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Abstract 
 

 

CHARACTERIZATION OF THE NUCLEAR PORE COMPLEX IN RED 
ALGA, CYANIDIOSCHYZON MEROLAE 

Michelle Veronin 

 

Thesis chair: Cheryl Cooper, Ph.D. 

 

The University of Texas at Tyler 
December 2019 

 

Cyanidioschyzon merolae (C. merolae) is a primitive, unicellular species of red 

alga that is considered to be one of the simplest self-sustaining eukaryotes.  The highly 

elementary nature of C. merolae makes it an excellent model organism for studying 

evolution as well as cell function and organelle communication. In our study, we 

hypothesize that C. merolae contains the minimal assembly of proteins to make up their 

Nuclear Pore Complexes (NPCs), and hence are the first ancestral NPCs.  NPCs are 

essential for basic nuclear transport in the cell. They are embedded in the double membrane 

of the nucleus, the nuclear envelope (NE), which separates nuclear DNA from cytoplasmic 

organelles. The NE acts as a selective protective barrier, and active transport of molecules 

between the nucleus and the cytoplasm is facilitated mainly by nuclear NPCs in higher and 

lower eukaryotic cells. When not functioning properly or fully, NPCs are known to be 

involved in several types of human disease, including cancer, accelerated aging and 

Huntington’s Disease (HD). 
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Chapter One 

Introduction 

Cyanidioschyzon merolae (C. merolae) is a primitive, unicellular species of red 

alga that is considered to be one of the simplest self-sustaining eukaryotes.  The highly 

elementary nature of C. merolae makes it an excellent model organism for studying 

evolution as well as cell function and organelle communication. Yeast (Saccharomyces 

cerevisiae) is a single-celled eukaryote that has been commonly utilized as a model system 

for studying biological processes and molecular structure, including the structure and 

function of the nuclear pore complex (NPC). However, there are differences between yeast 

and human cells, such as the type of mitosis, that create limitations associated with what 

can be applied to human biology from studies using this system. The ability to accurately 

study the NPC is critical, as NPCs are essential for basic nuclear transport in the cell. Nearly 

all molecular traffic that travels between the nucleus and cytoplasm is directed through 

NPCs. NPCs are composed of approximately 30 specialized proteins known as 

nucleoporins (Nups) that are present in highly repeated copies. Additionally, when their 

function is compromised, NPCs are involved in many human disease states. 

Phylogenetic studies indicate that C. merolae diverged early in eukaryotic lineage, 

but its primitive features appear to have been conserved throughout evolution. The C. 

merolae genome is only 16.5 Mbp distributed over 20 chromosomes. Complete genomic 

sequencing revealed the presence of only 27 introns and approximately 5,331 protein-

coding genes (Matsuzaki et al., 2004). Another advantage of studying C. merolae is its 
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very primitive internal organization. It has only one nucleus, one mitochondrion, and a 

minimal set of membrane-bound organelles: one peroxisome, one Golgi apparatus, and a 

small number of lysosomes. Organellar dynamics have been studied in C. merolae, and 

these findings have suggested that organelles behave as if they are linked (Gibbs, 1962a, 

1962b; Misumi et al., 2005).  (Yagisawa et al., 2012; Yagisawa et al., 2013). Therefore, it 

is an ideal candidate to resolve the design of organelle biogenesis and behavior during the 

cell cycle. In Plantae, the mechanism of mitosis (i.e., open or closed mitosis) remains 

unclear, which is why it is critical to study simple red algae like C. merolae at mitosis to 

fit the context of functionality and evolution (Ciska & Moreno Diaz de la Espina, 2014; 

Evans, Clark, Whipple, & Whitham, 2012; Graumann & Evans, 2011; Imoto, Yoshida, 

Yagisawa, Kuroiwa, & Kuroiwa, 2011; Meier, 2001; Misumi et al., 2005). Preliminary 

data indicates an open mitosis in C. merolae, the same mechanism observed in human cells. 

It has been shown that vertebrates and plants share similar patterns of Nups 

(Neumann, Jeffares, & Poole, 2006; Tamura, Fukao, Iwamoto, Haraguchi, & Hara-

Nishimura, 2010). Currently, analyses of C. merolae’s protein composition have been 

lacking, with initial homology matching failing to identify over half of typical Nups in its 

NPC. The purpose of the present investigation is to characterize the NPC of C. merolae 

through the incorporation of additional methods to build on preliminary evidence that has 

evaluated the C. merolae NPC protein composition. I hypothesize that C. merolae has the 

most basic protein assembly that makes up its NPC, and thus possess the most ancestral 

eukaryotic NPCs.  
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Chapter Two  

Review of the Literature 

Cyanidioschyzon merolae 

 

 

 

C. merolae is a primitive, unicellular species of red alga that was originally isolated 

from hot springs in Naples, Italy. The typical habitat of C. merolae is sulfate-rich, acidic 

environments; it can withstand temperatures of 45°C and a pH below 2 (Misumi et al., 

2005).  It is a small (µm), club-shaped red alga that does not actually appear red. This 

thermophilic organism is considered to be one of the simplest eukaryotes. It has no cell 

wall, as although the genes encoding proteins of the cell wall are present, they are not 

Figure 1.  

Microscope image of C. merolae cells and constituents of C. 
merolae genome. 
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expressed. Organellar dynamics have been studied in C. merolae, including inheritance of 

the Golgi body and endoplasmic reticulum (ER) (Yagisawa et al., 2012; Yagisawa et al., 

2013). The running hypothesis is that organelles behave as if they are linked (Gibbs, 1962a, 

1962b; Misumi et al., 2005). Therefore, it is an ideal candidate to resolve the design of 

organelle biogenesis and behavior during the cell cycle.  

Optimal growth conditions for C. merolae cells are 42°C in MA2 media at pH 2.7 

(Imoto et al., 2010; Imoto et al., 2011; Misumi et al., 2005). Cells can grow slowly with a 

CO2 level between 1-2% with gentle shaking or more rapidly with 5% CO2 bubbling (Imoto 

et al., 2011). In order to study the cell cycle, reliable cell synchronization is necessary. C. 

merolae provides this by two different methods. Its cell cycle phase can be easily 

synchronized by light and dark cycles. Specifically, by strategic triggering of 

photosynthesis in conjunction with altering CO2 levels, cells can be coordinated and 

isolated in different phases of the cell cycle (Fujiwara, Tanaka, Kuroiwa, & Hirano, 2013; 

Imoto et al., 2011). Cells can also be synchronized by drug treatment with microtubule 

binding drugs such as oryzalin (Fujiwara et al., 2013). With these options, C. merolae is 

an ideal system to study mitotic changes, but targets are lacking or yet to be discovered.   

One study provided a comprehensive analysis of two structures involved in mitosis, 

condensins I and II, in C. merolae (Fujiwara et al., 2013). Condensins are protein 

complexes that have important functions in chromosome condensation and segregation 

during mitosis and meiosis (Cuylen & Haering, 2011; Fujiwara et al., 2013; Hirano, 2012). 

While the corresponding subunits specific to condensin II have not previously been found 

in fungi, both condensins were described in C. merolae and were revealed to have notable 
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similarity to vertebrate condensins in terms of dynamics and localization (Fujiwara et al., 

2013).  

Characterization of endoplasmic reticulum (ER) inheritance suggests that C. 

merolae possesses a nuclear ER as well as a smaller amount of peripheral ER that extends 

from the nuclear ER (Yagisawa et al., 2012). It appears that the nuclear ER undergoes 

division during mitosis, while the peripheral ER formed ring-like structures during G1 and 

S phases and extended toward the mitochondria and cell division planes during M phase, 

implying a closed mitosis in C. merolae (Yagisawa et al., 2012). However, investigation 

into cell cycle dynamics involving condensins revealed evidence supporting more of an 

open mitosis mechanism. Using immunofluorescence markers, partial dissolving of the NE 

was observed as well as dispersion of the NPCs in the cytoplasm during metaphase 

(Fujiwara et al., 2013). Specifically, these findings indicated that the means by which 

condensin I accesses chromosomes is through the partially dissolved NEs (Fujiwara et al., 

2013).   
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A full set of genetic tools has been developed and tested successfully in C. merolae. 

The establishment of a transient gene expression system in C. merolae, which has allowed 

for expression of exogenous DNA, indicates its utility for molecular genetic analyses 

(Ohnuma, Yokoyama, Inouye, Sekine, & Tanaka, 2008). Additionally, the GFP reporter 

system has been applied in C. merolae in order to investigate the subcellular localization 

of proteins (Watanabe, Ohnuma, Sato, Yoshikawa, & Tanaka, 2011). A method of gene 

suppression has also been effectively established in C. merolae. Ohnuma and colleagues 

transformed C. merolae cells with antisense DNA of the catalase gene and subsequently 

observed reduced catalase expression (Ohnuma et al., 2009).  

