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New innovative methods of bridge design are being sought to increase the service 

life of these structure.  High Performance Concrete (HPC) and Ultra-High-Performance 

Concrete (UHPC) utilizes a mix of high strength concrete with steel fibers to create a 

strong and ductile reinforced concrete mix.  While not new to civil engineering 

construction, this material still has some uncertainty of its performance both long and 

short term.  As a result, in-situ experimental monitoring is important to verify methods of 

design and the suitability of the materials.  A two-span pre-stressed UHPC and HPC 

reinforced concrete bridge superstructure was designed at New Mexico State University 

(NMSU) and constructed outside of Las Cruses, New Mexico in 2017.  Monitoring of the 

superstructure took place in January 2018 and February 2019 where multiple sensor 

systems were deployed to capture the behavior under controlled loading conditions.  A 

team from the University of Texas at Tyler (UT Tyler) deployed multiple 3-D and 2-D 

Digital Image Correlation (DIC) sensor systems to monitor deflections and strain at 

various location of the girder. To the knowledge of the research team both tests are the 

largest simultaneous deployment of DIC systems for experimental load testing of a 
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bridge.  In DIC, the measured object is photographed with either a pair of digital cameras 

(for 3-D DIC) or a single digital camera (for 2-D DIC) before, during and after a load 

event, and a stochastic pattern marked on the object is tracked from one set of images to 

the next such that a full field of displacements is derived. The DIC system was successful 

in capturing displacements but strains were too low and not within the resolutions of the 

system.  The testing serves as an early in-service response of the structure that can be 

used in comparing long-term performance of the superstructure. The results from testing 

indicate DIC is a powerful non-contact   measurement approach to capturing in-situ 

displacement of highway bridges.
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Chapter One 

Introduction  

Constant monitoring and testing of any standing structure are equally important as 

construction of the structure. Due to a level of uncertainty, some structures do not reach 

the design life. Deformation, deterioration and entropy are constant and impact the 

service life of the structure. The use of sensors like a potentiometer requires to be 

attached to a base which needs to be solid. This is impossible in large bridges unless 

scaffolding is used. Digital Image Correlation (DIC) can be used for measurements of 

material properties as well as surface strain and displacement to better monitor a 

structure. The span of the bridge also experiences sagging which can be easily quantified 

using DIC. One of the most important aspect of DIC is that it can be used to measure 

distress over a large field of view which is beneficial due to size of bridge elements. 

Whenever a loading is on the bridge minor deformations occur which might be unnoticed 

when measured by conventional techniques which measure response on a local scale. 

Another area is when a bridge is experiencing minor cracks which remain undetected to 

the naked eyes. The crack width can be quantified easily and efficiently by the use of 

DIC. Every structure is designed for a certain design life and most of the finite element 

programs are not able to characterize the structure based on the current condition of the 

structure. Lots of data inputs are required and intense modelling of the structure should 

be done to characterize the present condition. DIC has an advantage with this situation 

because the images which are captured portrays the live condition of the structure and is 

comprehensive in showing actual deformation present in the structure. This trait is one of 
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the most crucial in structural health monitoring. The repetitiveness of monitoring or the 

frequency of monitoring will be more accurate in determining the condition of the 

structure. The use of DIC also has its drawbacks which includes needs for appropriate 

lighting conditions and a rigid mounting base for the camera system to ensure it will not 

move throughout the testing period. The two main deformation (displacement and strain) 

are measured in this study and are comprehensively explained below. 

1.1 Displacement measurement of a bridge superstructure 

Displacement is one of the parameters considered during monitoring of a bridge 

superstructure. To meet serviceability requirements of any structure the design must limit 

the maximum displacement per code requirement. For bridges, the displacement is 

typically limited to L/800 inches per American Association for State Highway 

Transportation Officials (AASTHO) requirements. Displacement measurements are 

gathered at the mid span of a beam element as this is the location to experience maximum 

displacement at the most critical flexural loading case. In this study, the section 

represents the beam as a whole and deflection value obtained by averaging the 

displacement over the section is considered as displacement of the beam. The 

displacement is calculated for both UHPC and HPC beams for single, back-to-back and 

triple truck loading. Displacement values are also categorized as positive and negative 

where positive represents uplifting of the bridge and negative representing sag. The 

maximum value of deflection can be compared with the allowable displacement value to 

monitor the sagging characteristics of the bridge. The value of displacement can be used 
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to predict the effect of fatigue and other limit state of serviceability. This can be later 

used to forecast the evolution of a bridge’s health. 

1.2 Strain measurement of a bridge superstructure 

Strain measurement of a structure relates directly to the stiffness and ductility of a 

material. A non-contacting method for measurement of strain in a bridge is DIC. The 

loading conditions change the strain produced in the span of a bridge. Strain fields are 

created directly by DIC using displacement values. The strain value measured by DIC has 

greater accuracy for large strain values compared to low micro-strains. The strain maps 

are also a good way of detecting cracks present in the beam or identifying the crack 

width. If the strain gauges are placed between two cracks in a span it gives relatively high 

values of strain because of noise. Strain directly correlates to the performance and helps 

in monitoring of bridge effectively. DIC helps in constant monitoring of strain values 

non-destructively.  

