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Austin Alleman 
 

Thesis Chair: Srinivas Kambhampati 
 

University of Texas at Tyler 
May 2014 

 
 Blattabacterium, an obligate bacterial endosymbiont, functions as a mechanism of 

nitrogen recycling and nutrient synthesis within the Order Blattaria (cockroaches). 

Through genome annotation and the application of bioinformatics, the function of 

Blattabacterium within the cockroach Nauphoeta cinerea was described. Results of 

analyses indicate that the Blattabacterium genome, comprised of  ~620,000 base pairs 

and ~620 individual genes, is drastically reduced when compared Flavobacterium, 

Blattabacterium’s closest free-living relative. However, the Blattabacterium genome 

retained functionality vital to host survival and fecundity and functions as a source of 

additional nutrient biosynthesis within its host. Like other intracellular endosymbionts, 

the Blattabacterium genome has a G+C content of ~27%. Synteny within the 

Blattabacterium genome is well conserved. In addition, results of genetic drift analyses 

indicate that Blattabacterium is experiencing elevated rates of functional genome 

evolution, when compared to free-living bacterial relatives, resulting from the unique 

evolutionary constraints of an intracellular lifestyle.
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Chapter One 

 
 
 

GENOMIC ANALYSIS OF THE COCKROACH ENDOSYMBIONT 
BLATTABACTERIUM, AND THE ROLE OF SELECTION IN THE EVOLUTION OF 

THIS HOST-SYMBIONT SYSTEM: A GENERAL INTRODUCTION 
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INTRODUCTION 

Class Insecta 

 Evolution, acting over the course of almost four billion years, has produced 

millions of unique species on planet Earth. Class Insecta itself is one of the most diverse 

groups of macro-organisms. Containing over one million described species - which is 

likely a fraction of the actual number of extant species - insects are among the most 

resilient, adaptable, and diverse organisms alive today. Insects are a class of invertebrate 

within the phylum Arthropoda, and are characterized by a chitinous exoskeleton, three-

pairs of jointed legs, three main body segments, compound eyes, and antenna. Insects are 

present in nearly all environments, though only a handful of insects reside in the world's 

oceans. As a group, insects possess one of the most successful lifestyles on earth. Often, 

diversification of a group came as the result of differentiation of pre-existing species, 

though this certainly is not the only process responsible for the biodiversity in insects we 

see today. Interspecies relationships also promote biodiversity. Predator-prey systems, 

parasitism, and symbiosis are a few examples of interspecific interactions that shape the 

diversity of life. One of the determining factors of insect diversity and success is that they 

have developed an expansive range of diets. Bacterial endosymbionts harbored by insects 

are at least partially responsible for such nutritional flexibility within this group of 

organisms (Buchner, 1965). Endosymbionts are frequently observed within or near the 

digestive tracts of their insect host, and it is generally accepted that bacterial 

endosymbionts play crucial roles in the nutritional provisioning of their hosts. Today, it is 

known that bacterial symbionts lend a wide array of functionality to their respective 

insect hosts. From nutritional provisioning to defense against parasitoids, bacterial 
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endosymbionts contribute to much of the diversity of this already expansive and 

successful group of organisms. 

The Cockroach 

‘Cockroach’ is the common name for a diverse and resilient lineage of winged 

insects within the Order: Blattodea. Currently, the approximately 4,500 species are 

divided into six well-established families (Blaberidae, Blattellidae, Blattidae, 

Cryptoceridae, Nocticolidae, and Polyphagidae), and two relatively new families 

(Lamproblattidae and Tryonicidae) (Inward, et. al., 2007). In light of recent molecular 

and phylogenetic developments, an ongoing debate has developed as to whether or not 

termites, currently of the Order Isoptera, should be reclassified within Blattodea under the 

family Termitidae. If Blattodea were reorganized, the number of extant families within 

this order would be brought up to nine. Currently, some disagreement exists over whether 

or not Cryptoceridae is monophyletic with the rest of the cockroaches (Inward, et. al, 

2007), though reclassification of Isoptera may resolve this issue.  

A handful of cockroach species have adapted to live in association with humans, 

and as such, these species have been classified as pest organisms. These pest species are 

the only cockroaches that have been studied in any great detail. Those taxa occupying 

niches not associated with humans are, comparatively, poorly understood. The life-

history, behavior, and feeding habits of these lesser-studied species remain largely 

unknown. 
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The Bacterial Endosymbiont 

 Up to 50% of insect species in several taxonomic orders have developed 

symbiotic relationships with obligate bacterial mutualists (Ruby, et. al., 2004). These 

primary bacterial symbionts exist within the cells of host insects, and are often required 

for the continued survival and reliable reproduction of the host organism (Buchner, 1965; 

Moran and Telang, 1998, Moran and Baumann, 2000; Zientz, et. al., 2001). Living inside 

of their host affords these bacteria relative safety from competition and exploitation, in 

exchange for increased ecological flexibility imparted onto the host species. At present, 

bacterial endosymbionts have been studied from a variety of insect orders. Full genomes 

from a number of these symbionts have been published, including many strains of 

Buchnera aphidicola (Shigenobu, et. al, 2000; etc.) aphids, Wigglesworthia (Akman, et. 

al., 2002; Rio, et. al., 2012), associated with the tsetse fly, Blochmannia (Gil, et. al., 

2003; etc.) within carpenter ants, and Blattabacterium (Sabree, et. al., 2009; etc.), 

extracted from cockroaches.  An intracellular lifestyle has profound effects upon the 

bacterial genome. Primary symbionts are inherited vertically from mother to offspring, 

undergoing sever population bottlenecks with each host generation resulting in a drastic 

reduction in effective population size. Accordingly, these bacterial mutualists are 

generally characterized by a radically reduced genome and a very low G+C nucleotide 

content, when compared to their free-living relatives, resulting from the accumulation of 

deleterious mutations through genetic drift. Since bacterial genomes contain few non-

functional DNA sequences, this genome reduction has come at the cost of metabolic and 

physiological capabilities. As such, examining these endosymbionts outside of their 

respective hosts has proved to be incredibly difficult. However, through recent 
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developments in DNA-sequencing techniques and bioinformatics, our understanding of 

insect endosymbionts has improved tremendously. These mechanisms allow us to 

elucidate the genomic effects of an intracellular lifestyle when compared to free-living 

taxa.  

Blattabacterium: The Cockroach Endosymbiont 

 With the exception of a single cave-dwelling genus, Noticola (Blattodea, 

Nocticolidae), all cockroach species contain endosymbiotic bacteria within their fat 

bodies (Buchner, 1965; Blochmann, 1887; Brooks, 1970; Douglas, 1989). These obligate 

endosymbionts belong to the genus Blattabacterium (Class Flavobacteria, Phylum 

Bacteriodetes) (Bandi et. al., 1994; Kambhampati, 2010). Analysis of evidence suggests 

that cockroaches acquired these endosymbionts in a single infection event, dating 

between 300 million years ago, the approximate age of the first fossil roaches from the 

Carboniferous, and 140 million years ago, when currently extant families last shared a 

common ancestor. Initially, the function of these endosymbionts was subject to 

speculation, owing to their recalcitrance to culture outside their host. Since their 

discovery, advanced DNA-sequencing techniques have allowed for the description and 

study of a number of Blattabacterium genomes. From these genomes it was discovered 

that the function of these endosymbionts is primarily the synthesis of amino acids and 

vitamins from the nitrogenous waste products of the host cockroach (Kambhampati, 

2010). Cockroaches store excess nitrogen as uric acid within their fat body cells (Mullins 

and Cochran, 1975). The decaying plant matter on which cockroaches typically feed is 

poor in nitrogen content. Thus, a mechanism for recycling nitrogenous waste would be 

beneficial to any organism whose diet is nitrogen-deficient. Unlike most insects, which 
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excrete waste nitrogen as uric acid, cockroaches excrete ammonia instead. 

Blattabacterium are capable of utilizing both urea and ammonia because they contain an 

active urease as well as a functioning urea cycle that converts host urea to ammonia 

(Bandi et. al., 1995; Mullins and Cochran, 1976; O’Donnell, 2008). In addition, increases 

in dietary nitrogen intake by host cockroaches correlates with increases in uric acid 

buildup within that host’s fat bodies (Mullins and Cochran, 1974; Mullins and Cochran, 

1975).  

 Blattabacterium are excellent models for studying genome evolution in 

endosymbionts for a variety of reasons. Cockroaches represent an evolutionary lineage 

consisting of diverse and ancient taxa that have adapted to many habitats and exhibit 

broad nutritional ecology. To date, eight Blattabacterium genomes have been sequenced 

from the following cockroach host species: Peirplaneta americana (Sabree, et. al., 2009), 

Blatta germanica (Lopez-Sanchez, et. al., 2011), Cryptocercus punctulatus (Neef, et. al., 

2011), Blaberus giganteus (Huang, et. al., 2012), Blatta orientalis (Patino-Navarette, et. 

al., 2013), Panesthia angustipennis (Tokuda, et. al., 2013), Nauphoeta cinerea 

(Kambhampati, et. al., 2013) and the termite, Mastotermes darwiniensis (Sabree, et. al., 

2012). While these genomes share similar gene composition and genome architecture, 

each also displays unique capacities for metabolic and physiological function. Thus, 

while the results of phylogenetic analysis support the hypothesis of co-cladogenesis 

between the endosymbionts and hosts (Clark, et. al., 2001; Lo, et. al., 2003), gene 

composition of Blattabacterium is not congruent with host phylogeny; rather it varies 

likely as a function of host nutrition, its relative importance in the mutualism, and the 

interaction between selection and drift. Blattabacterium, like other endosymbionts that 
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are transmitted exclusively from mother to offspring (vertical transmission), are excellent 

models for examining in the interplay between random genetic drift and natural selection 

because they undergo a population bottleneck with each host generation, shedding light 

on the interesting question of the relative roles of drift and selection within evolution. 

Finally, estimating the ratio of synonymous and non-synonymous substitutions, a 

measure of negative or positive selection, is also likely to illuminate the patterns and 

processes of genome evolution in Blattabacterium. It is for these reasons that 

Blattabacterium are superb models for studying host-symbiont cospeciation as well as 

genome evolution within bacterial endosymbionts.  
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INTRODUCTION 

Cockroaches (Blattodea) represent an ancient and diverse lineage of winged 

insects (Bell, et. al., 2007). Largely tropical, a vast majority of the approximately 5,000 

species inhabit forested areas and generally feed on decaying, nitrogen-poor organic 

matter (Bell, et. al., 2007). The handful of species that have adapted to an association 

with humans are the only ones that have been studied in detail, with incomplete 

information available for the biology of those taxa that live in the wild. Thus, the biology 

including life-history, feeding habits, and behavior remains unknown for many cockroach 

species.  

 Currently cockroaches are subdivided into eight families, with some debate over 

whether or not the monogeneric family Cryptocercidae is monophyletic with the rest of 

the cockroaches (Inward, et. al., 2007). The other seven families are Blattidae, 

Blattellidae, Polyphagidae, Blaberidae, Nocticolidae, Tryonicidae, and Lamproblattidae. 

Although there is no universal agreement on cockroach classification, Blaberidae is 

widely regarded as the most derived family (Bell, et. al., 2007; Kambhampati, 1995) with 

diverse biology, life history, and distribution.  

 All cockroaches, with the exception of Noticola, the cave dwelling genus, harbor 

within their fat bodies endosymbiotic bacteria (Buchner, 1965; Blochmann, 1887; 

Brooks, 1970) of the genus Blattabacterium, belonging to the class Flavobacteria and the 

phylum Bacteroidetes (Bandi, et. al., 1994; Kambhampati, 2010). The relationship 

between the host and the endosymbiont is an obligate one. Before the recent sequencing 

of the Blattabacterium genomes (see below), their function was subject to speculation 



 

 15 
 

(Kambhampati, 2010); however, now it is clear that the endosymbionts are involved in 

amino acid and vitamin synthesis from nitrogenous waste products (Kambhampati 2010). 

