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Introduction 

Pseudomonas aeruginosa 

 Pseudomonas aeruginosa is a Gram negative, rod-shaped bacterium found 

ubiquitously in the environment.  The organism inhabits soil, streambeds and other water 

environments, subsurface sediments and plants (Hancock & Brinkman 2002; Stapleton et 

al. 2000).  It is known to have the ability to use many carbon sources for nutrition, such 

as jet fuel, oil and multiple intermediates from the tricarboxylic acid (TCA) cycle.  It 

seems these are preferred over the more common glucose as a carbon source (Li & Lu 

2007; Stapleton et al. 2000).  P. aeruginosa infects multiple different organisms, ranging 

from insects to humans (Hancock & Brinkman 2000). 

 P. aeruginosa has a large genome (PA01, the strain commonly used as a wild type 

in studies, has 5,570 genes or about 6.3 Mbp of DNA), which allows it to persist on a 

wide variety of surfaces on the human host, including the eyes, ears, burns, wounds, and 

the respiratory tract (Davies & Bilton 2009; Hancock & Brinkman 2002; Mahajan-

Miklos 1999; Winstanley & Fothergill 2008; Wood 1976).  It can also persist in 

anaerobic conditions using NO3
-
, NO2

-
, or arginine for substrate-level phosphorylation, or 

by using Fe
3+ 

as a terminal electron acceptor, making it an ideal pathogen associated with 

various environments and diseases within the host (Hassett et al. 2009; Shroll & 

Straatsma 2002).
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Pseudomonas aeruginosa and Disease 

 Using the abilities from the large genome mentioned above, P. aeruginosa can 

proliferate in many areas, making it the causative agent of some of the most prevalent 

opportunistic diseases in humans.  Though little risk to those with normal immune 

systems, patients with neutropenia, Human Immunodeficiency Virus, Cystic Fibrosis 

(CF), cancer, severe burns, and those receiving immunomodulatory therapies are at 

increased risk of developing severe P. aeruginosa infections.  Patients hospitalized with a 

ventilator are also at an increased risk of ventilator-associated pneumonia (VAP) (Sadikot 

et al. 2005; Grgurich et al. 2012).  P. aeruginosa is one of the most prominent ventilator-

associated pathogens, with high mortality when compared with other pathogens of the 

same niche (Chaste & Fagon 2002; Madiha and Ostrosky-Zeichner 2012).  The longer a 

patient stays in the hospital, the higher their risk for a nosocomial infection from P. 

aeruginosa.  Of the 2 million annual hospital-acquired infections, 10% are caused by P. 

aeruginosa (Hancock & Brinkman 2002; Gaynes and Edwards 2005). 

 Many of these infections are related to interruptions to the innate barriers 

important to immunity.  Burn patients and those with corneal abrasions are examples of 

open sores that become a route of entry for the bacteria, leading to further invasion and 

ongoing infection.  Cystic Fibrosis is an example of a barrier disturbance that can result 

in a chronic P. aeruginosa infection, in that it affects the innate barrier to infection. 

 P. aeruginosa is the major cause of chronic lung infections in individuals with 

Cystic Fibrosis (CF).  It is the predominant reason of most morbidity and mortality 

associated with the disease, leading to inflammation, lung function decline, and 
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ultimately death (Gomez & Prince 2007; Heijerman 2005; Winstanley et al. 2009).  Of all 

CF patients, approximately 61% test positive for this pathogen in sputum samples, and 

over 90% will eventually become chronically infected (Govan et al. 1987; Govan & 

Deretic 1996; Mearns 1980).  More recent estimates are up to 80% of adults with CF are 

affected with P. aeruginosa (Ciofu et al. 2013).  The ability of P. aeruginosa to cause 

recurrent infection and inflammation leads to widespread effects in the CF population. 

Cystic Fibrosis Pathogenesis 

 Cystic Fibrosis is the most common inheritable disease found in Caucasians, still 

proving to be lethal despite ongoing research and much improved supportive therapy 

(Deretic et al. 1994; :Lamont et al. 2009).  Apporximately 1 in 2,500 live births in 

Caucasian populations worldwide result in CF, with 1 in 25 Caucasians being carriers of 

an allele (Govan & Deretic 1996).  CF is a disease that affects many organs, starting 

before birth and only ending with the expiration of the patient.  Before modern medical 

management of CF, most complications originated in the GI tract, from intestinal 

blockage and malnutrition, resulting many times in death before the age of one year (Pier 

2000).  In modern times, the organs most affected by CF are the lungs, with respiratory 

complications resulting in much of the morbidity of the CF patient throughout life and 

causing most of the mortality associated with the condition (Deretic et al. 1996; 

Heijerman 2005; Lamont et al. 2009).   

 The effects of CF are generally located within epithelial cells of the organs 

affected.  The sweat glands, secretory ducts of the pancreas, gastrointestinal and lung 

epithelia are among those affected (Boucher 2002).  Organs such as the vas deferens, 
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intestines and pancreas are affected before birth, which can affect functionality such as 

reproduction later in life (Heijerman 2005). 

 CF is characterized by a mutation in the gene that encodes a transmembrane 

protein known as the cystic fibrosis transmembrane conductance regulator (CFTR), 

resulting in a loss or alteration of function for the protein.  CFTR functions in the 

transport of chloride ions across the plasma membrane and regulation of other ion 

channels on the epithelial surface, such as the outwardly rectifying chloride channel and 

the sodium channel, as well as regulating HCO
3-

 and potentially glutathione transport 

(Pier 2000; Ratjen 2009).  Symptoms include excessive ion loss during sweating, and 

secretion of overly viscous mucous in ducts and airway surfaces.  This can lead to defects 

in the function of these glands, or an increase in ion loss that negatively influences 

muscle and cardiac function that may result in cardiovascular collapse (Govan & Deretic 

1996).   

 One of the major problems encountered in CF, and usually the one causing 

morbidity and mortality, is the effect this altered secretion has on the lungs.  The 

defective chloride transport at the apical surface of airway epithelia results in liquid 

depletion among the airway mucous.  This loss of liquid causes the mucous to become 

sticky and thick, resulting in accumulation to levels where it cannot be easily removed as 

in normal conditions.  Glands secreting this mucous become inflamed and swell.  The 

ability of ciliary hairs on the surface of the respiratory epithelia to wave and move 

foreign substances along with mucous is also impaired.  This results in frequent 

coughing, difficulty in breathing, and frequent lung infections.  Recurrent infections and 

inflammation, usually bacterial, and disruption of the aforementioned innate immune 
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response contribute to decline of pulmonary function over the lifetime of the CF patient 

(Boucher 2002; Gomez & Prince 2007; Govan & Deretic 1996; Ratjen 2009; Lamont et 

al. 2009).  The obstruction of the airway results in a cycle with infection and 

inflammation, as depicted in Figure A. 

 

Figure A.  Cascade of pathophysiology in cystic fibrosis lung disease (Ratjen 2009). 

 

CF and the Innate Immune Response 

 CF disease has been mostly associated with problems in the ability of the patient 

to clear their lungs of the highly viscous mucous buildup.  It has been proposed that the 

salt concentration is high enough on the apical surface of the epithelial tissue to inhibit 

the function of certain salt-sensitive antimicrobial peptides (defensins) that normally 

defend against bacterial invasion (Pier 2002).  Studies indicated that P. aeruginosa added 
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to epithelium containing surface fluid from normal individuals are killed at a higher rate 

than when added to epithelia with CF surface fluid.  The surface airway fluid collected 

from CF individuals showed a higher amount of salt than that of unaffected individuals 

(Smith et al. 1996).  Knowles et al. (1997), however, found that the salt concentration on 

the apical surface was not significantly different than that of healthy persons.  They 

suggest the discrepancies may result from evaporative water loss during sample 

collection and processing, but have no way of determining the exact cause of these 

differences in results.  Either way, it is evident that bacterial killing is deficient in the 

airways of CF patients.  

