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Abstract 

ACOUSTIC DESIGN OPTIMIZATION WITH ISOGEOMETRIC 

ANALYSIS AND DIFFERENTIAL EVOLUTION 

Garrett Wade Dodgen 

Thesis Chair: Tahsin Khajah, Ph.D. 

The University of Texas at Tyler  

December 2019 

 The objective of this study is to utilize shape optimization to enhance the 

performance of devices relying on acoustic wave propagation. Particularly, the shape of a 

horn speaker and an acoustic energy harvester were optimized to enhance their 

performance at targeted frequencies. High order Isogeometric Analysis (IGA) was 

performed to estimate the acoustic pressure with minimum geometry and pollution errors 

[1]. The analysis platform was then combined with Differential Evolution (DE) to optimize 

the geometry of the horn speaker and energy harvester at a given frequency. These cases 

effectively demonstrate two applications of Isogeomtric shape optimization for devices 

relying on acoustic wave propagation. The horn shape was previously optimized using  

conventional FEA [2]. The study performed to optimize the sound energy harvester 

demonstrates the effectiveness of isogeometric shape optimization for novel applications. 

It was shown that the proposed platform can generate tunable designs that reach their 

optimum performance at the desired frequencies. The back-reflection of the horn speaker 

was reduced considerably by optimizing the shape of the horn boundary. Tikhonov 

regularization was used to avoid finding wiggly solutions and ensure ease of manufacturing. 

The geometry of the energy harvester was optimized and tuned for a range of targeted 

frequencies by optimizing its defining parameters, its placement angle, and developing an 



viii 

optimized variable channel width. The DE algorithm, which is known for finding the global 

minimum, successfully updated the design geometries and identified the global minimum  

in most cases studied in this thesis. 



1 

1   Chapter 1 

 Introduction 

1.1 Background 

Conventional Finite Element Analysis (FEA) is widely used for shape optimization. 

However, there is a disconnect between how an object is modeled with Computer Aided 

Design (CAD) software and FEA analysis. Currently, geometries in CAD are described 

using Non-Uniform Rational B-Splines (NURBS). However, in order to perform FEA, the 

geometry must be re-generated and re-meshed for each objective function evaluation. This 

process is not only time consuming, but also leads to loss of geometric details in the 

discretized model. To get accurate results for complex shapes, very fine meshing must be 

performed which greatly increases computational cost [3]. 

To bridge this gap between modeling and analysis, Isogeometric Analysis (IGA) 

was developed. This is a method of performing FEA using the NURBS to describe both 

geometry and solution space, allowing for accurate representation of shapes to be used 

rather than approximations. IGA has been shown to be a potentially better method of 

performing acoustic analysis through increased accuracy and lower computational costs. It 

was shown that the geometry and pollution error, which is phase shift error, is under control 

in high order IGA [4][5]. Furthermore, any change in geometry is automatically adopted 

in IGA facilitating the shape optimization. 

These traits make acoustic analysis with IGA a promising alternative to 

conventional FEA for performing optimization. Due to the need for more efficient products 

and energy harvesting devices, this thesis performs optimizations of two acoustic devices 
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that demonstrate IGA and DE’s application for acoustic product development. Problem 

Statement 

In this study acoustic optimization was used to optimize two devices, an acoustic 

horn, and energy harvester. The back-reflection of the acoustic horn was minimized while 

the acoustic pressure of the energy harvester was optimized. In both of these cases the 

solution is not intuitive, in other words, the correlation between shape and acoustic field is 

not apparent. Also, in both cases studied many independent parameters were involved in 

defining the shape of each device. It was necessary to simultaneously find the optimum 

value of these parameters to find the best design possible. Hence it was necessary to adopt 

an optimization strategy that can control many independent variables and yet be fast 

enough to obtain the optimum results in a timely manner. Hence, Differential Evolution 

(DE) was chosen which was shown to possess both of the above-mentioned properties 

[6][7]. 

1.2 Outline of Thesis 

This thesis is structured as follows: Chapter One provides an introduction to the 

problems covered in this study, including the background and motivation. Chapter Two 

briefly describes IGA, its background and formulation. Chapter Three discusses the 

fundamentals of DE. In Chapter Four, the acoustic horn problem is introduced by providing 

the problem description and its formulation, then describes the optimization methodology 

used. This chapter also discusses the results of the optimum solutions found for the acoustic 

horn. Chapter Five discusses the optimization of sound energy harvesting, describes how 
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it was optimized, and presents a study on the performance of the optimum solutions found. 

The results of this study are summarized and discussed in Chapter Six. 
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2 Chapter 2 

 Isogeometric Analysis 

2.1 B-Splines 

 B-spline basis function of degree p (order p +1) is the Cox-de Boor recursion 

formula [8]:  

(1) 

  (2) 

 

where p is the polynomial order and n is the number of basis functions. Any singularity of 

0/0 is defined as zero and ui is a knot, and the knot vector Ξ = {ξ0,...,ξm} comprised of a 

non-decreasing series of real numbers. If knots are equally spaced in Ξ, then it is considered 

uniform, otherwise it is nonuniform. 

A first-order B-spline basis function is identical to its Lagrangian counterpart used 

in FEA. The B-spline basis function’s first derivative is calculated with the following: 

 

  (3) 

The number of required shape functions for both B-splines and the FEA Lagrangian are 

similar. The B-spline curves are then constructed as a linear combination of B-spline basis 

functions: 
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This is expanded into the B-spline surface: 

(4) 

  

 (5) 

 

With Bi,j,i = 1,2,...,n,j = 1,2,...,m are control points, Ni,p(ξ) and Mj,q(η) are the univariate  

B-spline functions of order p and q relating to the knot vectors   Ξ1 = {ξ1,ξ2,...,ξn+p+1} and 

Ξ2 = {η1,η2,...,ηm+q+1} respectively. 

2.2 NURBS Overview 

NURBS is a mathematical model for producing smooth and accurate 

representations of geometries [9]. Using NURBS, accurate representations of both 

polynomials and conic sections such as circles, spheres and ellipsoids can be generated. 

NURBS have the advantage of assigning each control point a weight that can help to refine 

the shape. If the weights of each control point are equal, NURBS basis functions reduce to 

B-splines. Thus, B-splines are a subset of NURBS. 

 



 

6 

2.3 NURBS Definition 

Assume a = 0, b = 1, and the weights wi > 0 for all i, the NURBS shape functions 

are defined: 

  (6) 

The general definition of a NURBS curve: 

 

 

and the expansion to NURBS surfaces being defined as: 

 

(7) 

  (8) 

and where basis functions: 

 

  (9) 

 

Similarly one can define the NURBS volume using tensor products [8]. However 

the scope of this study does not require volumetric NURBS patches so their definitions are 

omitted.  

2.4 Isogeometric Analysis  

IGA is a method of performing FEA using NURBS as the basis functions for 

analysis [10]. Using NURBS instead of conventional discretized boundaries of FEA 
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provides the benefit of more accurately representing the true geometry of the boundary 

using exact curves rather than polynomial approximations, thus potentially yielding more 

accurate simulation results. Many CAD software use NURBS to represent their generated 

model, and IGA can help improve the relationship between design and analysis. 

Conventional FEA utilizes Lagrange polynomials as basis functions, thus in FEA 

software, a CAD model must be discretized into a mesh. This meshing process is very time 

consuming and can only approximate the original shape as defined by the CAD program. 

Potential issues that arise during this process are loss of detail and small imperfections in 

the original geometry being lost due to shape approximation, depending on the parameters 

of the meshing process. These issues can be reduced by increasing the mesh density or 

employing higher order meshes but this increases the computational cost without 

eliminating the error. 

