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In recent imes, a great interest has been developing Notice that currently our model cannot be integrated, In order to conduct phase plane analysis, we must

with regards 1o micro- and nano - electromechanical
systems (MEMS and NEMS). The purpose of this
research was an attempt to understand what goes in
to modeling a MEMS system We chose to model an
electrostatic elasbc membrane system. This mvolves
an elastic membrane being held at a potential V. over
| @ grounded plate, 50 as to create a capacitor. As the
potential energy increases. the membrane deflects
towards the ground plate. However dunng
experimentation we found that once a certain voltage
was reached. the membrane went from being stable
with mild defiection, to rapidly deflecting towards the
ground plate. We call this voltage the pull in voltage
Our goals are to create a mathematical model and
construct a bifurcation diagram for the disk geometry,
analyze it using phase plane analysis, check for
stability of solutions, and prowide an explanation for
the pull in voltage

and is a boundary valued problem. However, we
notice a symmetry, allowing us to scale our equation. If
we name our scaling term (,, and our independent
term y(~r). we have the equation

q'(_r) = ay(wr)
Now we have an initial value problem, given by
dy  ldy 1

bl A A
dr? " rdr 2

with the conditions y(0) =1 ,and Z_y(o) =0
r

We use this to create our bifurcation diagram, shown
below.
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find the Jacobian matrix for our differential equation to
analyze the almost linear system. It is given by

- ]‘
3 2(g+ ‘,:1

Now we plug in the values for our critical points. We
find that the eigenvalues for our first and second
critical points to be, respectively,

2
Na=0, 3 2=

The 0 eigenvalue of our first critical point is somewhat
troublesome. However we find its eigenvector
negates the p term, making it a function of only g. As
such, we can say that we have an unstable node at
our first critical point. From the eigenvalues for our
second critical point, we can determine that we have
a stable spiral at this location.

Notice that previously we could not resolve the top
boundary of our bifurcation diagram. Having a stable
spiral at that point would provide some explanation as
to the folding behavior of our diagram, and
approaching this critical point gives lambda
approaching 4/9 and 1-w(0) approaching 1 which is
consistent with our previous calculations.

| Energy Equation

in order to derive the mode! for our system. we first
considered the energy acting upon it We have elastic
energy given by the equation

oz

and eiectrostatic energy given by

¢ /‘\_c':.il'
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As you may notice, electrostatic energy is integrated
over a volume, whereas elastic energy is integrated
over a surface area. We use the divergence theorem
in the form of Green's identity. 10 express electrostatic
energy in terms of a surface integral. Upon combining

our integrals, and assuming a small aspect ratio, we
have the force equation
(ot Ow? eh?
[15 (% + % )+ e
2\ Or Oy du

Now we need to minimize the energy in our integral
using the Calculus of Variations. For the disk geometry
of our membrane we find our Euler-Lagrange
equation to be 1de A owith | «VF

\with boundary conditions . du
w(l)=1, and 0)=0

ar

In order to create our bifurcation diagram, we chose
gamma, and calculate the corresponding value in our
model. The bifurcation diagram shows there are no
solutions once lambda becomes too large, which is
consistent with our pull in voltage. However, notice
that the top boundary of our diagram is somewhat
unresolved. This is due to the nature of our differential
equation, because as gamma grows large, the (1/y)
aspect of our equation becomes close to zero. We
need to be sure the folding near the boundary is not
just calcutation error, but instead an actual occurrence
in our model. As such, we decide to look at it
analytically. Currently our model is non autonomous,
so we make the following change of variables

i =loglr),ylr) =riu(ny)
Now we have the following equation
v 4dv 4
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However. this »sl difficult to solve as it stands, so we

look to make it easier through a change of variables.

Consider. v 1

q=—.p=-
T ,
hen we have F = -m
/, o\2
¢ = p-[a+2
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Now we solve for our critical points by setting p’ and
q equal to zero. We find two, being

(-5 (63

Stability

We conducted experiments in the school laboratory to
test our model. Above and below is a picture of our
setup. The top hole was filled with a thin soap layer,
and was raised to different potentials. The bottom layer
was grounded, and created a capacitor We found that
our model accurately represented our experimental
results. After reaching our pull in voltage
corresponding to roughly lambda = 78, we found no
stable solutions. This is consistent with our model.

We are interested in stable solutions for our model.
Since we are using the disk geometry, we use the
equation: 1 A
—We + Wer + -Wp =
We + Wrr + Ty (1+w)?

where —w, represents our time variable. We know that

w(r,t) = w'(r) + ee*o(r) + O(€?)
Using these two relationships, we can Taylor expand
the right side of our first equation about epsilon equal
to zero to find
v, +lv +l\l— = k1
rr r T (1 T w.):, = KV
We use this differential equation for v to make an
eigenvalue equation for k. We know the form of
second and first derivative matrixes, and use these to
create a matrix problem Av = kv. Now we solve for
eigenvalues. For any value of k greater than zero, we
are unstable. This is due to the fact that as t
approaches infinity, ¢** will approach infinity for
positive k. So, we know a point is stable if k is less
than zero. On our bifurcation diagram, this is
represented by the values before the first fold. These
are our stable solutions

Conclusion |

We began by using the forces acting upon our system
to derive the model. For the disk geometry of our
model, we calculated the bifurcation diagram. This
was analyzed using phase plane analysis, and this
reassured us of our original diagram. We then
continued on to discuss stability of the system, and
found that solutions corresponding to the bottom
branch of the bifurcation curve are stable, all others
are unstable. This provided an explanation for the pull
in voltage. Finally, we tested our model through
laboratory experiments, and found that they matched
our model.
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