Within cockroaches, surplus nitrogen, concentrated into uric acid for storage, is contained 

within fat body cells (Mullins and Cochran, 1975). Cockroaches excrete ammonia as the 

nitrogen waste product, unlike most insects, which excrete waste nitrogen as uric acid. It 

is likely that Blattabacterium are capable of utilizing both urea and ammonia because 

they contain an active urease as well as a urea cycle that converts host urea to ammonia 

(Bandi, 1995; O’Donnell, 2008). In addition, increase in dietary nitrogen consumption by 

the host cockroach correlates with increased uric acid buildup within fat bodies (Mullins 

and Cochran, 1974; Mullins and Cochran, 1975).  

Eight Blattabacterium genomes have been sequenced to date from the following 

hosts: Periplaneta americana [BPLAN; (Sabree, et. al., 2009)], Blatta germanica [BBge; 

(Lopez-Sanchez, et. al., 2009)], Cryptocercus punctulatus [BCpu; (Neef, et. al., 2011)], 

Blaberus giganteus [BGIGA; (Huang, et. al., 2012)], Blatta orientalis [BBor; (Patino-

Navarette, et. al., 2013)], Panesthia angustipennis [Pane (Tokuda, et. al., 2013)], 

Nauphoeta cinerea [BNCIN (Kambhampati, et. al., 2013)] and the termite, Mastotermes 

darwiniensis [MADAR; (Sabree, et. al., 2012)]. These genomes, while largely similar to 

one another, also exhibit differences in structure and function, indicating considerable 

independent evolution among lineages harbored by various host species (see Results and 

Discussion for details). 

 Blattabacterium are excellent models for studying genome evolution in 

endosymbionts for a number of reasons. Cockroaches represent an evolutionary lineage 

consisting of diverse and ancient taxa that have adapted to many habitats and exhibit 



 

 16 
 

broad nutritional ecology. While phylogenetic analysis supports co-cladogenesis between 

cockroaches and Blattabacterium (Clark, et. al., 2001; Lo, et. al., 2003), the gene 

composition among Blattabacterium harbored by different host species varies suggesting 

selection that may be correlated with host nutritional ecology. On the other hand, 

Blattabacterium, like other vertically transmitted endosymbionts, are an interesting case 

study in the interplay between natural selection and genetic drift because they undergo a 

bottleneck with each host generation. The process by which Blattabacterium and other 

insect endosymbionts are passed on into the next generation of the host is presumably 

random and allows for only a subset of the bacteria to be passed on from the mother to 

her offspring (Wernegreen, 2011). Thus, both natural selection and random genetic drift 

likely play a role in genome evolution of Blattabacterium as was demonstrated for 

Buchnera (Herbeck, et. al., 2003) and Blochmannia (Wernegreen, 2011).  

 Here, the full genome sequence of Blattabacterium from the host cockroach, 

Nauphoeta cinerea (BNCIN), belonging to the family Blaberidae, is reported. Nauphoeta 

cinerea has been the subject of many behavioral and sexual selection studies in 

laboratory settings (e.g., Kou, et. al., 2009, Barrett, et. al., 2009); however, little is known 

about its natural history. The genome structure and function of Blattabacterium from N. 

cinerea to those from other Blattabacterium and elucidate the similarities and differences 

among them were compared.  
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MATERIALS AND METHODS 

Insects 

N. cinerea were obtained from a colony maintained at the Insect Zoo, Kansas 

State University. 

DNA Isolation 

DNA from host cockroaches was isolated as described in (Sabree, et. al., 2009). 

Briefly, freshly frozen cockroaches were dissected under a microscope to collect fat body 

tissue. Fat bodies were collected from 5 cockroaches directly into 200 µl of buffer ATL 

in the DNAeasy kit (Qiagen). The tissue was homogenized with a hand-held 

homogenizer and incubated at 55 oC for one hour after the addition of 20 µl of 50 µg/ml 

Proteinase-K. The homogenate was filtered through a 20 µm syringe filter (Millipore). 

Further steps followed the protocol recommended by the manufacturer for isolating DNA 

from tissue. 

 The amount of isolated DNA was estimated on a NanoDrop 2000. To estimate the 

relative amounts of host and bacterial DNA, PCR was set up using two genes: a 660 bp 

portion of the Blattabacterium 16S rRNA gene using primers from Clark and 

Kambhampati (Clark, et. al., 2001) and a 500 bp portion of the insect 18S rRNA gene 

using primers from Kambhampati and Aldrich (Kambhampati and Aldrich, 2006). The 

PCR protocol was: 95 oC for 3 minutes, followed by 35 cycles of 95 oC for 30 s, 50 oC for 

45 s, and 72 oC for 45 s; the final extension step was 72 oC for 10 min. The PCR products 

were run on a 1% agarose gel stained with ethidium bromide to visualize the DNA 

fragments. The relative amounts of host and bacterial DNA were estimated qualitatively. 
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DNA Sequencing  

The DNA was sent to the University of South Carolina Genomics Facility for 

sequencing using pyrosequencing (454 Life Sciences). The raw sequences were trimmed 

and assembled by Newbler software (454 Life Sciences); the assembled sequences and 

quality scores were electronically sent from the facility. 

Genome Assembly  

Trimming of the primers, adapters and polyA tails from the start or end of the 

sequences was conducted at the sequencing facility. Contigs were assembled using the 

default parameters in Newbler (454 Life Sciences). All contigs assembled by Newbler 

were submitted to the NCBI database using blastn and the search was restricted to 

Blattabacterium. Contigs with significant hits (e values of ≤ e-10) were identified. Each 

individual contig was then aligned using CLUSTAL (Larkin, 2007) to the full genome of 

Blattabacterium from the German cockroach, B. germanica (Lopez-Sanchez, et. al., 

2009); GenBank Accession no. NC_013454.1, GI: 262340793) to determine the contig’s 

position within the genome. The contigs were reverse complemented if necessary and 

placed in the order based on their position relative to the BBge genome.  

Gene Annotation  

Once the entire genome was assembled relative to the reference sequence, the 

sequence was submitted to GeneMark.hmm (Lukashin and Borodovsky, 1998) for 

prokaryotes to identify putative ORFs. “Blattabacterium sp.”, the only Blattabacterium 

genome available in GeneMark at the time of the analysis, was selected as the reference 

sequence. The putative ORFs were subjected to a blastp search to determine the extent of 
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coverage of known BBge genes. Those predicted ORFs that consisted of only a portion of 

a gene (relative to the reference genome) were manually curated to identify the missing 

section of that gene (i.e., we manually searched for and annotated those genes that were 

not completely assembled by ORF prediction software). Using a combination of manual 

curation and blastp searches, we assembled a predicted set of genes contained within the 

genome along with their physical location on the chromosome. Transfer RNA (tRNA) 

and tmRNA genes were identified using tRNAScan (Lowe and Eddy, 1997).  

Gene Ontology  

To identify the putative function of each predicted gene, the curated set of genes 

was submitted to KEGG (Kanehisa, et. al., 2012) using BBge as the reference sequence. 

Each identified pathway was examined for completeness and the synthesis or lack thereof 

of each amino acid, vitamin, and other compounds was inferred.  

Comparative Genomics  

The assembled and annotated genome was compared to the six published 

Blattabacterium genomes using primarily Geneious (Drummond, et. al., 2004), Mauve 

(Darling, et. al., 2004), and NCBI’s blast. Geneious was used to align the sequences and 

identify the indels. Mauve was used to examine the synteny between pairs of genomes. 

COGs for all genomes were identified using BASys, the Bacterial Annotation System 

(Van Domselaar, et. al., 2005). The genome sequence has been deposited in GenBank 

under accession numbers NC_013454.1 and GI: 262340793.  
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RESULTS AND DISCUSSION 

One 454 sequencing run resulted in approximately 300 Mb of DNA sequence 

data. The quality of the reads was excellent, with a vast majority of the reads being 

assigned the highest quality scores. Newbler assembled the raw reads into 56,734 contigs 

of varying lengths (ranging from about 100 bp to greater than 250 Kb in length). Of the 

56,734 contigs, 10 contigs belonged to Blattabacterium and the rest, presumably, to the 

host. The 10 contigs, made up of 155,529 reads, contained the entire genome of 

Blattabacterium. With an average read length of about 450 bp, the 155,529 reads totaled 

nearly 70 Mb of sequence data or an average Blattabacterium genome coverage of 112-

fold.  

The Blattabacterium genome from N. cinerea is 623,002 bp in length and has 

much in common with the other Blattabacterium genomes that have been sequenced to-

date (Table 1). All Blattabacterium genomes are highly reduced compared to those of 

their free-living relatives (Lopez-Sanchez, et. al., 2008; Sabree, et. al., 2010). The 

BNCIN genome is about 98.5% identical in nucleotide sequence to that from B. 

giganteus (host family: Blaberidae). In addition, the endosymbiont included a 3,735 bp 

plasmid that contained four genes (ribonucleoside-diphosphate reductase subunit beta, 

two hypothetical proteins, and deoxyuridine 5’-triphosphate nucleotidohydrolase) and 

was therefore similar in gene composition to plasmids from the other Blattabacterium 

genomes. The base composition was AT-biased with a GC content of 26.2%, similar to 

other described Blattabacterium (Patino-Navarette, et. al., 2013). The average length of 

the open reading frames (ORF) was 1,005 bp.  
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All existing Blattabacterium genomes were aligned in Geneious to examine 

synteny. To a large extent, the genomes were similar in structure. As noted by others 

(Neef, et. al., 2011; Patino-Navarette, et. al., 2013; Sabree, et. al., 2012), BCpu and 

MADAR are most divergent in gene composition relative to the remainder of the 

sequenced Blattabacterium genomes. The BNCIN genome, not surprisingly, was most 

similar in structure to that from B. giganteus. However, relative to BBge, BNCIN 

exhibited 9 major deletions. The gaps between BNCIN and BBge because the indels 

cumulatively spanned a few thousand base pairs and encompassed several genes. These 

gaps were confirmed using PCR amplification using primers anchored in the flanking 

regions (primer sequences available on request). Each of the gaps included one or more 

genes present in BBge but not in BNCIN. The genes deleted in BNCIN relative to BBge 

are: CAAX amino acid terminal protease family protein, 4Fe-4S ferredoxin iron-sulfur 

binding protein, uracil DNA glycosylase, phosphoadenylyl-sulfate reductase, sulfate 

adenylyltransferase subunit 1, cysteine synthase A, Uroporphyrinogen-III C-

methyltransferase, sulfite reductase (NADPH) hemoprotein subunits alpha and beta, 

hydroxymethylbilane synthase, K+ uptake transporter subunit KtrA, Uroporphyrinogen 

III synthase, hypothetical protein BLBBGE_594 and 595, and Glycoprotease M22 family 

domain containing protein. Many of the above deleted genes are involved in sulfur 

metabolism (Sekowska, et. al., 2000). Therefore, BNCIN is incapable of completely 

synthesizing methionine and retains the ability to synthesize cysteine, the two sulfur-

containing amino acids. A comparison of gene composition among all genomes with the 

exception of BNCIN was provided in (Patino-Navarette, et. al., 2013). 
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Gene Composition  

A total of 582 ORFs in the BNCIN genome, plus four more ORFs on BNCIN’s 

plasmid were identified. These numbers are similar to ORF counts from other 

Blattabacterium genomes sequenced to-date (Table 1). Almost all the genes essential for 

DNA replication, RNA transcription, and mRNA translation machinery were inferred. 

Thirty-two tRNA genes, capable of transferring all amino acids and a single transfer-

messenger RNA (tmRNA) gene were identified. Three ribosomal RNA genes (rRNA) 

were also present. 

Table 1: Genome characteristics of BNCIN compared to all seven other published 
Blattabacterium species. Host species abbreviations are as follows: BNCIN, N. cinerea; BGIGA, 
B. giganteus; BBge, B. germanica; BPLAN, P. americana; ; BCpu, C. punctulatus; MADAR, M. 
darwiniensis, BBor, B. orientalis. 