IGA uses NURBS as the basis functions for performing FEA, preserving the 

accurate geometry and reducing the computational time needed for remeshing. 

From the previous NURBS formulation, the geometry on an IGA element: 

(10) 

with nen = (p + 1)dp and dp being the spatial dimension. Similarly, the field u(x) is 

defined: 

 

  (11) 
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d  is a set of control variables. Due to the parametric definition of IGA basis functions, 

two mapping for integration must be considered: 

 

  (12) 

 

 

 and  are representing the parent and parameter spaces. Also, Ω is representing the 

physical space. 

The performance of IGA was compared with conventional FEM [3]. This study 

performed the structural analysis of an Aortic valve in both methods. To achieve similar 

results, the IGA model needed a little over 1 hour of computational time, while the FEA 

model had an analysis time of 550 hours, a 99.7% reduction in computational time. 

This is due to the more complex meshing process required to perform FEA. The 

number of nodes required to perform the study accurately in FEA was 153646 nodes. IGA 

was able to achieve the same results with only 762 nodes. For this particular model, that is 

a 95.5% decrease in the number of nodes. 

These results highlight why IGA is preferable for optimization problems, the drastic 

reduction in computational cost allows for more complex and thorough optimization 

studies to be run without being time prohibitive or achieve similar accuracy with smaller 

computational cost for a given accuracy. 

Presently, many studies have coupled IGA with optimization. This combination has 

been used many times for structural optimization, such as for windmill blades [11], support 

structures [12], and structural shells [13].  
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3 Chapter 3 

 Differential Evolution 

The optimizations performed in this study use Differential Evolution (DE). This 

method is an iterative evolutionary method that generates a mutated population vector, 

calculates the objective function value by performing analysis, and compares the result 

value with the initial value or lowest value thus obtained [5]. If the result is improved, it 

becomes the new basis for the next mutated population. Doing so optimizes by continually 

checking over an increasingly narrow mutation range to find an optimal solution. In the 

case of this horn optimization, a population vector of size NP, (10 ∗ (Number of Mutable 

Control Points)), is used. For each generation (G), a population vector is generated as: 

 xi,G,i = 1,2,...,NP (13) 

The mutation vector for each G is generated as follows: 

 vi,G+1 = xr1,G + F · (xr2,G − xr3,G) (14) 

using random indexes r1,r2,r3 ∈ 1,2,...,NP, which are mutually different, integer and F > 0. 

Integers r1,r2, and r3 are randomly chosen and are different from running index i, so NP 

must be greater than or equal to four, allowing for this condition.  
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The real and constant factor F controls amplification of the differential variation 

(xr2,G − xr3,G) and is in the range of 0 to 2. Crossover is introduced to increase the variety of 

the mutated parameter vectors. The trial vector: 

 ui,G+1 = (u1i,G+1,u2i,G+1,...,uDi,G+1) (15) 

is generated using: 

  

(16) 

  

where, randb(jDE) is the jth evaluation of a uniform random number generator with 

outcome ∈ [0,1]. CR is a crossover constant determined by the user, and rnbr(i) is a 

randomly chosen index ∈ 1,2,...,D, that ensures that ui,G+1 gets a parameter from vi,G+1. 

Hence, DE is an algorithm that generates a population of defined variables, with 

each member of the population being mutated from a previous population. For each set of 

mutated variables, the problem is analyzed and the member group that achieves the best 

result becomes the basis for the next population set. This process continues for predefined 

population size and number of iterations. One of DE’s primary advantages is its ability to 

simply handle a high number of unrelated variables. Multiple variables can be optimized 

simultaneously without needing extra formulation to directly link them together. 

Additionally, DE is a good choice for problems that have many local optima but only one 

global optimum [6]. The randomness of the initial population pool and subsequent 

mutations allow the algorithm to diversify the search and reduce the dependency on the 

initial guess. 
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The performance of DE in solving a few benchmark problems was compared with 

other commonly used evolutionary methods. Where DE outperformed other evolutionary 

methods by a large margin. For example, it took DE only 260 generations to solve one of 

the simplest benchmark problems. While the next best performing algorithm, a Parallel 

Genetic Algorithm (PGA), required 1170 generations [6]. When dealing with a more 

complicated optimization problem, the Foxholes Function, a problem with many drastic 

local optima, DE was still the best performing method but only slightly more so than PGA, 

with DE taking 1200 generations and PGA 1256 generations. 
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4 Chapter 4  

Acoustic Horn Optimization 

4.1 Problem Overview 

While computational cost of IGA and FEM are comparable for equal number of 

degrees of freedom, IGA yields higher accuracy. In other words, for a given accuracy the 

computational cost can be considerably reduced. To find the optimum solution it is 

necessary to evaluate the objective function many times by performing analysis. Hence, 

reducing the computational cost for a single evaluation of the objective function reduces 

the optimization time considerably. An isogeometric horn shape optimization was 

considered in this study. The horn shape considered was similar to a horn to those found in 

commercial speakers and musical instruments, such as a bugle or trumpet. A common 

problem in horn speakers is back-reflection. In which a portion of the outgoing wave 

reflects back into the wave source due to interactions with the shape of the wave-guide and 

its pressure. This can distort the outgoing wave, as the total wave becomes the interaction 

of two separate waves rather than a single wave. Thus, the objective of the optimization is 

to minimize the back-reflection by changing the horn shape.  

This problem has been investigated using conventional FEA and both gradient-

based and evolutionary optimization [11][12]. 
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4.2 Problem Formulation 

Consider the 2D simple horn geometry shown in Fig.1, which is similar to the one 

studied in [2] and previously studied in [14][15]. A linear plane waves enters the domain, 

Ω, from the inlet boundary, Γin. Domain Omega is assumed to have uniform properties 

filled with air. The speed of sound within this medium is assumed to be c = 343m/s. 

 

Figure 1: Boundaries and Domain of Horn Mesh 

A first order Engquis-Majda [16] absorbing boundary condition is applied at the 

fictitious boundary Γout to artificially truncate the computational domain mimicking the 

propagation of the outgoing wave into the farfield. This boundary simulates the effect of 

an infinite domain for the wave to propagate out. Boundaries denoted by Γn are considered 

to be sound-hard or rigid. While in a real-world setup no material can be true sound-hard, 

it is assumed that horn is composed of a material such as aluminum that makes any potential 

effects of this negligible. 

Across Γsym, the horn model is mirrored, therefore only the upper half was 

considered in analysis since all results will be symmetric. The boundary representing the 

horn is denoted by Γd,  which is the boundary to be modified to maximize the impedance 
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matching and reduce back-reflection. Γd is also a sound-hard boundary similar to Γn. It is 

assumed that the horn speaker is wide enough that its finite extension in the cross-planar 

direction has no effect on its performance. 