1.3 Comparison with conventional methods of deflection analysis 

The deformation of structures is measured by reliable and accurate contact-based 

methods (e.g. LVDT, string potentiometer). The measurements are often used as 

benchmarks for other methods to compare the measurements. Strain gauges and 

displacement transducers are used to compute the strain and displacement values 

respectively with high reliability. Conventional methods require extensive setup of 

equipment if the monitoring is to be done on higher elevation structures that are difficult 

to access. Setup with DIC can be easier as it requires less equipment and is not in contact 
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with the structure. The effectiveness of DIC is compared with measurement obtained 

from conventional wired sensors to validate its effectiveness on in-service bridges.  

1.4 Objectives 

The objectives of this study were: 

a) To understand the behavior of the bridge using DIC. 

b) To determine the feasibility of using DIC to measure in-situ strain. 

c) To determine the feasibility of using DIC to measure 2D/3D displacement. 

d) To determine displacement of from 2D DIC with bridge mounted camera. 
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Chapter Two 

Literature Review 

 Load testing is a vigorous technique to understand the distribution of load on a 

structure. Data obtained from strain gauges provide an assessment of how load is being 

distributed on the bridge. While load is encompassing in practice the use of strain gauges 

and deflection sensors are very important to characterizing bridge performance. 

Numerous techniques including Digital Image Correlation (DIC), an optical non-contact 

method of monitoring is emerging as a new way of field testing or even field monitoring. 

The method used for DIC are: 2-D in-plane measurement only and 3-D which includes 

in-plane and out-of-plane also. A 3-D system consists of a two-camera system which uses 

images from both cameras are used to calculate out-of-plane movements of the monitored 

surface.  

2.1 Structural health monitoring using Digital image correlation 

Long-term monitoring is different from periodic testing as it can last for a period 

of days, weeks even months. Visual inspection has many limitations that can lead to 

challenges in obtaining accurate assessment. Spalling, cracks, bulging and sagging even 

if noticed are difficult to quantify just by visual measures. Structure health can be 

monitored using DIC by analyzing the strain and/or displacement measurement for 

different loading conditions. 
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2.1.1 Laboratory tests of DIC for damage detection capabilities 

Nonis (2013) conducted a study to detect damage in a concrete beam which was 

setup in a laboratory. Three tests were performed on three separate beams which were 

similar in geometry and composition. Beams were loaded incrementally until failure was 

observed. Strain data obtained from DIC showed non-visible cracks appearing based on 

strain amplification even before a person could identify that there were changes in the 

structure. Even the use of a magnifying glass at different testing loads the cracks and 

changes could not be identified. 

2.1.2 Digital image correlation application to bridge inspections 

Previously visual inspection relied upon the use of basic non-advanced tools (e.g. 

tape measures, plum-bob) in determining health of a structure. The introduction of strain 

gauges, LVDT (linear Variable Displacement Transformers) and accelerometer have 

enhanced the field of monitoring. Digital Image Correlation is being introduced as a new 

method for Structural Health Monitoring.  

Brogan (2010) also conducted a study using (3D- DIC) on a bridge in 

Massachusetts where a single 3D camera system was used. The results from the camera 

was processed by Vic-Snap. The data obtained from DIC was compared with the 

modelled data from SAP (Structural Analysis Program). The bridge deflected upward at 

start and then dropped downwards as the front axle of the truck reached the mid span of 

the bridge. The bridge reached to critical state when the truck was at the middle of the 

test and then dropped down as the rear axle of the truck reached the mid span of the 
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bridge. The data for some of the tests were noisy because of bad patterns and also 

because the calibration file was corrupted in the middle of the test. 

2.1.3 Analysis of crack behavior in a reinforced concrete beam during a load test 

Crack behavior can also be predicted studying the fatigue behavior of reinforced 

concrete structures. Kuntz et al. (2011) conducted a study to address potential concerns 

for serviceability of the Saint-Marcel bridge built in 1944. Crack width was measured, 

and shear cracks were noticed on the bridge and using DIC the crack was easily 

quantified. Along with the crack sagging was also detected. The crack width obtained 

from the DIC test results were compared with the crack width recorded by the 

potentiometer and similar results were obtained. DIC proved to be an important tool to 

understand crack kinematics and distribution of loads on the girders of the bridge. 

2.1.4 Photographic strain monitoring during full-scale failure testing of 

Ornskoldsvik bridge 

In some case use of photographic strain monitoring techniques prove better than 

monitoring strain gauges using electrical strain gauges for of two reasons: a) strain 

gauges give strain data only for a smaller surface area local measurement b) photographic 

strain monitoring provides better insights on structure’s failure mode as it allows 

graphical visualization of strain fields. 

Sas et al. (2012) conducted a full-scale test on a bride in Ornskoldsvik. The bridge 

had to be removed to build a new railway line and a full test was conducted during its 

demolition. Along with DIC more than 100 electrical strain monitoring gauges were used 

to measure the strain across the bridge. Load was generated by using two 1000-ton 
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hydraulic jacks that were placed on top of the loading beams. Loads vs Displacement 

were measured for east and west beam and small difference in displacement was 

obtained. DIC proved to be an important method for this particular scenario. As the strain 

gauges had to be placed at the area where cracks had already appeared, they gave 

unreasonably high values of strain and when the gauges were placed between two cracks 

the strain values that were observed were particularly low. The ability for photographic 

strain measurement can also be used to study strain in very small areas particularly 

changes that occur during slip and peeling strength along the length of bond. 

