190,

 address => address3,

 instruction => instruction3,

 status1 => status_west3_out,

 status2 => status_south3_out,

 status3 => status_diagonal3_out,

 status4 => status_east3_out,

 status1_in => status_west3_in,

 status2_in => status_south3_in,

 status3_in => status_diagonal3_in,

 status4_in => status_east3_in,

 write_strobe_west_in => write_strobe_west3_in,

 write_strobe_south_in => write_strobe_south3_in,

 write_strobe_diagonal_in => write_strobe_diagonal3_in,

 write_strobe_east_in => write_strobe_east3_in,

 ws_s => ws_s3,

 ws_d => ws_d3,

ws_e => ws_e3,

 ws_w => ws_w3,

 btn => btn

);

p3_RAM: entity p3_RAM

 port map(

 clk => clk190,

71

Appendix: C (Continued)

address=>address3,

 instruction=>instruction3

);

-- PicoBlaze 4 declaration--

PicoBlaze 4: entity picoblaze

 port map(

 input_1 => in_west4,

 input_2 => in_south4,

 input_3 => in_diagonal4,

 input_4 => in_east4,

 output_1 => out_west4,

 output_2 => out_east4,

 output_3 => out_diagonal4,

 output_4 => out_south4,

 clk => clk190,

 address => address4,

 instruction => instruction4,

 status1 => status_west4_out,

 status2 => status_south4_out,

 status3 => status_diagonal4_out,

 status4 => status_east4_out,

 status1_in => status_west4_in,

 status2_in => status_south4_in,

 status3_in => status_diagonal4_in,

 status4_in => status_east4_in,

 write_strobe_west_in => write_strobe_west4_in,

 write_strobe_south_in => write_strobe_south4_in,

 write_strobe_diagonal_in => write_strobe_diagonal4_in,

 write_strobe_east_in => write_strobe_east4_in,

 ws_s => ws_s4,

 ws_d => ws_d4,

 ws_e => ws_e4,

 ws_w => ws_w4,

 btn => btn

);

p4_RAM: entity p4_RAM

 port map(

 clk => clk190,

address=>address4,

 instruction=>instruction4

);

-- PicoBlaze 5 declaration--

PicoBlaze 5: entity picoblaze

72

Appendix: C (Continued)

 port map(

 input_1 => in_west5,

 input_2 => in_south5,

 input_3 => in_diagonal5,

 input_4 => in_east5,

 output_1 => out_west5,

 output_2 => out_east5,

 output_3 => out_diagonal5,

 output_4 => out_south5,

 clk => clk190,

 address => address5,

 instruction => instruction5,

 status1 => status_west5_out,

 status2 => status_south5_out,

 status3 => status_diagonal5_out,

 status4 => status_east5_out,

 status1_in => status_west5_in,

 status2_in => status_south5_in,

 status3_in => status_diagonal5_in,

 status4_in => status_east5_in,

 write_strobe_west_in => write_strobe_west5_in,

 write_strobe_south_in => write_strobe_south5_in,

 write_strobe_diagonal_in => write_strobe_diagonal5_in,

 write_strobe_east_in => write_strobe_east5_in,

 ws_s => ws_s5,

 ws_d => ws_d5,

 ws_e => ws_e5,

 ws_w => ws_w5,

 btn => btn

);

p5_RAM: entity p5_RAM

 port map(

 clk => clk190,

address=>address5,

 instruction=>instruction5

);

-- PicoBlaze 6 declaration--

PicoBlaze 6: entity picoblaze

 port map(

 input_1 => in_west6,

 input_2 => in_south6,

 input_3 => in_diagonal6,

73

Appendix: C (Continued)

 input_4 => in_east6,

 output_1 => out_west6,

 output_2 => out_east6,

 output_3 => out_diagonal6,

 output_4 => out_south6,

 clk => clk190,

 address => address6,

 instruction => instruction6,

 status1 => status_west6_out,

 status2 => status_south6_out,

 status3 => status_diagonal6_out,

 status4 => status_east6_out,

 status1_in => status_west6_in,

 status2_in => status_south6_in,

 status3_in => status_diagonal6_in,

 status4_in => status_east6_in,

 write_strobe_west_in => write_strobe_west6_in,

 write_strobe_south_in => write_strobe_south6_in,

 write_strobe_diagonal_in => write_strobe_diagonal6_in,

 write_strobe_east_in => write_strobe_east6_in,

 ws_s => ws_s6,

 ws_d => ws_d6,

 ws_e => ws_e6,

 ws_w => ws_w6,

 btn => btn

);

p6_RAM: entity p6_RAM

 port map(

 clk => clk190,

address=>address6,

 instruction=>instruction6

);