Mucin is another molecule that is deficient, both in quantity and quality, in CF 

patients.  In non-diseased individuals, mucin is present in concentrations high enough to 

bind most foreign invaders, which then are cleared by mucociliary action.  Mucin is 

present in lower-than-normal quantities in the CF lung, with some mucins being degraded 

in CF individuals (Pier 2002; Ratjen 2009).   

 Chronic airway inflammation is another key aspect of the innate immune response 

in CF.  Some studies show that inflammation is not present before the airway has been 

exposed to an infectious agent (Berger 2002).  Other studies have shown that 

inflammatory signs are present in CF infants at as little as 4 weeks old, with markers 

elevated for IL-8, neutrophil elastase, and neutrophil count from apparently uninfected 

CF infants (Khan et al. 1995). At some point upon exposure to a pathogen, a 

hyperinflammatory response begins to occur that feeds into the cycle of infection and 

obstruction shown in Figure 1 (Ratjen 2009). 
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 CFTR may also act as an uptake protein for pathogens.  It has the ability to 

mediate the uptake of P. aeruginosa into lung epithelial cells (Pier et al. 1996).  Asialo-

GM1 may be another moiety on the apical surface that promotes binding of P. 

aeruginosa to the cell surface (Imundo et al. 1995).   

 Cytokine excretion seems to be excessive in CF patients along with other defects 

mentioned above.  Increased levels of pro-inflammatory interleukin-8 (IL-8) and 

neutrophil responses occur in those with CF, far above what is shown in a healthy 

individual, when measured in a bronchoalveolar lavage fluid.  Neutrophils are attracted to 

the site of infection constantly, at a high rate, even in the absence of detectable infectious 

agents (Khan et al. 1995).  Anti-inflammatory cytokine IL-10 secretion is lower than 

normal, which, in turn with an excess of GM-CSF, promotes longer survival and activity 

of neutrophils in the tissues (Chmiel & Davis 2003).   

 Neutrophils are the most abundant human white blood cell and are a major 

contributor to innate immunity against infection.  Too few neutrophils may leave a person 

unable to withstand infection, while too many have been associated with morbidity and 

mortality as well.  They are the first cells recruited to inflammatory sites and adhere to 

damaged areas.  They are then stimulated to release inflammatory substances such as 

reactive oxygen species and proteases. (Sarantis and Grinstein 2012; Zhou et al. 2012).   

 Neutrophil elastase is responsible for excess tissue destruction, and cleavage of 

IgG.  This compromises macrophage opsonophagocytosis, since they use antibody to 

bind to target cells.  Elastase also cleaves complement receptor 1 (CR1) and  complement 

receptor type 3 (C3bi), both parts of the complement activation system, thus 
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compromising yet another system used in innate immunity for phagocytosis of bacteria 

(Chmiel & Davis 2003). 

 Collagen and elastin are proteins that are exposed after small breaks in the lung 

epithelium caused by excessive neutrophil response.  Antiprotease activity, normally 

produced by lung cells to stop the destructive action of neutrophil elastase, is 

overwhelmed by the elevated neutrophil response, which allows for even more tissue 

destruction by elastase (Chmiel & Davis 2003).   

 Reactive oxygen species are present in large amounts from this elevated immune 

response.  CFTR, as mentioned earlier, is speculated to transport glutathione, which aids 

in neutralizing these reactive oxygen species compounds, thus reducing damage done to 

the surrounding tissues.  Bronchiectasis (an outpunching of the airway wall seen in many 

lung diseases) eventually occurs due to the tissue damage, leading to fluid pooling and a 

perfect place for bacterial survival.  Along with the phenomenon of biofilms, which will 

be introduced later, the infection becomes impossible to clear over time.  Taken together, 

constant tissue damage combined with lowered helpful responses to this tissue damage 

result in massive damage to the lungs long term and decline of lung function (Chmiel & 

Davis 2003).   

Genetics of Cystic Fibrosis 

Normally located on the apical surface of an epithelial cell, CFTR in CF epithelia 

may be present on the surface but not functional, or not present at all on the apical 

surface, depending on the particular mutation (Boucher 2002).  The 250 kb long gene 
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encoding CFTR is located on the long arm of chromosome 7 and contains 27 exons 

coding for 1,480 amino acids (Govan & Deretic 1996). 

Over 1,800 different mutations have been described in the CFTR gene, though 

most are very rare (Flume and Devanter 2012).  The most common mutation, a loss of 

three nucleotides resulting in a loss of phenylalanine at position 508 (Δ508), is found in 

66% of patients worldwide (Ratjen 2009).  There are 6 classes of mutations that have 

been identified within the CFTR protein, depending on the functional consequences on 

CFTR in the cell. Class I are stop mutations that assure that CFTR is not synthesized 

within the cell whatsoever. Class II are inadequately processed CFTR proteins that do not 

get trafficked to their apical membrane sites; this is the most common and includes the 

ΔF508 mutation.  These proteins do have a chloride transporting capability, though it is 

reduced.  Class III are inadequately regulated CFTR proteins that reach the membrane, 

but do not properly regulate the chloride channel due to a reduced probability of channel 

opening.  Class IV occurs when CFTR protein is made and trafficked to the membrane 

correctly, but abnormally disrupts conductance, not allowing chloride to flow correctly.  

Class V is when the CFTR protein is only partially produced; and class VI, where CFTR 

protein is degraded early, not allowing it to function adequately or for enough time 

(Ratjen 2009). 

Classes I, II, and III are more common, and usually result in insufficient 

pancreatic function, whereas classes IV, V and VI are less common and usually result in 

sufficient function of the pancreas.  Lung disease occurs in all classes, but varies in 

severity.  Recently, more progress has been made concerning prognostic determination 

based on which CFTR mutation is present.  New treatment approaches are being put forth 
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to address specific defects in the CFTR dysfunction.  PTC 124 is a derivative of 

aminoglycoside that may help in class I mutations by increasing read-through to help 

finish transcribing the CFTR gene.  Drugs to increase processing and reduce cellular 

ability to degrade CFTR in class II mutations may help many patients, while drugs that 

aid in opening the channels normally may aid in patients with class II and III mutations 

(Ratjen 2009). 

The Ecology of the CF Lung 

Virtually all patients with CF are or will eventually become infected with some 

species of microbes.  The 4 species of bacteria studied the most in CF infections are 

Staphylococcus aureus, Haemophilus influenzae, Pseudomonas aeruginosa, and 

Burkholderia cepacia.  Which species, as well as the prevalence of these species, are 

present in the lung changes over time.  S. aureus is typically found in young patients, 

with the prevalence of those infected with P. aeruginosa going up with age (Figure B).  

Infections with Respiratory Syncytial Virus are an example of another species directly 

leading to increased likelihood of P. aeruginosa infection.  Eventual infection with P. 

aeruginosa coincides with a poor prognosis and a, sometimes steep, decline in lung 

function.  Early and aggressive antibiotic therapy has been shown to be helpful in 

slowing chronic colonization with P. aeruginosa and S. aureus, although not enough 

information exists to determine if this should become the standard of care in CF patients 

(Harrison 2007; Antunovic et al 2012). 
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Figure B.  Prevalence of selected respiratory pathogens by age group in CF patients 

(Harrison 2007). 