  BNCIN BGIGA BBge BPLAN BCpu MADAR BBor BPane 
Genome size (bp) 623,002 632,588 640,935 640,442 609,561 590,336 638,184 632,490 

Plasmids 1 1 1 1 1 1 1 0 

Plasmid size (bp) 3,735 3,423 4,085 3,448 3,816 3,088 3,735 N/A 
Chromosome size 
(bp) 619,267 629,165 636,850 636,994 605,745 587,248 634,449 632,490 

G+C content (%) 
26.2 / 
20.6 

25.7/ 
30.9 

27.1 / 
29.8 

28.2 / 
28.5 

23.8 / 
30.5 

27.5/ 
31.9 

28.2/ 
30.6 

26.4/ 
N/A 

Total number of 
genes 627 616 631 634 589 597 627 615 

CDSs 582 + 4 573 + 4 586 + 4 587 + 4 545 + 3 544 + 4 572 + 7 575 

rRNAs 3 3 3 3 3 3 3 3 

tRNAs 32 34 34 33 32 34 33 34 
Other RNAs: 
tmRNA, ffs, rnpB 1 1 3 1 3 3 3 3 

Pseudogenes 5 1 1 6 3 9 9 5  
 

The COG composition for all sequenced Blattabacterium genomes is shown in 

Figure 1. All the Blattabacterium genomes sequenced to-date appear to be highly similar 

across the COG categories. One possible exception is COG category E (amino acid 

transport and metabolism), in which both BCpu and MADAR seem to have fewer genes 
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than the other Blattabacterium. Not surprisingly, BNCIN, like all other strains of 

Blattabacterium, has lost virtually all genes coding for cell motility, a trait not needed 

within the controlled environment of an insect host. COGs responsible for secondary 

metabolite biosynthesis, transport, and catabolism, as well as signal-transduction 

mechanisms are also noticeably absent within the genome. 

 

Figure 1: COG composition of BNCIN genome. Letters refer to COG functional categories as 
follows. C - Energy production and conversion; D - Cell division and chromosome partitioning; E 
- Amino acid transport and metabolism; F - Nucleotide transport and metabolism; G - 
Carbohydrate transport and metabolism; H - Coenzyme metabolism; I - Lipid metabolism; J - 
Translation, ribosomal structure and biogenesis; K - Transcription; L - DNA replication, 
recombination and repair; M - Cell envelope biogenesis, outer membrane; N – Cell motility; O - 
Posttranslational modification, protein turnover, chaperones; P - Inorganic ion transport and 
metabolism; Q - Secondary metabolites biosynthesis, transport, and catabolism; R - General 
function prediction only; S - COG of unknown function; T - Signal transduction mechanisms. 
Host species abbreviations are as follows: BNCIN, N. cinerea; BGIGA, B. giganteus; BBge, B. 
germanica; BPLAN, P. americana; BCpu, C. punctulatus; MADAR, M. darwiniensis; BBor, B. 
orientalis. 
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Amino Acid Biosynthesis  

 The putative metabolic pathways using KEGG’s automatic annotation server, 

KASS, which revealed that BNCIN has the required genes for the biosynthesis of most, 

but not all, amino acids was reconstructed. Specifically, the BNCIN genome is lacking a 

full complement of genes for the stand-alone synthesis of methionine, asparagine, and 

glutamine (Table 2).  

Table 2: A direct comparison between the eight sequenced Blattabacterium genomes with 
respect to their individual abilities to synthesize the 10 essential and 10 nonessential amino acids. 
S represents a complete metabolic pathway, and thus the ability to synthesize the given amino 
acid without intervention from the host organism;  - represents an incomplete metabolic pathway 
where that specific amino acid cannot be produced by the endosymbiont; I represents a 
questionably incomplete metabolic pathway where some (usually terminal step) enzyme-coding 
genes are missing from the genome, but the endosymbiont is still able to produce that amino acid. 
Host species abbreviations are as follows: BNCIN, N. cinerea; BGIGA, B. giganteus; BBge, B. 
germanica; BPLAN, P. americana; BCpu, C. punctulatus; MADAR, M. darwiniensis; BBor, B. 
orientalis. 

Essential BNCIN BGIGA BBge BPLAN BBor MADAR BCpu BPane 
Histidine S S S S S S S S 
Isoleucine S S S S S - - S 
Leucine S S S S S - - S 
Lysine S S S S S S I S 
Methionine - - S - - - - - 
Phenylalanine S S S S S S S S 
Threonine S S S S S - - S 
Tryptophan S S S S S - - S 
Tyrosine S S S S S S S S 
Valine S S S S S - - S 
Nonessential         
Alanine I S S S S S S S 
Arginine S S S S S S I S 
Asparagine - - - - - - S - 
Aspartate S S S S S S S S 
Cysteine S S S S S S - S 
Glutamate S S S S S S S S 
Glutamine - - - - - - S - 
Glycine I S S S S S S S 
Proline I - - S - S S - 
Serine I S S - S S S S 
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 In addition, BNCIN possesses incomplete pathways (incomplete being defined as 

missing the terminal step for the synthesis of a given amino acid) for alanine, glycine, 

proline, and serine. By comparing the amino acid synthetic pathways of BNCIN with the 

six other described Blattabacterium genomes (Sabree et. al., 2009; Lopez-Sanchez, et. al., 

2009; Neef, et. al., 2011; Huang, et. al., 2012; Patino-Navarette, et. al., 2013; Sabree, et. 

al., 2012), it is evident that none of the Blattabacterium species possess a full 

complement of genes for all of the amino acids. BNCIN’s pathways for the metabolism 

of sulfur have been reduced when compared to the other Blattabacterium, although it 

remains more complete than the sulfur pathway possessed by BCpu, which has lost all 

genes needed for sulfur metabolism except for the gene encoding sulfite reductase 

(NADPH) flavoprotein alpha-component (Neef, et. al., 2011), which has been described 

to have additional functions such as electron relay (Siegel and Davis, 1974) and thus may 

have been retained within BCpu. BNCIN has lost the ability to reduce intracellular sulfate 

to sulfite. When compared to BBge and MADAR, BNCIN has lost the genes required for 

the coding of 3'-phosphoadenosine 5'-phosphosulfate synthase and phosphoadenosine 

phosphosulfate reductase, although both BBge and MADAR lack the gene necessary for 

the conversion of adenosine-5’-phosphosulfate (APS) into 3’-phospho adenosine-5’-

phosphosulfate (PAPS). Not surprisingly, BNCIN lacks the gene for this step as well. 

However, the BNCIN genome does encode sulfite reductase (NADPH) flavoprotein 

alpha-component, cysJ, the function of which is to facilitate the reduction of sulfate into 

hydrogen sulfide (Siegel and Davis, 1974). This sulfide is then incorporated into the two 

sulfur-containing amino acids L-cysteine and L-methionine. This indicates that BNCIN 

receives sulfate from an outside source for the production of cysteine and methionine. In 
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BNCIN, cysteine is synthesized from L-serine via enzymes serine O-acetyltransferase 

and cysteine synthase A. 

Like other sequenced Blattabacterium strains, BNCIN does not generate 

methionine by cysteine transsulfuration, as was previously suggested by experimental 

evidence (Block and Henry, 1961; Henry and Block, 1961). Genomic analysis revealed 

that this pathway is incomplete, lacking genes coding for homoserine O-acetyltransferase, 

metX, and cystathionine gamma-synthase, metB. Normally, homoserine O-

acetyltransferase yields O-acetyl-L-homoserine, although in this alternate pathway, the 

need for acetlyhomoserine is bypassed by the production of homocysteine by 

cystathionine beta-lyase using O-phosphohomoserine and cysteine. 

While Blattabacterium can make arginine from glutamate, this endosymbiont is 

lacking the final step for the production of proline on its own, suggesting an incomplete 

ornithine-urea cycle (Inokuchi, et. al., 1969; Reddy and Campbell, 1977). There are two 

similar, but separate, pathways for the production of proline from the urea cycle, and 

genomic analysis indicated that coding for the final enzyme of both of these pathways is 

missing in the BNCIN genome. While the Blattabacterium genome does code for the 

ornithine-urea cycle it does not possess the gene coding for ornithine cyclodeaminase, the 

enzyme responsible for the conversion of ornithine into proline. Therefore, 

Blattabacterium must either acquire ornithine cyclodeaminase from its host in order to 

produce proline from ornithine, or it must acquire proline in its entirety from the host. 

Urea and ammonia are both products of proline biosynthesis through arginine 

degradation. These products can be used by BNCIN-encoded glutamate dehydrogenase 

and urease to produce glutamate. This method of proline biosynthesis does conserve 
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nitrogen; thus, BNCIN, like other Blattabacterium, produces amino acids through the 

recycling of nitrogenous wastes.  

Metabolic Pathways 

BNCIN has a slightly reduced capacity for DNA repair compared to BBge and 

BPLAN, lacking the ability to produce uracil-DNA glycosylase, which eliminates uracil 

from DNA molecules in order to prevent mutagenesis (Lindhal, et. al., 1977). BNCIN 

also lacks coding for ATP-dependent DNA helicase (PcrA). This reduction in repair 

function, however, is not as severe as that displayed by MADAR, which possesses even 

fewer genes required for DNA repair (Sabree, et. al., 2012). 

Few substrate-specific transporters, especially those involved in amino acid 

uptake or secretion, were identifiable in the BNCIN genome. This is consistent with other 

insect nutritional endosymbionts. Like other Blattabacterium species, BNCIN encodes 

the alternate sigma factor RpoN (RNA polymerase sigma-54 factor), which functions as a 

transcriptional regulator of genes involved in nitrogen assimilation. While RpoN is 

encoded by all Blattabacterium sequenced to-date, it is absent in other insect sequenced 

endosymbiont genomes (Sabree, et. al., 2009). 

Genomic analysis of BNCIN also indicated the presence of a shortened glycolysis 

pathway. The genes coding for phosphofructokinase (PFK) (a metabolite needed at the 

beginning of the pathway to convert beta-D-fructose-6-phosphate into beta-D-fructose-

1,6 biphosphate),  and pyruvate kinase (PK) (required for the conversion of 

phosphoenolpyruvate into pyruvate)  are both missing from the genome. Like other 
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Blattabacterium, BNCIN likely produce pyruvate via NADP+-dependent malate 

dehydrogenase (Lopez-Sanchez, et. al., 2009). 

CONCLUSIONS 

 Blattabacterium within N. cinerea is a nutritional endosymbiont that is genetically 

and functionally similar to Blattabacterium harbored by other cockroach species, 

performing tasks such as nitrogen metabolism entailing the recycling of nitrogen from 

ammonia and urea as well as the provisioning of amino acids. Blattabacterium are unique 

among insect nutritional endosymbionts in that they have retained the transcriptional 

regulator RpoN, and in this respect BNCIN is no different from other Blattabacterium. 

BNCIN, like other Blattabacterium and insect symbionts, has a drastically reduced 

genome, which lacks almost all specific transporters and regulatory genes, an indication 

of the highly specialized and dependent nature of insect endosymbionts. The metabolic 

capacities provided to the cockroaches by Blattabacterium played an important role in the 

expansion of ecological niches for cockroaches allowing for the exploitation of nitrogen-

poor or nitrogen-variable food sources. Like other cockroach endosymbionts, BNCIN 

lacks a uricase homologue, which is integral to the utilization of uric acid as a way to 

store nitrogen. This step, then, is not carried out by Blattabacterium, but either by the 

cockroach host itself, or by bacteria within the insect’s gut (Sabree, Kambhampati, and 

Moran, 2009), as is the case with termites (Tokuda and Watanabe, 2007). 
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INTRODUCTION 

 Comprised of over 1,200,000 species, Class: Insecta is regarded as the largest 

group of macroorganisms. Within this expansive group, at least half of extant genera are 

estimated to harbor bacterial endosymbionts (Buchner, 1965; Ishikawa, 2003). While 

some intracellular bacteria can be harmful or even lethal to their insect host, many others 

play an important role in host survival and fecundity (Margulis and Fester, 1991; Ruby, 

et. al., 2004; Dasch, et. al., 1984; Douglas, 1989; Moran and Telang, 1998; Moran and 

Baumann, 2000). These obligate bacterial mutualists often function in the provisioning, 

recycling, or degradation of essential nutrients, and are vital to those insect species that 

depend entirely upon nutritionally narrow diets, for example those diets composed 

primarily of woody material, plant sap, blood, or decaying organic material (Bourtzis and 

Miller, 2003; Douglas, 1998; Moran and Baumann 2000).  