-- PicoBlaze 7 declaration--

PicoBlaze 7: entity picoblaze

 port map(

 input_1 => in_west7,

 input_2 => in_south7,

 input_3 => in_diagonal7,

 input_4 => in_east7,

 output_1 => out_west7,

 output_2 => out_east7,

 output_3 => out_diagonal7,

 output_4 => out_south7,

 clk => clk190,

74

Appendix: C (Continued)

 address => address7,

 instruction => instruction7,

 status1 => status_west7_out,

 status2 => status_south7_out,

 status3 => status_diagonal7_out,

 status4 => status_east7_out,

 status1_in => status_west7_in,

 status2_in => status_south7_in,

 status3_in => status_diagonal7_in,

 status4_in => status_east7_in,

 write_strobe_west_in => write_strobe_west7_in,

 write_strobe_south_in => write_strobe_south7_in,

 write_strobe_diagonal_in => write_strobe_diagonal7_in,

 write_strobe_east_in => write_strobe_east7_in,

 ws_s => ws_s7,

 ws_d => ws_d7,

 ws_e => ws_e7,

ws_w => ws_w7,

 btn => btn

);

p7_RAM: entity p7_RAM

 port map(

 clk => clk190,

address=>address7,

 instruction=>instruction7

);

-- PicoBlaze 8 declaration--

PicoBlaze 8: entity picoblaze

 port map(

 input_1 => in_west8,

 input_2 => in_south8,

 input_3 => in_diagonal8,

 input_4 => in_east8,

 output_1 => out_west8,

 output_2 => out_east8,

 output_3 => out_diagonal8,

 output_4 => out_south8,

 clk => clk190,

 address => address8,

 instruction => instruction8,

 status1 => status_west8_out,

 status2 => status_south8_out,

 status3 => status_diagonal8_out,

75

Appendix: C (Continued)

 status4 => status_east8_out,

 status1_in => status_west8_in,

 status2_in => status_south8_in,

 status3_in => status_diagonal8_in,

 status4_in => status_east8_in,

 write_strobe_west_in => write_strobe_west8_in,

 write_strobe_south_in => write_strobe_south8_in,

 write_strobe_diagonal_in => write_strobe_diagonal8_in,

 write_strobe_east_in => write_strobe_east8_in,

 ws_s => ws_s8,

 ws_d => ws_d8,

 ws_e => ws_e8,

 ws_w => ws_w8,

 btn => btn

);

p8_RAM: entity p8_RAM

 port map(

clk => clk190,

 address=>address8,

 instruction=>instruction8

);

-- PicoBlaze 9 declaration--

PicoBlaze 9: entity picoblaze

 port map(

 input_1 => in_west9,

 input_2 => in_south9,

 input_3 => in_diagonal9,

 input_4 => in_east9,

 output_1 => out_west9,

 output_2 => out_east9,

 output_3 => out_diagonal9,

 output_4 => out_south9,

 clk => clk190,

 address => address9,

 instruction => instruction9,

 status1 => status_west9_out,

 status2 => status_south9_out,

 status3 => status_diagonal9_out,

status4 => status_east9_out,

 status1_in => status_west9_in,

 status2_in => status_south9_in,

 status3_in => status_diagonal9_in,

 status4_in => status_east9_in,

 write_strobe_west_in => write_strobe_west9_in,

76

Appendix: C (Continued)

 write_strobe_south_in => write_strobe_south9_in,

 write_strobe_diagonal_in => write_strobe_diagonal9_in,

 write_strobe_east_in => write_strobe_east9_in,

 ws_s => ws_s9,

 ws_d => ws_d9,

 ws_e => ws_e9,

 ws_w => ws_w9,

 btn => btn

);

p9_RAM: entity p9_RAM

 port map(

 clk => clk190,

address=>address9,

 instruction=>instruction9

);