Figure 2.  

Comparison between the NPCs of higher plants and vertebrates with a question mark for C. merolae. 
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  Nup arrangements in vertebrates and plants are remarkably similar (Neumann et 

al., 2006; Tamura et al., 2010). Arabidopsis thaliana is missing just six Nups when 

compared to vertebrates. Additionally, it was shown to contain unique Nups like Nup136.  

Despite these differences, both proceed with an open mitosis. Questions have arisen with 

regard to the Nups and pore membrane (POM) proteins that compose the C. merolae NPC 

(Neumann et al., 2006). Initial homology matching has met with only limited success. More 

than half of typical Nups are missing in the NPC of C. merolae. This may represent the 

primitive NPC and/or a collection of novel C. merolae Nups yet to be discovered.  

Nuclear Pore Complex 

A distinguishing feature of eukaryotic cells from prokaryotic cells is the separation 

of nuclear DNA from cytoplasmic organelles. This separation is in the form of the nuclear 

envelope (NE), a structure that is considered to be a specialized endoplasmic reticulum 

(ER) membrane containing a double bilayer that has an inner and outer membrane system. 

Such segregation is necessary for the proper organization of nuclear import and export of 

materials required for basic cellular processes, including transcription factors, RNAs, 

kinases, and viral particles (Tran & Wente, 2006; Weis, 2003). Nuclear pore complexes 

(NPCs) are large protein complexes situated in circular openings flanked by a fusion of the 

outer and inner nuclear membrane (Kabachinski & Schwartz, 2015; Tran & Wente, 2006; 

Weis, 2003). NPCs essentially act as gateways through which macromolecular traffic is 

directed into and out of the nucleus, a process that is mediated by highly regulated 

pathways. NPCs facilitate nearly all transport that occurs between the nucleus and 

cytoplasm (Kabachinski & Schwartz, 2015). Overall, the process of nucleocytoplasmic 

transport occurs sequentially by the binding of molecules to transport receptors, passage 
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through the NPC, and translocation from the NPC to intranuclear or cytoplasmic target 

sites (Hoelz & Blobel, 2004; Lim, Aebi, & Fahrenkrog, 2008).  

NPCs are composed of approximately 30 different specialized proteins, known 

collectively as nucleoporins (Nups) that are highly repeated (Rout et al., 2000; Rout & 

Wente, 1994; Schwartz, 2005). Nups have been associated with numerous human diseases, 

including various forms of cancer, viral infection, and Huntington’s Disease (HD).  

NPC Structure 

The NPC is a large macromolecular assembly with an estimated size of 110 MDa 

in vertebrates and 60 MDa yeast (Bui et al., 2013; Hoelz, Glavy, & Beck, 2016; Kosinski 

et al., 2016; von Appen et al., 2015). NPCs possess a symmetric core with an octahedral 

arrangement across the double membrane of the NE, resembling the spokes of a bicycle 

wheel. Nups of the NPC have been categorized through proteomic studies in yeast and 

metazoa (Cronshaw, Krutchinsky, Zhang, Chait, & Matunis, 2002; Rout et al., 2000). It 

has been shown that mammalian NPCs contain at least seven additional Nups including 

ALADIN, Nup358, POM210, POM121, NDC1, Nup43, and Nup37. Nups can be classified 

into six categories: (1) Y-complex (coat) Nups, (2) Adaptor Nups, (3) Channel Nups, (4) 

Cytoplasmic filament Nups, (5) nuclear basket Nups (6) POM (transmembrane) Nups. 

Nups are typically named by their designated molecular weight and are organized into 

macromolecular assemblies called subcomplexes. In the laboratory, interphase 

subcomplexes can be isolated through biochemical extraction of the NE with low 

percentage non-ionic or zwitterionic detergent treatment. (Belgareh et al., 2001; Glavy et 

al., 2007; Walther et al., 2003). A key feature of NPCs is that these modular units are 

present in multiple copies arranged around two- and eightfold axes of symmetry, and 
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discrete structures are formed within the NPC (Schwartz, 2005). Overall NPC architecture 

is conserved between yeast and higher eukaryotes with an eightfold symmetry (Aaronson 

& Blobel, 1974; Schwartz, 2005) 

Cryo-electron tomography with three-dimensional reconstruction gives a resolution 

of 23 Angstroms (Bui et al., 2013; Kosinski et al., 2016). The nuclear basket extends nearly 

60 nm into the nucleus (Beck et al., 2004; Beck, Lucic, Forster, Baumeister, & Medalia, 

2007; Bonny, Hull, & Howell, 2014; Bui et al., 2013). The central core inner ring (IR) is 

estimated at less than 50 nm while the envelope is approximately 50 nm (Beck et al., 2007). 

The cytoplasmic rings (CRs) are believed to act as a docking site for protein transport and 

bind to nuclear rings (NRs) (Beck et al., 2004; Beck et al., 2007; Bui et al., 2013; Kosinski 

et al., 2016; von Appen et al., 2015). An early approach using a combination of proteomic 

data with a computational platform has been applied to the architectures of the 

macromolecular assemblies of the NPC (Alber et al., 2007). This study concluded that the 

fundamental symmetry unit of the NPC is the spoke (Alber et al., 2007). Within the ringed 

structure are linked units and flexible repeat units that both stabilize and are involved in 

transport (Tran & Wente, 2006). The inner and outer rings help to facilitate the membrane 

structure. The complete architecture of the NPC includes some non-Nup proteins: the 

nuclear membrane proteins and the nuclear lamina (Schwartz, 2005). These non-Nup 

proteins make up the surrounding regions of the NPC and support its transport function. 

Role of the NPC in Mitosis 

In human dividing cells, NPCs undergo a cycle of disassembly and assembly in 

concert with the cell cycle.  In this form of open mitosis, the NE completely dissipates 

during mitosis, which opens up the nucleus and exposes the chromosomes to the cytoplasm. 
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The NE breaks down early in mitosis as the chromosomes become condensed, allowing 

microtubules that originate from microtubule organizing center (MTOC) to attach with the 

chromosomes via kinetochores. Nup subcomplexes release from the NPC during open 

mitosis and are the disassembly units of the NPC (Hetzer, Walther, & Mattaj, 

2005).  During mitosis, chromosomes align to the metaphase plate, followed by separation 

of sister chromatids at anaphase. The NE begins to reassemble, shortly afterward, in 

telophase. Once the NE is completely assembled, the nucleus expands and the 

chromosomes decondense to interphase. In closed mitosis, the NE persists throughout the 

cell cycle, preventing “opening” of the nucleus to the cytoplasm.  

During closed mitosis, the spindle-pole bodies nucleate microtubules within the 

nucleus and the processes occur within the encapsulated mitotic NE (Boettcher & Barral, 

2013; Jaspersen & Ghosh, 2012; Webster, Witkin, & Cohen-Fix, 2009; D. Zhang & 

Oliferenko, 2013). A variation of both has been observed in some species, called semi-

open, exhibiting a partial breakdown of the NE. There exists a clearly defined difference 

between vertebrates (open mitosis) and yeast (closed mitosis). Closed mitosis may reflect 

the most ancient mechanism of eukaryotic cell division, whereas open mitosis appears to 

have been conceived and re-conceived during evolution (Boettcher & Barral, 2013). 

Nucleoporins (Nups) 

Y-Nups 

Y-Nups are contained within the Y-complex of the NPC, also known as the Nup107 

subcomplex.  The cytoplasmic Y-complex has nine members: Nup160, Nup133, Nup107, 

Nup96, Nup75, Nup43, Nup37, Seh1, and Sec13 while the nuclear Nup107 subcomplex 
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contains a tenth member: ELYS  (Bui et al., 2013; Cristea, Williams, Chait, & Rout, 2005; 

Fontoura, Blobel, & Matunis, 1999; Glavy et al., 2007; Loiodice et al., 2004; Ori et al., 

2013; von Appen et al., 2015). This subcomplex has been classified as a keystone of NPC 

assembly (Boehmer, Enninga, Dales, Blobel, & Zhong, 2003). RNAi knockdown 

experiments of individual members within the Y-complex affect select members of the 

subcomplex in addition to some other Channel Nups (Boehmer et al., 2003; Walther et al., 

2003). These findings show the interdependence of subcomplex members and the overall 

NPC.  Positioned at the curvatures of the membrane embedding the NPC, the Y-complex 

acts to stabilize these bends in the membrane (Boehmer, Jeudy, Berke, & Schwartz, 2008).   