Insect Endosymbionts 

Through bioinformatics and molecular evolutionary analysis of endosymbiont 

genomes, it has demonstrated that the intracellular lifestyle strongly influences the rates 

and patterns of genome evolution. Within bacterial endosymbionts, genome evolution is 

characterized by a lack of genetic recombination through random genetic drift resulting 

from the fixation of deleterious mutations, bacterial asexuality, and elevated mutation 

rates and biases (Brynnel, et. al., 1998; Clark, et. al., 1999; Wernegreen and Moran, 

1999). The effects of asexuality, random drift, and irreparable mutation are often 

interconnected and mutually reinforcing. Primary endosymbionts are passed on through 

host lineages via strict vertical transmission, from mother directly to offspring, as 
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evidenced by co-cladogenesis between host insects and their endosymbionts (e.g., Chen, 

et. al., 1999; Clark, et. al., 2000; Funk, et. al., 2000; Patino-Navarette, et. al., 2013; Lo, 

et. al., 2003). This method of transmission, resulting in successive bottlenecks throughout 

the evolution of the obligate endosymbiont, has a profound impact on endosymbiont 

population structure, severely limiting their effective population size (Mira and Moran, 

2002). Compared to the population sizes of free-living bacteria species, population sizes 

for endosymbionts, which are determined almost entirely by individual hosts, are much 

smaller (Mira and Moran, 2002). Under the nearly-neutral model of evolution, a reduced 

effective population size elevates the rate of fixation of deleterious mutations through 

genetic drift (Ohta, 1973). Over evolutionary time, these deleterious mutations may 

accumulate up to a point where they have a negative effect upon the fitness of the 

bacterial endosymbiont, and as a result this, will negatively affect the host as well (Rispe 

and Moran, 2000). 

Selection, as it is used here, may be defined simply a change in nucleotide 

frequency within the DNA sequence of a genome. The magnitude and direction of natural 

selection acting upon functional protein coding genes within a genome may be inferred 

by the ratio of non-synonymous substitutions per non-synonymous site (dN) to the 

number of synonymous substitutions per synonymous site (dS) (McDonald and Kreitman, 

1991). A dN/dS ratio greater than one indicates a trend towards positive mutation events 

within the examined sequence; less than one implies a bias towards negative or 

stabilizing selection events. A ratio close to or equal to one indicates no (or neutral) 

selection. When compared to free-living bacteria, those adapted to intracellular lifestyles 

exhibit increased levels of mutation at synonymous and non-synonymous sites, as well as 
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higher dN/dS ratios, indicating an increase in positive selective pressures and rapid protein 

evolution (Yang and Bielawski, 2000). It is unlikely that this observed elevation of 

change in non-synonymous sites is attributable to mutational pressures alone. Instead, 

this pattern is best explained by the elevation of fixation of deleterious mutations through 

genetic drift (Brynnel, et. al., 1998; Clark, et. al., 1999), to which the endosymbionts are 

subjected to with each host generation due to the aforementioned mode of vertical 

transmission. This is in keeping with the observation that primary endosymbionts as well 

as many intracellular pathogens undergo extreme population bottlenecks with each new 

host generation (Funk, et. al., 2001). 

 Exacerbating the effect of small population sizes is the strict asexual mode of 

reproduction through which these bacteria replicate (Moran, 1996). Acting through 

Muller’s Ratchet, asexual reproduction prevents the recovery of wild-type genotypes 

through recombination (Muller, 1964). Within primary endosymbionts, asexuality itself 

might have resulted from the loss of gene elements through containment within host cells, 

as well as the loss of recombination functions that typically mediate the acquisition of 

novel genes (Tamas, et. al., 2002). In addition to the combined effects of these 

evolutionary forces driving the accumulation of deleterious mutations through random 

genetic drift, primary endosymbionts also display a mutational bias towards A+T base 

pairs within the genome. This trend is common within intracellular mutualists and 

pathogens alike (Heddi, et. al., 1998; Heddi, et. al., 1999). Many common mutations that 

occur within the bacterial genome result in the shifting of sequence composition from 

G+C to an A+T base pair bias. This compositional bias within endosymbionts that have 

undergone a radical reduction in genome size is likely the result of a loss of general DNA 
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maintenance and repair genes (Lawrence and Roth, 1999; Moran and Baumann, 2000; 

Moran, 2002).  

 All of these factors contribute to the reduction in functional genome size within 

bacterial endosymbionts. Bacteria genomes contain primarily coding DNA, and as such 

these genome reductions result through the loss of metabolic and physiological 

capabilities (Andersson and Kurland, 1998; Ochman and Moran, 2001). The drastic loss 

of functionality resulting from genome reduction likely accounts for the inability to 

culture primary bacterial endosymbionts independently of their host. Not surprisingly, 

recent studies suggest an overall mutational bias towards deletions rather than insertions 

within these genomes. This reflects a bias in spontaneous mutation, rather than selection 

towards smaller genomes (Mira, et. al., 2001). Thus, selection here does not favor those 

individuals with smaller genomes; instead, reduced strength of selection increases the 

number of nucleotide sites that may be altered without significant fitness consequences, 

strengthening the impact of deletion biases. However, endosymbionts are under selective 

pressure to retain specific metabolic functions that are necessary for host survival and 

reproduction. After all, a decrease in host fitness reduces the fitness of the endosymbiont 

as well (Rispe and Moran, 2000). Thus, the endosymbiont genome is the result of a 

continuous interplay between random genetic drift and the reduction of genes through 

relaxed selection within large portions of the genome, and natural selection acting to 

preserve those genes vital to host survival and fecundity. 

While the comparison of closely related taxa can highlight the evolutionary 

patterns operating on relatively short timescales, a somewhat different approach is needed 

to explain the long-term reduction of the bacterial genome. A somewhat recent approach 
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has elucidated the history of deletion within the primary aphid endosymbiont Buchnera 

(Moran and Mira, 2001). A maximum parsimony approach was used to reconstruct the 

ancestral genome of Buchnera-Ap. Results of analysis indicated that early gene loss in 

this primary endosymbiont was dominated by a small number of large deletions 

comprised of contiguous regions of the ancestral genome, often containing genes with no 

related functionality. This demonstrates that early genome reduction involved selection 

acting upon the combined fitness of large sets of genes, as well as a great deal of chance 

resulting from the location of these gene sets. Thus, significant deletion events early in 

the evolutionary history of a bacterial endosymbiont may alter the selective pressures of 

the loci that remain, and the subsequent erosion of individual genes. Many insect 

endosymbionts display genome stability since the initial loss of functionality immediately 

after their transition from free-living to an intracellular lifestyle. 

To date, the rate of genome evolution within insect endosymbionts has been the 

topic of a number of studies. Brynnel et. al. (2003) examined the rates of evolution acting 

upon the tuf gene within the aphid primary endosymbiont Buchnera. Brynnel’s findings 

suggest that, at both non-synonymous and synonymous mutation sites, the nucleotide 

sequence for this gene in Buchnera is evolving at a 10-fold higher rate than rates 

observed in Escherichia coli and Salmonella typhimurium, and up to a 40-fold increase in 

synonymous codon mutation rates (Brynnel, et. al., 2003). Similarly, (Herbeck et. al., 

2003) also examined rates of evolution within Buchnera. It was found through testing for 

genetic drift in the chaperonin groEL, that this gene is evolving at a 10 to 25-fold slower 

rate when compared to a handful of other examined Buchnera genes (Herbeck et. al., 

2003), though the observed rate of polymorphism was still elevated when compared to 
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free-living taxa. This reduced rate of substitutions is likely due to strong purifying 

selection within groEL, which is over-expressed within Buchnera. Additionally, the 

tsetse fly endosymbiont Wigglesworthia also displays notable patterns of genome 

evolution, exhibiting codon usage biases promoted by the unique patterns of nucleotide 

usage (strong bias towards A+T base pairs) within bacterial endosymbionts (Herbeck, et. 

al., 2003). 

 The above studies confirmed previously established theoretical expectations that 

bacterial endosymbionts experience similarly elevated rates of sequence evolution when 

compared to free-living bacteria taxa. Reduced effective population sizes and random 

genetic drift characterize the evolutionary history of endosymbiotic bacteria, leading to 

the accumulation of slightly deleterious mutations within the genome. However, these 

previous studies are somewhat limited in scope, comparing relatively small sets of genes 

and genomes. The availability of eight separate, fully sequenced Blattabacterium 

genomes, in addition to the availability of free-living Flavobacterium genomes for 

comparison, offers an unparalleled opportunity to elucidate the patterns of genetic drift 

within primary insect endosymbionts across a number of genes and genomes that, until 

recently, has been inconceivable.  

Blattabacterium: the Cockroach Endosymbiont 

Eight Blattabacterium genomes have been sequenced to date from the following 

hosts: Periplaneta americana (Sabree, et. al., 2009), Blatta germanica (Lopez-Sanchez, 

et. al., 2009), Cryptocercus punctulatus (Neef, et. al., 2011), Blaberus giganteus (Huang, 

et. al., 2012), Blatta orientalis (Patino-Navarette, et. al., 2013), Nauphoeta cinerea 
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(Kambhampati, et. al., 2013), Panesthia angustipennis spadica (Tokuda, et. al., 2013), 

and the termite, Mastotermes darwiniensis (Sabree, et. al., 2012). These genomes, while 

largely similar to one another, also exhibit some differences in structure and function, 

indicating considerable independent evolutionary pressures among separate lineages 

harbored by the various host species. Like many other obligate mutualist endosymbionts, 

Blattabacterium is transmitted vertically from mother to offspring with each new host 

generation. 

In addition to divergence within Blattabacterium, of particular interest are the 

ways in which bacterial endosymbiont genomes diverge from those in free-living genera. 

The bacterial genus Flavobacterium is the closest extant free-living relative to the 

cockroach endosymbiont Blattabacterium (Bandi, et. al., 1994; Kambhampati, 2010). 

Selection pressures differ radically between free-living and endosymbiotic taxa. These 

pressures likely contribute to the patterns of genome evolution observed in insect 

bacterial endosymbionts such as a reduced genome size and high A+T content; patterns, 

which are, not surprisingly, present within all sequenced Blattabacterium genomes 

(Kambhampati, et. al., 2013; Patino-Navarette, et. al., 2013). Members of the genus 

Flavobacterium tend to occur in temperate or polar environments, typically within soil, 

freshwater, or marine habitats (Kambhampati, 2010). Only one Flavobacterium species, 

Flavobacterium indicum, has been isolated from a warm habitat. Many Flavobacterium 

species act as opportunistic pathogens in freshwater fish, resulting in considerable 

economic losses worldwide (Bernardet and Bowman, 2010).  

It is likely that Blattabacterium had already broken away from Flavobacterium 

and been established as an endosymbiont by the time modern cockroaches and termites 
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shared a common ancestor. Subsequently, most termites have lost this endosymbiont - a 

notable exception being Mastotermes darwiniensis (Sabree, et. al., 2012) - while the 

Blattabacterium symbiosis has been retained by cockroaches. The complete annotation of 

eight separate Blattabacterium strains presents us with a unique data set with which to 

examine genome evolution and the direction of natural selection within this group. 

Utilizing information obtained in previous studies, and the data gathered here, we seek to 

elucidate the mechanisms affecting the evolutionary history of Blattabacterium, and 

explore the magnitude and direction of selection within this primary cockroach 

endosymbiont. We will calculate the positive and negative selection events occurring 

within the genomes of all sequenced Blattabacterium strains, and compare those events 

to those present within the closely related but free-living Flavobacterium species 

(Flavobacterium indicum, Flavobacterium johnsoniae, and Flavobacterium 

psychrophilim), and examine the similarities and differences between these two 

evolutionarily divergent groups. Furthermore, we will compare our results with those 

reported previously for Buchnera and Wigglesworthia. It is hypothesized that patterns of 

selection acting upon the Blattabacterium genome will be similar to those acting upon 

other insect endosymbionts (Wernegreen, 2002; Herbeck, et. al., 2003, Herbeck et. al., 

2003, Brynnel, et. al., 2003). Specifically, an elevation in both non-synonymous and 

synonymous mutation events is predicted, as well as a higher dN/dS ratio at sites under 

significant levels of selection than the free-living Flavobacterium; indicating increased 

positive selection pressures and an elevated rate of protein evolution. Additionally, it is 

expected that those genes under significant positive selection within Blattabacterium, if 

any, will primarily be those relating to host nutrient supplementation.  
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MATERIALS AND METHODS 

Sequences 

 Gene homolog files were manually compiled from sequences previously uploaded 

into GenBank [Blattabacterium: NC_017924.1, NC_020195.1, NC_013454.1, 

NC_016146.1, NC_022550.1, NC_020510.1, NC_013418.2, NC_016621.1; 

Flavobacterium: NC_017025.1, NC_009441.1, NC_009613.3). Homolog sets where all 

eight Blattabacterium and all three Flavobacterium were not present were excluded from 

further analysis. Three-hundred and four gene sets remained after exclusions. 