The research that has been done on coinfections with multiple species in CF is 

scattered.  It is not easily put together into meaningful patterns of what is present in 

individuals and when it is present.  Most previous studies do not report individual 

coinfection status, or report only on bacterial pathogens.  Some take samples from 

multiple areas within the respiratory tract, using different techniques such as lavage and 

sputum collection.  This makes compiling the data in order to determine useful patterns in 

infection status to be difficult or impossible (Harrison 2007). 

This is in contrast to the improvements being made in reporting of species found 

within CF patients due to improved detection methods and improved life expectancy with 

the CF population.  At this time, over 40% of the CF population is over 18, with a 

projected average life expectancy at almost 40 years (Antunovic et al. 2012; Flume and 

Devanter 2012).  As expected, as these CF populations have aged, their individual lung 

ecologies have changed.  Figure C shows the current knowledge of species found in CF 

airways and their prevalence.   
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Figure C.  Venn diagram showing reported coinfections of the CF airways. (NB: 

coinfection does not necessarily imply direct interaction between species.) A, Aspergillus spp.; 

AV, adenovirus; AX, A. xylosoxidans; BP, bacteriophage; C, Candida spp.; Ent, enterobacteria; 

IPV, influenza and/or parainfluenza virus; K, Klebsiella spp.; M, mycoplasma; MA, 

Mycobacterium abscessus; N, Neisseria spp.; OF, oropharyngeal flora; RSV, respiratory syncytial 

virus; SM, S. maltophilia (Harrison 2007). 

A significant portion of the CF patient community is infected with more than one 

pathogen.  Just how large a portion is a subject of disagreement between different 

investigators and papers.  Some claim 31% of patients harbor multiple strains of bacteria 

(Anzaudo et al. 2005), while other authors say most patients are infected (Wahab et al. 

2004).  The different regions (upper/lower and different lobes) of the respiratory tract 

have shown to vary in species present (Armstrong et al. 1996, Smith et al. 1998).  
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Interactions between species will differ based on the pathogens present.  These 

differences in pathogen populations have an influence on progress of disease and decline 

of lung function (Harrison 2007). 

The interactions occurring in the CF lung can take the form of synergism or 

antagonism.  An infection with particular pathogens may change the environment so as to 

hamper other pathogens from invading, such as P. aeruginosa alginate production create 

a hypoxic environment detrimental to some species (Worlitzsch et al. 2002).   

Community interactions may also work to modulate the environment to aid in other 

pathogens invasion.  For instance, respiratory syncytial virus infection may facilitate 

infection by P. aeruginosa (Peterson et al. 1981). 

Evolution also plays a role in changing the conditions of infection in the CF lung 

over time.  As pathogens are introduced into the lung environment, genetic 

rearrangements including nonsense, sense and frameshift mutations contribute to changes 

in phenotype over time.  Some changes, such as the conversion to mucoidy, are 

associated with P. aeruginosa chronically infecting CF patients.  These changes can aid 

in immune evasion as well as other survival advantages.   Antibiotic treatment also 

contributes significantly to pathogen evolution over time.  Multidrug efflux pumps are 

one major resistance development contribution (Harrison 2007). 

Siderophore production decreases over time during chronic P. aeruginosa 

infections.  This may be due to environmental changes in the host, or differences in the 

strain founding the initial infection (De Voss et al. 2001).   
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Artificially implanting various microbial communities into the lungs to aid in 

defending against bacterial invasion has been suggested as an option in CF. Even without 

looking toward treatment options,  it is important to understand that microbial ecology 

plays a large role in determining progression and prognosis in CF (Harrison 2007). 

Colonization of the CF Lung 

In the past, most infants with CF died due to infection with Staphylococcus 

aureus.  Since the advent and regular use of antibiotics, mortality due to infections with 

pathogens such as S. aureus and Haemophilus influenzae are less common.  Anti-

pseudomonal drugs have resulted in progress in the morbidity and mortality of CF 

patients, though rarely does therapy result in total eradication of infection.  The patients 

generally survive into adulthood, eventually becoming colonized with P. aeruginosa and 

dying from the infection and associated decline in lung function (Govan and Deretic 

1996; Flume and Devanter 2012).   

Infants born with CF show no initial colonization with normally CF-associated 

pathogens, but do exhibit signs of immune pathology, such as elevated levels of IL-8 and 

neutrophil elastase, suggesting neutrophilic inflammation.  Even though signs of 

inflammation are present shortly after birth, there is no corresponding obvious lung 

pathology when infection is not present (Govan and Deretic 1996; Heijerman 2005).   

There are factors present that contribute to the colonization of the lungs by 

pathogens in CF patients.  Defective chloride ion transport may lead to excessive NaCl in 

the liquid at the airway surface.  This may cause certain airway defense factors, such as 

defensins, to become impaired (Heijerman 2005, Smith et al. 1996).  Others have failed 
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to verify that salt content is elevated (Pier 2000).  Another factor that may play into 

infection is the dehydration seen in the surface liquid in CF patients that may impair 

clearance of microbes from the airway and leave the lungs open for infection (Matsui 

1998).  Both of these contributing factors would seem to leave the lungs of a CF patient 

prone to infection, but not specifically for P. aeruginosa infection as argued by Pier 

(2000), since these defenses are part of innate immunity. 

Adherence to airway epithelial cells seems to be a major factor in P. aeruginosa’s 

ability to invade the lungs of CF patients.  This will be covered in more depth in a later 

chapter. 

Internalization of P. aeruginosa by airway epithelial cells may be partly 

responsible for clearing of the bacteria from the airway of healthy individuals.  

Escherichia coli is cleared from bladder infections in this manner (Mulvey et al. 1998). 

CF patients would not be able to clear these cells because of the viscous nature of the 

airway surface liquid.  Internalization in cells with the ΔF508 allele should be decreased 

compared with normal cells.  CFTR is the receptor that binds to P. aeruginosa cells in 

order to internalize them, and CFTR expression in CF is decreased compared to wild-type 

CFTR (Pier 1997). 

Mouse models of multiple CFTR mutations have shown this reduced 

internalization of P. aeruginosa (Delaney et al. 1995; Tang et al. 1995; Zeiher et al. 1995; 

Zhou et al. 1994).  These mutations correspond to mutations seen in human CF, though 

do not have the same pathology.  Inhibition of bacterial ingestion by epithelial cells has 

been shown to increase the bacterial burden in the lungs.  This means epithelial 
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internalization of bacteria could be an innate defense against lung infection.  These 

factors leave the airway open for habitation of P. aeruginosa by not immediately killing 

or removing the pathogen (Pier 2000). 

Factors Leading from Colonization to an Acute Infection 

Several virulence factors produced by P. aeruginosa, both secreted and cell 

associated, contribute to its ability to infect susceptible populations.  Exotoxin A disrupts 

protein synthesis and results in cell death, causing local tissue damage and aiding in the 

initial bacterial invasion (Woods and Iglewski 1983).  ExoU, ExoT, ExoS and ExoY have 

been found to be released by P. aeruginosa and injected by the Type III secretion system 

into the cytoplasm of host cells.  ExoY is an adenylate cyclase and ExoU is a cytotoxin 

that directly lyses cells through phospholipase A2 activity.  Exoenzyme S and exoenzyme 

T are responsible for directly killing cells and allowing P. aeruginosa to disseminate 

(Nicas et al. 1985; Nicas, Bradley, Lochner and Iglewski 1985; Howell et al. 2013), 

though this has been disputed recently (Shaver and Hauser 2004). 

The hemolysins phospholipase C and rhamnolipid together break down lipids.  

Rhamnolipid solubilizes pulmonary surfactant to allow phospholipase C access to break 

down the surfactant.  This is possibly responsible for lung collapse (atelectasis) seen in P. 

aeruginosa lung infections (Liu 1974). Rhamnolipid also inhibits ciliary function to make 

it further impossible for mucociliary transport to clear the airways of infected individuals 

(Read 1992). 