Early reconstitution experiments in yeast produced a Y-complex, which was 

visualized through negative staining electron microscopy (Lutzmann, Kunze, Buerer, Aebi, 

& Hurt, 2002). It was shown that the structural modules of the subcomplex are a collection 

of alpha-helical repeats and b-propellers. Through X-ray crystallography, the NPC can be 

gradually pieced together with the Y-complex as the main component. Larger crystal 

approaches have yielded great progress. A yeast hexameric Y-complex was achieved using 

a single domain synthetic antibody crystallization chaperone (Stuwe et al., 2015). Among 

the information provided was further proof of an evolutionarily conserved ring structure 

formed by the yeast Y-complex. Cryo-electron topography work has shown that the human 

Y-complex forms two reticulated rings on the cytoplasmic and the nuclear side (Hoelz et 

al., 2016; Kosinski et al., 2016; von Appen et al., 2015).  Numerous discrete crystal 

structures of the Y-complex fit directly into the tomographic map including the yeast 

hexameric structure (Bui et al., 2013; Hoelz et al., 2016; Kosinski et al., 2016; von Appen 

et al., 2015). In an integrated approach coupling electron tomography, single-particle 
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electron microscopy, and crosslinking mass spectrometry, it was shown that 32 copies of 

the Y-complex amass into two reticulated rings, one at each of the cytoplasmic and nuclear 

face of the NPC (Bui et al., 2013). This twin-ring organization of the Y-complex explains 

the structural plasticity of the NPC (Bui et al., 2013).  Flexible and spring-shaped hinges 

confer large-scale rearrangements that might be relevant for large unit transport (Bui et al., 

2013).  

Adaptor Nups 

The Adaptor complex includes five members: Nup93, Nup205, Nup188, Nup155, 

and Nup35 (Hawryluk-Gara, Shibuya, & Wozniak, 2005).  The X-ray crystal structure of 

Nup93 reveals an elongated, alpha-helical structure (Jeudy & Schwartz, 2007).  This form 

is evolutionarily conserved and therefore functionally maintained (Jeudy & Schwartz, 

2007).  Members of the Adaptor complex contain mainly alpha-helical domains (Jeudy & 

Schwartz, 2007).  Just like the Y-complex, Nup93 is a highly abundant protein with 32 

copies within the NPC (Ori et al., 2013). The Nup93 subcomplex aids in inner ring 

stabilization and is needed for correct nuclear pore assembly and homeostasis of the NPC 

(Jeudy & Schwartz, 2007). RNAi experiments suggest a functional link between NE 

transmembrane NDC1, Nup93, and Nup205, as well as an anchor point function for the 

Nup93 subcomplex (Antonin, Ellenberg, & Dultz, 2008). This has been confirmed by 

structure studies showing that Nup93 is a key component to the IR. Furthermore, Nup62, 

a Channel Nup, has been shown to interact with Nup93, illustrating interdependence 

between IR Nups and the Channel Nups (Antonin et al., 2008).  It has been demonstrated 

that 32 copies of both Nup188 and Nup205, Nup93, Nup155, and the Channel Nups fit into 

the IR with additional Nup155 protein reaching up to connect to the outer ring. The IRs 
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comprise rings similar to the Y-complex, confirming their evolutionary connection 

(Kosinski et al., 2016).  

Channel Nups 

Channel Nups have stretches of FG (Phe-Gly) repetitive residues which are 

separated by polar spacer regions of variable lengths (Lim et al., 2008; Tran & Wente, 

2006). FG repeat domains arrange into unstructured regions that form weak interactions 

with transporting proteins called karyopherins (kaps) (Tran & Wente, 2006). Channel Nups 

like the Nup62 subcomplex are located in the inner pore region or central core inner ring 

(IR) (Beck et al., 2004; Beck et al., 2007). The Nup62 subcomplex includes Nup62, Nup58-

Nup45, and Nup54 (Melcak, Hoelz, & Blobel, 2007; Schwartz, 2005). This subcomplex 

has been referred to as the central plug region of the NPC. While these transport Nups line 

the inner NPC, it is unlikely that they form a plug against transport, but rather a dynamic 

transport area of the complex. The FG repeat domains form tentacle-like structures that 

emanate from and line the channel of the pore. Additionally, they are shown to line the IR 

region.  

Cytoplasmic Filament Nups 

As in the case of Channel Nups, Cytoplasmic Filament Nups possess FG regions. 

Their floppy tentacle nature is cohesive with crystal formation. Thus far, only non-FG 

regions of these Nups have been reported. The X-ray crystal structure of the non-FG repeat 

N-terminus of Nup214 reveals a seven-bladed b-propeller with a segment of its C-terminus 

bound to the propeller (Napetschnig, Blobel, & Hoelz, 2007). Furthermore, X-ray analysis 

of Nup58-45 revealed a possible circumferential sliding mechanism to adjust the diameter 
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of the central transport channel (Melcak et al., 2007). The alpha-helical region forms a 

distinct tetramer with a hydrophobic interface. The residues are laterally displaced in 

numerous tetramer confirmations giving the possibility of a sliding structure (Melcak et 

al., 2007). Selective knockdown of Nup214 followed by Cryo-ET demonstrates that this 

subcomplex protrudes into the cytoplasmic ring region (Bui et al., 2013). This position 

secures FG repeats onto the framework of the rings to facilitate nuclear transport (Bui et 

al., 2013). Further application of gene-silencing/Cryo-ET uncovered a role for Nup358 to 

stabilize solely the cytoplasmic reticulated double ring structure (von Appen et al., 2015). 

These findings change the edges between Y and Cytoplasmic filament Nups (von Appen 

et al., 2015).  

Nuclear Basket Nups 

Nup153, Nup50, and TPR (Translocated promoter region protein) comprise the 

nuclear basket and provide the surface to utilize binding areas for transport.  TPR is an 

unusual Nup with more filament protein properties than most yet required for trafficking 

across the nuclear envelope. TPR acts as a framework component in the nuclear segment 

and tethers chromatin to begin perinuclear heterochromatin exclusion zones.  Additionally, 

TPR is believed to act as a docking site for expressing genes interacting with select Nups. 

It participates in both nuclear import and export pathways for proteins with or without NES 

as well as the export of mRNA (Rajanala & Nandicoori, 2012; Rajanala et al., 2014). TPR 

coiled-coiled domains help give reliable support to form and maintain the nuclear basket. 

TPR also plays a role in mitotic spindle checkpoint signaling (Rajanala & Nandicoori, 

2012; Rajanala et al., 2014). Within the nuclear basket, Nup153 is associated with TPR 

and contains four zinc fingers, which increase the local Ran concentration to assist nuclear 
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transport. Along with Nup50, Nup153 helps to terminate karyopherin-mediated transport 

(Tran & Wente, 2006). 

POM Nups 

The NE is separated into three domains: the outer nuclear membrane (ONM), the 

pore membrane (POM) and the inner nuclear membrane (INM) (Lusk, Blobel, & King, 

2007). The POM region is the sector of the NE where INM and ONM fusion occurs. The 

POM curvatures are lined with select membrane proteins believed to anchor NPCs, similar 

to the settings of a ring. POM proteins are involved in the initiation of pore complex 

formation, stabilization, release, and reformation of the NPC. To date, four POM proteins: 

gp210, POM121, NDC1, and POM33 have been classified through proteomic and genetic 

screenings. The largest POM protein, gp210, also known as POM210, contains a single 

transmembrane domain as do the rest of the POM proteins. NDC1 is found both in the 

POM region and the spindle pole body (SPB) during mitosis. In yeast, it functions at the 

SPB and helps to anchor the SPB at the NE. However, in human cells, its purpose is still 

unknown (Kupke, Malsam, & Schiebel, 2017).  Through RNAi experiments, a connection 

between the NE membrane, NDC1, and members of the adaptor complex, Nup93 and 

Nup205, was revealed, suggesting that the Nup93 subcomplex functions as an anchor point 

(Antonin et al., 2008; Mansfeld et al., 2006). Lack of NPC assembly and resulting 

formation of continuous nuclear membranes has been observed upon removal of POM121 

(Antonin & Mattaj, 2005). There is no single POM or combination of POMs that is 

completely indispensable for survival, which implies structural or functional redundancy. 

However, upon removal of NDC1 and POM121, it was observed that these cells 

experienced the greatest disturbance in nuclear import and soluble Nup localization (Chen, 
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Smoyer, Slaughter, Unruh, & Jaspersen, 2014; Mansfeld et al., 2006; Mitchell, Mansfeld, 

Capitanio, Kutay, & Wozniak, 2010).  