Alignment 

 Complete homolog files were then aligned using the Edit/Build Alignment 

function within MEGA 5.2.2 (Tamura, et. al., 2011). Sequences were aligned by 

MUSCLE for Codons (Edgar, 2004), using standard parameters. Gaps were removed 

before alignment. 

Tree Files 

 16S rRNA nucleotide sequences were manually compiled into a single text file for 

all eight Blattabacterium and all three Flavobacterium. 16S rRNA sequences were then 

aligned using the Edit/Build Alignment function within MEGA 5.2.2. Sequences were 

aligned by MUSCLE for DNA. A maximum likelihood tree was then produced using the 

aligned 16S rRNA sequences, utilizing the Construct/Test Maximum Likelihood Tree 

function within MEGA 5.2.2. This tree file was then exported as a Newick (.nwk) file. 

This file was manually edited to remove the branch lengths so that just the data for the 
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basic tree shape remained, as required by HyPhy’s (Kosakovsky et. al., 2005) Quick 

Selection Detection function (Section 2.4). 

Preparation of Aligned Sequences and Analysis 

 Within each aligned sequence file, a trimmed phylogenetic tree tag was inserted 

following the last aligned sequence. Following the insertion of this tag, each individual 

aligned file was analyzed using Hypothesis Testing Using Phylogenies (HyPhy) 

(Kosakovsky et. al., 2005). Using the Quick Selection Detection function (Standard 

Analysis > Positive Selection > QuickSelectionDetection.bf , default settings of Quick 

Selection Detection were used), each alignment file was analyzed for significantly 

positive or negative selection events. Multiple analyses were carried out, with 

modification of the significance level for each analysis set. Statistical significance level, 

as chosen by the user at the end of a Quick Selection Detection analysis, was varied from 

p = 0.05 to p = 0.20, in 0.05 increments. The results of each of these analyses are saved 

independently for later review and analysis.  

Selection Data Analysis 

 Using Microsoft Excel for Mac 2008, a table was constructed containing the 

information gathered from the output of the selection analyses. Information listed 

includes gene position within the Mastotermes darwiniensis genome (used as the 

reference genome for this analysis), locus tag, gene length, COG grouping, number of 

positive selection sites within that gene across all available species, number of negative 

selection sites within that gene, and the total number of selection sites within that gene. 

With this information, additional statistical analyses could be performed.  
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Phylogenetic Distance Analysis 

 Sequence similarity and phylogenetic distance analysis performed using Geneious 

R6 6.1.7 for Mac (Drummond, et. al., 2011). 

RESULTS AND DISCUSSION 

Tree Files 

 The phylogenetic relationship of these groups through the creation of Newick-

formatted tree files based upon complete 16S rRNA nucleotide sequences from all 

species analyzed was inferred. Flavobacterium indicum, the one described 

Flavobacterium species to have been extracted from a warm habitat, has the most similar 

16S rRNA sequence when BLASTed against described Blattabacterium strains.  

Selection 

 Initial analysis of Blattabacterium homolog sets was carried out across all eight of 

the fully sequenced strains, using a significance level of p = 0.05. At this significance 

level, Blattabacterium displays a strong negative mutational bias, with a ratio of sites 

under negative to sites under positive selection of 11:1 across 304 genes (Table 1). This 

result is in line with the patterns of strong negative selection observed in other insect 

endosymbionts (Wernegreen, 2002). At the same level of significance, p = 0.05, the 

Flavobacterium homolog sets display very little directional selection, with a slight but 

clear bias towards negative selection events. Compared to its closest free-living relative, 

Blattabacterium displays increased rates of polymorphism at both non-synonymous (dN) 

and synonymous sites (dS). Thus, in terms of over all selection events, Blattabacterium  
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Table 1. Comparison of selection events within the endosymbiont Blattabacterium and its free-
living relative Flavobacterium. At a significance level of p = 0.05, Flavobacterium displays no 
nucleotide sites under significant positive selection. By expanding the level of significance within 
this group to p = 0.15, a better understanding of the ratio of positive to negative mutation events 
could be gained. However, even at p = 0.15, Flavobacterium displays only a single location under 
significant positive selection, indicating an extreme trend towards negative mutation events 
within the examined Flavobacterium gene set, when compared to the ratios observed in 
Blattabacterium. 

Taxonomic 
Group 

P 
value 

Number of sites 
under positive 

selection 

Number of sites under 
negative selection 

Ratio of neg. 
selected sites 

to pos. 
selected sites 

Blattabacterium 0.05 180 1993 11.07 
Flavobacterium 0.05 0 207 N/A 
Flavobacterium 0.15 1 2576 2576 
 

displays a 10-fold increase in significantly selected sites when compared to 

Flavobacterium. This is strikingly similar to the findings of Brynnel et. al. (2003), who 

found that the nucleotide sequence of the tuf gene within Buchnera is evolving more than 

10 times as quickly than the same sequence in the free living E. coli and S. typhimurium. 

In addition to an overall elevation in selection events, Blattabacterium also displays an 

increased ratio of synonymous mutations to non-synonymous, when compared to 

Flavobacterium, which displayed almost no synonymous polymorphisms. This trend is 

mirrored in the Buchnera chaperonin groEL, which displays a 5-fold increase in non-

synonymous mutations, and a 10-fold increase in synonymous mutations, when compared 

to E. coli (Herbeck, et. al., 2003). Mutational pressure alone likely does not account for 

the magnitude of these dN/dS rate elevations. Within Buchnera, it has been suggested that 

this elevation of fixation occurs through random genetic drift resulting from the continual 

reduction of effective endosymbiont population size with each transmission from host 

parent to offspring (Brynnel, et. al., 1998; Clark, et. al., 1999; Funk, et. al., 2001). Given 

that this same elevation of polymorphisms is observed within Blattabacterium and that 
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Blattabacterium also undergoes similar population bottlenecks with each host generation, 

it is conceivable that similar mechanisms are shaping these two independent lineages.  

Flavobacterium genes was also analyzed at a significance level of p = 0.15. Since 

selection events are comparatively rare within Flavobacterium genes at a significance 

level of p = 0.05, loosening the significance level to p = 0.15 displayed more selection 

events, in both directions. This expands the usable dataset, encompassing events that 

would otherwise have been overlooked as non-significant, and affords us a better 

understanding of the ratio of selection within this group, and how it compares to 

Blattabacterium. Flavobacterium genes displayed almost no positive selection across 

examined gene homologs, indicating an extreme negative selection bias at this 

significance level. This also parallels the findings of (Brynnel et. al., 2003), who 

suggested that the rate of synonymous codon substitution within Buchnera can be as 

much as 40 times higher than free-living relatives. 

Blattabacterium displays elevated levels of both positive and negative selection 

events at a significance level of p = 0.05 when compared to free-living Flavobacterium, 

indicating an increase in mutation rates across the examined genes. In order to ensure that 

these patterns are not the result of sequences displaying radically different divergence 

times, we performed a simple phylogenetic analysis to elucidate the sequence similarity 

within each examined group. Phylogenetic analysis of both the Blattabacterium group 

(Table 2) and Flavobacterium group (Table 3) indicate similar levels of phylogenetic 

divergence between the individuals of each.  
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Table 2. Sequence divergence in the 16S rRNA gene of Blattabacterium. A phylogenetic tree 
was created using the 16S rRNA gene from each sequenced Blattabacterium species. From this 
tree, phylogenetic distances were calculated in order to estimate sequence similarity and 
divergence. Host species abbreviations are as follows: BNCIN, N. cinerea; BGIGA, B. giganteus; 
BBge, B. germanica; BPLAN, P. americana;  BCpu, C. punctulatus; MADAR, M. darwiniensis, 
BBor, B. orientalis; BPane, P. angustipennis spadica. 

  BPLAN BCpu BBge BGIGA MADAR BNCIN BBor BPane 
Amer  0.048 0.037 0.044 0.056 0.04 0.015 0.04 
Crypt 0.048  0.038 0.043 0.048 0.043 0.043 0.045 
Germ 0.037 0.038  0.024 0.045 0.026 0.038 0.021 
Giga 0.044 0.043 0.024  0.059 0.026 0.044 0.021 
Madar 0.056 0.048 0.045 0.059  0.049 0.051 0.056 
Naup 0.04 0.043 0.026 0.026 0.049  0.039 0.021 
Orien 0.015 0.043 0.038 0.044 0.051 0.039  0.036 
Pane 0.04 0.045 0.021 0.021 0.056 0.021 0.036   

 

Table 3. Sequence divergence in the 16S rRNA gene of Flavobacterium. A phylogenetic tree was 
created using the 16S rRNA gene from each Flavobacterium species used in this study. From this 
tree, phylogenetic distances were calculated in order to estimate sequence similarity and 
divergence. Species abbreviations: Findic, Flavobacterium indicum; Fjohn, Flavobacterium 
johnsoniae; Fpsych, Flavobacterium psychrophilim. 

  Findic Fjohn Fpsych 
Findic  0.074 0.08 
Fjohn 0.074  0.055 
Fpsych 0.08 0.055   

 
 
In addition, each group displays comparable percentages of identical sites (Blatt: 

89.5%, Flav 89.9%) as well as similar pairwise percent identities (Blatt: 95.8%, Flav: 

92.8%) when aligning the ribosomal 16S rRNA gene. Combined, these statistics indicate 

fairly similar divergence times between these two groups. Thus, modern Blattabacterium 

display signs of elevated rates of genome evolution in the form of increased levels of 

selection events. The increase in the number of sites experiencing negative or positive 

selection when compared to the free-living Flavobacterium indicates elevated levels of 

functional protein evolution. 
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 Using the results gathered here in conjunction with patterns of genome evolution 

published in previous studies (Kambhampati, et. al., 2013; Table 4), one might draw 

some conclusions about the mechanisms of sequence evolution within Blattabacterium. 

Firstly, like other intracellular mutualists, Blattabacterium are passed through host 

generations via vertical transmission, resulting in successive bottlenecks at each new host 

generation. These bottlenecks have a profound effect upon Blattabacterium population 

structure and severely limit the effective population size. In accordance with the nearly-

neutral model of evolution (Ohta, 1973), a reduction in effective population size elevates 

the rate of fixation of slightly deleterious mutations through genetic drift. This is 

evidenced by the observation that Blattabacterium displays a nucleotide bias towards 

A+T base pairs within its genome (Table 2). Similar biases away from G+C nucleotide 

composition are also evident within Wigglesworthia (~23.7%, Wernegreen and Moran, 

1999; Herbeck, et. al., 2003) from the tsetse fly, and Buchnera (28-31%, Brynnel, et. al., 

1998) from the aphid. Since many common mutations within the bacterial genome result 

in an alteration of nucleotide composition towards A+T base pairs (Wernegreen, 2002; 

Herbeck, et. al., 2003, Herbeck et. al., 2003, Brynnel, et. al., 2003), it is likely that the 

long-term accumulation of these mutations within the Blattabacterium genome is 

accountable for this nucleotide bias. In addition, within Wigglesworthia, evidence 

suggests that the predominant bias towards A+T base pairs drives codon usage trends 

within the bacterial endosymbiont genome (Wernegreen and Moran, 1999; Herbeck, et. 

al., 2003).   