Proteases such as LasA elastase, LasB elastase, and alkaline protease all 

contribute to infections by P. aeruginosa, especially acute infections (Seed et al. 1995; 
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Clark et al. 2011).  The protein elastin is an essential component in the lung, allowing for 

expansion and contraction integral to lung function and integrity.  Elastin is also a major 

component of blood vessels, which need to expand and contract with the flow of blood 

(Deldon and Iglewski 1998).  LasA, a serine protease, nicks elastin enough to allow more 

degradation by LasB, a zinc metalloprotease, and alkaline protease, as well as neutrophil 

elastase (Galloway 1991).  LasB also degrades fibrin and collagen (Heck et al. 1968), as 

well as inhibiting local immune function such as IgA, IgG, and lysozyme.  LasB also 

degrades protease inhibitors such as alpha-1 proteinase inhibitor and bronchial mucus 

proteinase inhibitor.  This makes LasB a major virulence factor that synergistically works 

with other proteases LasA, alkaline protease and neutrophil elastase (Deldon and 

Iglewski 1998; Clark et al. 2011). 

Pyocyanin is a major virulence factor in P. aeruginosa infections.  Pyocyanin 

slows ciliary action as well as aiding in killing cells by oxidative processes (Kanthakumar 

1993).  Pyocyanin generates reactive oxygen species through a process termed redox 

cycling.  This has been shown to inactivate α1 protease inhibitor, which may contribute to 

lung tissue damage by hindering the host’s ability to downregulate serine protease 

activity, such as elastase (Britigan et al. 1999).  Pyocyanin has also been shown to 

decrease catalase activity in cells, further limiting the host’s ability to mediate damage 

from reactive oxygen species (O’Malley et al. 2003).  Ciliary beat of ciliated respiratory 

epithelium was shown to be decreased upon contact with pyocyanin (Kanthakumar et al. 

1993).  Without pyocyanin, the ability of P. aeruginosa to cause disease in cystic fibrosis 

is markedly decreased (Lau et al. 2004).   
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Hydrogen cyanide is produced by P. aeruginosa for competitive killing of other 

species, such as Caenorhabditis elegans.  Cyanide also binds to terminal oxidases of 

respiratory enzymes resulting in inhibition of aerobic respiration in affected cells (Lenney 

and Gilchrist 2011). 

Lectin A, an outer membrane protein of P. aeruginosa, causes cytotoxicity by 

decreasing growth rates of respiratory epithelial cells.  It has also been shown to increase 

permeability to P. aeruginosa exotoxin A, thus increasing effects seen from that 

virulence factor.  Lectin B may aid in adherence to epithelial cells, as well as biofilm 

structure and formation.  Lectin B is also another factor decreasing beat frequency of 

respiratory cilia (Tielker et al. 2005). 

Quorum Sensing 

The synthesis of alginate may occur in many strains of P. aeruginosa, but not to 

the degree of overexpression found in mucoid strains.  In order for overexpression to 

occur and begin the conversion to mucoidy, which is a hallmark of chronic lung 

colonization, the bacteria must undergo genetic alterations to produce virulence factors.  

Alterations occur due to a phenomenon termed quorum sensing.  Quorum sensing is the 

ability of the bacteria to communicate with each other to bring about widespread changes 

in transcription based on their density (De Kievit and Iglewski, 2000). 

The process of quorum sensing depends on a molecule, called an autoinducer 

(AHL), produced by the bacteria that will bind to a transcriptional activator known as R 

protein and induce gene expression when at a high enough density (De Kievit and 

Iglewski 2000; Pesci et. al. 1999) 
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Figure D. Quorum sensing in Gram-negative organisms (De Kievit and Iglewski 2000). 

P. aeruginosa has two signaling systems; las and rhl.  These systems together 

regulate the expression of multiple virulence factors important in establishing and 

maintaining chronic infection.  The LasI autoinducer synthase is responsible for 

producing the acylated homoserine lactone N-(3-oxododecanoyl)-L-homoserine lactone 

(3-oxo-C12-HSL).  When at sufficient quantities, the transcriptional activator LasR will 

function with the AHL to express virulence genes including lasA, lasB, aprA, and toxA.  

This will also induce expression of more lasI, which creates a positive feedback loop.  

The LasR-3-oxo-C12-HSL complex also controls expression of rsaL, which inhibits lasI 

expression (De Kievit and Iglewski 2000; Pesci et. al. 1999; Smith and Iglewski 2003). 

The second signaling system, rhl, is controlled by the transcriptional activator 

RhlR , which is activated by the RhlI autoinducer synthase-produced N-butyryl-L-

homoserine lactone (C4-HSL).  The expression of pyocyanin, cyanide, lasB, aprA, and 

rhlAB, required for rhamnolipid production, is dependent on this RhlR-C4-HSL complex 

(De Kievit and Iglewski 2000; Smith and Iglewski 2003). 
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The components of these two systems are very specific in their interactions.  Even 

with the similarities in the AHLs and RhlR and LasR, neither AHL seems to significantly 

activate the opposite transcriptional activator.  The products of both systems are generally 

generated by one system only.  In addition, the las system positively regulates rhlR and 

rhlI.  3-oxo-C12-HSL can also compete with C4-HSL for RhlR binding, in order to inhibit 

the rhl system.  This means the las system is the dominant system in the hierarchical 

quorum sensing system of P. aeruginosa.  This suggests a separation between the two 

systems, though they are linked together (De Kievit and Iglewski 2000). 

A third autoinducer  molecule very different from the other two has been reported 

by Pesci et al. (1999).  This molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS), induces 

lasB expression.  It is under the control of the las system, but needs RhlR for activation.  

Much is still unknown about PQS, but the fact that 3 autoinducers have been found along 

with the other regulatory components of the quorum sensing system suggests tight control 

of expression (De Kievit and Iglewski 2000; Pesci et. al. 1999). 

Adhesion of P. aeruginosa to Airway Epithelial Cells 

Outer membrane proteins that aid in bacterial adherence to epithelial cells also aid 

in infection.  Pili have been implicated in the adherence of P. aeruginosa (Chi et al. 

1991).  Flagella, and exoproducts such as elastase, alkaline protease and phospholipase C,  

have also been shown to aid in adherence to epithelial cells (Saiman et. al 1990; Azghani 

et al. 1992).  

Pili expression was found to aid in adhesion and virulence of P. aeruginosa.  

Virulence in non-piliated strains was found to be less than PA01, including the ability to 
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cause pneumonia and disseminate to other organs, and rate of mortality.  This indicates 

pili are important in adherence and infection (Tang et al. 1995; Bucior et al. 2012).  

RpoN, a regulatory protein involved in the expression of pili, also plays a role in 

adherence to lung epithelia (Chi et al. 1991).   

Upon incubation with P. aeruginosa, human alveolar epithelial cells in culture 

(A549 cell line) internalize the bacteria, as determined by transmission electron 

microscopy.  Lysosomal-mediated killing by the A549 cells was not observed for this 

population of bacteria, as internalized bacteria were viable after recovery hours later.   

This could play a role in sheltering the bacteria from host defenses during chronic 

infections (Chi et al. 1991).   

Another binding factor in the airway is respiratory mucins.  Bacteria have been 

shown to bind to mucins present in the respiratory mucosa, independent of pilin 

production.  This is increased upon iron limitation (Scharfman et al. 1996).  OprF, an 

outer membrane protein seen in Pseudomonas sp., has been shown to aid in adherence to 

A549 cells as well.  OprF-deficient P. aeruginosa strains adhere less well to A549 cells. 