-- PicoBlaze 10 declaration--

PicoBlaze 10: entity picoblaze

 port map(

 input_1 => in_west10,

 input_2 => in_south10,

 input_3 => in_diagonal10,

 input_4 => in_east10,

 output_1 => out_west10,

 output_2 => out_east10,

 output_3 => out_diagonal10,

 output_4 => out_south10,

 clk => clk190,

 address => address10,

 instruction => instruction10,

 status1 => status_west10_out,

 status2 => status_south10_out,

 status3 => status_diagonal10_out,

 status4 => status_east10_out,

 status1_in => status_west10_in,

 status2_in => status_south10_in,

 status3_in => status_diagonal10_in,

 status4_in => status_east10_in,

 write_strobe_west_in => write_strobe_west10_in,

write_strobe_south_in => write_strobe_south10_in,

 write_strobe_diagonal_in => write_strobe_diagonal10_in,

 write_strobe_east_in => write_strobe_east10_in,

 ws_s => ws_s10,

 ws_d => ws_d10,

 ws_e => ws_e10,

77

Appendix: C (Continued)

 ws_w => ws_w10,

 btn => btn

);

p10_RAM: entity p10_RAM

 port map(

 clk => clk190,

address=>address10,

 instruction=>instruction10

);

clkdiv: entity clkdiv

 port map(

 mclk =>clk,

 clr =>clr,

 clk190 =>clk190,

 clk48 =>clk48

);

--Picoblazes strobes are sent other picoblazes who are needed

-- below are write strobes that are required when the FIFO need the data from neighbour

write_strobe_south1_in <= ws_sU0;

write_strobe_south2_in <= ws_s1;

write_strobe_south3_in <= ws_sU1;

write_strobe_south4_in <= ws_s2;

write_strobe_south5_in <= ws_s3;

write_strobe_south6_in <= ws_sU2;

write_strobe_south7_in <= ws_s4;

write_strobe_south8_in <= ws_s5;

write_strobe_south9_in <= ws_s6;

write_strobe_south10_in <= ws_sU3;

--diagonal strobes

write_strobe_diagonal1_in <= ws_sU0;

write_strobe_diagonal2_in <= ws_s1;

write_strobe_diagonal3_in <= ws_d1;

write_strobe_diagonal4_in <= ws_s2;

write_strobe_diagonal5_in <= ws_d2;

write_strobe_diagonal6_in <= ws_d3;

write_strobe_diagonal7_in <= ws_s4;

write_strobe_diagonal8_in <= ws_d4;

write_strobe_diagonal9_in <= ws_d5;

write_strobe_diagonal10_in <= ws_d6;

--east strobes

write_strobe_east1_in <= ws_sU0;

write_strobe_east2_in <= ws_s1;

write_strobe_east3_in <= ws_e2;

78

Appendix: C (Continued)

write_strobe_east4_in <= ws_s2;

write_strobe_east5_in <= ws_e4;

write_strobe_east6_in <= ws_e5;

write_strobe_east7_in <= ws_s4;

write_strobe_east8_in <= ws_e7;

write_strobe_east9_in <= ws_e8;

write_strobe_east10_in <= ws_e9;

--connection between the picoblazes for data transfer

in_south1 <= out_southU0; -- U[0]

in_south2 <= out_south1;

in_south3 <= out_southU1; -- U[1]

in_south4 <= out_south2;

in_south5 <= out_south3;

in_south6 <= out_southU2; -- U[2]

in_south7 <= out_south4;

in_south8 <= out_south5;

in_south9 <= out_south6;

in_south10 <= out_southU3; -- U[3]

in_east1 <= "00000010"; --A[3]

in_east2 <= "00000011"; --A[2]

in_east3 <= out_east2;

in_east4 <= "00000001"; --A[1]

in_east5 <= out_east4;

in_east6 <= out_east5;

in_east7 <= "00000010"; --A[0]

in_east8 <= out_east7;

in_east9 <= out_east8;

in_east10 <= out_east9;

in_diagonal1 <= "00000000";

in_diagonal2 <= "00000000";

in_diagonal3 <= out_diagonal1;

in_diagonal4 <= "00000000";

in_diagonal5 <= out_diagonal2;

in_diagonal6 <= out_diagonal3;

in_diagonal7 <= "00000000";

in_diagonal8 <= out_diagonal4;

in_diagonal9 <= out_diagonal5;

in_diagonal10 <= out_diagonal6;