Given that bacterial genomes are primarily functional DNA, the drastic genome 

reduction observed within Blattabacterium and other insect endosymbionts has come at 
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the cost of physiological functionality, including the loss of many genes coding for DNA 

maintenance and repair (Ochman and Moran, 2001; Sabree, et. al., 2009; Kambhampati, 

et. al., 2013; Patino-Navarette, et. al., 2013). Thus, because of this loss in functionality, 

the ancestral Blattabacterium was likely unable to completely repair these mutations, 

resulting in an overall mutational bias towards deletions rather than insertions. This 

indicates a bias within Blattabacterium towards spontaneous mutation rather than 

selection towards a smaller genome size. Thus, it is found that reduced strength of 

selection increases the number of nucleotide sites that may be altered without 

consequences in fitness, strengthening the impact of deletion biases. In conclusion, 

nucleotide composition biases observed in Blattabacterium today are largely due to the 

compounding effects of random genetic drift and the subsequent fixation of slightly 

deleterious mutations. Accordingly, this trend towards the accumulation of deleterious 

mutations is in agreement with Muller’s Ratchet (Muller, 1964). 

Gene-Level Patterns  

 Most genes within Blattabacterium and Flavobacterium displayed a bias towards 

negative selection. However, a few genes in Blattabacterium demonstrated neutral or 

even slightly positive selection (Table 4). As indicated by the COG groupings, genes ppa 

and sdhB are involved in energy production, hisC and speB in amino acid metabolism 

and transport, folE in coenzyme metabolism, and rplL and pth in translation, ribosome 

biogenesis and structure. That the vast majority of genes within the Blattabacterium 

genome are experiencing neutral or negative selection is in keeping with observations 

made by others (Patino-Navarette, et. al., 2013; Wernegreen, 2002) indicating conserved 

genome architecture within established endosymbiont lineages.  
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Table 4. Locus within Blattabacterium experiencing neutral or slightly positive selection. Genes 
classified here as ‘slightly positive’ are those with an equal or higher number of sites under 
positive selection than negative selection within the examined gene. ‘Position’ indicates that 
genes position within the Mastotermes darwineinsis genome, the model Blattabacterium genome 
used here. 

 

 
However, specific genes maintained by selective pressures will vary from endosymbiont 

lineage to endosymbiont lineage, depending upon the metabolic and physiological 

requirements of the host species. Thus, while random genetic drift plays a large role in 

shaping the Blattabacterium genome, selection plays a small, yet significant role in 

maintaining Blattabacterium’s functionality as a primary nutritional endosymbiont across 

the cockroach lineage. While similar mechanisms shape the genomes of Wigglesworthia 

and Buchnera, the gene composition and functionality of these genomes differs greatly 

due to the specific physiological requirements of the host organism; tsetse flies and 

aphids, respectively (Rita, et. al., 2012; Herbeck, et. al., 2003; Brynnel, et. al., 1998). 

Accordingly, the Blattabacterium genomes we examined here are the result of continual 

interplay between random genetic drift and the fixation of slightly deleterious mutations, 

and selection promoting the maintenance of cockroach-required metabolic functionality.  

 

Position Locus 

Avg.  
Length 

(n) COG 
Pos. 
sites 

Neg. 
Sites Ratio 

4 ppa 657 Energy production and conservation 1 1 1 

64 ruvA 781 DNA replication and repair 1 0 N/A 
121 hisC 1412 Amino acid transport and metabolism 4 4 1 
224 mutL 2303 DNA replication and repair 4 3 1.33 
239 folE 861 Coenzyme metabolism 2 2 1 

372 rplL 487 Translation, ribosomal structure and 
biogenesis 1 0 N/A 

388 sdhB 985 Energy production and conservation 4 4 1 
466 speB 1185 Amino acid transport and metabolism 1 1 1 

483 pth 772 Translation, ribosomal structure and 
biogenesis 1 1 1 
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CONCLUSIONS 

These findings indicate that the Blattabacterium genome is experiencing elevated 

rates of both positive and negative selection when compared to its free-living relative 

Flavobacterium, possessing a 10-fold increase in selection rate at the significance level p 

= .05 across 304 individual genes. The vast majority of observed selection events in the 

Blattabacterium genome were negative in direction, with only a handful of genes 

displaying selection in the positive direction. Combined with previous publications 

elucidating the evolutionary patterns within other insect endosymbionts, we may 

conclude that the Blattabacterium genome is shaped by similar evolutionary mechanisms. 

Previous studies have outlined the current state of the Blattabacterium genome, which is 

drastically reduced from its ancestral state and possesses a very strong bias towards A+T 

nucleotide base pairs. Analysis of these trends indicate that the Blattabacterium is 

experiencing an accumulation of slightly deleterious mutations through the continued 

effects of random genetic drift resulting from consecutive population bottlenecks 

throughout Blattabacterium’s evolutionary history. Additionally, Blattabacterium has 

lost many of its DNA repair functionality, likely though similar mechanisms discussed 

here, thus exacerbating this evolutionary bias towards slightly deleterious mutations. That 

these mutations cannot be repaired increases functional protein evolution rates within this 

endosymbiont. The patterns discussed here are highly similar to those evolutionary and 

genomic trends observed in other intracellular insect endosymbionts (Moran, 1996; 

Clark, 1999; Moran, 2002; Wernegreen, 2002). 

The analysis presented here could be augmented through a robust analysis of 

genome reduction within Blattabacterium. Using a parsimony approach, the ancestral 
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genome of another primary insect endosymbiont, Buchnera-Ap, was reconstructed by 

Moran and Mira (Moran and Mira, 2001). The results of Moran and Mira’s analysis 

indicated that much of the ancestral Bucnhera genome was lost during a relatively small 

number of large deletion events shortly after this bacteria’s transition to an intracellular 

lifestyle. While it is likely that that Blattabacterium’s genome was reduced through 

similar mechanisms, a similar reconstruction within this group would offer us a more 

complete picture of the evolutionary origins of this unique cockroach endosymbiont. 
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GENERAL DISCUSSION AND CONCLUSIONS: GENOME FUNCTION AND 
EVOLUTION OF THE COCKROACH SYMBIONT BLATTABACTERIUM 
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METABOLIC FUNCTION OF BLATTABACTERIUM WITHIN ITS HOST 

 From the genome analyzed here, and others previously described, we may 

elucidate the function of Blattabacterium as a nutritional symbiont within cockroaches. It 

functions primarily to synthesize amino acids and vitamins from the nitrogenous waste 

products of the host through the utilization of uric acid as a nitrogen reserve. This is 

beneficial to the cockroach since its primary diet of decaying organic matter tends to be 

nitrogen-deficient. Accordingly, and unlike many insects, cockroaches excrete waste 

nitrogen in the form of ammonia instead of uric acid. The ecological effects upon the host 

are profound, allowing cockroaches to move into and exploit ecological niches that were 

previously unavailable. While cockroaches most certainly benefit from this symbiosis, 

living inside of their host affords these bacteria relative safety from competition and 

exploitation. Thus, this insect-host symbiosis is a mutual one. However, as has been 

shown in other insect symbionts, studying Blattabacterium outside of its host is 

exceedingly difficult. Recent advances in DNA-sequencing techniques and 

bioinformatics have allowed for the elucidation of genome composition and function 

within Blattabacterium, and other endosymbionts as well, to a degree of accuracy that 

has never before been attainable. As such, Blattabacterium has been extracted from eight 

host species to date: Peirplaneta americana (Sabree, et. al., 2009), Blatta germanica 

(Lopez-Sanchez, et. al., 2009), Cryptocercus punctulatus (Neef, et. al., 2011), Blaberus 

giganteus (Huang, et. al., 2012), Blatta orientalis (Patino-Navarette, et. al., 2013), 

Panesthia angustipennis (Tokuda, et. al., 2013), Nauphoeta cinerea (Kambhampati, et. 

al., 2013) and the termite, Mastotermes darwiniensis (Sabree, et. al., 2012); and, with the 
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exception of the cave-dwelling genus Bocticola, it has been hypothesized that this 

symbiont is present within all cockroach genuses. 

BLATTABACTERIUM GENOMICS 

 The Blattabacterium genome, comprised of  ~620,000 base pairs and ~620 

individual genes, is drastically reduced when compared to Flavobacterium, 

Blattabacterium’s closest free-living relative. Their genome is comprised of one 

chromosome and one plasmid of approximately 3,500 base pairs; a notable exception to 

this being the Blattabacterium species from Panesthia angustipennis, which lacks a 

plasmid altogether. Like other intracellular symbionts, the Blattabacterium genome has a 

G+C content of ~27%. The low occurrence of guanine and cytosine is common within 

bacterial symbionts with radically small genome sizes. Synteny within the 

Blattabacterium genome is high, with one large 242,000 base pair inversion occurring in 

Mastotermes darwiniensis, and two smaller inversions within Blattidae. Gene content 

within Blattabacterium has also been conserved (Patino-Navarette, et. al., 2013). This 

information suggests that the Blattabacterium genome underwent massive gene loss 

immediately after the transition from a free-living to intracellular lifestyle. The 

Blattabacterium genome lacks almost all specific transporters and regulatory genes, an 

indication of the highly specialized and dependent nature of insect endosymbionts. 

Interestingly, Blattabacterium lacks genes coding for uricase, or a uricase homolog, 

which is integral to the utilization of uric acid as a way to store nitrogen. This step, then, 

is not carried out by Blattabacterium, but either by the cockroach host itself, or by 

bacteria within the insect’s gut (Sabree, 2009), as is the case with termites (Tokuda and 
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Watanabe, 2007). Seeing as how the Flavobacterium genome lacks genes coding for 

uricase as well, this absence in Blattabacterium is likely an evolutionary artifact.  

EFFECTS OF SELETION UPON THE BLATTABACTERIUM GENOME 

Our findings indicate that the Blattabacterium genome is experiencing elevated 

rates of selection when compared to its free-living relative Flavobacterium, possessing a 

10-fold increase in selection rate at significance level .05 across 304 individual genes. 

This is in keeping with the rates of selection observed in other bacterial mutualists 

(Brynnel, et. al., 2003; Herbeck et. al., 2003; Herbeck, et. al., 2003). The vast majority of 

observed selection events in the Blattabacterium genome were negative in direction, with 

only a handful of genes displaying selection in the positive direction. However, what few 

genes were found to be under positive selection are critical to its role as a nutritional aid 

to its host. This is also in line with our original hypothesis.  

Like other insect bacterial endosymbionts, Blattabacterium displays a drastically 

reduced genome, with much of its functionality lost when compared to free-living 

relatives such as Flavobacterium. Recent studies (Moran and Mira, 2001; Patino-

Navarette, et. al., 2013) have suggested that the genome of Blattabacterium, and other 

insect symbionts, undergoes a drastic and rapid reduction very soon after entering the 

intracellular lifestyle. Results of analysis indicated that early gene loss in Blattabacterium 

was dominated by a small number of large deletions comprised of contiguous regions of 

the ancestral genome, often containing genes with no related functionality, a pattern of 

genome reduction that has been suggested in other symbionts as well (Patino-Navarette, 

et. al., 2013). This demonstrates that early genome reduction involved selection acting 
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upon the combined fitness of large sets of genes, as well as a great deal of chance 

resulting from the location of these gene sets.  

However, current Blattabacterium genomes display extremely stable genome 

architecture, as well as elevated rates of spontaneous mutations - rather than direct 

selection towards a decreased genome size - resulting in continued and elevated rates of 

genome reduction when compared to free-living bacteria (Patino-Navarette, et. al., 2013; 

Mira, et. al., 2001). Since bacterial genomes contain mostly coding DNA, this genome 

reduction in Blattabacterium results in the continued loss of metabolic and physiological 

functionality. However, while much of the Blattabacterium is influenced by random 

genetic drift, selection also plays a role in maintaining those genes that are important to 

host survival. Thus, the Blattabacterium is the result of a continuous interplay between 

random genetic drift – the reduction of genes through relaxed selection within large 

portions of the genome, and natural selection acting to preserve those genes vital to host 

survival and fecundity. 