Pre-incubation with purified OprF or monoclonal antibody for OprF decrease bacterial-

cell adherence as well, showing a specific interaction event (Azghani et al. 2002). 

Flagella may be another important factor in P. aeruginosa binding to airway 

epithelium.  Flagellar knockouts showed less ability to adhere to bovine tracheal cells.  

This may be due to a decreased ability to associate with the epithelial cells because of 

less chemotaxis, or because pilin and flagella are both regulated by RpoN (Saiman et al. 

1990).  This is corroborated by a study showing flagellated strains of P. aeruginosa were 
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mostly responsible for initially infecting CF patients (Luzar et al. 1985).  The importance 

of flagella has been verified more recently as well (Feldman et al. 1998; Bucior et al. 

2012).  All of these factors together result in P. aeruginosa being well-suited for invasion 

of CF lungs.  The many factors present help to establish an infectious process in 

immunocompromised patients, and indeed, infection and colonization correlate highly 

with the ability to adhere to these cell types (Woods et al. 1980). 

 

Mucoid P. aeruginosa Causes Chronic Infection 

An acute infection does not always result in a chronic infection in those with CF.  

Intermittent infections will only result in sporadic colonization that does not result in 

significant decline in lung function (Kerem et al. 1990).  Chronic colonization may not 

occur for up to 5.5 years after introduction (Govan and Deretic 1996).  Once the P. 

aeruginosa has been cultured for 6 months continuously and the patient develops an 

increased antibody response to precipitins, it can be considered a chronic infection 

(Johansen and Hoiby 1992). 

Chronic infection by P. aeruginosa coincides with conversion of the bacterium to 

a mucoid state.  The time from initial colonization can vary drastically, anywhere from 

immediate detection of mucoidy to 5 or more years (Govan and Deretic 1996).  It has 

been demonstrated that random mutations causing the conversion to mucoidy occur at a 

low rate, so it is thought to be a significant advantage for the pathogen to convert to this 

state (Martin et al. 1993).   



 

23 

 

Mucoid strains of P. aeruginosa show an appearance like that of mucous, with a 

thick, slimy coating on a nutrient agar plate.  Alginate production is the reason for this 

telltale appearance.  Antibodies to alginate are detectable in all sputum from chronic P. 

aeruginosa CF infections and are associated with declining lung function (Pederson et al. 

1990).  Alginate has been shown to be involved in many aspects of chronic infection in 

CF patients; in particular in three main areas: protective barrier against opsonization and 

phagocytosis, immunomodulation against host defenses, and biofilm aspects of infection 

such as adhesion and protection from antibiotic attack (Govan and Deretic 1996; Pritt et 

al. 2007).  Table 1 shows many proposed roles of alginate in P. aeruginosa infection in 

the CF lung. 

Alginate is an exopolysaccharide that is secreted from mucoid P. aeruginosa cells 

that enables the pathogen to persist in a structured matrix that gives it multiple 

advantages over wild-type free living bacteria.  In addition to the properties already 

mentioned, alginate scavenges reactive oxygen intermediates and hypochlorite, which 

greatly impair the ability of the immune system to destroy the infection (Deretic et al. 

1994; Govan and Deretic 1996; Pritt et al. 2007). 

Alginate, combined with LPS or other P. aeruginosa virulence factors, is 

associated with an increase in immunoglobulins in vivo.  It also elicits pro-inflammatory 

cytokine release such as IL-1, TNF-α and IL-8.  These contribute to continuous 

inflammation and neutrophil accumulation in the airways, thus resulting in the decline of 

lung function common to CF patients (Govan and Deretic 1996). 
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Aforementioned alginate properties demonstrate selective pressures for P. 

aeruginosa to convert to the mucoid state upon infection in the CF patient.  These 

changes are a large part of what make it possible for the bacterium to survive for such 

long periods of time in the CF host (Govan and Deretic 1996).   

 

Conversion to Mucoidy 

The alginate biosynthetic cluster is responsible for producing alginate.  The 

cluster is regulated by the algD promoter, which is regulated by several transcription 

factors.  Initiation of algD transcription is dependent upon AlgU, and alternative sigma 

factor.  Once activated, P. aeruginosa converts to mucoidy and begins the chronic 

colonization of the CF host.  Alg R and AlgB also effect transcription of algD.  

Inactivation of algR stops algD transcription and mucoidy conversion.  AlgB activity is 

not known at this time (Deretic et. al. 1994; Govan and Deretic 1996). 

Alginate synthesis can be affected by environmental factors, many of which are 

present in the CF lung, such as dehydration, abnormal osmolarity and nutrient 

deprivation.  Mutations have been attributed to the changes that occur in mucoid 

phenotypes of P. aeruginosa (Deretic et. al. 1994; Govan and Deretic 1996). 

Mutations that cause a mucoid condition to develop lead to changes over time in 

the genetics of P. aeruginosa.  Mutations within mucA and mucB can cause conversion to 

mucoidy over time.  Mutations in mucA and mucB deprive the anti-sigma factor of algU 

and allow for overproduction of alginate (Deretic et. al 1994).   
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There is also an AlgU-independent pathway for alginate production.  Whereas 

AlgU-dependent alginate production relies on AlgU for induction of algD expression, 

another sigma factor, RpoN, can also participate in conversion to mucoidy.  The two 

pathways are not independent as they regulate each other as well.  This leaves another 

pathway that mutation may affect mucoid conversion (Boucher et. al. 2000). 

 

Significance of Iron in the Metabolism of Bacteria 

Iron is an essential nutrient for bacteria to thrive in their environment.  It 

participates in multiple roles that are essential for their survival, such as respiration, 

nitrogen fixation, and gene regulation.  Iron must be incorporated into proteins in order to 

perform most of its functions.  Most iron available in the lungs is in the ferric form, 

which is an extremely insoluble form, at 10
-18

 M at a pH of 7.0 (Andrews et al. 2003). 

Bacteria must be able to pick up iron from the environment and utilize it in order 

to perform the various metabolic functions associated with iron, thus they need a high 

affinity method for obtaining iron.  In the case of P. aeruginosa, the lungs of human hosts 

generally contain very little iron, which necessitates iron scavenging.  The CF host, in 

contrast with the non-diseased human, possesses lungs which are higher in iron content.  

Iron is still not freely available, however; so the bacterium still must scavenge for iron 

(Andrews et al. 2003; Cornelis and Matthijs 2002; Lamont et al. 2009). 
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Iron Acquisition by Pseudomonas aeruginosa 

P. aeruginosa acquires much of its iron through siderophore-mediated processes.  

Siderophores are high affinity iron chelators that are excreted by bacteria to bind to iron 

in the environment.  These siderophores form ferric-siderophore complexes, which the 

bacteria take up using specific outer membrane receptors.  Periplasmic binding proteins 

move this complex to ATP-binding cassette (ABC) transporters that move the complex 

into the cell.  The complex then dissociates to form free iron for use by various metabolic 

systems (Figure E).  This process is common to Gram negative organisms, and is distinct 

from Gram positives (Andrews et al. 2003). 

 

Figure E. Siderophore-mediated iron uptake by Gram negative bacteria (Andrews 

et al. 2003) 
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The Siderophores of P. aeruginosa 

Siderophores have been observed in use by many bacterial species, as well as 

fungal and plant species (Andrews et al. 2003).  P. aeruginosa possesses multiple 

siderophores, of which the main one is pyoverdine (Figure F).  There are 3 separate 

species of pyoverdine in this bacterium, and each binds to a different receptor.  There is 

evidence, however; that species may be able to cross-react with receptors other than 

theirs.  Production of these siderophores is of great importance to the ability of P. 

aeruginosa to establish and maintain an infection Cornelis and Matthijs 2002). 