--Outputs are seen from LEDS

--NOTE: watch for one output at once as we dont have more than 8 LEDs

--led <= out_diagonal10; -- Y[3] series

79

Appendix: C (Continued)

led <= out_diagonal9; -- Y[2] series

--led <= out_diagonal8; -- Y[1] series

--led <= out_diagonal7; -- Y[0] series

--End of program

end arch;

C.3 Four FIFO Wrapper Design Code in VHDL

;---

-- Thesis report by Venkata Mandala

-- Submitted: July 8th 2011

--picoBlaze.VHD

--DESCRIPTION: below vhdl code is the code acting as a wrapper

-- The wrapper is used as an entity in the main file for multiple times

-- 4 FIFOs are created in Wrapper designed for West, South, Diagonal, East directions

-- Wrapper takes different Signals in/out

-- For Example Signals like Write-Strobes, Data, FIFO status of neighbours taken

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

--Wrapper IN/OUT entity declarations

entity picoblaze is

 port(

 input_1: in std_logic_vector(7 downto 0);

 input_2: in std_logic_vector(7 downto 0);

input_3: in std_logic_vector(7 downto 0);

input_4: in std_logic_vector(7 downto 0);

output_1: out std_logic_vector(7 downto 0);

output_2: out std_logic_vector(7 downto 0);

output_3: out std_logic_vector(7 downto 0);

output_4: out std_logic_vector(7 downto 0);

clk : in std_logic;

address : inout std_logic_vector(9 downto 0);

 instruction : inout std_logic_vector(17 downto 0);

status1, status2, status3, status4: out std_logic_vector(7 downto 0);

status1_in, status2_in, status3_in, status4_in: in std_logic_vector(7 downto 0);

write_strobe_west_in, write_strobe_south_in, write_strobe_diagonal_in,

write_strobe_east_in : in std_logic;

ws_s, ws_e, ws_d, ws_w: out std_logic;

btn : in std_logic

80

Appendix: C (Continued)

);

end picoblaze;

--Architeture declaration is given below

architecture arch of picoblaze is

--Signals are given below

-- Below are signals in, out respectively from Picoblaze

 signal in_port, out_port: std_logic_vector(7 downto 0);

 signal port_id: std_logic_vector(7 downto 0);

signal read_strobe, write_strobe: std_logic;

signal interrupt, interrupt_ack: std_logic;

--Below are the signals for 4 FIFO's used--

signal fifo_out1, fifo_out2, fifo_out3, fifo_out4: std_logic_vector(7 downto 0);

signal rv: std_logic_vector(3 downto 0);

 signal rv1, rv2, rv3, rv4: std_logic;

 signal empty1, full1 : std_logic;

 signal empty2, full2 : std_logic;

 signal empty3, full3 : std_logic;

 signal empty4, full4 : std_logic;

--Process Signals

 signal en_d: std_logic_vector(3 downto 0);

 signal en_d1: std_logic_vector(11 downto 0);

begin

---Unused inputs on processor

 interrupt <= '0';

--KCPSM3 is declared below which is an entity taken from KCPSM3.VHD file

kcpsm3: entity kcpsm3

 port map(

 clk=>clk, reset=>btn,

 address=>address, instruction=>instruction,

 port_id=>port_id, write_strobe=>write_strobe,

 out_port=>out_port, read_strobe=>read_strobe,

 in_port=>in_port, interrupt=>interrupt,

 interrupt_ack=>interrupt_ack

);

--write strobes of each side (south, diagonal, west east) are taken and send out

respectively

81

Appendix: C (Continued)

process(clk)

 begin

 if port_id(1 downto 0) = "00" then ws_w <= write_strobe; end if ;

 if port_id(1 downto 0) = "01" then ws_e <= write_strobe; end if ;

 if port_id(1 downto 0) = "10" then ws_d <= write_strobe; end if ;

 if port_id(1 downto 0) = "11" then ws_s <= write_strobe; end if ;

end process;

-- FIFO 1 is declared below which is for the west side

fifo_1: entity fifo

 port map(

 clk=>clk, reset=>btn,

 rd=>rv(0), wr=>write_strobe_west_in,

 w_data=>input_1, r_data=>fifo_out1,

 empty=>empty1, full=>full1

);