The strain and displacement measurement obtained from Digital Image technology is 

compared with one reliable and conventional method of testing. The method of testing 

usually used are use of strain gauges or finite element modelling of the structure to study 

the behavior under different loadings. 

Malesa et al. (2010) conducted a test on Nieporet Poland. The camera system that 

was used for the study was one three-dimensional camera system. The displacement 

result that were obtained from DIC testing were compared with the result from FEM 

model and satisfactory results were obtained. Although the results that are obtained from 

the FEM do not account for any damaged or deterioration that is present in the structure.  

Gencturk et. al. (2014) conducted a test on a full scale prestressed concrete structure. 

Ultimate load tests were conducted on a full scale prestressed I beam, and displacement 

was measured. The test was also conducted using conventional method and displacement 

transducers were used. The results from the test compared well with the results obtained 

from the displacement transducers. Although, lighting and pattern on the structure was an 
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issue the test was able to produce data with reasonable accuracy. The problem with the 

test was the crack width was difficult to measure after the spalling of concrete occurred. 

Loss of data points occurred after the specimen cracked which created hinderance to 

measure the crack width. The use of DIC gave detailed result which included in-plane 

and out-of-plane strain values. 

2.1.5 Bridge deflection measurement using Digital Image Correlation 

Yoneyama (2011) conducted a test on a 20 meters long bridge and deflection 

under usual traffic load was measured. The study primarily focused on the correction 

required because of camera movement during the test. The test measuring deflection of 

the bridge’s fascia girder was carried out in the open. Wind was an inevitable issue which 

compromised the position of the camera. Due to slight movement of DIC cameras the 

change in the measurement is observed. The displacement values were normally 

distributed and correction for the movement of the camera was obtained. After the 

correction were made on the displacement data, the displacement values were similar to 

the one’s measured by the displacement transducers. Although, DIC has many limitations 

the studies are conducted to provide corrections on the shortcomings of measurement 

using DIC. 

2.1.6 Digital Image Correlation (DIC): An advanced nondestructive testing method 

for life extension of nuclear power plants  

Hohmann (2012) conducted a study to measure shape deformation, strain and 

displacement on nuclear power plants. The study was conducted on the R.E. Ginna plant 

which has been in commercial operation since 1970. The objective of the test was to 
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study the behavior of concrete when pressurized. A principle strain map was generated 

from the test and high strain values indicated the cracks occurring during the test which 

lasted for 38 hours. The displacement data were also used to conclude cracks were 

present in the structure. Out-of-plane displacement were also measured to monitor the 

behavior of concrete during high pressure. Strain vs time plots were obtained to 

understand the crack propagation during various stages of the test. The results from the 

tests were kept as a baseline for the test which will be taken after 10 years. The results 

obtained from DIC was kept as a baseline for further tests and measurements. 

2.1.7 Digital Image Analysis in geotechnical engineering education 

Digital Image Analysis was used in two projects by Ayidlek (2007). Project 1 

pore structure evaluation of geosynthetic fibers. Due to the two-dimensional structure of 

woven geotextiles and the presence of relatively large pore openings, a direct method 

such as digital image analysis was very appropriate for this purpose. The three-

dimensional structure of nonwoven geotextiles required capturing pore structures from 

two-dimensional images. Planar and cross-sectional thin sections of these geotextiles 

were necessary to provide detailed information. 

Project 2 was conducted to determine the strain produced on the geosynthetic 

during tension testing. Strain fields were evaluated after the images were processed. 

Strain gauges were also placed on the geosynthetic specimen to determine the localized 

strain during tensile testing. Comparison were made between the strain taken manually 

and strain obtained from processed images. 



11 

 

2.2 Aramis as an image processing software 

Aramis is a non-contact measuring system that is based on DIC. It is an image 

processing software that is developed by GOMTM. The system provides high precision 

measurement data regardless of specimen geometry and temperature. The marks made on 

the structure is well read and processed by ARAMIS. The computation speed is also 

quick and dynamic work interface ensures protection of calibration file as well as the 

project. It is a massive improvement over other image processing software as the user 

interface is simple and easier to use. The export feature allows to share data to other 

working environment for further processing. There is no need for a time-consuming and 

expensive preparation. For statically or dynamically loaded specimens and components. 

The measurements provided by ARAMIS are: 

3D coordinates, 3D displacements, velocities, accelerations, Surface strain, Material 

properties for simulation (Young’s modulus etc.), Evaluations of 6 degrees of freedom 

(6DoF) Aramis (2019). 