 

Figure F.  Chemical structure of PA01 pyoverdine (Cornelis and Matthijs 2002). 

Another siderophore produced by P. aeruginosa is termed pyochelin.  This 

molecule is a derivative of sialic acid and has a lower affinity than pyoverdine (Figure 

G).  It is possible that pyochelin scavenges for metals other than iron as well.  In the 

presence of pyocyanin, ferripyochelin forms reactive oxygen species that play a role is 
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tissue damage.  P. aeruginosa also has the ability to use other species’ siderophores to 

scavenge iron, and can also use heme as an iron source, making it an extremely versatile 

organism (Cornelis and Matthijs 2002). 

 

Figure G. Chemical structure of Pyochelin (Cornelis and Matthijs 2002) 

Transport of Ferri-siderophore Complexes into the Cell 

Iron-siderophore complexes must bind to outer membrane proteins before 

entering the cell, as described earlier.  The pyoverdines have a receptor for each species 

in P. aeruginosa.  The three species (Types I, II and III) each bind to receptors termed 

FpvAI, FpvAII and FpvAIII (Lamont et al. 2009).  These ferri-siderophore receptors are 

present on the membrane normally only during iron starvation (Andrews et al. 2003). 

The TonB-ExbB-ExbD complex is needed in order to supply energy for the 

process of ferri-siderophore uptake (Figure E).  Through direct contact between TonB 

and the OM receptor, energy derived from the chemical gradient at the membrane is 

delivered to the OM protein to allow for transport.  ExbB-ExbD use the chemical 

gradient to change the confirmation of TonB to an active form, which then conducts the 

energy to the OM protein (Andrews et al. 2003). 

Once in the periplasmic space, the complex must still cross the inner membrane to 

get into the cytoplasm of the cell.  A periplasmic binding protein binds to the ferri-
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siderophore one at a time, through an unknown mechanism, to shuttle the complex to an 

ABC permease at the inner membrane.  There are only 4 types of ABC permeases in P. 

aeruginosa, which is in contrast to the larger number of OM proteins (Andrews et al. 

2003) 

Once inside the cell, the iron is reduced to ferrous iron, for which the siderophore 

has low affinity, and is thus released as free iron in the cytoplasm.  The siderophores are 

then either degraded or exocytosed to scavenge more iron (Andrews et al. 2003). 

Genetics of Iron Regulation 

Iron-dependent genes are regulated by the Fur repressor in bacteria.  Fur binds 

iron in the cell, which represses iron uptake protein gene expression.  The opposite is true 

as well; that without iron, Fur will not bind to the Fur box and repress its genes.  Fur 

represses PvdS , which is involved in pyoverdine synthesis, as well as many other genes, 

including several extracellular factors (Andrews et al. 2003; Cornelis and Matthijs 2002; 

Vasil and Ochsner 1999).  Iron regulated genes play a role in the pathogenesis of P. 

aeruginosa.  Genes such as toxA and prpL, that encode exotoxin A and extracellular 

protease respectively, are induced by iron (Vasil and Ochsner 1999). 

PA4514 is the open reading frame assigned to piuA, encoding PiuA, which is a 

putative TonB-dependent ferrisiderophore receptor on the outer membrane of P. 

aeruginosa.  Using a SELEX technique to screen potential DNA fragments for Fur 

binding, piuA was found to be under Fur regulation.  PiuA is upregulated during iron 

restriction, indicating it is an important gene for survival in a low-iron environment 

(Ocshner and Vasil 1996; Vasil and Ochsner 1999).  At this time, not much else is known 
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about PiuA, such as its siderophore specificity or its role in virulence (Cornelis and 

Bodillis 2009). 

Role of Iron in the Virulence of P. aeruginosa 

As mentioned above, some studies show that exotoxin A production is increased 

under conditions of iron restriction.  Exotoxin A, various proteases, elastase and 

hemagglutinin were all shown to increase in multiple strains of P. aeruginosa grown in 

low-iron conditions (Bjorn et al. 1979; Vasil and Ochsner 1999).  Growth of the 

bacterium in low iron media has been shown to be inhibited (Bjorn et al. 1979).  

Adhesion to respiratory epithelial cells is enhanced in iron-limited growth conditions, 

allowing infection in harsh conditions (Scharfman et al. 1996). 

A pyocyanin-related compound (phenazine-1 carboxylic acid) has been shown to 

aid in the scavenging of iron in low iron environments during P. aeruginosa infection 

(Wang et al. 2011).  These factors together may aid in bacterial survival by making 

essential nutrients more available during infection.  The virulence of the bacterium 

increases by 100 fold after being passaged under iron restricted conditions (Forsberg and 

Bullen 1972). 

Significance of Research 

Exactly which iron receptors on the outer membrane of P. aeruginosa are 

important, and to what extent, are not known at this time.  PA4514 is homologous for the 

piuA gene, which encodes an outer membrane iron uptake receptor protein.  Goals for this 

study include determining how inactivation of this protein affects the pathogenesis of P. 

aeruginosa. 
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We hypothesize that inactivation of the piuA gene and iron depletion will result in 

a lower ability of a knockout strain of P. aeruginosa to grow.  This harsh environmental 

change will, in turn, result in increased virulence factor production and adherence to 

A549 cells.  Overall, we expect to see an increased ability to kill respiratory epithelial 

tissue. 

We assayed for the ability of a strain of P. aeruginosa containing no piuA gene to 

grow in iron depleted media, adhere to lung epithelia, produce the major virulence factor 

pyocyanin and destroy lung epithelial cells to investigate the role of this protein in 

causing disease. 

Long term goals for studies on the properties of PiuA, as well as other outer 

membrane iron receptors, are to determine which receptors on the outer membrane of P. 

aeruginosa are important in circumventing host responses and establishing infection, 

maintaining infection, causing tissue destruction, and long-term survival in the host. 

Understanding the factors, both on the bacterial side and host side of this 

infectious process, will lead to better understanding the interplay between host and 

pathogen during long-term infection in those with cystic fibrosis, as well as those who 

acquire other P. aeruginosa infections.  This may aid in development of novel 

antimicrobial drugs, as well as provide potential vaccine targets for future development. 
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Materials and Methods 

Bacterial Strains.  The P. aeruginosa strain PW8599 (ΔPiuA) was obtained from 

the University of Washington two-allele library.  The strain was constructed using a 

transposon mutagenesis process.  The strain was confirmed by PCR using flanking 

primers for the PA4514 gene with a primer complementary to the transposon from the 

University of Washington (5’-GGGTAACGCCAGGGTTTTCC -3') using Amptaq Gold 

(Applied Biosystems) directly from a colony grown overnight on LB agar.  Reactions 

were run at 95° for 10 minutes, followed by 30 cycles of 95° (30 seconds), 55° (30 

seconds), 72° (2 minutes), and a final elongation of 72° for 7 minutes.  Sequences for 

flanking primers: 4514 Forward (5’-CATAGCGCCAGTAGGACGGG – 3’) and 4514 

Reverse (5’-GGGTATCACCTTCGGCG -3').  The wild type strain used was the PA01 

wild-type strain (B. Holloway, Monash University, Australia). 

Culture Conditions.  The strains of P. aeruginosa (PA01 and PW8599) were 

grown overnight in Luria Broth (LB) with and with 400 µM 2,2' dipyridyl (LBD), to 

chelate iron (Fisher Scientific, Pittsburgh, PA, U.S.A.).  The PA01 and PW8599 strains 

were washed three times with LB and LBD , respectively, and diluted to a concentration 

of  10
5
 cells/ mL (OD600 = 0.07) using a BioRad SmartSpec Plus Spectrophotometer 

(BioRad, Hercules, CA, U.S.A.). 