NDC1 was shown to form a linkage between the NE and soluble Nups and 

depletion of NDC1 shows markedly reduced Channel Nup staining compared to 

NDC1/control siRNA treatment (Mansfeld et al., 2006; Onischenko, Stanton, Madrid, 

Kieselbach, & Weis, 2009; Stavru et al., 2006). These results suggest a crucial role for 

NDC1 in structure, function, Nuclear Envelope Breakdown (NEBD) and assembly. POM 

protein “put back” experiments fail to restore function, implying the need for additional 

components as well as POM proteins (Franz et al., 2005; Mansfeld et al., 2006; Stavru et 

al., 2006). POM121 has demonstrated localization with Nups at forming nuclear pores 

(Doucet & Hetzer, 2010). In fact, a fragment of POM121 has a dominant-negative effect 

on pore assembly, suggesting a critical role of POM121 in assembly and nuclear pore 

biogenesis (Shaulov, Gruber, Cohen, & Harel, 2011). Specifically, the protein’s repeat-

containing POM domain is involved in anchoring components of the pore complex to the 

pore membrane, as indicated by the formation of cytoplasmic annulate lamellae and when 

overexpressed in cells (Funakoshi, Clever, Watanabe, & Imamoto, 2011; Funakoshi et al., 

2007). Interactions of POM121 with Nup155 and Nup160 are foreseen to contribute to the 

formation of the nuclear pore as well as the fastening of the NPC to the pore membrane 

(Mitchell et al., 2010). The newest POM protein, POM33, is required for proper NPC 

distribution (Chadrin et al., 2010; Floch et al., 2015) as well as assembly. However, a 

percentage of POM33 resides in the endoplasmic reticulum (ER) (Chadrin et al., 2010; 

Floch et al., 2015).  It has been shown that gp210 is important for effective NPC 

disassembly, which suggests that phosphorylation of gp210 is an early event in NEBD 
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(Galy et al., 2008). Yet, the role of this set of POM proteins at the onset of disassembly is 

undetermined.  

Mobile Nup: Nup98 

Nup98 is found both at the NPC and within the nucleus, and it has multiple 

functions and binding partners (Fontoura et al., 1999; Tamura et al., 2010). Nup98 arises 

from a Nup98-Nup96 precursor form that splits by a self-cleavage domain similar to those 

found in Drosophila Hedgehog and Flavobacterium glycosylasparaginase (Fontoura et al., 

1999; Rosenblum & Blobel, 1999). It is classified as a non-subcomplex or mobile Nup 

with multiple locations along both sides of the NPC (Fontoura et al., 1999).  The function 

of Nup98 encompasses roles in transport, mitotic progression, gene expression, epigenetic 

changes and viral infection (Chakraborty et al., 2009; Chakraborty et al., 2008; Franks et 

al., 2017; Liang, Franks, Marchetto, Gage, & Hetzer, 2013; Mor, White, & Fontoura, 2014; 

Tamura et al., 2010).  Part of the mitotic function of Nup98 includes a role in nuclear 

envelope breakdown (NEBD) (Laurell et al., 2011; Linder et al., 2017). Specifically, 

mitotic Phospho-Nup98 is a determining factor in NPC disassembly (Laurell et al., 2011; 

Laurell & Kutay, 2011). Additionally, one of Nup98’s interacting partners is Rae1; together 

they act as temporal regulators of the anaphase-promoting complex (Jeganathan, 

Malureanu, & van Deursen, 2005).  

Nup98 has also been linked to viral infection. In the case of influenza, down-

regulation of Nup98 by the virus non-structural protein 1 (NS1) correlates with increased 

viral replication (Mor et al., 2014; Satterly et al., 2007). It has also been shown the Nup98 

is targeted for degradation in cells infected with poliovirus, which is likely facilitated by a 

viral 2A protease. Poliovirus additionally targets two other Nups, Nup153, and Nup62, but 
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cleavage of Nup98 appears to occur more rapidly (Park, Katikaneni, Skern, & Gustin, 

2008).  

NE and NPC-associated Disease States 

Cancer 

NPCs have a critical function in mitosis, including the assembly and function of 

kinetochores, mitotic spindles, and centrosomes as well as proper chromosome 

segregation. This indicates their importance in maintaining genome integrity. Thus, 

changes that affect the ability of the NPC to function in mitosis could contribute to cancer 

development (Wong & D'Angelo, 2016). It has been shown that Nup358 (also known as 

RanBP2), a component of the cytoplasmic filaments of the NPC which functions in 

multiple cellular processes including mitosis, is implicated in the development of colon 

cancer (CC), the third most common cancer worldwide. Specifically, Nup358 promotes 

survival of CC cells by contributing to the prevention of mitotic cell death (Vecchione et 

al., 2016; Wong & D'Angelo, 2016). A mutation that is observed in about 8-10% of CC 

patients is the BRAF (V600) mutation, which is typically associated with a less favorable 

prognosis (Popovici et al., 2012; Vecchione et al., 2016; Wong & D'Angelo, 2016). It has 

been shown that Nup358 ameliorates the effects of mitotic defects present within BRAF-

like CC cell lines. Furthermore, it has been shown that knockdown of the RANBP2 gene 

leads to mitotic defects in CC cells with this mutation, eventually resulting in cell death 

specifically due to prolonged mitosis (Hashizume, Kobayashi, & Wong, 2013; Vecchione 

et al., 2016; Wong & D'Angelo, 2016).  



 

 19 

An important feature of nucleocytoplasmic transport through the NPC is the 

recognition of nuclear localization sequences (NLSs) and nuclear export sequences (NESs) 

on large proteins by transport receptors. (Mor et al., 2014). Proteins that contain NLSs and 

NESs include oncogenes and tumor suppressors that have nuclear functions, such as p53 

and FoxO. Disruption of nucleocytoplasmic transport involving these proteins is associated 

with tumor formation (Mor et al., 2014). These proteins bind with Crm1, an exportin, which 

has been shown to be overexpressed in leukemias, gliomas, and osteosarcomas (Mor et al., 

2014). It is believed that this overexpression promotes excessive export of tumor 

suppressors out of the nucleus, thus decreasing their function (Falini et al., 2005; Mor et 

al., 2014). Additionally, a mutation in the tumor suppressor gene BRCA2 has been linked 

to the disruption of nucleocytoplasmic transport. The mutant form of BRCA2 is associated 

with the development of breast, ovarian, and pancreatic cancers. Interaction of a mutant 

BRCA2 and the 26S proteasome complex subunit DSS1 has been shown to mask the NES 

of BRCA2 and allow recognition by Crm1, which mislocalizes it to the cytoplasm 

(Jeyasekharan et al., 2013; Mor et al., 2014). 

One specific Nup, Nup98, regulates transcription of genes that have functions 

relating to development and the cell cycle (Capelson et al., 2010; Kalverda, Pickersgill, 

Shloma, & Fornerod, 2010; Mor et al., 2014). Chromosomal translocations involving 

Nup98 also alter expression of Nup96, as both proteins are encoded by the same mRNA 

(Fontoura et al., 1999; Mor et al., 2014). Disrupted expression of Nup96 may serve as an 

additional contributing factor to disease phenotypes that arise from Nup98 translocations 

with transcription factors, as Nup96 plays a role in the regulation of export of mRNAs that 

are associated with immunity and cell cycle regulation (Chakraborty et al., 2008; Faria et 
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al., 2006; Mor et al., 2014). Nup98 translocations are most frequently observed in acute 

myeloid leukemia (AML), chronic myeloid leukemia in blast crisis (CML-bc), and 

myelodysplastic syndrome (MDS) (Gough, Slape, & Aplan, 2011). Several mechanisms 

have been proposed to explain the role of Nup98 fusion proteins in leukemic 

transformations, including up-regulation of HOXA genes, suppressed differentiation, and 

increased self-renewal (Gough et al., 2011; Sakuma & D'Angelo, 2017). A study focused 

on Nup98-HOXA9 revealed a biphasic effect of the fusion protein on the growth of CD34+ 

hematopoietic cells, with growth initially inhibited before continuous, long-term 

proliferation of primitive cells was observed (Takeda, Goolsby, & Yaseen, 2006). This 

finding is implicative of the development of AML from MDS, which has been shown in 

transgenic mouse models containing the fusion protein Nup98-HOXD13. Additionally, 

Nup98-HOXA9 has been shown to suppress hematopoietic differentiation as well as 

increase primitive self-renewing cells (Takeda et al., 2006).  