The infinite space is artificially truncated with a semi-circle and an Engquis-Majda 

boundary condition is imposed on this artificial boundary, Γout . The governing equation 

for sound propagation is the linear wave equation for acoustic pressure P, in a domain 

comprised of a loss-less adiabatic medium, and where c denotes the speed of sound and ∆ 

is the Laplacian operator, the following mathematical model is used [13]: 

  (17) 

 

In a case with a planar channel, waveguide, with infinite extension in the 3rd 

dimension and single-frequency planar waves in the waveguide can be expressed with, 

  (18) 

where ω is the angular frequency of the wave, and k = ω/c is the wave number. The first 

term of Eq.(18) is for the incident wave and the second term is the reflected wave. At the 

inlet, differentiating Eq.(18) yields: 

  (19) 

  (20) 
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Where ∂P/∂n is the derivative in the outward normal direction. Using Eq.(19) and 

Eq.(20), along with kc = ω one can obtain: 

  (21) 

For a wave of type (18), the amplitude A of the incident wave is set independent of 

the B, the amplitude of the reflected wave. An Engquist boundary condition is applied to 

the exiting boundaries of the mesh to eliminate reflection of waves propagating in the 

normal direction on the Γout boundaries [16], 

 = 0 (22) 

The other boundaries, Γn, are a sound hard case. On Γsym the following conditions are 

applied to this symmetry plane: 

(23) 

Applying to Eq.(17) the boundary conditions (21)-(23) and the ansatz P(x,t) = p(x)eiωt for 

time harmonic, single-frequency solutions, the following Helmholtz equation for the 

complex amplitude function p is obtained: 

 (24a) 

 

 (24b) 

   (24c) 

 

(24d) 
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Then the pressure p can be approximated as: 

  (25) 

 

where: 

 

 

as the solution of the following weak form: 

 

  (26) 

 

 

The objective of the optimization is to modify the shape of the horn ”bell” to 

improve the efficiency of the speaker. This is achieved by minimizing the objective 

function J, which is the square of the magnitude of the reflected wave integrated over the  

inflow boundary: 

(28) 
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4.3 Shape Modification 

The objective function’s value depends of the shape of the horn bell, Γd. The initial 

shape, Γref
d is chosen to be curve defined by: 

 (29a) 

 

(29b) 

 

(29c) 

This curved initial shape is to prime the optimization by starting from a curve which 

already closely resembles typical horn shapes as shown in Fig.2. During optimization, the 

endpoints of the curve are locked to preserve mesh connectivity. The curve is modified by 

obtaining a vector, α, that indicates a value to move the point along the normal of a straight-

line curve connecting the two endpoints of Γref
d as demonstrated in Fig. 3: 

 xref = xref + α(xref)nx,ref (30a)

 yref = yref + α(yref)ny,ref (30b) 

nx,ref = −0.44723,    ny,ref = 0.89445                                   (30c) 
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Figure 2: Modification of the design boundary 

The vector α moves the control points of the NURBS curve of Γref. The NURBS 

curve is then created from this set of updated control points.  

 

Figure 3: Initial NURBS curve of Γref 
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For an example of how the horn bell’s shape is modified by vector α,  

α = [−0.06,0.02,0.00,−0.10,0.06] was considered which modified the horn shape as 

depicted in Fig. 4. This shows that while the control points determine the shape of the curve. 

This method allows for the entire curve to be modified only using five parameters, which 

reduces the computation cost even more when compared with FEA. 

 

Figure 4: Example of Γd 

One important factor to consider during any problem with mesh modification is to 

ensure that mesh integrity remains intact, otherwise the results may not be reliable. A study 

analyzing this horn problem using conventional FEA had a few issues with the mesh being 

deformed and having mesh overlap [2]. For the NURBS generated horn mesh, the control 

points movement were limited to set ranges that prevent overlap. However, during initial 

trials, a potential source of mesh failure was discovered. 

The initial setup of the horn NURBS mesh is shown in Fig.5. 



 

20 

 

Figure 5: NURBS Multi-patch Surface of Horn 

Each separately colored region is a NURBS Coons surface patch. A Coons surface 

is a surface generated by interpolating the space between four defined edges. The surface 

that will change throughout the optimization is Patch 4. This is a Coons patch defined by 

the Horn Design boundary Γd, a segment of the boundary of symmetry Γsym, the shared 

boundary with Patch 3, and the shared boundary with Patch 5. As the control points of Γd 

are moved described by Eq.30a - 30c, it was found that certain values of movement result 

in meshing issues, particularly when there is a large difference between the movement of 

neighboring control points. 

To resolve this issue, the mesh was modified so that all the boundaries of Patch 4 

were oriented so that all points with the mesh moved normal with Γd. The new NURBS 

multi-patch can be seen in Fig.6. 
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Figure 6: New NURBS Mesh 

4.4 Model Verification 

The IGA code was verified by comparing numerical and exact solution for a 

circular cylinder [3][17]. Consider a sound-hard circular cylinder problem of the 2D 

geometry as shown in Fig.7 where: 

• Ωd- Annulus domain of the problem 

• R0- Radius of sound-hard cylinder 

• R1- Radius of outer absorbing boundary 

• C0- Boundary of cylinder 

• C1- Boundary of outer absorbing boundary 

 

Figure 7: Verification Model Geometry 
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With an incident plane wave uinc(x) = eikd·x, d being the incidence direction. The exact 

soluiton for circular hard-obstacle is given by: 

 

 (31) 

With Farfield-Pattern (FFP) 

 

(32) 

 

To obtain the derivatives, use the following recurrence formulas: 

 (33) 

Therefore, 

 (34) 

Analogously, 

 (35) 

In general, n = 1, 2, … 

 (36) 

(37) 

 

The following absolute error plot for the scatter field was produced using the same 

spline order p as in the horn model and the difference in results between the IGA analysis 

and exact solution is plotted in Fig.8: 
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Figure 8: Verification Model Error Plot 

The low errors present in the verification model indicate that the methodology 

analyzing the horn case is valid and the results obtained are reliable for the purpose of 

shape optimization. 

4.5 Smoothing 

More than one optimum solution can be found for each frequency. Smooth and 

regularized solutions are preferred to impose less manufacturing constrains. In order to 

regularize the solution Tikhonov regularization was used in this study. 

Tikhonov regularization is a method to deal with ill-posed problems, especially 

when there is more than one possible solution. To achieve a smooth boundary, a new 

variable η is introduced such that: 

 −α” = η on  

(38) 

 α = 0 at the end points of  
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The Tikhonov regularized objective function now becomes: 

  (39) 

This application of Tikhonov regularization uses the sum of curvature of the bell 

curve to create the smoothing variable, η, thus with a higher curvature of the design, the 

objective value will also increase [18]. Also,  is a constant to control the extent of the 

correspond objective function penalization. 

It was shown that smoothing this algorithm can effectively avoid wiggly shapes as 

shown in Fig. 9 the optimum solution without smoothing is compared to the one obtained 

with smoothing. Both solutions are equally effective in reducing the back-reflection but the 

optimum solution found using smoothing is considerably simpler and imposes far less 

manufacturing constraints. 

 

Figure 9: Comparison of the optimum solution found without (left) and with smoothing 

(right) at 500 Hz 

As seen in Fig. 9, two similarly performing horns can have significantly different 

shapes, by while the two may have equal base values of J, the Tikhonov regularization 

increases the total objective function value by using the amount of curvature present on 

the shape. Thus if two equally performing horns with different shapes are analyzed, the 

one with less curvature will be more optimum. 



 

25 

4.6 Optimization Setup and Control Values 

The horn shape optimization steps are outlined in the flowchart depicted in the 

Fig.10. The mesh was modified by a set of optimization design variables which were used 

to automatically update the IGA mesh. Then analysis was performed, and the objective 

function values were estimated. The value of the objective function is then compared with 

that of previous iterations and a new population was generated for the next iteration. When 

applying the Tikhonov smoothing, the population generated by DE algorithm was not used 

directly to update the horn boundary. Instead a new set of design variables, η was used 

along with the modified objective function presented in Eq.32 to obtain smooth solutions. 

From a range of 300 Hz to 700 Hz in steps of 100 Hz, the initial mesh was analyzed 

to find J. These results are listed in Table 1. From these values it is indicated that the 

proposed initial horn shape performs best at 700Hz, since the value of the objective 

function J is minimum at this frequency. 