-- FIFO 2 is declared below which is for the south side

fifo_2: entity fifo

 port map(

 clk=>clk, reset=>btn,

 rd=>rv(1), wr=>write_strobe_south_in,

 w_data=>input_2, r_data=>fifo_out2,

 empty=>empty2, full=>full2

);

-- FIFO 3 is declared below which is for the diagonal side

fifo_3: entity fifo

 port map(

 clk=>clk, reset=>btn,

 rd=>rv(2), wr=>write_strobe_diagonal_in,

 w_data=>input_3, r_data=>fifo_out3,

 empty=>empty3, full=>full3

);

-- FIFO 4 is declared below which is for the east side

fifo_4: entity fifo

 port map(

 clk=>clk, reset=>btn,

 rd=>rv(3), wr=>write_strobe_east_in,

 w_data=>input_4, r_data=>fifo_out4,

 empty=>empty4, full=>full4

);

82

Appendix: C (Continued)

--FIFO's Status(Empty and Full) made as a 8-BIT by concatinating zeros for MSB's;

 status1 <= "000000" & full1 & empty1;

 status2 <= "000000" & full2 & empty2;

 status3 <= "000000" & full3 & empty3;

 status4 <= "000000" & full4 & empty4;

-----------Read Strobe--------------------

--

-- Input to the PicoBlaze is given with FIFO data, FIFO status and status from neighbours

with port_id(3 downto 0) select

 in_port <= fifo_out1 when "0000",

 fifo_out2 when "0001",

 fifo_out3 when "0010",

 fifo_out4 when "0011",

 "000000" & full1 & empty1 when "0100",

 "000000" & full2 & empty2 when "0101",

 "000000" & full3 & empty3 when "0110",

 "000000" & full4 & empty4 when "0111",

 status1_in when "1000",

 status2_in when "1001",

 status3_in when "1010",

 status4_in when "1011",

 "00000000" when others;

--

-- "rv" enables when the data is coming into the FIFO

-- Below code does the bit high where the particular FIFO is to be write enabled

process (read_strobe, port_id)

 begin

 if read_strobe = '0' then

 rv <= "0000";

 else

 case port_id(3 downto 0) is

 when "0000" =>

 rv <= "0001";

 when "0001" =>

 rv <= "0010";

 when "0010" =>

 rv <= "0100";

 when "0011" =>

 rv <= "1000";

83

Appendix: C (Continued)

 when others =>

 rv <= "0000";

 end case;

 end if;

end process;

--- Write Strobe to different directions given below-

process (clk)

 begin

 if en_d(0)='1' then output_1 <= out_port; end if;

 if en_d(1)='1' then output_2 <= out_port; end if;

 if en_d(2)='1' then output_3 <= out_port; end if;

 if en_d(3)='1' then output_4 <= out_port; end if;

 end process;

process(port_id,write_strobe)

 begin

 en_d <= (others=>'0');

 if write_strobe='1' then

 case port_id(1 downto 0) is

 when "00" => en_d <="0001";

 when "01" => en_d <="0010";

 when "10" => en_d <="0100";

 when others => en_d <="1000";

 end case;

 end if;

 end process;

--END of Wrapper program

end arch;

C.4 PicoBlaze 1 to PicoBlaze 10 Assembly Code for FIR Filter Design

;---

;- (PICOBLAZE 1 - PICOBLAZE 10).PSM file for FIR FILTER design

;-------------------------------------

; Thesis report PSM file

; Submitted by Venkata Mandala

; July 8th 2011

; Below Code is a Picoblaze Assembly code (for PicoBalzes 1 to 10)

;-------------------------------------

;-------------------------------------

; DESCRIPTION:

;1. data from i_sou,i_dia and i_eas ports taken into in_s, in_d, in_e reg's

84

Appendix: C (Continued)

;2. in_s, in_d data is again loaded in s3, s4 reg's and multiplied

;3. result is stored in s6

;4. s6 is added with in_d(diagonal data) and stored in in_d

;5. in_d is outputed (sent) to o_dia (diagonal output)

;6. in_s is outputed (sent) to o_sou (south output)