Huntington’s Disease 

Disruption of nucleocytoplasmic transport and the mislocalization and aggregation 

of several Nups has shown to be involved in Huntington’s Disease (HD), the most common 

heritable neurodegenerative disorder (Grima et al., 2017). HD is a member of a group of 

neurodegenerative disorders known as polyQ diseases, which are all characterized by 

repetitive CAG sequences that encode a long polyglutamine (polyQ) tract within 

corresponding proteins (Finkbeiner, 2011; Grima et al., 2017). There is evidence 

suggesting that Nup aggregates co-localize with the mutant form of the Huntingtin protein, 

Htt. Additionally, the number, as well as the size of these aggregates, increase with 

pathological progression of HD (Grima et al., 2017). Disruption of nucleocytoplasmic 
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transport as a contributing factor of HD has been demonstrated by disturbance of the Ran 

gradient. The Ran gradient plays a role in providing power for active transport as well as 

maintaining proper transport directionality through the interaction of the protein Ran-GTP 

with the transport receptor during nuclear import. This gradient is maintained by a GTPase-

activating protein located on the cytoplasmic filaments of the NPC, RanGAP1 (Floch, 

Palancade, & Doye, 2014). Interactions between RanGAP1 and RNAs that contain a 

hexanucleotide repeat expansion (HRE) are linked to disruption of the Ran gradient. These 

HRE mutations are correlated with some forms of HD and are also commonly seen in 

amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (K. Zhang et al., 

2015). Additionally, RanGAP1 and Nup88 have been shown to form aggregates in a mouse 

model containing HD, and Nup62 has demonstrated severe mislocalization in HD striatum 

tissue (Grima et al., 2017). 

Premature and Accelerated Aging 

The NPC is also involved in aging and age-related deterioration. Since aging is a 

significant risk factor for neurodegeneration, this also demonstrates the role of the NPC in 

the development of neurodegenerative disorders like HD (Grima et al., 2017). 

Deterioration occurs by means of molecular damage that builds over time, as Nups have 

among the greatest longevity of proteins within the mammalian brain (Grima et al., 2017; 

Savas, Toyama, Xu, Yates, & Hetzer, 2012; Toyama et al., 2013). Nup damage is 

associated with increased nuclear permeability, which poses the risk of infiltration by 

toxins and cytoplasmic proteins (D'Angelo, Raices, Panowski, & Hetzer, 2009; Grima et 

al., 2017). There has been evidence in which leakage of the cytoplasmic protein MAP2 has 

been observed within in vitro models of HD. One study that observed changes in aging 
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brains of rats revealed that scaffold Nups have very slow turnover rates compared to 

peripheral Nups, and additionally showed that relative Nup composition of NPCs changed 

throughout the aging process (Sakuma & D'Angelo, 2017; Toyama et al., 2013). This 

finding suggests that slow Nup turnover rate may contribute to the accumulation of 

damaged NPCs over time (Savas et al., 2012).  

The nuclear lamina is a supramolecular structure composed of peripheral 

membrane proteins, which associate with the nucleoplasmic side of the inner nuclear 

membrane (Gerace & Blobel, 1980). The primary constituents of the lamina are the lamin 

proteins, which interact with several binding partners through a dense network of filaments 

(de Leeuw, Gruenbaum, & Medalia, 2018). Lamins are important structural components 

of the nucleus, as they function in the maintenance of nuclear morphology and stability. It 

has been shown that lowered lamin expression results in fragile nuclei that are more 

susceptible to deformation (Broers et al., 2004; Dittmer & Misteli, 2011). Mutations of the 

lamins are associated with multiple disease states, known collectively as laminopathies, 

which include muscular dystrophies, lipodystrophies, and peripheral neuropathies (Dittmer 

& Misteli, 2011). Several of these diseases are caused by mutations in the lamin-encoding 

gene LMNA, such as Emery-Dreifuss muscular dystrophy, Dunnigan-type familial partial 

lipodystrophy, and development and accelerated aging disorders including Hutchinson-

Gilford Progeria Syndrome (HGPS), a highly rare and fatal premature aging disease 

(Worman & Bonne, 2007). Additionally, mutations in the genes LMNB1 and LMNB2 are 

associated with autosomal dominant leukodystrophy and acquired partial lipodystrophy, 

respectively (Worman & Bonne, 2007). One particular lamin protein, lamin A, is not found 

in lower organisms like yeast, but its presence is suspected in C. merolae.  
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HGPS is an autosomal dominant disease that results from mutations that arise in 

the LMNA gene and subsequent malformation of the protein lamin A (Dittmer & Misteli, 

2011; Gordon, Rothman, Lopez-Otin, & Misteli, 2014; Gordon et al., 2018). Specifically, 

single base mutations of the LMNA gene lead to activation of cryptic splice site and 

subsequent farnesylation of lamin A, producing a variant of the protein known as progerin 

(Gordon et al., 2018). Continuous farnesylation causes progerin to be incorporated into the 

inner nuclear membrane, where it amasses and inflicts damage upon aging cells (Gordon 

et al., 2018). Severe failure to thrive, lipoatrophy, alopecia, skeletal dysplasia, and 

progressive atherosclerosis are among the symptoms of HGPS. Death typically results from 

heart attack or stroke at an average age of 14.6 years (Gordon, Cao, & Collins, 2012).  

Prominent nuclear morphological abnormalities have been observed in HGPS patient cells, 

including loss of heterochromatin from the nuclear periphery, genomic instability, and 

premature senescence (Graziano, Kreienkamp, Coll-Bonfill, & Gonzalo, 2018). 

Furthermore, the normally dynamic lamins are rendered immobilized in the cells of HGPS 

patients, leading to thickening of the lamina. This triggers changes in the mechanical 

properties of HGPS nuclei, and these cells thus have greater stiffness as compared to 

healthy cells. Such modifications in nuclei structure potentially influence the response of 

cells that are subject to greater mechanical stress including the vasculature, bone, and 

joints, all of which are affected substantially in the case of HGPS (Gordon et al., 2014). 

Research into HGPS may be beneficial in providing insight into the process of 

generalized aging. The intronic splice site that is activated by the classic HGPS mutation 

is present in wild-type cells, though infrequently used. Thus, in addition to HGPS, progerin 

is also generated in the case of normal aging. There has also been evidence to suggest that 
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the amount of progerin increases correspondingly with age, possibly leading to age-related 

cellular defects (Gordon et al., 2014; McClintock et al., 2007). Progerin may also have 

implications on cardiovascular health in relation to normal aging. There have been 

similarities discovered in atherosclerotic plaques as well as vascular stiffening between the 

conditions of HGPS and general aging (Gerhard-Herman et al., 2012; Gordon et al., 2014; 

Olive et al., 2010). However, despite the parallels between HGPS and aging, certain 

characteristic features of general aging have not been observed in HGPS, including 

deterioration of the nervous system and deficits of the immune system (Gordon et al., 

2014).  

Drug treatment with farnesyltransferase inhibitors (FTIs) has shown to be a 

promising approach to combatting HGPS. FTIs function by reversibly binding to the 

farnesyltransferase CAAX binding site. Consequently, farnesylation of progerin and 

following insertion into the nuclear membrane is inhibited (Gordon, Kleinman et al., 2012). 

A clinical trial conducted by Gordon et al. found that treatment with the FTI lonafarnib 

correlated with improvements in the rate of weight gain, bone structure, or audiological 

condition in some patients among a population of 25 children with HGPS (Gordon, 

Kleinman et al., 2012). Importantly, this study also demonstrated potential benefits of 

lonafarnib treatment on the cardiovascular system of HGPS patients, including 

improvement in vascular stiffness (Gordon, Kleinman et al., 2012). Further research has 

investigated whether lonafarnib treatment has an impact on mortality in children with 

HGPS (Gordon et al., 2018). Mortality rate of HGPS patients receiving lonafarnib 

monotherapy was compared with that of patients that received no treatment after 2.2 years 
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of follow-up. Findings were indicative of an association with a lower mortality rate among 

patients that received lonafarnib treatment (Gordon et al., 2018). 

Changes in lamin expression have demonstrated a link to the development of some 

cancers, including cancers of the ovary, colon, gut, blood, prostate, lung, and breast 

(Davidson & Lammerding, 2014). Lamins are involved in multiple pathways with either 

tumor suppressive or oncogenic roles as well as regulation of apoptosis (Graziano et al., 

2018). A-type lamins have been implicated in tumor growth, which is primarily related to 

their role in the maintenance of nuclear integrity (Graziano et al., 2018). Additionally, both 

increases and decreases in the expression of lamin A/C have demonstrated an association 

with aggressiveness of colorectal cancer (Davidson & Lammerding, 2014). A-type lamins 

also have a function in ensuring the stability of the retinoblastoma tumor suppressor 

proteins pRb and p107 (Graziano et al., 2018). It has been shown that cancer cell migration 

through narrow spaces increases with the loss of lamins, which suggests a possible 

connection between lamins and metastasis (Graziano et al., 2018).  