Evidence of the combined effects of these evolutionary forces driving the 

accumulation of deleterious mutations through random genetic drift may be observed in 

the form of a mutational bias towards A+T base pairs within the Blattabacterium 

genome. This bias is shared with many other intracellular symbionts and pathogens alike 

(Heddi, et. al., 1998; Heddi, et. al., 1999). Many common mutations that occur within the 

bacterial genome result in the shifting of sequence composition from G+C to an A+T 

base pair bias. This compositional bias within symbionts that have undergone a radical 

reduction in genome size is likely the result of a loss of general DNA maintenance and 

repair genes (Moran and Wernegreen, 2000; Moran, 2002).  
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FUTURE DIRECTIONS 

 So far, the genome description of Blattabacterium and others offer insight into the 

loss of metabolic and physiological diversity within independent bacterial mutualist 

lineages, due to their intracellular associations. Their remaining metabolic abilities are 

likely influenced by a number of different factors, including host physiology, symbiont 

transmission mechanisms, and random aspects of deletion events that occurred early in 

the symbiont’s evolutionary history. Current genomic data are becoming more 

comprehensive in encompassing the diversity of symbionts within various insect orders. 

However, there remain areas where further information is needed. For example, 

Blattabacterium genomes within the Blattodea family Polyphagidae have, as of the time 

of this writing, not yet been extracted and annotated. Comparing the gene inventories of 

an array of new intracellular endosymbionts will allow us to test the generality of the 

genomic patterns observed in Blattabacterium and other recently-described insect 

symbionts. The annotation of symbiont genomes and identification of genes and 

pathways will assist in elucidating the specific function of each symbiont with respect to 

its insect host. In addition, with the rise in number of described symbiont genomes, 

selection pressure analysis, like the one we have performed here, should become 

increasingly comprehensive as related genomes for analysis become more available. By 

looking at the selective pressures acting upon insect endosymbionts, we may better 

understand the developmental history, and well as the evolutionary trajectory, of this 

group of diverse and interesting bacteria. 
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Appendix A: Raw Selection Data Across All Examined Genes and Significance Levels 

 

    BLAT 
p-value = 

0.05   FLAV 
p-value= 

0.15   FLAV 
p-value= 

0.05   

Position Locus 

Avg. 
Length 
(n) COG Pos. sites Neg. Sites Total Pos. sites Neg. sites Total Pos. sites Neg. sites Total 

1 nusA 1566 K 0 12 12 0 11 11 0 0 0 
2 infB 3493 J 1 46 47 0 8 8 0 0 0 
3 aspS 2241 J 1 23 24 0 6 6 0 1 1 
4 ppa 657 C 1 1 2 0 0 0 0 0 0 
5 sucB 1578 C 0 4 4 0 24 24 0 0 0 
8 mreC 1067 M 2 7 9 0 2 2 0 1 1 
9 mreB 1311 D 2 8 10 0 5 5 0 0 0 

11 argD 1499 E 0 6 6 0 7 7 0 1 1 
12 truA 1001 J 1 2 3 0 5 5 0 1 1 
13 msbA 2296 V 0 5 5 0 15 15 0 1 1 
14 asnS 1851 R 1 14 15 0 5 5 0 1 1 
15 mdh 1215 C 1 6 7 0 19 19 0 4 4 
16 gcvP 3726 E 2 16 18 0 2 2 0 0 0 
18 clpP 896 OU 0 1 1 0 1 1 0 0 0 
21 wzxC 1898 R 0 2 2 0 14 14 0 0 0 
23 recA 1302 L 0 5 5 0 1 1 0 0 0 
26 alaS 3496 J 1 24 25 0 4 4 0 0 0 
27 sucA 3535 C 1 13 14 0 20 20 0 1 1 
28 phosphol 885 R 1 4 5    0    0 
29 sucC 1564 C 0 3 3 0 58 58 0 0 0 
30 dnaX 1894 L 0 8 8 0 3 3 0 0 0 
32 trxA 419 O 1 2 3 0 1 1 0 0 0 
34 polA 1685 L 2 7 9 0 58 58 0 0 0 
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35 metG 2310 J 0 8 8 0 15 15 0 0 0 
37 ligA 2639 L 0 20 20 0 9 9 0 1 1 
38 trmE 1821 R 2 7 9 0 3 3 0 1 1 
39 gltX 1966 J 0 19 19 0 3 3 0 1 1 
40 rpsR 407 J 0 1 1 0 1 1 0 0 0 
41 rplI 589 J 0 5 5 0 5 5 0 0 0 
46 phospho-2 1407 E 4 7 11 0 1 1 0 0 0 
48 fabI 1031 I 1 4 5    0    0 
50 dnaG 2445 L 1 6 7 0 54 54 0 0 0 
52 miaB 1763 J 0 9 9 0 10 10 0 0 0 
59 rpsP 511 J 0 2 2 0 7 7 0 2 2 
60 bacA 1066 V 1 10 11 0 1 1 0 0 0 
61 gyrB 2513 L 7 15 22 0 3 3 0 0 0 
62 trmD 874 J 0 8 8 0 0 0 0 0 0 
64 ruvA 781 L 1 0 1 0 3 3 0 0 0 
69 pheS 1293 J 0 6 6 0 3 3 0 0 0 
75 acpT 827 H 0 2 2 0 3 3 0 1 1 
76 pnuC 818 H 0 4 4 0 1 1 0 0 0 
77 hisS 1833 J 0 6 6 0 16 16 0 1 1 
78 ftsZ 1681 D 0 7 7 0 6 6 0 1 1 
79 ftsA 1785 D 0 4 4 0 7 7 0 1 1 
81 murC 1794 M 1 13 14 0 25 25 0 1 1 
83 ftsW 1599 D 2 12 14 0 1 1 0 0 0 
85 mraY 1545 M 0 7 7 0 23 23 0 7 7 
86 murE 1920 M 0 10 10 0 5 5 0 0 0 
93 dapF 1043 E 1 6 7 0 10 10 0 1 1 
95 ATP 1353 J 3 7 10 0 6 6 0 1 1 
96 tatC 1045 U 2 3 5 0 2 2 0 0 0 
98 smpB 590 O 0 1 1 0 9 9 0 3 3 
99 tktB 1121 G 0 5 5 0 2 2 0 0 0 

100 dxs 1477 G 0 5 5 0 56 56 0 0 0 
102 aroA 1619 E 0 14 14 0 20 20 0 4 4 
103 rpsT 317 J 0 0 0 0 2 2 0 1 1 
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104 murI 1059 M 0 4 4 0 3 3 0 0 0 
109 ccoN 2848 O 0 25 25 0 6 6 0 0 0 
112 gcvH 523 E 0 2 2 0 2 2 0 0 0 
114 yggS 870 R 1 5 6 0 0 0 0 0 0 
115 serC 1392 E 0 6 6 0 4 4 0 0 0 
117 aroK 674 E 0 0 0 0 0 0 0 0 0 
118 xthA 999 L 0 5 5 0 2 2 0 0 0 
119 hisG 1117 E 1 5 6 0 3 3 0 0 0 
120 hisD 1694 E 0 7 7 0 10 10 0 0 0 
121 hisC 1412 E 4 4 8 0 13 13 0 0 0 
122 hisB 1497 E 1 4 5 0 5 5 0 0 0 
124 hisA 951 E 0 3 3 0 2 2 0 0 0 
125 hisF 1002 E 0 3 3 0 2 2 0 0 0 
128 folD 1142 H 0 1 1 0 3 3 0 0 0 
129 rsmA 1014 J 2 5 7 0 8 8 0 6 6 
130 serS 1662 J 0 8 8 0 1 1 0 0 0 
132 pdhB 1278 C 0 7 7 0 1 1 0 0 0 
134 folA 653 H 0 6 6 0 0 0 0 0 0 
135 valS 3385 J 1 8 9 0 23 23 0 0 0 
138 ndk 578 F 0 2 2 0 4 4 0 1 1 
139 sucA 3293 C 0 3 3 0 31 31 0 0 0 
140 ilvE 1362 H 1 11 12 0 15 15 0 0 0 
141 argS 2294 J 5 20 25 0 2 2 0 0 0 
142 ffh 1726 U 0 4 4 0 6 6 0 0 0 
146 thrS 1814 J 0 2 2 0 6 6 0 2 2 
147 infC 612 J 0 2 2 0 0 0 0 0 0 
148 rpmI 249 N/A 0 0 0 0 0 0 0 0 0 
149 rplT 456 J 0 0 0 0 6 6 0 6 6 
150 holiday 544 L 1 7 8 0 6 6 0 0 0 
151 dapD 1072 E 0 5 5 0 15 15 0 2 2 
153 cca 1791 J 0 8 8 0 5 5 0 0 0 
160 fbaA 1400 G 0 3 3 0 4 4 0 0 0 
161 accD 1098 I 0 3 3 0 9 9 0 0 0 

PyreLite
Appendix A (Continued)

PyreLite

PyreLite

PyreLite



 