2.2.1 Input data for ARAMIS 

ARAMIS can provide information by processing a large number of images. Inputs 

such as calibration file, image files (Left and Right) and information regarding 

environmental conditions are required for the analysis of structures. Information 

regarding the input parameters are explained as: 
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a) Calibration 

The start of the test always marks with the development of calibration file which is 

the most crucial part of the experiment. The camera required for the tests are arbitrarily 

placed and for proper measurement of distances over the field of study calibration is 

necessary. A calibration board with sizable dots is used for smaller field of view whereas 

a large calibration cross is used for larger field of view. The ARAMIS is able to create 

the calibration file after a series of images are fed to it. 

b) Image files 

The camera system includes two cameras left and right. The images captured from 

both cameras are used simultaneously to calculate 3D displacements. The calibration file 

together with two sets of images numbered sequentially processed and measurements like 

displacement and surface strains are calculated. The three-dimensional camera system 

used both (left and right) set of images to calculate displacements whereas two-

dimensional camera system used only one set of images. The image file should be 

sequentially numbered for ARAMIS to recognize the sequence of image as it was taken 

during the test. 

c) Environmental conditions  

The effect of lighting condition has direct relation on clarity of images taken by the 

camera. Therefore, lighting condition should be adequate during test period. The shutter 

speed for the camera can be adjusted according to light available but good lighting 

conditions are preferred. The temperature of air also plays a vital role. The air 

temperature can cause changes in the specimen behavior and geometry. The difference in 
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temperature between laboratory conditions and field conditions can make a substantial 

difference when the measurement is extremely small (micro-strains). 

Field testing helps us to understand the behavior of structures. BDI sensors, LDVT, 

Strain gauges and Potentiometer are extensively used for Structural Health Monitoring. 

The conventional techniques provide good accurate data, but the setup can be difficult in 

most scenarios. Equipment setup and monitoring over a long period of time can be 

expensive which can be replaced by DIC technique which is a non-contact test provided 

that it measures strains and displacement with reasonable accuracy. 
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Chapter 3 

Experimental Test Setup 

3.1    Bridge superstructure 

The bridge consists of a two span multi-girder/stringer bridge superstructure 

located just outside of Las Cruces, New Mexico.  The bridge was designed by New 

Mexico State University and constructed in 2017.  Each span is approximately 6.9 m 

(22.5 ft.) in length and 9.8 m (32 ft.) wide with 9-precast girders at a center-to-center 

spacing of 1.2 m (4 ft.).  One span of the bridge is constructed of High-Performance 

Concrete (HPC) and the other span of Ultra High-Performance Concrete (UHPC).  The 

slab is cast in place with reinforcement extending out of the girder to create composite 

action.  An elevation view of the bridge is seen in Figure 1.   

 
Figure 1. Bridge test structure 
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3.2 Load testing protocol 

The bridge superstructure was divided into multiple test lanes and subjected to 

prescribed vehicle load patterns that were applied by fully loaded H-Trucks with known 

axle weights. One, two, three or four H-Trucks were simultaneously positioned at 

different locations of the bridge to maximize the flexural and shear response of each 

span. Figure 5a shows a single truck in path 1 of the bridge whereas figure 5b shows 

double truck back-to-back in path 7 and figure 5c in triple truck loading in path 10. 

Figure 3 shows examples of truck positioning for one, three and four trucks.  The orange 

chalk lines (visible in Figure 5a) were used on the surface to position the vehicles.  In 

each load test, the truck started on the UHPC bridge span then moved across the bridge to 

the HPC span before exiting. Figure 2-4 illustrates 10 load paths used in the testing. 

 
Figure 2.  Transverse load paths for a test vehicle (NOTE: 1 ft. = 0.3 m) 
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Figure 3.  Transverse load paths for a test vehicle (NOTE: 1 ft. = 0.3 m) 

 

 
Figure 4.  Transverse load paths for a test vehicle (NOTE: 1 ft. = 0.3 m) 
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(a) 

 

 
(b) 
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(c) 

Figure 5. Example of truck positioning with (a) one truck, (b) four trucks back-to-

back, (c) three trucks side by side 

 

3.3 DIC Sensor Deployment 

The test on the bridge was conducted twice. The first test was done in January 

2018 and the second test was done in February 2019. The two tests had different setups, 

but the load tests remained same. A more comprehensive monitoring approach was taken 

on the second test setup and the number of camera system was also increased. A detailed 

explanation of both test setups follows this section. 
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3.3.1 Test 1 setup 

The bridge superstructure was instrumented with a series of Bridge Diagnostic 

Incorporated (BDI), strain transducers, as well as vibrating wire and fiber optic sensors 

(FOS) to capture strain measurements at critical locations for shear and moment demand.  

The data gathered from these sensors were processed by researchers at New Mexico State 

University (NMSU) and not presented in this report.  A total of eight Digital Image 

Correlation (DIC) sensor systems were deployed at various locations of the bridge.  Four 

3D and four 2D DIC systems were positioned at the mid-span of both fascia girders and 

one of the interior girders for each span.  For this testing, the DIC sensors were used to 

measure surface strains and displacements.  A pattern used to capture these 

measurements was drawn on the surface of the girder using chalk.   The surface strains 

captured will be compared to measurements obtained from BDI strain transducers placed 

at the same location. This comparison will be discussed in chapter five.  A limitation of 

most experimental load testing is the ability to capture in-situ displacement 

measurements due to the limitations in mounting the sensors directly to the bridge 

element.  Traditional displacement sensors like Linear Variable Displacement 

Transducers (LVDTs) and String Potentiometers (String Pots) only allow for 

displacements to be measured at a single point. The DIC system allows for the cameras to 

be positioned away from the element which allows for a full field view of displacement 

readings and is not limited to a single point measurement. 