There has been evidence that indicates a possible association between progerin and 

cancer. For example, a relationship between enhanced tumorigenesis and expression of 

progerin has been proposed (Graziano et al., 2018; Tang, Chen, Jiang, & Nie, 2010). 

However, interestingly, while it was initially believed that HGPS patients had a lower 

cancer risk despite the relationship between aging and cancer due to their shortened 

lifespan, it has recently been shown that the expression of progerin may potentially protect 

HGPS cells from malignant transformation. Specifically, BRD4, a bromodomain protein, 

has been recognized as a mediator of oncogenic resistance within HGPS cells (Fernandez 

et al., 2014; Graziano et al., 2018).  
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Objectives  

Objective #1 of this study is to isolate and identify protein components of the nuclear pore 

complex (NPC) from Cyanidioschyzon merolae (C. merolae).  

Objective #2 is to visualize and localize individual NPC proteins at the C. merolae NE by 

immunofluorescence (IF) and confocal microscopy.  

Objective #3 is to examine the ultrastructure of C. merolae NPCs by electron microscopy 

(EM).  
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Chapter Three 

Methods 

Objective #1: Isolate and identify protein components of the NPC from C. merolae.  

Nuclear Extract Isolation Methods 

C. merolae cells were collected for lysis and separation into cytoplasmic and 

nuclear fractions. Cells were centrifuged and incubated successively in select solutions, 

with centrifugation between each incubation (See Appendix A for solution preparation). 

Following the nuclear extract protocol, the nuclear pellet was resuspended in 

Solution B and sonicated at 10% amplitude three times at 3-second durations to degrade 

DNA strands. 1X sample buffer was added to the nuclear pellet and two cytoplasmic 

fractions. Proteins from whole C. merolae cellular extract, nuclear extract, and both 

cytoplasmic fractions were separated on a 4-20% SDS-PAGE gel and transferred to a 

nitrocellulose membrane (Bio-Rad Trans-Blot Turbo) for further probing via Western blot 

analysis.  

Western Blotting 

Blots were probed with antibodies against several Nups to determine their presence 

in C. merolae and enrichment in the nuclear extract fraction. Blots were blocked overnight 

in a 5% milk solution in phosphate-buffered saline with Tween (PBS-T) and incubated 

with primary antibodies in a 2% bovine serum albumin (BSA) for one hour. Blots were 

then incubated with secondary antibodies in the 5% milk blocking solution for one hour. 
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5-minute washes with PBS-T were performed between each step. The blots were visualized 

with electrochemiluminescence (ECL).  

Chloroplast Removal and Nuclei Isolation 

In order to further isolate the nucleus of C. merolae, we employed a chloroplast 

isolation procedure using a 1X Chloroplast Isolation Buffer (Chloroplast Isolation Kit, 

ab234623 see Appendix B for preparation). The final Chloroplast Isolation Buffer Solution 

denoted “Complete Buffer,” was added to 200 mL of C. merolae cells, vortexed vigorously 

in four 30-second increments, and centrifuged at slow speed for 15 minutes. The pellet 

obtained from this centrifugation contained plant debris, nuclei and whole cells.  

After extracting the chloroplasts, we performed an optimized nuclei isolation 

procedure adapted from a protocol by Sikorskaite et al. (Sikorskaite, Rajamaki, Baniulis, 

Stanys, & Valkonen, 2013). Samples of 50 µL were collected following each fractionation 

step in order to track the location of the nuclei. We obtained 200 mL of C. merolae cells, 

collected a 50 µL sample of untreated cells which was stored on ice, and performed a 

chloroplast removal procedure as described previously. A 50 µL sample was collected from 

the supernatant and stored on ice. The pellet was resuspended in 1 mL of Storage Buffer 

(see Appendix C), and a 50 µL sample was collected and stored on ice. 10% Triton X-100 

was added to the solution to reach a concentration of 0.5%. The solution was lightly 

agitated for 20 minutes at 4ºC, followed by centrifugation at slow speed for 10 minutes. A 

50 µL sample was collected from the supernatant and stored on ice. The pellet was 

resuspended in 10 mL of Storage Buffer. The solution was dispensed over a density 

gradient that was comprised of 5 mL of 60% Percoll (GE Healthcare, 45001747) solution 
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on top of 5 mL of a 2.5 M sucrose bed. The gradient was centrifuged at slow speed for 30 

minutes at 4ºC. A 50 µL sample was collected from each layer and stored on ice. The 

Percoll layer, which contained nuclei, was diluted with 5 volumes of storage buffer and 

0.5% Triton-X 100. This solution was lightly agitated for 20 minutes at 4ºC, followed by 

centrifugation at slow speed for 10 minutes. A 50 µL sample was collected from the 

supernatant and stored on ice. The pellet was diluted with 5 volumes of storage buffer and 

0.5% Triton-X 100, and lightly agitated followed by centrifugation as previously described. 

A 50 µL sample was collected from the supernatant and stored on ice. The pellet was 

resuspended in 5 mL of Storage Buffer and dispensed over 5 mL of 35% Percoll solution, 

followed by centrifugation at slow speed for 10 minutes at 4ºC. A 50 µL sample was 

collected from the supernatant and stored on ice. The pellet was resuspended in 200 µL of 

Storage Buffer, a 50 µL sample was collected and stored on ice. 20 µL of each sample was 

loaded onto 4-well microchamber slides sequentially in the order that they were obtained. 

The samples were mixed with 1000X DAPI (diluted to 1X) and allowed to dry, then 

mounted with cover slips. These slides were used for analysis by immunofluorescence.  

Proteomics 

C. merolae samples were sent to NYU Langone’s Proteomics Laboratory. 

Proteomic screening for Nups was carried out using gel digestion and peptide extraction 

approach. Peptides were separated by liquid chromatography (LC) and gradient eluted 

from the column directly to an Orbitrap Elite mass spectrometer using a 1-hour gradient 

(Thermo Scientific). High-resolution full MS spectra were acquired and searched against 

a C. merolae database (UniProtKB Proteome ID UP000007014). 
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Objective #2 : Visualize and localize individual NPC proteins by immunofluorescence 

(IF) and confocal microscopy.  

Immunofluorescence, Confocal Microscopy, and Live Cell Imaging 

IF was performed using an Echo Revolve Fluorescent Microscope to visualize the 

nuclear localization of Nups identified as positive in C. merolae. C. merolae cells were 

placed in a 4-well microchamber slide and suspended and fixed in 3% formaldehyde. Cells 

were then incubated in 0.05% Triton X-100 (MP, 194854) for 15 minutes, which was 

followed by blocking with 5% BSA for 30 minutes. Brief washes with PBS were performed 

between each step. Cells were incubated with primary antibodies in 2% BSA for 2 hours 

followed by incubation with a fluorescein-conjugated secondary IgG antibody for 2 hours. 

Washes with 2% BSA were formed between incubation steps. The cells were then mounted 

onto the slides with DAPI.  

C. merolae cells were imaged by confocal microscopy using the Zeiss LSM 880 

Confocal Laser Scanning Microscope with Airyscan. Live cell imaging of unsynchronized 

cells was performed using parameters of 42°C and 5% CO2. Cells were grown in a glass 

bottom dish with a #1.5 glass cover slip (Cellvis, #D35-20-1.5-N). Directly before imaging, 

cells were incubated with Hoechst 33258 (Invitrogen, #H3569), which was diluted to a 

concentration of 0.1 µg/mL, for 1 hour and 30 minutes at 42°C. 2 µL of Hoechst dye was 

added to 2 mL of cells to reach a final concentration of 0.1 µg/mL. Chloroplast and DNA 

signals were visualized using excitation wavelengths of 561 nm and 405 nm, respectively. 

Cells were imaged at a rate of 1 scan per minute over the course of 1 hour to obtain a total 

of 60 frames.   
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ER/Mitochondria Labeling 

In order to further characterize the internal structures of C. merolae to better 

understand the structure of the NPC, the ER and mitochondria of C. merolae were 

visualized by employing dye labeling techniques. C. merolae cells were isolated by 

centrifugation and incubated in a 1 µM solution of ER-Tracker Green (Thermo Fisher 

Scientific ER-Tracker™ Green E34251) in PBS at 42°C. ER-Tracker Green is highly 

selective for the ER (Hogg & Adams, 2001). To determine an incubation time for optimal 

uptake of labeling dye, cells were incubated over the following time periods 0 minutes, 30 

minutes, 60 minutes, and 90 minutes. After each time point, cells were centrifuged and 

washed with PBS. Cells were resuspended in PBS and mounted onto slides with DAPI. 