 

 

Generate Trial Population 

Analyze for each member 

Modify Mesh from α 

Calculate j  for each member 

Choose best j  from population 

Figure 10: Optimization Flowchart 
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Table 1: Initial Horn J Values 

Frequency (Hz) J 

300 0.0409 

400 0.0039 

500    0.0073 

600 0.0080 

700 0.0009 

 

 

Figure 11: The square of the absolute value of the scattered field at 500Hz before optimization 

The ”banding” or the alternating colors within the waveguide can be seen in Fig.11, 

which is a visual indication that there is significant back reflection into the waveguide. An 

optimized horn should minimize this banding and instead present a gradient, decreasing 

away from the source. It is evident from Fig.12 that back-reflection is reduced by shape 

optimization of the horn boundary. 
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Figure 12: The square of the absolute value of the scattered field at 500Hz after optimization 

The result shown Fig.12 also demonstrates how very subtle changes to the shape 

can have significant effects on the performance of the horn speaker. The difference between 

the shapes of the horn boundary before and after optimization shown in Fig.11 and Fig.12 

respectively is not significant and difficult to visually notice. In this example 5 control 

points defining the horn shape were used as optimization design variables. Each 

optimization trial was run for 50 iterations with a population of 50. 

 

4.7 Single Frequency Optimization 

4.7.1 Without Smoothing 

Shape optimization was performed to find the optimum shape of the horn boundary 

at frequencies of 300, 400, 500, 600, and 700Hz without smoothing. The values of the 

objective function for the optimized solutions and the corresponding frequencies are 

tabulated in Table 2. 
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Table 2: Single-frequency optimized horn objective function J Values (no smoothing) 

Frequency (Hz) 300 400 500 600 700 

J 2.361e-06 4.345e-07 1.329e-07 7.890e-07 3.849e-06 

 

Each optimization run for the single frequencies without smoothing generated 

interesting but complex shapes, as shown in Fig. 13. 

 

Figure 13: Comparison of Single-Frequency Optimized Horn Bells without smoothing 

Most of the horn shapes exhibit a high degree of curvature, particularly in the case 

of the 300Hz optimization where at around 0.8m it almost has a vertical slope. Figure 14 

compares the performance of each shape across the 300 to 700Hz frequencies, at steps of 

20Hz. 
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Figure 14: Comparison of Single-Frequency Optimized J values without smoothing 

The effectiveness of single frequency optimization is evident in Fig. 14, the 

objective function value J reduced from about 10−3 to 10−6. This is a significant decrease in 

the back reflection into the waveguide. 

However, the results also demonstrate a potential negative effect of single-

frequency optimization. While at the targeted frequencies, significant improvement was 

made, the optimized horn shapes often performed worse than the original horn shape for 

the rest of the frequency range. This would indicate that these shapes are less than ideal for 

an application that could potentially use a range of frequencies. 

It is also interesting to note is that across the frequency range, the original horn 

exhibited two ”dips” in the back reflection. At around 420Hz and 700Hz, the original horn 

had a reduced objective function value J compared to the rest of the spectrum. The 

optimized shapes only demonstrated a single, large reduction, with the exception of the 

700Hz optimization, which had a second, very minor decrease at 360Hz. 

For these optimizations, the behavior of the DE iterations is shown in Fig.15. 
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Figure 15: DE Behavior of Single Frequency Optimization without Smoothing 

For about the first ten iterations, the optimization behavior was similar for each of 

the frequency cases. However after ten iterations, the objective function remained 

unchanged for many iterations which is seen as a ’plateau’. In some cases a sudden 

significant improvements were observed but then it would plateau again. This plateau 

behavior indicates that increasing the number of iterations may yield even better 

optimization. However, increasing the iterations also raises the computational time of 

optimization. At the 300Hz reached its minimum value at the 15th iteration. 

During the first 25 iterations, the objective function was at most reduced from 10−2 

to 10−4, with all cases also reaching a plateau as well. A decrease from a starting value of 

10−2 to 10−4 is a 99% reduction from the original value, however reduction to 10−6 is only 

enhancing the design further by 0.01% reduction from the starting value. The smallest 

reduction was the 700 Hz optimization, which achieved a 99.6% decrease in in back-

reflection. 
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4.7.2 With Smoothing 

Additionally, the single-frequency optimizations were run with smoothing. Table 

3 list the objective function (J) values with smoothing. 

Table 3: Single-frequency optimized horn objective function J Values (with smoothing) 

Frequency (Hz) 300 400 500 600 700 

J 9.049e-05 1.245e-05 6.598e-05 3.725e-04 1.051e-04 

 

With smoothing, the objective function values were not reduced to those obtained 

without smoothing. In most cases, the objective function was decreased to 10−5. However, 

the optimized boundaries are much easier to manufacture. These results demonstrate that 

in this case, the Tikonov regularization had a significant effect on the optimization. Figure 

16 presents the smoothed optimized shapes for the 300-700Hz range frequencies. 

 

Figure 16: Comparison of Single-Frequency Optimized Horn Bells with smoothing 
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The smoothing effect can clearly be seen when comparing Fig.13 to Fig.16. The 

smoothed shapes exhibit much less curvature. There are also quite a few that closely match 

the base horn, with a few minor variations. The main outlier is the optimum boundary found 

for 600Hz shape optimization, which has a large concave section whereas all of the others 

are convex. The shape found for 300 and 400Hz are very similar but much more convex 

than any of the other shapes. 

While the smoothing tended to produce higher values of objective function J, the 

corresponding optimum shapes showed improved global performance across the range of 

frequencies, as shown in Fig. 17. 

 

Figure 17: Comparison of Single-Frequency Optimized J values with smoothing 

This is an interesting property that emerges despite there being no set optimization 

criteria to promote this behavior. This may be an emergent property of the smoothed shapes 

indicating that a smooth shape will be ideal for an optimization across a range of 

frequencies. 

For these optimizations, the behavior of the DE iterations is shown in Fig.18. 
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Figure 18: DE Behavior of Single Frequency Optimization with Smoothing 

The optimizations with smoothing had the same plateau behavior. While there are 

a few periods for some of the frequencies that the plateau lasted for more than ten iterations, 

the smoothing had more frequent steps that the non-smooth cases. 

Unlike the cases without smoothing, most of the smoothed cases required almost 

the entire 50 iterations to achieve the 10−2 to 10−4 reduction. This makes sense in context of 

smoothing, since out of all the possible shapes the DE algorithm could make, it is likely 

that more of these are not smooth, thus the probability of mutating to a smooth and well 

performing shape is low. The return on increasing the number of iterations was more 

significant than with the single-frequency optimization. The 700 Hz optimization achieved 

88% reduction in back-reflection, which was the smallest decrease of the smoothing 

optimizations. 300 Hz optimization showed the greatest improvement, with 99.8% 

reduction. 
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4.7.3 Non-Smooth and Smooth Comparison 

The square of the absolute value of the scattered field are shown in Fig.19 to Fig.23 

for the non-smooth and smooth optimum design shapes found at 300-700 Hz frequencies.  

 

Figure 19: Non-Smooth and Smooth optimum design performance at 300Hz 

 

Figure 20: Non-Smooth and Smooth optimum design performance at 400Hz 

 

Figure 21: Non-Smooth and Smooth optimum design performance at 500Hz 
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Figure 22: Non-Smooth and Smooth optimum design performance at 600Hz 

 

Figure 23: Non-Smooth and Smooth optimum design performance at 700Hz 

4.8 Multi-Frequency Optimization 

4.8.1 Multi-Frequency Setup 

The single-frequency smoothing trials demonstrated that there may be a shape 

configuration that globally improves the performance of the horn across the entire 300 to 

700Hz range. 