;7. in_e is outputed (sent) to o_eas

;NOTE: The below code is used for PicoBlaze 1 to PicoBlaze 10

;------------------------------------

;DETAILS

; First the FIFO status is checked

; If the FIFO is empty stay in loop else proceed next step

; Extract data from input ports

; do multiplication for south and east sides

; do addition for diagonal input and muliplied value

; sent the result obtained after addition above to diagonal outport

; sent the east and south inputs to east and south outputs resp'ly

;------------------------------------

; registers

namereg s0, data

namereg s1, i

namereg s2, count

namereg sa, flag_s

namereg sb, flag_d

namereg sc, flag_e

namereg sd, in_s

namereg se, in_d

namereg sf, in_e

;------------input port definitions----------------------

constant f_sou, 05

constant f_dia, 06

constant f_eas, 07

constant i_sou, 01

constant i_dia, 02

constant i_eas, 03

;--

;------------output port definitions---------------------

constant o_sou, 03

constant o_dia, 02

constant o_eas, 01

constant o_wes, 00

;--

main:

check_s: ; Check the FIFO status of South

85

Appendix: C (Continued)

input flag_s, f_sou ; Input the Flag status of South

and flag_s, 01

compare flag_s, 01 ; Compare with Empty Flag

jump z, check_s ; If empty be in loop "check_s"

check_e: ; check the FIFO status of East

input flag_e, f_eas ; Input the Flag status of East

and flag_e, 01

compare flag_e, 01 ; Compare with Empty Flag

jump z, check_e ; If empty be in loop "check_e"

check_d: ; check the FIFO status of Diagonal

input flag_d, f_dia ; Input the Flag status of Diagonal

and flag_d, 01

compare flag_d, 01 ; Compare with Empty Flag

jump z, check_d ; If empty be in loop "check_d"

input in_s, i_sou ; Input data from South

input in_e, i_eas ; Input data from east

input in_d, i_dia ; Input data from diagonal

load s3, in_s ; Load s3 with south value

load s4, in_e ; Load s4 with east value

;--Below does the Multiplication of s3 and s4

;-- Product is stored in "s6" register

;NOTE: the product is 8-bit value, make sure not to exceed the value

calculate:

 load s6, 00

 load s5, 00 ;clear s5

 load i, 08 ;initialize loop index

mult_loop:

 sr0 s4 ;shift lsb to carry

 jump nc, shift_prod ;lsb is 0

 add s5, s3 ;lsb is 1

shift_prod:

 sra s5 ;shift upper byte right,

 ;carry to MSB, LSB to carry

 sra s6 ;shift lower byte right,

 ;lsb of s5 to MSB of s6

sub i, 01 ;dec loop index

 jump nz, mult_loop ;repeat until i=0

; addition of muliplied value to the diagonal input obtained from diagonal

add in_d, s6

; Output all the ports to corresponding directions

output in_s, o_sou ; sending the input of south to output of south

output in_e, o_eas ; sending the input of east to output of east

86

Appendix: C (Continued)

output in_d, o_dia ; diagonal = previous diagonal + (south * east)

load s3, 00 ; clear s3 register

load s4, 00 ; clear s4 register

jump main ; Jump to start of program and be in loop

C.5 PicoBlazeU0 to PicoBlazeU3 Assembly Code for FIR Filter Design

;---

; PicoBlaze U0, PicoBlaze U1, PicoBalze U2, Picoblaze U3 PSM file codes

;---

; Thesis report submitted by Venkata Mandala

; Date: July 8th 2011

; NOTE: can change input values {U1, U2, U3}for U1_RAM, U2_RAM, U3_RAM

; Description: This file generates U[0] Input values and outputs to south ports.

namereg s2, in_s

;------------output port definitions---------------------

constant o_sou, 03

;-------------------

; Main program starts here

load in_s, 01 ;Load series of U0 values

output in_s, o_sou ; output to south port

load in_s, 02

output in_s, o_sou

load in_s, 03

output in_s, o_sou

load in_s, 04

output in_s, o_sou

load in_s, 03

output in_s, o_sou

forever: ; be in loop after sending U0's

jump forever

;-----------------

87

Appendix D : Spartan 3E and Virtex 5 Statistics

D.1 Logic Cells LEGEND Color on Virtex 5 and Spartan 3E FPGA

Figure D-1: Legend colors for 14 PicoBlaze cores on FPGA

D.2 Occupation of Logic Cell Resources on Virtex 5 FPGA

Figure D-2: Occupation of logic cells on Virtex 5 FPGA

88

Appendix: D (Continued)