This procedure was repeated using MitoTracker Green FM (Thermo Fisher Scientific 

MitoTracker™ Green FM, M7514), a green-fluorescent dye that has been shown to localize 

to mitochondria (Samudio et al., 2005). 

Images of C. merolae stained with DAPI and ER Green or MitoTracker Green FM 

were acquired via IF (EchoRevolve) according to the following protocol. 5 randomly 

positioned images were taken per time point of the stained cells (30, 60, 90 min.) using the 

20x objective lens under the FITC setting (96% brightness, HI gain, 2695 ms exposure). 

Pixels were counted using Adobe Photoshop CC 2017. Pixel counts were taken for all 5 

images per time point for both ER Green and MitoTracker Green FM stained C. merolae 

cells. Descriptive statistics were calculated, and comparisons between stains at different 

time points were analyzed for statistical differences via independent Student’s t-tests (α = 

0.1). F-tests were used to determine whether the t-tests should be computed assuming equal 

or unequal variances. MitoTracker Green FM-stained cells showed the greatest staining 
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capacity at 90 minutes with significant differences from 30 and 60 minutes, respectively, 

at a 95% confidence level (1-tailed test). ER Green-stained cells also exhibited the greatest 

staining capacity at 90 minutes and showed a significant difference between 90 and 30 

minutes (1-tailed test) but not between 90 and 60 minutes. However, to maintain 

consistency between the two stains, it was determined that 90 minutes should be used as 

the incubation time for both stains. We confirmed our IF data by conducting additional 

analyses using confocal microscopy. 

Objective #3: Examine the ultrastructure of C. merolae NPCs by electron microscopy 

(EM). 

Electron Microscopy 

High-resolution imaging was carried out to determine the feasibility of analyzing 

the ultrastructure of NPCs within C. merolae via EM. This work was done through 

collaboration with the Beck Lab at the European Molecular Biology Laboratory in 

Heidelberg, Germany. EM samples at a concentration of 1-4 x 106 cells per ml were 

prepared (Schaffer et al., 2015). Cell concentration was determined by counting using a 

hemocytometer. Carbon-coated 200-mesh copper transmission electron microscopy 

(TEM) grids were placed on a glass slide with the carbon side facing up, and glow 

discharged by 30-second plasma cleaning (Schaffer et al., 2015). The cells were plunge-

frozen using the Vitrobot biochamber, which was set to 90% humidity, blot force 10, 7, to 

10 second blot time. Inside the Vitrobot, 3.5 µL of the diluted cell culture was pipetted 

onto TEM grids. The grids were blotted from with Teflon sheets on both sides, and filter 
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paper on the backside. They were immediately plunged into the liquid ethane/propane 

mixture at liquid nitrogen temperature (Schaffer et al., 2015).  

Focused ion beam (FIB) milling was used to produce thin, distortion-free lamellae 

material for high-resolution cryo-ET. Focused ion beam/scanning electron microscope 

system initially visualize algae in clumps by scanning electron microscopy (SEM). Further, 

electron microscopic data were acquired using a Titan Krios TEM (FEI), equipped with 

Gatan Camera and GIF 2002 energy filter (Gatan) (Beck & Hurt, 2017; Knockenhauer & 

Schwartz, 2016; Mosalaganti et al., 2018; Schaffer et al., 2015). 
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Chapter Four  

Results 

Nuclear Isolation  

 

 

 

Figure 3 

C. merolae nuclear extract 
gel transfer. Lane 1. C. 

merolae cellular extract, 
Lane 2. cytoplasmic 
fraction 2, Lane 3. 

cytoplasmic fraction 3 and 
Lane 4. nuclear extract 

pellet were separated on 4–
20 % SDS-PAGE and 

stained with Amido Black. 
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The gel transfer, which was stained non-specifically for proteins with Amido Black 

(AlfaAesar, 1064-48-8), from C. merolae cellular extract, nuclear extract, and cytoplasmic 

fractions is shown in Figure 3. We expect that the intense bands indicated by red arrows 

are showing enrichment of histones, which are associated with the NE (Cronshaw et al., 

2002).  

The results from probing with all of the antibodies tested by Western blotting are 

summarized in Table 1. Our data indicate reactivity to antibodies against Nups including  

Sec13, Nup43, and Nup96, symmetric nucleoporins that form the core region of the 

NPC, as well as ELYS (Figure 4). (Hoelz, Debler, & Blobel, 2011). This demonstrates their 

presence in C. merolae.  

 

 

Figure 4 

Western blotting of antibodies 
against several Nups and 

MAb414 in C. merolae whole 
cell extract, cytoplasmic 

fractions 2 and 3, and nuclear 
extract. 
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Table 1 

Antibodies tested by Western blotting that generated positive or negative reactions. 
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The steps at which samples were collected through the optimized nuclei isolation 

procedure are shown in Figure 5A. We analyzed each sample by immunofluorescent 

microscopy to track the nuclei throughout fractionation as well as determine the extent to 

which the chloroplasts were being separated out. Chloroplasts were visualized by their 

auto-fluorescent properties. DAPI (Thermo Fisher ProLong™ Gold Antifade Mountant 

with DAPI, P36935) was used to stain DNA, which allowed for tracking of the nuclei. 

Figure 5 

Flow chart illustrating each step of the fractionation process by which nuclei was isolated and samples collected at each step (A). 
Immunofluorescent microscopy analysis of samples S1T1, S3T1, S7T1, and S14T1 following the optimized nuclei isolation (B). 
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Figure 5B shows IF images of S1T1, which contained untreated C. merolae cells; S3T1, 

which contained debris, nuclei and whole cells following the chloroplast removal 

procedure; S7T1, which contained crude nuclei prior to extraction through the density 

gradient; and S14T1, which contained the final nuclear product. There is a clear reduction 

in chloroplasts in S14T1 compared to S1T1. 

 
  
Proteomics 

The gel digestion and peptide extraction methods used for proteomic screening for 

Nups within C. merolae nuclear extract are summarized in Figures 6 and 7.  

We successfully identified 13 Nups within a sample of C. merolae nuclear extract 

by proteomic analysis. The main criterion for Nup identification was that at least 5 peptides 

had to be detected. The only exception was POM33, for which 2 peptides were detected. 

However, it was expected that there would be fewer peptides detected for this particular 

protein, as it is a transmembrane Nup. Since Nups of this group are actually embedded 

within the nuclear membrane, they are traditionally more difficult to digest.  
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Figure 6 
Summary of gel digestion methods used for proteomic analysis of C. merolae. 

Figure 7  
Summary of peptide extraction methods used for proteomic analysis of C. merolae. 
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 Table 2  

Nups identified by proteomics in C. merolae nuclear extract. 

Figure 8  
Nups identified by proteomics in C. merolae nuclear extract, categorized by major 
group and compared to known Nups in humans within each respective group. The 

location of each Nup type within the NPC is also indicated. 
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Immunofluorescence and Confocal Microscopy 

By IF, we have observed reactivity to the NPC-associated proteins Nup107 and 

NDC1 in C. merolae. We also probed for KDEL, an ER-associated protein, in order to 

compare localization. These findings (summarized in Figure 9) were confirmed by super-

resolution confocal microscopy. 

Additionally, we have visualized the ER and mitochondria in C. merolae. Confocal 

analysis of these structures is summarized in Figure 10. We observed a distinction between 

the ER and nuclear membranes, as demonstrated by the physical separation between the 

green- and blue-stained regions of the cell.  

We were able to observe the movement of C. merolae cells through the 

visualization of their auto-fluorescent chloroplasts and Hoechst-stained DNA. We 

generated images taken at a total of 60 time points over the course of 1 hour. A sample of 

3 consecutive time points is shown in Figure 11. 

Electron Microscopy 

Initial experiments conducted using SEM revealed aggregations of C. merolae 

cells, and mitotic cells could be distinguished by their larger size (Figure 12). We observed 

the lamellar surfaces of the chloroplast as well as the nucleus and double membrane. The 

chloroplast was the most prominent structure that was visible, and it appeared to hug the 

nucleus (Figure 13).  
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Figure 9 

Immunofluorescent microscopy analyses of NE-associated 
proteins including Nup107 and NDC1 as well as the ER-

associated protein KDEL in C. merolae. 
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Figure 10  

Confocal microscopy analyses C. merolae cells labeled 
with ER and mitochondria dyes. 
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Figure 11 

 Live cell images of C. merolae at time points 26-28, each taken 1 minute apart. Chloroplasts were visualized by their auto-fluorescence 
(red), and DNA was visualized by Hoechst-staining (blue). 