The next optimization algorithm was set up to optimize the sum of objective 

function value J for each shape analyzed at the three frequencies of 300, 400, and 500Hz. 

The objective of this multi-frequency optimization is to find a single optimum horn shape 

for the above-mentioned frequencies. A similar method was used for a five-frequency 

optimization that is run to cover the entire range from 300 to 700Hz in steps of 100Hz. This 

is to determine if there is a shape that can globally reduce the back reflection for the full 
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range considered in this study. Both of these optimizations were performed with and 

without smoothing. 

4.8.2 Multi-Frequency Results 

The objective value J at each of the target frequencies for the multi-frequency 

optimizations are tabulated in Table 4.  

 

Table 4: Multi-frequency optimization results 

Frequency 

(Hz) 

3-Freq. 

without 

smoothing 

J 

3-Freq. 

with 

smoothing  

J 

5-Freq. 

without 

smoothing 

J 

5-Freq. 

with 

smoothing  

J 

300 1.755e-04 7.331e-05 1.630e-03 1.923e-03 

400 4.194e-05 2.119e-04 1.259e-04 6.000e-05 

500 2.684e-04 1.506e-04 1.284e-04 1.695e-03 

600 0.0044 0.0069 1.288e-04 3.174e-04 

700 0.0103 0.0194 9.991e-04 7.020e-04 

 

 Without smoothing the 3-frequency optimization achieved a 98.3% average 

reduction in back-reflection at the three target frequencies, however at 600 Hz only a 45.5% 

reduction is achieved. At 700 Hz, the back-reflection is increased by over 1000%. With 

smoothing, 3-frequency optimization had an average of 97.4% reduction, but only 14% at 

600 Hz and an increase of 2000% at 700 Hz. 

 The 5-frequency optimization without smoothing achieved an average of 72.5% 

back-reflection reduction. However, the back-reflection at 700 Hz is an 11% increase from 

the original horn design performance. With smoothing, 77.7% reduction of objective value 
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J was achieved, additionally back-reflection was reduced for all target frequencies. The 

smallest reduction was at 700 Hz, with a 22% decrease in objective function J. 

The resulting shapes from the three and five frequency optimizations, with and 

without smoothing, are presented in Fig.24. 

 

Figure 24: Comparison of Multi-Frequency Optimized Horn Bells 

Interestingly, the shapes of all four cases of multi-frequency optimization are very 

similar, with very little difference between the shapes obtained with and without smoothing. 

The most notable outlier is the boundary found for three-frequency optimization without 

smoothing. In which the optimum shape becomes concave around x = 0.9m, then goes 

back to being convex, resulting in a ’bulge’ in the shape that is not present in the other 

cases. The performance of the optimum shapes found in reducing the back-reflection is 

compared in Fig.25 for the 300-700Hz range. 
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Figure 25: The comparison of the objective function value for the horn boundaries found using 

multi-frequency optimization 

A close inspection of Fig.25 reveals that subtle differences between the optimum 

solution found significantly affects the resulting objective function J value and back 

reflection. Both of the three-frequency cases have results that improve upon the base horn’s 

for that range, but both tended to performed worse in the range above 600Hz. Unlike the 

single frequency study, the smoothed three-frequency case resulted in a lower global 

minimum when compared to the non-smoothed shape. While this smoothed shape resulted 

in lower objective function J values in the 300 to 360Hz range, it was significantly higher 

in the 360 to 460Hz range. For the frequencies 480Hz and greater, the smooth and non-

smooth had similar results. The objective function evaluated using five-frequency 

optimized boundary showed similar results, but the smoothed shape also yielded lower 

global minimum than the non-smooth case. Notably, the optimum solution found using 

five-frequency optimization both achieved a global reduction with the entire 300-700Hz 

frequency range’s objective function J values. 
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The reduction of the objective function with the number of iterations is shown in 

Fig.26 for three and five frequency optimizations. 

 

Figure 26: DE Behavior of Multi-Frequency Optimization 

A close similarity is observed in objective function reduction with the number of 

iterations for multi-frequency optimization. Each optimization does plateau at around 40 

iterations with no further decrease past that iteration. All four cases behaved similar to the 

smoothed single frequency cases, with many small decreases in the beginning, but the 

multi-frequency cases had no significantly large decreases between iterations. This could 

be an indication that across these ranges, the set of local optima shapes are generally very 

similar in performance. 

For further comparison, Fig.27 to 28, present the numerical solution figures at their 

respective goal frequencies of the non-smooth shapes alongside the smooth shapes. 
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Figure 27: Non-Smooth and Smooth Numerical Solutions for 3-Frequency 

Optimization 

 

 

Figure 28: Non-Smooth and Smooth Numerical Solutions for 5-Frequency 

Optimization 
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5 Chapter 5  

Sound Energy Harvesting 

5.1 Overview 

Another area in acoustics that has recently seen a lot of interest is sound energy 

harvesting. Sound energy harvesting is the process of converting acoustic wave energy to 

electric energy using a mechanical transducer. Many studies have investigated the 

transducer mechanism itself, developing a set of novel devices for converting the sound 

energy to an electric current [19][20][21]. Particularly, there is interest in harvesting 

ambient sound produced by road-noise and mass-transit [22][23]. 

A common method is to incorporate these energy harvesters into sound barrier 

walls that line roads and rails in residential areas [24][25]. Other ways of producing sound 

barriers have been found as an alternative to having a conventional solid wall. In particular, 

the use of a cylinder lattice, sometimes referred to as a sonic crystal, was studied as a more 

efficient and customizable solution [26][27]. 

This study investigates the potential of energy harvesting by incorporating a wave-

guide structure into a cylinder, of a kind that might be used in a sonic crystal lattice and 

using shape optimization to improve the collection of sound energy within it.  

5.2 Problem Formulation 

Starting with the same wave equation given in Eq.17, writing p as p(x,t) = u(x)e−iωt, 

leads to the Helmholtz equation [4]: 
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  (40) 

In this study, sound-hard material embedded in air medium is used and apply 

Neumann boundary condition on the surface of the scatter as described in Eq.41.  

(41) 

where n is the normal vector on Γ pointing outward and uinc: 

  (42) 

Since this is an exterior acoustic problem the computational domain should be truncated 

with an Absorbing Boundary Condition (ABC). To allow the wave to propagate into 

infinite space with minimum reflection. In this case, second order Bayliss-Turkel ABC 

(BGT-2 ABC) is chosen, which provides adequate accuracy with minimal computational 

cost and has been applied in many previous IGA-acoustics studies [28]. Hence the 

following boundary condition is applied on the outer boundary 

 (43) 

where B is the linear operator referred to as Dirichlet-to-Neumann map. For BGT-2 type 

ABC, one has [29]:  

(44) 

With Σ being the fictitious boundary represented by a circle with radius R and , 

with κ = 1/R and the tangential derivative    in polar coordinates (r,θ). 
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The weak form then is obtained by multiplying Eq.40 by a test function v and integrating 

over Ω, then applying the boundary conditions in Eq.41: 

   (45) 

 

(46) 

 

(47) 

5.3 Problem Setup 

Consider the 2D cross section of the proposed cylindrical sound harvester within 

the circular domain, Ω, considered in Fig.29 where the computational domain and the close 

up of the harvester are shown in left and right respectively. The maze structure of the 

proposed solid-walled harvester is placed within an empty space assumed to have the 

properties of air illuminated by a plane wave traveling from left to right. The outer circle, 

Σ, is the fictitious boundary on which ABC was applied. 