D.3 Occupation of Logic Cell Resources on Spartan 3E FPGA

Figure D-3: Occupation of logic cells on Spartan 3E FPGA

D.4 Table Showing General Comparison of Virtex 5 and Spartan 3E FPGAs

Table D-1: Comparison of Spartan 3E and Virtex 5 FPGA

89

Appendix E: Arbitration Schemes

E.1 Different Arbitration Schemes: (A Section from Chapter4)

In the available arbitration schemes, consider an arbitration technique used for

design of Symmetric Single-Chip Multiprocessor (SSCMP). The arbiter has two different

processes; scanning unit and arbitral process. The latter is executed by Arbitral Process

Controlling Unit (APCU) and Interfacing Switching Unit (ISU) [30].

APCU is the most important part, and actually is a Finite State Machine (FSM),

with three states which are IDLE, FETCH and BUSY. When the FSM detect that the

FIFO is not empty, it shifts its state from IDLE to FETCH. In the state of FETCH, FSM

fetches the address data of the processors from the FIFO, then it transfer to the next state,

BUSY. The state of BUSY takes charge of waiting for the processor, which is accessing

the shared data memory, to finish accessing operation.

ISU controls the connection of shared memory interface, in response to the output

variable of ASCU (fetch data). ISU must cooperate with APCU [30].

Bus based arbiter is the other scheme available. A multiple bus multiprocessor

system with N processors, M memory modules, and B buses are considered in the

system. Four important bus control signals are present in a bus arbiter of multiple bus

multiprocessor system. They are, bus request signal (Request), bus grant signal

(Grant), bus selection line (i), and memory-module enable signal. The bus selection

line (i) is used to send the identification number of the grant bus to a requesting

processor, where i = [] and B is the total number of buses in the multiprocessor

system. The memory-module enable line () is used to indicate the requested destination

memory of the needed data from to the requesting processor, where line is decoded

for the address lines [25].

 The arbitration algorithm followed by the bus arbiter is in executed by a state

machine, which has four states: W (wait), G (grant) state, I (idle) state, and E (exclude)

state. In wait state, the processor requests are suspended and queued in request queue

until bus is released. If the state enters a grant state as a response is delivered from arbiter

90

Appendix: E (Continued)

to the requesting processor of this system. The idle state indicates that the processor is

free. In exclude state, the bus is used to transfer data processor from/to other processors

or memory modules [29].

 The algorithm follows the state transition of first request first grant (FRFG)

priority policy. State , , and represent the wait state, grant state, and exclude state

of processor j, respectively. If a request (R) is issued, if the destination is idle then the

arbiter receives this request and responses a grant to the requesting processor; else this

request is entered into wait state (W) until a free bus and the detonation are released, thus

the wait-request can entry into grant state, furthermore entry exclude state [29].

91

Appendix F: Delay Statistics for Spartan 3E and Virtex 5

F.1 Place and Route Delay Statistics for Spartan 3E and Virtex 5 FPGAs

Figure F-1: Delay for Spartan 3E with 14 PicoBlazes (FIFO) setup

Figure F-2: Delay for Virtex 5 with 14 PicoBlazes (FIFO) setup

Figure F-3: Delay for Spartan 3E with 4 Picobalzes (shared memory) setup

Figure F-4: Delay for Virtex 5 with 4 PicoBlazes (shared memory) setup

92

Appendix -F (Continued)

F.2 Synthesis (Pre-Routing) Report Statistics for Spartan 3E and Virtex 5 FPGAs

Figure F-5: Synthesis delay report for Spartan 3E with 14 PicoBlaze setup

Figure F-6: Synthesis delay report for Virtex 5 with 14 PicoBlazes setup

93

Appendix -F (Continued)

Figure F-7: Synthesis delay report for Spartan 3E with Shared memory setup

Figure F-8: Synthesis delay report for Virtex 5 with 4 Shared memory setup

	A Study of Multiprocessor Systems using the Picoblaze 8-bit Microcontroller Implemented on Field Programmable Gate Arrays
	Recommended Citation

	tmp.1459972224.pdf.tfr8X