As mentioned previously, multiple DIC systems were deployed.  The camera 

systems used for this testing included: The FASTEC IL5 and FASTEC HiSpec1 high 
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speed digital cameras, a 2M ARAMIS system, DMK monochrome industrial cameras 

from The Imaging Source, 2 GoPro Hero + cameras and 2 GoPro Hero 3 cameras.  Table 

1 outlines the camera systems used on the two different spans, their location, their normal 

(perpendicular) distance to the bridge girder surface and whether the system was used as 

a 2D or 3D system.  Each of the testing systems that were deployed are shown in Figures 

6-11. 

Table 1. Camera systems used for DIC monitoring 

 Camera System 2D/3D 

DIC 

Sensor 

Location 

Normal Distance from 

camera to beam 

surface 

HPC Hi-spec 1     3D Exterior 

Girder 

2.82 m (9.25 ft.) 

Go Pro Hero + 2D Exterior 

Girder 

Approximately 3 m 

(9.84 ft) 

Go Pro Hero + 2D Exterior 

Girder 

Approximately 3 m 

(9.84 ft) 

DMK 2D Interior 

Girder 

1.32 m (4.33 ft.) 

UHPC IL5 3D Exterior 

Girder 

3.02 m (9.92 ft.) 

Go Pro Hero 3     2D Exterior 

Girder 

Approximately 3 m 

(9.84 ft) 

Go Pro Hero 3 2D Exterior 

Girder 

Approximately 3 m 

(9.84 ft) 

2M 2D Interior 

Girder 

1.04 m (3.42 ft.) 
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Figure 6.  FASTEC IL5 System for monitoring exterior girder of UHPC span 

 

 
Figure 7.  FASTEC HiSpec1 System for monitoring exterior girder of HPC span 
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(a) 

 

 
(b) 

Figure 8.  GoPro Hero + System for monitoring exterior girder of HPC span (a) 

view from behind cameras, (b) view from in front of cameras 
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(a) 

 

 
(b) 

Figure 9.  GoPro Hero 3 System for monitoring exterior girder of UHPC span (a) 

view from behind cameras, (b) view from in front of cameras 
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Figure 10.  2M System for monitoring an interior girder of UHPC span 

 

 
Figure 11.  2M System for monitoring an interior girder of UHPC span 

 

The sensors monitoring the fascia girders were mounted on custom designed 

frames made from L2x2x1/4” angle iron and quick grips to create a frame that would not 
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only support the weight of the camera system but was also rigid enough to keep the 

cameras from swaying as a result of any wind.  Example of this frame system are seen in 

Figures 6-11.  Figures 12 and 13 show the location of the four 3D DIC systems as well as 

the command station where the camera systems were controlled.  Figures 8a and 9a show 

very clearly example of the chalk patterning used for DIC.  Figure 14 illustrates the 

location of each DIC system using a plan view of the bridge. 

 
Figure 12.  Side view of the bridge showing 4 DIC systems 

 

 
Figure 13.  Command station with computer systems running DIC cameras 

HiSpec1 DMK 2M

M 

IL5 

IL5 

2M

M 
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Figure 14.  Location of each DIC camera system for Test setup 1 

 

3.3.2 Test 2 Setup 

The bridge superstructure was monitored for a second time with multiple DIC 

sensor systems. A total of 11 DIC sensor systems were deployed at various locations of 

the bridge.  Eight 2D and three 3D DIC systems were installed for detailed monitoring of 

both internal and fascia girders. The 2D systems were positioned on the center pier facing 
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outward to capture displacements of the interior girder near midspan. The 3D systems 

were positioned to monitor the center pier and to capture displacements of the north stem 

of girder 1 on both spans. For this testing, the DIC sensors were used to measure 

displacements only.  A pattern used to capture the measurements of the fascia girder as 

drawn on the surface of the girder using chalk. For the interior girders, a steel plate was 

bent at 90 degrees and attached with epoxy to the bottom of girder stem. A pattern drawn 

on the plate was taped to the plate.  

As mentioned previously, multiple DIC systems were deployed.  The camera 

systems used for this testing included: The FASTEC IL5 and FASTEC HiSpec1 high 

speed digital cameras, a 2M ARAMIS system, DMK monochrome industrial cameras 

from The Imaging Source, 2 GoPro Hero + cameras, 2 GoPro Hero 3 cameras and 2 Amp 

scope Cameras. Every camera system was in pair. The cameras in pair were labelled as 

left and right or camera 1 and camera 2 according to the model used. The naming was 

used to keep track of the images. Table 2 outlines the camera systems used on the 

different spans, their location, and whether the system was used as a 2D or 3D system. 