 

Figure 29: Harvester Full Domain and Zoomed view 
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Similar maze meta-surfaces were studied for noise reduction purposes in an ultra-

sparse arrangement [30][31]. The sound wave can travel through the maze between the 

solid walls which are depicted by black walls in Fig.29. In this study the possibility of 

tuning and enhancing the performance of the proposed energy harvester by shape 

optimization was investigated. The four design variables used for shape optimization were: 

wall width wh, entire maze channel width ch, harvester rotation θh, and ”wing” rotation θw, 

the variables are shown in Fig. 30, Rint denotes the interior harvester radius.  

 

Figure 30: Harvester shape modification variables 

To demonstrate the scalability of the proposed harvester the optimized design 

performance was compared with the initial design performance for a range of frequencies. 

In the initial design, the following parameter values were used: wh = ch = 0.002, θh = 0, and 

θw = 0. Three main shape optimizations were considered. In the first type only channel and 

wall thickness were allowed to change. This limited shape optimization is demonstrated in 

Fig. 31 and Fig.32 where the channel width ch and wall width wh were increased 

respectively. Due to increasing ch and wh, the total radius of the harvester decreased. 
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Figure 31: Initial harvester (left) compared to harvester with increased ch (right) 

 

Increasing the channel width as shown in Fig. 31 widens the acoustic wave passage 

channel. Increasing the wall width does not affect the channel size but does change the total 

radius along with total passage length. 

 

Figure 32: Initial harvester (left) compared to harvester with increased wh (right) 

Another possibility is to rotate the harvester to find the optimum placement angle. 

This is demonstrated in Fig.33.  

 

Figure 33: Initial harvester (left) compared to rotated harvester (right) 

 

Additionally, the harvester can undergo what will be referred to as ”wing movement” 

hereafter which is the outward rotation of the exterior channel wall. This opens up the main 
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point of entry for the wave, generates a varying channel width, and as extends the shape 

out more into the propagation domain. An example of this is shown in Fig.34. 

 

 

Figure 34: Initial harvester (left) compared to harvester with wing movement (right) 

 

The objective function of this optimization is the sum of the pressure within the 

area defined by Rint, divided by the interior area. The objective function is denoted as JH, 

which is defined as: 

𝐽𝐻 =
∑ 𝑃𝑟𝑎𝑑

𝑅𝑖𝑛𝑡
2∗ 𝜋

                                                          (48) 

With Prad as the pressure at a point within Rint.  

The following optimizations were performed for the range of 500 to 700Hz in steps 

of 100Hz: 

• Optimize wh and ch while fixing θh = θw = 0 

• Optimize wh,ch , and θh  while fixing θw = 0 

• Optimize wh, ch, θh and θw  

In all the above optimizations wh and ch were allowed to vary between 0.001 and .005 

meters, while θh and θw were allowed to vary between 0 and π/2. The IGA mesh was 
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composed of 59 patches similar to the one shown in Fig.35, where wh = ch = 0.04 and  

θh = θw = 0: 

 

Figure 35: Multi-patch mesh of the initial harvester design 

 

  The JH values at the target frequencies are tabulated in Table 5  

Table 5: Initial Harvester Design Target Frequency JH values 

Frequency (Hz) 500 600 700 800 900 1000 

JH 2416 13187 1651 1112 539 396 

 

  From Table 5 it is apparent that the initial harvester design is better suited for 600 

Hz than any of the other target frequencies.  
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5.4 Shape Optimization of the Sound Energy Harvester Results 

5.4.1 Channel and Wall Modification 

The first optimization for the sound harvesting case was performed using only wh 

and ch. These two in combination will affect the radius of the harvester and the total length 

of the channels. The results from this optimization are listed in Table 6: 

Table 6: wh and ch Optimization Results 

Frequency (Hz) wh ch JH 

500 0.0360 0.0389 26890 

600 0.0300 0.0484 14925 

700 0.0472 0.0383 16776 

800 0.0386 0.0493 9241 

900 0.0531 0.0385 12972 

1000 0.0640 0.0308 11784 

 

The highest value of the objective function was found for the 500Hz optimization 

in which JH = 26890. The minimum objective function value was found for 800Hz which 

was only about 34% of that value, JH = 9241. However, the next highest after 500Hz was 

the 700Hz optimization, which reached JH = 16776, only 62% of the 500Hz result. The 600 

Hz optimization achieved a 13.2% increase of JH, which was the smallest percent increase, 

however the 1000 Hz optimization had a 2875% increase of the objective function value 

JH. The average increase achieved by the optimizations was 1309%. 

Figure 36 depicts the value of the objective function for the optimum designs 

found in the range of 400-1100 Hz frequencies. 
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Figure 36: Spectrum performance of optimized harvesters (wh,ch) 

It is clearly seen that each of the optimum solutions found have similar performance 

as shown in Fig.36, a sudden sharp spike is observed at the targeted frequency with similar 

declination on either side. The only design which significantly deviates from this pattern is 

the one obtained for 800Hz optimization. At 850Hz it is almost double the value of 750Hz 

for the same harvester configuration. Interestingly the initial design was effective at 600Hz 

and consequently the optimization improved the performance slightly at this frequency. 

The resulting shapes and corresponding total field are shown in Fig.37 to 42, for 

their respective objective frequencies. The increased red within the optimized harvester 

interior compared to the initial design is a clear indication that the shape optimization 

achieved increased pressure concentration within the harvester.  
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Figure 37: Pressure field at 500Hz for initial (left) and optimized harvester (right) (wh,ch) 

 

Figure 38: Pressure field at 600Hz for initial (left) and optimized harvester (right) (wh,ch) 

 

Figure 39: Pressure field at 700Hz for initial (left) and optimized harvester (right) (wh,ch) 
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Figure 40: Pressure field at 800Hz for initial (left) and optimized harvester (right) (wh,ch) 

 

Figure 41: Pressure field at 900Hz for initial (left) and optimized harvester (right) (wh,ch) 

 

Figure 42: Pressure field at 1000Hz for initial (left) and optimized harvester (right) (wh,ch) 
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From Figure 37 to Fig.42, the interior radius of the optimized harvesters decreases 

as the target frequencies increase. The only exception to this is between the 700Hz and 

800Hz optimizations, where the interior radii are similar.  

 The DE performance of the optimization is shown in Fig.43. This chart tracks the 

objective value achieved by each iteration. 

 

Figure 43: Iteration History of Optimization (wh,ch) 

The DE performance showed many plateaus with most of the steps being small, the 

500Hz objective had the largest step, going from under 1000 to over 2500 in a single 

iteration. 
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5.4.2 Channel, Wall Modification, and Rotation 

The next optimization was to include the rotation of the harvester, θh as an 

additional design variable. The results of the optimization performed for each target 

frequency are shown in Table 7: 

Table 7: wh, ch, and θh Optimization Results 

Frequency (Hz) wh ch θh JH 

500 0.0242 0.0480 1.1771 18910 

600 0.0425 0.0386 1.1712 20740 

700 0.0588 0.0286 1.2399 19267 

800 0.0320 0.0553 0.5699 9520 

900 0.0751 0.0200 0.0000 14762 

1000 0.0767 0.0200 0.0000 13900 

 

The reduced objective function for the 500Hz optimization is an indication that a 

local optimum is found instead of than the global optimum. DE is recognized as a method 

which successfully find the global minimum, but it does not eliminate such possibility. 

These optimizations yielded increases in JH values between 57% at 600 Hz and 

3410% at 1000 Hz. The average increase achieved by the optimizations was 1435%.  