 For determination of pyocyanin concentrations, PA01 and PW8599 were 

grown in LB and LBD for 24 hours while shaking.  The cultures were 1/10 of the total 

volume of the containing vessel to ensure proper aeration.   
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 For adhesion assays and cytotoxicity studies, overnight cultures of PA01 

and PW8599 were grown in LB and LBD.  Bacteria were diluted to an OD600 of 0.07 (10
5
 

cells/ mL).  Human alveolar type II like epithelial carcinoma (A549) cells were grown in 

RPMI medium supplemented with 10% Fetal Bovine Serum (FBS).  96-well tissue 

culture plates were seeded with 2.0 x 10
4 

cells and allowed to grow to confluence in a 5% 

CO2 incubator at 37°C. 

Growth Curve.  P. aeruginosa strains PA01 and PW8599 were incubated in LB 

and LBD media at 37  C overnight.  Both PA01 and PW8599 strains were washed three 

times in LB and LBD media, respectively, followed by a 100-fold dilution in the same 

media.  These dilutions were prepared in a vessel 10 times larger than the total volume to 

ensure proper aeration.  The optical density of each strain was measured at OD600 for 18 

hours at 30 minute intervals to determine cell density.  Three readings every time period 

were taken for each strain and condition.  Each strain and condition was replicated in 

triplicate and each assay was repeated in triplicate. 

Pyocyanin Quantification.  The pyocyanin production of P. aeruginosa strains 

PA01 and PW8599 was quantified in LB and LBD culture media.  Strains were grown in 

LB and LBD for 24 hours at 37 °C.  The PA01 and PW8599 cultures were centrifuged at 

4,500 g for 15 minutes.  followed by the extraction of pyocyanin pigment using a 

chloroform/0.2 M HCl (1:1, v/v) solution.  The A520 of the pyocyanin pigment was 

measured using a BioRad SmartSpec Plus (BioRad, Hercules, CA, U.S.A.). This assay 

was repeated in triplicate.   
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Adhesion Assay.  To assay for the ability of PA01 and PW8599 to adhere to 

A549 cells (as an in vitro analogue of the human lung), PA01 and PW8599 were grown 

overnight in LB and LBD and washed three times in the respective medium.  The A549 

cells were prepared as noted in culture conditions above.  The P. aeruginosa PA01 and 

PW8599 strains were diluted to an OD600 of 0.07, and incubated with the A549 cells for 1 

hour at 37°C and 5% CO2.  Manual desorption was carried out four times with RPMI 

growth medium with no FBS supplementation.  The PA01- and PW8599-adhered A549 

cells were removed with the addition of trypsin.  The cells were diluted serially and 

plated onto a LB agar medium.  The LB agar plates were incubated at 37 °C overnight 

and colony forming units were examined for each strain and condition. 

Cytotoxicity Assay.  The P. aeruginosa PA01 and PW8599 cytotoxicity to A549 

cells was measured at a 100:1 multiplicity of infection in PBS incubated at 37 °C and 5% 

CO2 for 1 hour in 12-well plates.  The adherent cells were removed with the addition of 

trypsin and stained with 0.4% Trypan Blue (1:1, Sigma Aldrich).  The number of dead 

(blue) cells and viable (dye excluding) cells per 100 cells was determined using low-

power microscopy with a hemocytometer. 

Statistical Methods.  A paired, two-tailed Student’s t-test was used to compare 

the statistical significance of the P. aeruginosa PA01 and PW8599 strains using Prism 

(GraphPad Software, Inc. LaJolla, CA).   
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Results 

Determination of Growth Capabilities of Pseudomonas aeruginosa strains in 

differing media 

 The growth properties of the P. aeruginosa PA01 and PW8599 strains were 

determined in LB and LBD media.  It is expected that the growth of the P. aeruginosa 

PA01 and PW8599 strains would be diminished in media that is iron deficient for 

bacterial metabolic processes.  The P. aeruginosa PA01 strain in LB media significantly 

increased in growth, compared to the PA01 strain in LBD media (p = 0.0006) and the P. 

aeruginosa PW8599 strain in either LB (p = 0.0008) or LBD media (p = 0.0003), with an 

increase of 79%, 42% and 83% respectively.  The P. aeruginosa PW8599 strain in LB 

media had higher growth compared to the PW8599 strain in LBD media (p = 0.0002) 

with an increase of 129%; however, the PA01 strain in LBD had lower growth that of the 

PW8599 strain in LB media (p = 0.0032) with a yield 79% that of PW8599 in LB.  There 

was no significant difference between the two strains in LBD media (Figure 3).   

Pyocyanin Production between strains in differing media 

 To determine the relative quantities of the virulence factor pyocyanin produced in 

the P. aeruginosa PA01 and PW8599 strains, we measured its production in LB and LBD 

media.  A significant decrease in pyocyanin production was observed for P. aeruginosa 

PA01 strain in the LB medium compared to the LBD medium (p < 0.0001) and the P. 

aeruginosa PW8599 strain in LBD medium (p < 0.0001), with decreases of 56% and 

67% respectively.  The P. aeruginosa PA01 strain in LBD medium produced 

significantly more pyocyanin than the P. aeruginosa PW8599 strain in LB medium (p < 
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0.0001) with an increase of 91%, but the pyocyanin was significantly less than the 

PW8599 strain in LBD medium (p < 0.0001) with a 25% decreased yeild.  The P. 

aeruginosa PW8599 strain in LB medium produced 61% less pyocyanin than the 

PW8599 strain in LBD medium (p < 0.0001).  There was no significant difference 

between the two strains in LB medium (Figure 4). 

Comparison of P. aeruginosa’s ability to adhere to lung epithelium 

 To determine the relative abilities of PA01 and PW8599 to adhere to lung 

epithelial tissue, and thus potential infection and invasion potential, we assayed adhesion 

using A549 cells.  A significant increase in adherence was observed with PA01 in LBD 

compared to PA01 in LB (p<0.0001) and PW8599 in LB (p=0.0003), with increases of 

94% and 70% respectively.  PW8599 in LBD showed a significant increase in adherence 

compared to PA01 in LB (p<0.0001), PA01 in LBD (p=0.0273) and PW8599 in LB 

(p=0.0002), with increases of 176%, 43% and 144% respectively.  No significant 

difference was seen between PA01 in LB and PW8599 in LB (Figure 5). 

Cytotoxicity of differing strains of P. aeruginosa 

 To determine the cytotoxic abilities of P. aeruginosa PA01 and PW8599, we 

performed a trypan blue cytotoxicity assay using A549 cells.  PA01 in LB showed 

significantly less cytotoxicity than PA01 in LBD (p=0.0003), PW8599 in LB (p=0.0071), 

and PW8599 in LBD (p<0.0001), with decreases of 36%, 27% and 47% respectively.  

PW8599 in LBD showed significantly more cytotoxicity than PW8599 in LB (p=0.0004) 

and PA01 in LBD (p=0.0152), with increases of 37% and 21% respectively.  All strains 
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and conditions exhibited significantly increased cytotoxicity compared to the control.  No 

significant difference was seen between PW8599 in LB and PA01 in LBD (Figure 6). 

Discussion 

This study provides evidence that piuA, encoding an outer membrane protein iron 

receptor, is important in the pathogenesis of Pseudomonas aeruginosa.  As expected, 

growth was diminished, both under iron restriction and in normal media, compared to the 

wild type bacterium.  This suggests that P. aeruginosa harboring a non-functional PiuA 

iron receptor may grow to a lower density in the host.   