Figure 15 shows a pictorial representation about the position of every DIC camera 

system. The 2D system were installed underneath the bridge whereas the 3D system 

monitored the fascia girders of the bridge. One of the 3D systems also monitored the pier 

of the bridge for out of plane displacements which was also installed underneath the 

bridge on the HPC side looking below girder 3 and 4. Figures 16-21 show various picture 

of the setup under the bridge. Figure 18 in particular shows a string pot and dial gauge 

positioned just behind a patterned section for measurement verification. 
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Table 2.  Camera systems used for DIC monitoring for test 2 

 Camera System 2D/3D 

DIC 

Sensor Location 

HPC Hi-spec 1     3D Exterior Girder 

Go Pro Hero Plus L 2D Interior Girder 

Go Pro Hero 3 1 2D Interior Girder 

Amp Scope 2 2D Interior Girder 

DMK 1 2D Interior Girder 

UHPC IL5 3D Exterior Girder 

Go Pro Hero Plus R     2D Interior Girder 

Go Pro Hero 3 2 2D Interior Girder 

Amp Scope 1 2D Interior Girder 

DMK 0 2D Interior Girder 
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Figure 15.  Location of each DIC camera system for test setup 2 and stem of the 

monitored girder. 
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Figure 16. Internal girders 

 

 
Figure 17. Internal girders with attached targets for displacement measurement 
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Figure 18. Dial gauge placed on an internal girder 

 

 
Figure 19. Amp Scope camera 
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Figure 20. Go Pro Camera 

 

 
Figure 21. Hi-spec camera system for measurement of out-of-plane displacement 

of the bridge pier 
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3.4 Image Organization 

The images from the test were extracted and an index was created to track every 

image. An index was essential to separate images according to the loading conditions. 

The images were sorted by load position and kept track using excel. The organization 

was helpful in processing the data. The image organization was done similarly for both 

tests (2018 and 2019). A spreadsheet was created, and color coding was used to identify 

the images. 

3.4.1 Test 1 organization 

The images were extracted from six camera systems. The images were collected 

and organized using a spreadsheet. A total of 1598 images were captured during the 

processing and all were synchronized and arranged to properly locate the image 

according to time and loading stage. At each loading stage there were six different 

images from six camera system. All of the images were sequenced for further processing. 

The spreadsheet was used as a reference when ARAMIS was used for processing of the 

images. The images were sequentially numbered and were matched exactly with other 

camera systems. Table 3 is an example of a single load test with data of each camera 

system present. Every testing had an average of 10 images and the images corresponded 

to the span of the bridge which was marked at an interval of 5 feet. A time was also 

recorded to double check the sequence of the image. The labeling of the image number 

was done according to the default number present on the camera system during testing 

period. Later the numbering was done sequentially to process the images in ARAMIS and 

obtain the deformation data. 
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Table 3. Image organization for all six-camera system taken at same time 

TIME   HERO+ HERO 3 STAGE DMK IL5 HiSPEC1 

    LEFT RIGHT LEFT RIGHT         

  INITIAL 55 2607 1519 30     30   

  0 56 2606 1518 31 STAGE 0     1:05 

1:07 5' 57 2609 1521 32 STAGE 1   32   

        1523 34         

        1524 35         

                    

  10' 58 2610 1525 36 STAGE 2 42 57 1:16 

  15' 59 2611 1526 37 STAGE 3 43 58 1:22 

  20' 60 2612 1527 38 STAGE 4 44 59 1:25 

  25' 61 2613 1528 39 STAGE 5 45 60 1:37 

  30' 62 2614 1529 40 STAGE 6 46 61 1:39 

  35' 63 2615 1530 41 STAGE 7 47 62 1:40 

  40' 64 2616 1531 42 STAGE 8 48 63 1:44 

  45' 66 2618 1532 43 STAGE 9 49 64 1:46 

 

 

Along with the set of images the type of loading was also mentioned to determine 

the type of test. For a test with one truck loading on path 1 the Hi-spec had nine images 

similar to that of IL5 which also had nine images. Every image was named as a particular 

stage number and a time reference is also provided in the second column for further aid to 

identify the right image. All the camera systems had their own number system except the 

Hi-spec camera system which had time reference to identify the sequence of the image. 

The Go-Pro camera system had a left, and right image stored separately in two different 

folders where as IL5 and Hi-spec had left, and right image stored in the same folder 

which later were sorted as left and right respectively. The index was checked twice after 

processing the images to make certain that no stage was replaced or missing, ensuring 

accuracy in the data. For the GoPro camera, the number on the front of each camera and a 

time were recorded for every stop on a load test. 
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3.4.2 Test 2 organization 

Test 2 had similar organization, but folders were created directly under a file 

name according to the type of loading condition. The images were tracked according to 

the notes made in the field during the time of testing. The organization was easier as 

every picture obtained from the camera had the same label as was marked on the notes. A 

baseline was recorded for each test, in part, minimize to track any misplaced image. After 

the images were organized inside their respective folder, it was sequentially numbered 

and was then used for processing. 
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Chapter 4 

Calibration 

Calibration 

Calibration for DIC is one of the most important steps for the test. Before the test 

begins, the calibration of the instrument should be done, and calibration file should be 

created. There are several panel sizes from which to choose. The ideal panel size is the 

one that occupies the field-of-view of the cameras fully. If the panel size is smaller than 

the field-of-view, the parameters need to be adjusted during the calibration process.  

In the first step of calibration process, the calibration panel was placed near the site where 

the specimen is to be tested. The line of sight of camera should be focused on the 

calibration panel. The cameras are locked after the focus is sharpened and both cameras 

are looking at the same image. The cameras are locked throughout the test and should not 

be moved with respect to one another. Twelve pairs of images were taken from two 

cameras and then are used to create calibration file. ARAMIS gives two option for the 

calibration process. The first option is creating the calibration file using the instruction 

given by ARAMIS regarding the orientation of the calibration object. The second option 

is not using the instructions, but the number of images taken, and orientation should be 

similar.  