 

 45 

 

 

 

 

Figure 12  

Scanning electron microscopy analyses of the external surface of C. merolae cells. Overview of 
the TEM grids (top center), equatorial views (left), and aerial views (right). Mitotic cells are 

also indicated. 
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Figure 13 

 Transmission electron microscopy analysis of C. merolae. Visible structures are 
indicated in bottom panel, including the plasma membrane (PM), the chloroplast, the 
nuclear envelope, and the ER. Probable location of the mitochondria is also shown. 
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Chapter Five 

Discussion 

The proteomic composition of the NPC in C. merolae has not previously been well 

characterized. Initial nuclear isolation techniques performed with C. merolae resulted in 

the enrichment of DNA with histones, which confirmed that we had obtained a mostly 

nuclear pellet. While treatment by DNAse and RNAse was applied to reduce the presence 

of nucleic acids, they were not entirely eliminated from the final product. Additional 

methods to lessen histone content should be incorporated into this procedure, such as 

heparin treatment. Our further optimized nuclei isolation procedure demonstrated a 

reduction in chloroplast content within C. merolae, while the nuclei were still maintained 

(Figure 5). While the final product did appear to contain an overall lower nuclei content, 

this limitation could be addressed by upscaling the starting material. In addition, the 

fractionated nuclear product should be treated with DNAse and RNAse in future 

experiments to reduce the nucleic acid content.  

When probing by Western blot analysis, we used antibodies against human Nups 

to determine what cross-reactivity would occur. We visualized Nups that had previously 

been predicted in C. merolae, which included Sec13, Nup50, Nup88, Nup107, and Nup96 

(Table 1). Additionally, we observed cross-reactivity with Nups that had not been predicted 

in C. merolae, which included Lamin A/C, Lamin B1, NDC1, TPRN, Nup160, Nup43, 

Nup153, and ELYS (Table 1). We also visualized Wheat Germ Agglutinin and O-linked 

N-acetylglucosamine, a lectin and intracellular carbohydrate, respectively, that are added 

to human Nups, indicating that this modification also occurs in C. merolae (Table 1). 

Proteomic analysis identified a total of 13 Nups out of 20 that are predicted within the 



 

 48 

nuclear extract of C. merolae, with at least 1 identified from each major group (Figure 8). 

There may still be more Nup members yet to discover that could potentially be specific to 

C. merolae. This could explain why some Nups, such as NDC1, demonstrated cross-

reactivity by Western blotting but were not identified by proteomics. Nups for which cross-

reactivity was observed that were not predicted can be isolated by immunoisolation 

followed by proteomics. This would allow these proteins/peptides to be identified through 

sequencing and more complex bioinformatics analysis in order to build an inventory of the 

NPC in C. merolae.   

Imaging by fluorescent and confocal microscopy allowed for visualization of 

nuclear rim staining of Nups from two different groups: Nup107, a member of the Y-

complex group; and NDC1, a member of the POM group, which exhibited round rim 

staining. Additionally, DAPI staining allowed for visualization of three different groups of 

DNA within C. merolae: nuclear DNA, mitochondrial DNA, and chloroplast DNA (Figure 

9). Most of the DNA observed originated from the nucleus. We also probed for the presence 

of KDEL, a sequence known to be found exclusively in the ER (Figure 10). Localization 

of KDEL as well as ER and mitochondria staining demonstrated a distinction between 

nuclear DNA from the other cellular components. Using confocal techniques, we 

successfully performed live cell imaging with C. merolae cells, which demonstrates the 

potential for using this type of analysis on this species. This method could have incredible 

utility for future research goals, such as the analysis of C. merolae’s cell cycle.   

EM findings established the feasibility of visualizing the ultrastructure of the NPC 

within C. merolae. Initial experiments conducted using SEM revealed the presence of C. 

merolae cells in clumps. This behavior is an advantageous characteristic, as this simplifies 
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further analysis by TEM.  TEM analysis revealed that the NPCs were not visible within the 

images we captured, which was likely due to their small size and a possibility of low 

abundance. However, we still observed a relatively full spectrum of morphology in C. 

merolae, including the lamellar surfaces of the chloroplast as well as the nucleus and 

double membrane. Notably, the chloroplast was shown to hug the nucleus, which may have 

functional implications such as communication and protection. In addition, these findings 

demonstrated the ability to designate mitotic cells, which has important implications on 

potential cell cycle studies. More EM data on C. merolae is needed to definitively 

determine its structural constitution.  

The time points at which we expected to complete our three specific aims over the 

course of a two-year project are outlined in Figure 14. We have completed Specific Aim 

#1 through successful nuclear isolation of C. merolae, which allowed for proteomic 

identification of Nups from every major group. This elucidated the protein composition of 

the NPC in C. merolae. We also demonstrated the ability to reduce the chloroplast content 

within C. merolae, an important method by which the process of nuclear isolation may be 

augmented. Furthermore, we have observed the presence of several NPC proteins in C. 

merolae by Western blotting.  As part of Specific Aim #2, we have visualized the 

localization of NPC proteins in C. merolae via IF. We have also characterized structural 

features of C. merolae including the ER and mitochondria by IF as well as confocal 

microscopy and additionally demonstrated the ability to perform live cell imaging. This 

data showed that there is a clear separation of the NE from the ER, which is significant 

since previous work has described more of an association between these membranes. This 

finding will facilitate a more comprehensive understanding of C. merolae’s NE and NPC. 
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We have made considerable progress towards visualization of the ultrastructure of the NPC 

in C. merolae by EM (Specific Aim #3), as we have successfully employed both SEM and 

TEM techniques.     

 

 

 

  

Characterization of C. merolae’s NPC could implicate C. merolae as an unexploited 

resource for determining new answers about a variety of disease states, potentially 

providing a more accurate representation of pathological processes. Nups are associated 

Figure 14  
Expected timeline to complete specific aims of project. 
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with several different forms of cancer, neurodegenerative diseases such as Huntington’s 

Disease, and premature aging diseases such as Hutchinson-Gilford Progeria Syndrome.  

Additionally, disruption of transport through the NPC has been linked to conditions such 

as breast cancer. Thus, C. merolae could be utilized as an ideal model system to study a 

number of disease types as well as multiple mechanisms of progression.  
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Appendix A: Preparation of Nuclear Extract Solutions 

Solution A (RSB, in DI water) 

• 10 mM Tris, pH 7.4 

• 10 mM NaCl (Fisher, 7647-14-5) 

• 3 mM MgCl2 

• Protease inhibitors (Sigma-Aldrich Protease Inhibitor Cocktail, P2714-

1BTL) may be added to a final 100 U/mL concentration 

Solution B (RSBG 40, in DI water) 

• 10 mM Tris, pH 7.4 (Tris HCl may be used) 

• 10 mM NaCl  

• 3 mM MgCl2 

• 10% Glycerol 

• 0.5% Nonidet P40 (US Biological Life Sciences, L15081874) 

• 0.5 mM DTT 

• 100 U/mL protease inhibitors (for protein studies) 

• 100 U/mL RNAse A (Sigma-Aldrich, R4642) 

• 100 U/mL DNAse I (Sigma-Aldrich, D-5307) 

Detergent Solution (in DI water) 

• 3.3% wt/wt solution Sodium Deoxycholate 

• 6.6% vol/vol Tween 40 
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Appendix B: Preparation of Complete Buffer Solution for Chloroplast Isolation 

• 2X Chloroplast Isolation Buffer Stock – dilute 1:1 with dH2O 

• 10% BSA solution – 10 µL added per 1 mL of 1X Chloroplast Isolation 

Buffer 

• DTT – 1 µL added per 1 mL of Chloroplast Isolation Buffer 

• Protease inhibitors – 1 µL added to final solution 
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Appendix C: Reagents used in Optimized Nuclei Isolation 

Components of Storage Buffer: 

Stock Concentration Reagent Storage Buffer (100mL) 
2.66 M Sucrose 9.4 mL  

1M 50mM Tris (pH 7.5) 5 mL 
1M 25mM KCl 2.5 mL 
1M 5mM MgCl2 500 μL 
1M 2mM DTT 200 μL 

100X Protease Inhibitor (1X) 1 mL 
n/a Millipore Water 81.4 mL 

 


	Characterization of the Nuclear Pore Complex in Red Alga, Cyanidioschyzon merolae
	Recommended Citation

	Microsoft Word - Thesis_Veronin_Revision 2.docx