Figure 44 charts the behavior of each harvester over the frequency spectrum of 

400 to 1100Hz. 
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Figure 44: Spectrum Performance of optimized harvesters (wh,ch,θh) 

Another interesting behavior is that there is very little change between the first 

optimization and the result once θh is included for the range of 800 to 1000Hz. Those three 

frequencies also had the smallest amount of rotation, with 900 and 1000Hz having no 

rotation at all. The 600 Hz target frequency showed significant improvement with the 

addition of θh as a design variable. The 500 Hz and 600Hz optimizations have similar 

rotation. 

The resulting shapes and corresponding pressure fields are shown in Fig.45 to 50, 

for their respective objective frequencies. 
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Figure 45: Pressure field at 500Hz for initial (left) and optimized harvester (right) (wh,ch,θh) 

 

Figure 46: Pressure field at 600Hz for initial (left) and optimized harvester (right) (wh,ch,θh) 

 

Figure 47: Pressure field at 700Hz for initial (left) and optimized harvester (right) (wh,ch,θh) 



 

56 

 

Figure 48: Pressure field at 800Hz for initial (left) and optimized harvester (right) (wh,ch,θh) 

 

Figure 49: Pressure field at 900Hz for initial (left) and optimized harvester (right) (wh,ch,θh) 

 

Figure 50: Pressure field at 1000Hz for initial (left) and optimized harvester (right) (wh,ch,θh) 
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   These optimizations tend to produce smaller interior radii as the frequency 

increases, similar to the previous optimizations.  In addition, the 700 Hz to 800 Hz is an 

outlier to this trend. With rotation included in the shape optimization variables, the  

800 Hz optimized harvester has a larger interior radius than the 700 Hz optimized harvester. 

The DE performance is shown in Fig.51. 

 

Figure 51: Iteration History of Optimization (wh,ch,θh) 

Almost all of these optimizations were on a plateau at the end of iteration 10. The 

700Hz optimization only had a single increase, between iteration 5 and 6. Increasing the 

number of iterations may improve the results obtained.  
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5.4.3 Channel, Wall Modification, Rotation, and Wing Movement 

The results for the optimizations with wing movement included are listed in Table 8.  

Table 8: wh, ch, θh and θw Optimization Results 

Frequency (Hz) wh ch θh θw JH 

500 0.0531 0.0200 1.569 0.4622 33002 

600 0.0578 0.0200 0.8836 0.9480 25584 

700 0.0459 0.0315 1.0300 0.8202 14916 

800 0.0529 0.0286 0.8765 1.4810 13171 

900 0.0438 0.0385 1.5710 1.5710 11319 

1000 0.0461 0.0393 1.3620 1.1580 9723 

 

The addition of wing movement to the optimization only yielded higher values of 

JH than the previous optimizations for the target frequencies 500 Hz, 600 Hz, and  

800 Hz. Interestingly, none of these optimizations had no rotation or no wing movement. 

These optimizations yielded increases in JH values between 94% at 600 Hz and 

2355% at 1000 Hz. The average increase achieved by the optimizations was 1267%.  

 

Figure 52 charts the behavior of each harvester over the frequency spectrum of 400 

to 1100Hz.  
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Figure 52: Spectrum Performance of optimized harvesters (wh,ch,θh,θw ) 

The resulting shapes and corresponding total field are shown in Fig.53 to 58, for 

their respective objective frequencies. 

 

Figure 53: Pressure field at 500Hz for initial (left) and optimized harvester (right) (wh,ch,θh,θw) 
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Figure 54: Pressure field at 600Hz for initial (left) and optimized harvester (right) (wh,ch,θh,θw) 

 

Figure 55: Pressure field at 700Hz for initial (left) and optimized harvester (right) (wh,ch,θh,θw) 

 

Figure 56: Pressure field at 800Hz for initial (left) and optimized harvester (right) (wh,ch,θh,θw) 



 

61 

 

Figure 57: Pressure field at 900Hz for initial (left) and optimized harvester (right) (wh,ch,θh,θw) 

 

Figure 58: Pressure field at 1000Hz for initial (left) and optimized harvester (right) (wh,ch,θh,θw) 

The DE performance is of the optimizations are shown in Fig.59. Most of these runs 

showed little improvement over 10 iterations, with the exception of 500Hz, which showed 

steady and significant increases until iteration 7. The 600Hz run did not improve 

throughout the entire process. Interestingly, like the previous optimizations, the interior 

radius of the harvester decreased as the target frequency increased. However, the reduction 

is much less significant than before. 
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Figure 59: Iteration History of Optimization (wh,ch,θh,θw) 
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6 Chapter 6 

Conclusion 

6.1 Summary  

In this thesis, two applications of acoustic optimization utilizing the combination 

of IGA and DE where studied. IGA provides a convenient high order numerical framework 

for performing analysis with less computational cost at similar accuracy to conventional 

FEA [5][32]. It can also reduce the burden of re-meshing when compared to conventional 

FEA. DE is chosen as the preferred evolutionary algorithm for optimization due to its speed 

and capability to find the optimum solution more successfully. 

   The first optimization problem considered in this study reduced the back-

reflection in an acoustic horn speaker for the frequency range of 300 Hz to 700 Hz. Back-

reflection causes interference and possibly cancellation on the outgoing acoustic wave. To 

reduce this effect, the shape of the horn bell was optimized. Optimizations were 

successfully performed for both single and multiple target frequencies. Not all the solutions 

found were smooth and easy to manufacture. Smooth optimum boundaries were found for 

all frequencies considered using Tikhonov regularization, which was utilized to penalize 

complex optimum shapes. 

Without smoothing, single-frequency optimization achieved between 99.60% to 

99.99% reduction in back-reflection for each of the target frequencies. The average 

reduction of objective function value, J, was 99.90%. With smoothing, back-reflection was 

reduced between 88.3% and 99.8%. The average decrease in back-reflection for the 

optimizations with smoothing was 96.4%. 
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The 3-frequency optimization for the three target frequencies of 300 Hz, 400 Hz 

and 500 Hz yielded an average reduction of 98.3% without smoothing and 97.4% with 

smoothing. 5-frequency optimization for target frequencies of 300 Hz, 400 Hz, 500 Hz, 

600 Hz and 700 Hz, with and without smoothing achieved average back-reflection 

reduction of 75.5% and 77.7% respectively. 

The second case studied was the shape optimization of a proposed sound-energy 

harvester. The objective of the optimization is to increase the pressure within cylindrical 

sound-harvester by modifying a set of design variables.  

The first optimizations of the harvester shape altered only the wall thickness and 

channel width to maximize the internal pressure. An average pressure increase of 1309% 

was achieved with only these two parameters. Including the rotation of the harvester for 

the next set of optimizations resulted in an average increase of 1435%. The addition of 

wing movement to the harvester design optimizations yielded an average increase of the 

objection function value JH of 1267%. 

 

6.2 Discussion 

The acoustic horn shape optimization demonstrated that many of the optimal 

shapes were non-intuitive and that very subtle variations in the shape of the horn bell 

can have significant effect on the back-reflection.  Without smoothing, the 

optimizations achieved lower amounts of back-reflection than with smoothing, 

however, the smoothed shapes would impose significantly less manufacturing 

constraints than the non-smooth shapes.  
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Interestingly, multi-frequency optimization of the acoustic speaker produced 

smooth shapes without the inclusion of smoothing. Indicating that smooth shapes are 

inherently more effective for a range of frequencies. 

For each of the horn shape optimization cases, DE would plateau for many 

iterations. Most of the optimizations, both single and multi-frequency, were in a 

plateau by the final iteration. While improved results may be obtained through 

increasing the number of iterations, this would increase the computational time of 

the optimization.  However, as most of the optimizations achieved above a 95% 

reduction in back-reflection by iteration 50, the improvement obtained by increasing 

the number of iterations may not be significant enough to warrant the additional 

computational time. 