 69 
 

162 guaA 2008 F 1 5 6 0 0 0 0 0 0 
163 purD 1644 F 1 3 4 0 0 0 0 0 0 
165 purN 739 F 1 11 12 0 5 5 0 0 0 
166 purM 1335 F 0 16 16 0 0 0 0 0 0 
167 purF 1997 F 0 4 4 0 3 3 0 0 0 
168 purC 1004 F 1 3 4 0 24 24 0 2 2 
170 purL 4806 F 1 12 13 0 3 3 0 0 0 
171 purB 1843 F 5 6 11 0 2 2 0 0 0 
172 purA 1684 F 0 4 4 0 0 0 0 0 0 
173 ruvB 1273 L 0 11 11 0 6 6 0 3 3 
176 gyrA 3159 L 0 10 10 1 11 12 0 0 0 
177 aroB 1379 E 0 4 4 0 1 1 0 0 0 
179 tatA 576 J 0 2 2 0 4 4 0 0 0 
180 rplY 805 J 1 6 7 0 1 1 0 1 1 
181 prsA 1227 E 2 7 9 0 2 2 0 1 1 
182 thyA 1057 F 2 3 5 0 5 5 0 1 1 
188 rnhA 607 L 0 0 0 0 1 1 0 0 0 
190 fbp 1305 G 0 3 3 0 32 32 0 0 0 
191 marC 742 U 0 1 1 0 2 2 0 0 0 
193 pyrD 1269 F 0 2 2 0 0 0 0 0 0 
196 accB 626 I 0 0 0 0 4 4 0 0 0 
197 accC 1768 I 0 12 12 0 25 25 0 1 1 
198 prfA 1424 J 0 16 16 0 4 4 0 0 0 
200 rho 2113 K 1 8 9 0 7 7 0 0 0 
203 rpmB 309 J 0 2 2 0 0 0 0 0 0 
204 rpmG 239 J 0 1 1 0 0 0 0 0 0 
207 htpG 2420 O 5 20 25 0 4 4 0 0 0 
208 evoX 1009 L 0 2 2 0 1 1 0 0 0 
214 tatD 1003 L 3 5 8 0 12 12 0 0 0 
215 fabD 1135 I 1 8 9 0 6 6 0 3 3 
219 binding 392 L 0 4 4 0 1 1 0 0 0 
220 mutY 1356 L 0 5 5 0 1 1 0 0 0 
224 mutL 2303 L 4 3 7 0 12 12 0 3 3 
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226 signal 1949 U 2 7 9 0 23 23 0 4 4 
227 dapB 924 E 0 4 4 0 9 9 0 2 2 
229 dnaJ 1457 O 0 8 8 0 15 15 0 4 4 
230 grpE 761 O 0 6 6 0 6 6 0 0 0 
231 trpS 1285 J 0 2 2 0 14 14 0 0 0 
232 atpG 1136 C 0 6 6 0 8 8 0 1 1 
233 atpA 2057 C 0 8 8 0 9 9 0 3 3 
234 atpH 709 C 2 3 5 0 7 7 0 1 1 
235 atpF 647 C 0 6 6 0 5 5 0 1 1 
237 atpB 1359 C 0 2 2 0 20 20 0 0 0 
238 cysS 1917 J 2 9 11 0 0 0 0 0 0 
239 folE 861 H 2 2 4 0 6 6 0 1 1 
240 nadE 1028 H 0 0 0 0 3 3 0 0 0 
241 m22 843 O 0 6 6 0 11 11 0 0 0 
245 hemD 944 H 0 1 1 0 38 38 0 0 0 
251 cytoC 1754 C 0 12 12    0    0 
252 carB 4101 F 1 29 30 0 38 38 0 7 7 
253 carA 1428 F 4 6 10 0 4 4 0 0 0 
254 argD 1499 E 0 6 6 0 7 7 0 1 1 
257 polC 5224 L 0 28 28    0    0 
258 rpsA 2326 J 1 19 20 0 5 5 0 1 1 
264 asd 1293 E 0 11 11 0 16 16 0 1 1 
265 gmk 751 F 0 3 3 0 12 12 0 2 2 
266 rpiB 606 G 0 0 0 0 9 9 0 0 0 
267 pgk 1588 G 0 9 9 0 0 0 0 0 0 
268 sodA 803 P 0 4 4 0 2 2 0 0 0 
269 folB 464 H 0 2 2 0 1 1 0 0 0 
270 glmS 2407 M 0 26 26 0 7 7 0 1 1 
271 glgA 1068 G 1 5 6 0 11 11 0 3 3 
272 rnr 2542 K 6 11 17 0 11 11 0 4 4 
273 coaD 614 H 0 3 3 0 1 1 0 0 0 
276 serA 1246 HE 0 8 8 0 12 12 0 1 1 
288 betalact 906 R 0 2 2    0    0 
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289 menA 1186 H 0 3 3 0 4 4 0 0 0 
290 menB 1079 H 0 14 14 0 3 3 0 1 1 
293 eno 1682 G 0 11 11 0 11 11 0 4 4 
294 rplQ 589 J 0 4 4 0 3 3 0 0 0 
295 rpoA 1303 K 0 7 7 0 1 1 0 0 0 
296 rpsD 803 J 0 1 1 0 9 9 0 1 1 
297 rpsK 500 J 0 1 1 0 2 2 0 0 0 
298 rpsM 495 J 0 1 1 0 2 2 0 2 2 
300 infA 281 J 0 2 2 0 0 0 0 0 0 
301 rplO 601 J 0 1 1 0 0 0 0 0 0 
302 rpsE 671 J 0 11 11 0 1 1 0 0 0 
304 rplF 712 J 0 8 8 0 3 3 0 0 0 
305 rpsH 508 J 0 4 4 0 2 2 0 0 0 
306 rpsN 351 J 0 4 4 0 1 1 0 1 1 
307 rplE 726 J 0 7 7 0 0 0 0 0 0 
308 rplX 324 J 1 2 3 0 1 1 0 1 1 
310 rpsQ 366 J 0 1 1 0 1 1 0 0 0 
312 rplP 541 J 1 3 4 0 7 7 0 0 0 
313 rpsC 930 J 1 5 6 0 3 3 0 1 1 
314 rplV 490 J 0 3 3 0 2 2 0 0 0 
315 rpsS 371 J 0 1 1 0 0 0 0 0 0 
316 rplB 1078 J 0 8 8 0 4 4 0 2 2 
317 rplW 378 J 0 2 2 0 0 0 0 0 0 
318 rplD 821 J 1 4 5 0 7 7 0 1 1 
319 rplC 821 J 1 4 5 0 0 0 0 0 0 
320 rpsJ 400 J 0 6 6 0 6 6 0 1 1 
321 fusA 2770 J 1 20 21 0 19 19 0 0 0 
322 rpsG 611 J 0 0 0 0 0 0 0 0 0 
323 rpsL 499 J 0 2 2 0 0 0 0 0 0 
324 map 1071 J 1 10 11 0 5 5 0 0 0 
325 pgm 2008 G 1 11 12 0 2 2 0 0 0 
326 tsf 1085 J 0 3 3 0 3 3 0 0 0 
327 rpsB 954 J 0 5 5 0 7 7 0 0 0 
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328 rpsI 504 J 0 4 4 0 4 4 0 1 1 
329 rplM 587 J 0 0 0 0 3 3 0 0 0 
330 dnaK 2476 O 1 6 7 0 13 13 0 0 0 
331 psd 859 I 1 6 7 0 3 3 0 0 0 
332 cdsA 1035 R 0 1 1 0 3 3 0 0 0 
333 ftsH 2545 O 1 10 11 0 94 94 0 0 0 
336 pyrG 2117 F 0 9 9 0 42 42 0 7 7 
337 obgE 1286 R 0 3 3    0    0 
338 adk 761 F 0 3 3 0 2 2 0 0 0 
339 lpd 1823 C 0 4 4 0 7 7 0 0 0 
343 dapA 1150 EM 0 10 10 0 3 3 0 2 2 
346 miaB 1800 J 1 11 12 0 10 10 0 0 0 
347 ntrC 1649 T 0 4 4 0 20 20 0 5 5 
349 groES 372 O 0 3 3 0 10 10 0 0 0 
350 groL 2133 O 2 9 11 0 2 2 0 0 0 
351 hydrolase 668 R 0 1 1 0 4 4 0 1 1 
355 yajC 415 U 0 3 3 0 10 10 0 0 0 
356 coaE 804 H 0 7 7 0 6 6 0 2 2 
359 entC 1374 Q 0 1 1 0 1 1 0 0 0 
361 idi 698 I 0 1 1 0 12 12 0 3 3 
362 sscR 538 H 0 5 5 0 0 0 0 0 0 
364 matE 1699 V 0 6 6    0    0 
365 recQ 2201 LKJ 0 7 7 0 5 5 0 0 0 
366 aroC 1409 E 0 12 12 0 5 5 0 0 0 
368 folC 1590 H 0 9 9 0 0 0 0 0 0 
369 glnS 2178 J 2 11 13 0 8 8 0 3 3 
370 rpoC 5515 K 0 33 33 0 14 14 0 0 0 
371 rpoB 4955 K 0 19 19 0 3 3 0 1 1 
372 rplL 487 J 1 0 1 0 1 1 0 0 0 
373 rplJ 695 J 2 7 9 0 0 0 0 0 0 
374 rplA 914 J 0 6 6 0 5 5 0 0 0 
375 rplK 569 J 1 2 3 0 0 0 0 0 0 
376 nusG 721 K 0 1 1 0 19 19 0 0 0 
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378 tuf 1547 J 0 7 7 0 19 19 0 1 1 
379 lspA 794 N/A 0 4 4 0 5 5 0 1 1 
380 ileS 4476 J 9 28 37 0 5 5 0 0 0 
381 mutS 3298 L 0 1 1 0 7 7 0 0 0 
384 rplS 451 J 0 4 4 0 2 2 0 0 0 
385 phosphog 1807 G 0 4 4 0 2 2 0 0 0 
386 dnaB 2008 L 1 12 13 0 2 2 0 0 0 
387 accA 1232 I 0 6 6 0 17 17 0 2 2 
388 sdhB 985 C 4 4 8 0 4 4 0 0 0 
389 sdhA 2631 C 1 34 35 0 11 11 0 2 2 
390 sdhC 863 N/A 0 4 4 0 10 10 0 4 4 
391 iscS 1508 E 0 5 5 0 1 1 0 0 0 
392 phosphod 1985 R 3 8 11 0 5 5 0 2 2 
393 deoxy 1266 O 0 3 3 0 33 33 0 5 5 
394 lpdA 1847 C 0 4 4 0 4 4 0 0 0 
395 Fe4 444 N/A 0 3 3    0    0 
397 aroE 998 E 0 2 2 0 3 3 0 0 0 
398 rpsU 267 N/A 0 0 0 0 2 2 0 0 0 
399 recG 2764 LK 1 8 9 0 9 9 0 0 0 
400 uvrD 2824 L 2 21 23 0 42 42 0 0 0 
403 murA 1706 M 0 18 18 0 8 8 0 0 0 
405 hinT 536 FGR 1 2 3 0 1 1 0 0 0 
406 yigI 998 K 0 10 10    0    0 
410 feoB 2688 P 1 9 10 0 32 32 0 7 7 
413 rluD 1326 J 1 2 3 0 5 5 0 0 0 
415 leuS 3682 J 0 6 6 0 60 60 0 0 0 
416 gdhA 1839 E 0 3 3 0 5 5 0 0 0 
417 pyrH 928 F 0 4 4 0 6 6 0 0 0 
418 frr 724 J 1 2 3 0 1 1 0 0 0 
419 asnS 1851 J 1 14 15 0 5 5 0 1 1 
420 rpoN 1909 K 0 9 9 0 7 7 0 1 1 
422 sufE 567 R 0 4 4 0 3 3 0 0 0 
425 rpmE 335 J 1 2 3 0 1 1 0 0 0 
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426 fabH 1441 I 0 10 10 0 6 6 0 1 1 
427 auxin 1970 N/A 2 11 13 0 22 22 0 3 3 
428 rpsO 347 J 0 0 0 0 2 2 0 1 1 
429 pnp 2793 J 1 23 24 0 94 94 0 1 1 
430 rpoD 1127 K 3 9 12 0 1 1 0 0 0 
431 tpiA 990 G 0 1 1 0 19 19 0 1 1 
433 folP 1075 H 0 8 8 0 3 3 0 0 0 
436 acoA 1307 C 0 7 7 0 1 1 0 0 0 
437 aceF 1536 C 0 7 7 0 17 17 0 0 0 
438 integral 995 P 0 2 2 0 2 2 0 0 0 
446 upps 961 I 4 9 13 0 2 2 0 0 0 
447 ppnK 1155 G 0 5 5 0 15 15 0 0 0 
448 HPmadar528 938 J 0 2 2 0 4 4 0 1 1 
451 alphabeta 1016 R 0 8 8 0 9 9 0 2 2 
452 rnc 968 K 0 6 6 0 1 1 0 0 0 
453 fabF 1643 IQ 1 10 11 0 46 46 0 0 0 
454 acpP 340 IQ 0 2 2 0 8 8 0 0 0 
456 ribC 779 H 0 5 5 0 3 3 0 2 2 
457 pdxA 1362 H 0 2 2 0 9 9 0 0 0 
458 atpC 320 C 0 2 2 0 0 0 0 0 0 
459 atpD 1973 C 0 6 6 0 6 6 0 1 1 
460 ribF 1207 H 0 5 5 0 22 22 0 0 0 
462 tyrS 1648 J 0 6 6 0 2 2 0 0 0 
464 prfB 1359 J 0 6 6 0 15 15 0 2 2 
465 speA 1822 E 0 3 3 0 29 29 0 4 4 
466 speB 1185 E 1 1 2 0 9 9 0 0 0 
467 cmk 914 F 0 2 2 0 5 5 0 1 1 
468 fabG 960 IQR 0 3 3 0 9 9 0 0 0 
471 secA 4293 U 2 17 19 0 14 14 0 1 1 
473 fmt 1244 J 1 6 7 0 8 8 0 0 0 
475 pdxH 852 H 0 4 4 0 28 28 0 0 0 
476 dnaN 1482 L 0 3 3 0 5 5 0 0 0 
477 pheT 2771 J 1 14 15 0 8 8 0 0 0 
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478 glyS 1910 J 2 6 8 0 2 2 0 0 0 
479 trxB 1234 O 0 1 1 0 17 17 0 1 1 
481 gapA 1318 G 0 9 9 0 26 26 0 1 1 
482 lepA 2350 M 0 7 7 0 28 28 0 6 6 
483 pth 772 J 1 1 2 0 1 1 0 0 0 
484 sucD 1153 C 1 4 5 0 8 8 0 1 1 
487 rpmH 197 N/A 0 2 2 0 0 0 0 0 0 
490 rbn 1197 R 1 8 9 0 25 25 0 0 0 
491 nfsA 442 N/A 0 0 0 0 4 4 0 3 3 
492 rpmA 340 J 0 0 0 0 3 3 0 0 0 
493 rplU 459 J 0 2 2 0 3 3 0 0 0 
494 sufS 1593 E 1 5 6 0 3 3 0 0 0 
496 sufC 984 O 0 4 4 0 7 7 0 0 0 
498 sufA 431 S 0 5 5 0 7 7 0 0 0 
500 lgt 1155 M 0 4 4 0 2 2 0 0 0 
504 pdxJ 955 H 0 2 2 0 14 14 0 0 0 
505 mscS 1639 M 0 15 15           0 
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