4.1 Calibration file generation 

The calibration for a test can be performed at any time but the cameras should not 

be moved at any time during the test. The focus of the camera should also be kept 

constant. The focus for the camera can be manually changed by rotating the lens or by the 
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software. The ARAMIS software can run on both Linux, Windows XP. The software was 

used for both operating systems during the test. The calibration process remained the 

same for both operating systems as the user interface was same for both. The calibration 

images used for two systems were different as the Hi-spec was controlled by the 

computer to snap the pictures and later imported to ARAMIS for processing whereas for 

the 2M system the images were directly taken through ARAMIS and then processed for 

the calibration file. Figure 22 shows the setup screen for calibration in ARAMIS. 

 
Figure 22. Image of calibration screen display 

 

The following user interface appears after ARAMIS is opened and the option  

“Sensor”>> “Calibration from image series” is selected. Then the camera is selected 

according to the model of the camera. The camera for the test were the HI-spec 1 and 

Fastec 1280x1024 500fps. Then, according to the comfort of the user orientation of the 
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board can be changed. The images during the process are taken. The image is shown on 

the window on the right and left sides immediately. The calibration board shows a green 

light if the points on the board are identified. The image should be re-taken, or the board 

should be placed again if the green points do not flash. Figure 23 shows an example of a 

calibration being done using a calibration panel. 

 
Figure 23. Image of Calibration screen display with calibration panel 

 

The showing of the green points indicates that the points on the calibration panel 

are picked by the camera and then recognized by ARAMIS. In case, the points do not get 

identified, the image should be snapped again, the focus of the camera should be 

checked, or placement of the calibration board must be changed. The green points should 

be identified in both cameras and only then the calibration work would go further. After 

snapping all 12 pairs of images, ARAMIS compiles and using the method of least squares 

calculates the distance from each point. The calculated distance from two cameras to the 

points present in the calibration board depth can also be calculated. A three-dimensional 
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field is created by the method of least squares and any deformation within the field of 

view can be easily calculated using ARAMIS. Figure 24 is a screenshot of the calibration 

process in ARAMIS. 

 
Figure 24. Image of calibration summary for environmental condition and 

material properties 

 

The set of images are then processed by ARAMIS and calibration file is obtained. 

The calibrated file will also have the details regarding “calibration scale”, “cert. temp” 

and “Exp Coeff” which is kept constant. After the calibration, a summary of the 

calibration file is shown. The effect of temperature has a vital role to play during testing. 

Since the calibration is done at 20.0 C, the temperature effect during testing conditions 

might affect the material that is to be tested. If the structure is made up of steel or 

aluminum the temperature can affect the expansion or contraction of the metal. The focal 

length of the camera is changed according to the presence of light during testing. After 
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the generation of calibration file, the camera is not moved from its position throughout 

the test and is kept fixed. Any change made with the position of the camera might affect 

the measurement and ruin the whole test. 

 
Figure 25. Image display for types of calibration panels 

 

As mentioned previously, the calibration object is important when building a 

calibration file. Figure 25 show stored parameters of different calibration objects. The 

calibration result needs to be checked for validity. The calibration deviation indicates 

calibration accuracy and should be less than 0.04. The camera angle is the actual angle 

between the cameras. The camera variance should be around ±40°. The height variance 

value must be less than any of the three values listed for the measuring volume. If any of 

above parameters are not within the acceptable range, the calibration file is not 

acceptable. The only way to solve this problem is to redo the image calibration procedure 

(Bryne, 2017). 
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4.2 Pattern (specimen preparation) 

The camera picks up the patterns which are laid out on the specimen. During the 

calibration the camera picks up the dots present in the calibrating board whereas during 

the test the beams where marked in a graphical pattern for the camera to recognize. It can 

be done by chalk, spray paint, or marker. The paint can be of any color however the color 

should be in contrast with the target surface.  

For the HPC and UHPC beams chalk was used to create a graphical pattern. 

Figure 26 shows the pattern drawn with chalk on one span. The use of a different color is 

vital because the processed image would be able to give more clear representation of the 

beam and can be used to cover the area of study as a whole beam rather than in parts. The 

patterns were recognized by the camera and ARAMIS was able to process the virtual 

image of the beam. The processed image of the beam was then used for analysis of strain 

and displacement measurement. The distance between two points while creating a pattern 

also remains a sizable component in pattern development. Therefore, pattern 

development on the specimen becomes a vital aspect of the whole test. 

 
Figure 26. Pattern drawn on HPC beam (fascia girder) picture taken from left 

camera 



42 

 

 

The following image is taken from the left Hi-spec camera. The pattern is drawn 

with a chalk on the HPC beam. It is made in a grid like pattern to depict proper points for 

the camera to identify. The pattern should be in contrast with the specimen color to be 

picked by the camera. 

 
Figure 27. Pattern drawn on UHPC beam (fascia girder) picture taken from right 

camera 

 

Similarly, Figure 27 is taken by the right Hi-spec camera. The cameras are 

focused to the same object just like the human eye. This helps to create a three-

dimensional field of view and helps to calculate the depth in the field as well as out of 

plane displacement and strain. 
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Figure 28. Pattern with high contrast attached to the internal girder 

 

Figure 28 shows a pattern used to measure the vertical displacement from a 2D 

system during the 2019 testing. The pattern was created and attached to the internal 

girders. The two points on the pattern represent the edge of diagonal which is used to 

scale the image later when it is processed. The pattern was made on a piece of sheet metal 

and was attached with epoxy to the bottom of the girder stem.  