The proposed sound-energy harvester optimizations achieved significantly 

improved results compared to the initial design. An average increased pressure of 

over 1000% for all cases. This increase however can be seen as tuning the design for 

a target frequency by shape optimization. 

The optimization of channel width, wall thickness and rotation yielded the 

highest average pressure increase percentage. This case also achieved a maximum JH 

value compare to the other cases for the target frequencies of 700 Hz, 900 Hz and 1000 Hz. 

The inclusion of wing rotation achieved maximum JH values at 500 Hz, 600 Hz and  

700 Hz. However, with wing rotation the average increase was lowest, at 1267%. This 

might be related to reduced channel length. 

Wing movement also increases the area occupied by the harvester, as the wings 

extend out into the domain. It would be much more difficult to place these in a sonic crystal-
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lattice formation. For these reasons, wing movement may not be an ideal shape design 

variable to optimize without increasing the channel length. 

 

6.3 Future Work 

These studies lay the foundation for further optimization cases using IGA and DE. 

Additional parameters can be defined as design variables in the horn problem. Optimization 

including the width of the wave guide and a rotation of the horn bell might be factors that 

enhance the performance of the optimization.  

Perhaps some modification to the objective function or optimization parameters 

could be made in the sound harvesting problem. There may be a method of re-defining the 

setup as to prevent the optimization towards a local optimum. Additionally, optimization 

cases using more iterations should be considered. Further high-frequency optimization 

could also expand the benefits of this study. The frequency ranges covered in this thesis 

are on the lower end of the human hearing range, so expanding toward the full range could 

provide additional benefit, especially considering that road noise also covers the entire 

hearing spectrum as well. Physical experiments to help verify these studies should also be 

performed. 

Most importantly, this study demonstrated the potential for IGA and DE in the 

future development of devices relying on acoustic wave propagation. Another interesting 

study is to compare cost-benefit of using DE with optimization algorithms. 

 

 

 



 

67 

References 
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[7] D. Karaboğa and S. Ökdem A Simple and Global Optimization Algorithm for 

Engineering Problems: Differential Evolution Algorithm. Turk J Elec Engin, 12, 2004. 



 

68 

[8] Les Piegl and Wayne Tiller. The NURBS Book. Springer, 1995. 

[9] D.F. Rogers. An Introduction to NURBS with Historical Perspective. Academic Press, 

2001. 

[10] T. Hughes, J.A. Cottrell and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, 

NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. and 

Engrg., 194:4135-4195, 2005. 

[11] A. Herrema, N. Wiese, C. Darling, B. Ganapathysubramanian, A. Krishnamurthy and 

M. Hsu A framework for parametric design optimization using isogeometric analysis. 

Comput. Methods Appl. Mech. and Engrg., 31:944-965, 2017. 

[12] H. Liu, D. Yang, P. Hao and X. Zhu Isogeometric analysis based topology 

optimization design with global stress constraint. Comput. Methods Appl. Mech. and 

Engrg., 342:625-652, 2018. 

[13] Zhen Lei Isogeometric shell analysis and optimization for structural dynamics. Ecole 

Centrale de Lyon, 2015. 

[14] E. Wadbro and M. Berggren. Topology optimization of an acoustic horn. Comput. 

Methods Appl. Mech. and Engrg., 196:420-436, 2006. 

[15] G. Dodgen and T. Khajah Shape Optimization of an Acoustic Horn using Differential 

Evolution and Isogeometric Analysis. IGA2018, United States Association for 

Computational Mechanics (USACM), 2018. 



 

69 

[16] B. Engquist and A. Majda. Absorbing Boundary Conditions for the Numerical 

Simulation of Waves. Mathematics of Computation, 31:629-651, 1997. 

[17] T. Khajah, X. Antoine and S.P.A Bordas High Frequency Acoustic Scattering in 

Isogeometric Analysis. Waves 2017 (13th International Conference on Mathematical 

and Numerical Aspects of Wave Propagation), University of Minnesota, Twin Cities 

Campus, Minneapolis, 2017. 

[18] G. Dodgen and T. Khajah Effectiveness of Tikhonov Smoothing in Isogeometric Shape 

Optimization of the Horn Speaker. American Society for Engineering Education 

Gulf Southwest Conference,  University of Texas at Tyler, 2019. 

[19] M. Yuan, Z. Cao, J. Luo and X. Chou Recent Developments of Acoustic Energy 

Harvesting: A Review. Micromachines, 10, 2019. 

[20] S. Noh, H. Lee and B. Choi  A study on the acoustic energy harvesting with Helmholtz 

resonator and piezoelectric cantilevers. Int. J. Precis. Eng. Manuf., 14:1629–1635, 

2013. 

[21] F.U. Khan Hybrid acoustic energy harvesting using combined electromagnetic and 

piezoelectric conversion. Rev. Sci. Instrum. 87, 2016. 

[22] A. Can, J. Lelong and D. Botteldooren Traffic noise spectrum analysis: Dynamic 

modeling vs. experimental observations. Applied Acoustics, 71:764-770, 2010. 

[23] H. Noh Acoustic energy harvesting using piezoelectric generator for railway 

environmental noise. Advances in Mechanical Engineering, 10:1-9, 2018. 



 

70 

[24] F. Mir, M. Saadatzi, R. Ahmed and S. Banerjee Acoustoelastic MetaWall noise 

barriers for industrial application with simultaneous energy harvesting capability. 

Applied Acoustics, 139:282-292, 2018. 

[25] Y. Wang, X. Zhu, S. Bano, H. Pan, L. Qi, Z. Zhang and Y. Yuan A renewable low-

frequency acoustic energy harvesting noise barrier for high-speed railways using a 

Helmholtz resonator and a PVDF film. Applied Energy, 230:52-61, 2018. 

[26] A. Krynkin and O. Umnova Predictions and measurements of sound transmission 

through a periodic array of elastic shells in air. The Journal of the Acoustical Society 

of America, 128, 2010. 

[27] M. Thota and K. Wang Reconfigurable origami sonic barriers with tunable bandgaps 

for traffic noise mitigation. Journal of Applied Physics, 122, 2017. 

[28] E. Atroshchenko, C. Anitescu, T. Khajah and T. Rabczuk Isogeometric Collocation 

in Acoustics. IGA2018, United States Association for Computational Mechanics 

(USACM), 2018. 

[29] A. Bayliss, M. Gunzburger and E. Turkel. Boundary Conditions for the Numerical 

Solution of Elliptic Equations in Exterior Regions. SIAM J. Appl. Math, 45:430-

451, 1982. 

[30] Y. Cheng, C. Zhou, B.G. Yuan, D.J. Wu, Q. Wei and X.J. Liu Ultra-sparse 

metasurface for high reflection of low-frequency sound based on artificial Mie 

resonances. Nature Materials, 14:1013-1020, 2015. 



 

71 

[31] V. Hadlich and T. Khajah Design and Optimization of acoustic metamaterials for 

noise reduction American Society for Engineering Education Gulf Southwest 

Conference, 2019. 

[32] S.M. Dsouza, T. Khajah, S. Natarajan and S.P.A. Bordas A Comparative Study of B-

Spline- and Lagrange- FEM in solving acoustic scattering problems. In World 

Congress in Computational Mechanics (WCCM 2018), 2018. 

 

 


	ACOUSTIC DESIGN OPTIMIZATION WITH ISOGEOMETRIC ANALYSIS AND DIFFERENTIAL EVOLUTION
	Recommended Citation

	tmp.1576781204.pdf.6ajUG