Biofilm formation would likely be reduced as well, to a certain extent.  This 

phenomenon of limited iron availability disrupting biofilm formation has been described 

by Forsberg and Bullen (1972) and Lamont et al. (2009).  A link between the pyoverdine 

and alginate regulatory networks, with AlgQ being a positive regulator of pyoverdine 

synthesis genes (Ambrosi et al. 2005).  Iron limitation also plays a role in upregulating 

the fagA-fumC-orfX-sodA operon, important in alginate production, along with other 

alginate regulators such as AlgU (Hassette et al. 1997). 

The increased production of the major virulence factor, pyocyanin, was observed 

in iron deficient conditions.  The strain harboring the mutation in piuA produced more 

pyocyanin than the wild type P. aeruginosa strain in iron deficient conditions.  While 

wild type bacteria did produce more pyocyanin under iron restriction than while in iron 

replete conditions, the difference was much more pronounced for the knockout strain.  

Under conditions where iron is not plentiful, this strain would produce more pyocyanin 

that could increase its virulence on a cell-by-cell basis. 
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This pyocyanin increase may be an attempt by P. aeruginosa to increase the 

concentration of iron that is available to it.  Other phenazines have been shown to aid in 

iron scavenging by reducing Fe (III) to Fe (II).  Biofilm development was shown to be 

aided by phenazines as well.  Pyocyanin itself seems to aid biofilm development through 

an iron-independent manner (Wang et al. 2011).   

We found that adhesion was shown to be affected in the strain possessing no 

functional piuA, as well.  The adhesion was not significantly different between the two 

strains grown in normal media, but once grown in iron deficient media, the knockout 

strain adhered far better than the wild type strain.  The mechanism for this increase is 

unknown, but may be related to increased exoproduct expression.  This increase in 

exoproducts  such as elastase, exotoxin A and other proteases, has been observed under 

iron limited conditions (Bjorn et al. 1979), and, thus, may play a role in increased 

bacterial adherence to epithelia.  Although, there may be other host factors, such as 

increased immune response, that might contribute to the increase in bacterial adherence 

to epithelia (Darling and Evans 2003; Gomez and Prince 2007). 

We showed that the ability to kill cells, or cytotoxicity, was increased by 

knocking out the piuA gene.  The iron limitation increased this effect as expected.  This 

suggests that responses to a lowered ability to scavenge iron from its environment may 

increase virulence, thus increasing the ability to destroy respiratory epithelial cells.  

Those virulence factors may be exotoxin A, which has been shown to have increased 

expression during iron restriction, pyocyanin, and extracellular proteases (Bjorn et al. 

1979). 
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The strain possessing decreased expression of PiuA outer membrane iron receptor 

showed increased virulence on a cell by cell basis.  However, in vitro studies demonstrate 

this strain to grow to a lower cell density than wild type P. aeruginosa.  This means that, 

in an in vivo infection scenario, this strain may have a reduced ability to cause disease or 

kill the host.  This situation would be true if the reduced growth overshadowed the 

increased individual cells’ virulence. 

Further study with the PW8599 strain of P. aeruginosa will reveal more 

information on the functionality of the PiuA protein and its effect on virulence.  Further 

work to determine differences at the promoter level, such as XylE assays, would validate 

the concept that this gene is upregulated under iron limited conditions.  Methods to 

determine the virulence using conditions that more closely resemble iron conditions in 

the human in vivo CF situation would yield more information on the activity of the 

PW8599 strain in the host.  Since no media exists that mimics the iron content of the CF 

lung, further study in the murine model to determine adherence, cytotoxicity, growth and 

virulence factor production in this knockout is indicated. 

The siderophore to which the PiuA receptor binds is currently unknown.  Studies 

to determine which species of siderophore is using this receptor for cellular entry would 

aid in characterization of this protein and further the knowledge of its behavior.  

Knowning the identity of this siderophore may also enhance our ability to predict how 

important this protein is for overall P. aeruginosa pathogenesis (Vasil 2007). 

Proteins in other species that function in similar ways to PiuA have been 

characterized to a greater extent.  The PiuA in Streptococcus pneumonia has been shown 
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to elicit an opsonophagocytic antibody response in a mouse model (Jomaa et al. 2005).  If 

this is true for PiuA of P. aeruginosa, it could open up avenues for treatment of infection; 

if not in CF, possibly in other forms of infection such as those associated with burns. 

Vaccination against P. aeruginosa could protect against infection in the future for 

people at risk for disease, such as individuals with CF.  This route may not be ideal, since 

prevention of infection against P. aeruginosa would allow other pathogens to invade the 

lungs and increase tissue damage.  Vaccination may be desirable for other populations at 

risk, such as burn patients or those with frequent infections caused by P. aeruginosa.  In 

S. pneumoniae, PiuA has been shown to be a potential vaccine determinant.  It was 

shown to prevent respiratory infection in mice using a mucosal method of innoculation. 

If, as was shown for S. pneumoniae, PiuA is well conserved across many strains of P. 

aeruginosa, vaccination may prevent a multitude of infections (Jomaa et al. 2006). 

Further study of this protein in the context of infection and colonization with P. 

aeruginosa is indicated.  Multiple routes of investigation present themselves, such as 

understanding bacterial response to environmental changes or development of vaccines or 

modulators of this protein.  Increased knowledge of the processes that this protein 

mediate may serve to aid in treatment and prevention of P. aerigunosa infections in the 

future.
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Figure 1. Growth Curves of PA01 in conditions of normal and limited iron showing 

Standard Deviation. PA01 was grown in media with and without 400 µM 2-2’ dipyridyl 

for 12 hours.  Turbidity was assessed with OD600 every 30 minutes during this time. Time 

points indicate sampling periods.  N=3, SD. 
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Figure 2. Growth Curves of knockout strain of P. aeruginosa in conditions of 

normal and limited iron. PW8599 was grown in media with and without 400 µM 2-2’ 

dipyridyl for 12 hours.  Turbidity was assessed with OD600 every 30 minutes during this 

time. Time points indicate sampling periods.  N=3, SD. 
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Figure 3.  Growth Curves of wild type and ΔpiuA P. aeruginosa strains in normal 

and iron limited conditions.  PA01and PW8599 were grown in media with or without 

400 µM 2-2’ dipyridyl for 12 hours.  Turbidity was assessed with OD600 every 30 

minutes during this time. Time points indicate sampling periods, n=3.  Asterisks indicate 

a significant difference from PA01 in LB (p<0.01). 
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Figure 4. Increased pyocyanin production in P. aeruginosa grown in iron limited 

media.  PA01 and PW8599 were grown for 24 hours in LB or LB with 400 µM 2-2’ 

Dipyridyl.  Pyocyanin was extracted by chloroform/HCl and analyzed by 

spectrophotometry.  N=3, SD.  Data was anazlyzed by student’s t-test using Prism.  *, **, 

and *** indicate a significant difference between groups (p<0.0001). 
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Figure 5. Differing abilities of P. aeruginosa strains to adhere to lung epithelium.  

PA01 and PW8599 were grown in LB with and without 400µM 2-2’ Dipyridyl overnight 

and allowed to adhere to confluent A549 cells for 1 hour.  Adhesion was quantified by 

plating serial dilutions of adhered bacteria overnight on LB plates and counting CFUs.  

N=3, SD.  *, ** and *** indicate significant differences between groups (p<0.05). 
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Figure 6. Cytotoxicity of P. aeruginosa strains.  Bacterial strains were grown in LB 

with and without 400µM 2-2’ Dipyridyl overnight then added to A549 monolayers at an 

MOI of 100:1 for 1 hour.  Cells were removed and stained with Trypan Blue and counted 

using a hemocytometer.  Control contained A549 with no bacteria added.  N=3, SD.  *, 

**, *** and ****indicate a significant difference between groups (p<0.05).  
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