4.3 Sequence of images  

During the calibration process the image file should be numbered sequentially. 

The numbering also helps to identify the order of the photograph taken. The sequencing 

of the image file should be done for both calibration and during analysis. The image 

number can start from any number but has to be serially without any gap in between. The 
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image files are generated by two cameras left and right. The image from the left should 

be numbered the same way to the image from the right and should be kept in different 

folders. During the calibration or analysis, the input dialogue box will ask for two 

separate image files from two cameras.  

4.4 Facets 

Pixels and facets are similar yet different. The pixel of an image is the smallest 

cell which collectively become a photograph. The facet is a group of pixels which the 

ARAMIS uses to calculate relative displacements. Each facet becomes a data point and 

then relative displacement in the facet is calculated. The default size of a facet is 15x15 

pixels (Bryne, 2017). The size of the facet is directly proportional to the measurement 

accuracy. If the size of facet is increased, then the accuracy is increased because a greater 

number of pixels is accountable for the measurement of displacement and strain. 

However, the increase in facet size will compromise the local deformation within the 

facet. A small facet size captures the localized effects better. This was enough to compute 

the profile of the beam completely. The images obtained were sharp and good enough to 

compute the analysis further. However, precaution should be taken while increase the 

facet size in an attempt to project the image completely. The increase in facet size would 

project the image of the beam fully whereas the local deformation within the facet might 

be neglected which can cause an issue with strain or displacement measurements. 

Therefore, a proper balance should be found while the facet size is chosen. 
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4.5 Stage parameter setting 

One of values which should be taken into consideration is the stage deviation 

number which starts from zero. The intersection deviation value can be set to 0.3 pixels 

or higher, which is a criterion to accept or reject a computed facet point depending on the 

deviation between measurements from the two cameras (Bryne, 2017). The increase in 

value for stage deviation might result in error in measurements.  

4.6 Challenges faced with calibration 

Bridge testing has a lot of added challenges during the testing procedure such as 

environmental effects. A significant increase in temperature, glare and wind are main 

causes the alteration focusses of the camera. The solar glare could cause a disturbance in 

the camera lenses. Appropriate lighting condition is an absolute requirement for quality 

images. Images taken too early or too late during the day can have a problem when 

processed with ARAMIS. Another important aspect to be considered during testing is the 

base where the tripod of the camera stands. The surface should be solid and should not 

sink or move further during the duration of the test. Any movement might be a cause of 

hinderance to obtain quality data. The use of many camera system is a good way to 

capture the deformation of the structure all together, lots of confusion can also occur 

during the execution of the camera system. All the camera systems should be able to 

capture the deformation of the bridge at a similar loading stage to compare the results 

from all camera systems. Proper signaling should be given to respective team members 

operating the camera systems. Another challenge which should be dealt with is the 

advancement of equipment and the durability of the computer as well as camera systems. 
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The testing period can last an entire day and problems regarding wiring, batteries and 

computer can occur. Every problem should be addressed and noted down. During the test 

some of the camera systems were down for few tests and some systems where not in 

synchronization with each other. Adjustment were made during the processing of the 

images. A spreadsheet file was created to keep track of all the images. Every image file 

was tracked and kept in order for processing. The images were also synchronized using 

the time data on the picture and also with the aid of numbering done on each photo file. 
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Chapter 5 

Deformation Analysis for Test 1 

Introduction 

The movement from its initial position after the application of load is the 

displacement of a bridge. The deflection profile of the beam is plotted by calculating the 

displacement of individual facet over the length of the bridge span. The load applied to 

the span is through the axle loading of trucks. The use of truck loading over the span of 

bridge deflects the beam. The Image which are taken during different stages of loading 

are analyzed using ARAMIS to calculate the displacement values. The displacement 

values are plotted against the position of rear axle load. The deflection profile was plotted 

using displacement data obtained from four camera systems (Hi-spec, IL5, Go Pro Hero 

+, Go Pro Hero 6). The maximum displacement value is compared with the value set by 

the American Association of State Highway Transportation Officials (AASHTO) Bridge 

Design Specification. 

To start the displacement analysis in ARAMIS, the first step is to arrange the 

images from the camera in two different folders. Since two cameras are used the folders 

can be named as LEFT and RIGHT. The images are then numbered sequentially from 

zero to identify the images chronologically. 

5.1 Analysis of displacements using ARAMIS 

The ARAMIS software program, a DIC platform from GOM, was used in 

processing the images from the camera systems to obtain the displacements at the 

locations monitored.  For each test, an image was taken prior to loading on the bridge to 
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obtain a reference, or baseline measurement.  An image, or stage, was also taken each 

time the truck stopped on the bridge.  The images from the test were then input into 

ARAMIS and processed to obtain a full field of displacements over the patterned area. A 

line segment through the center of the measurement field was established and the vertical 

displacements across that line for a particular stage were output from the ARAMIS 

program similar to what is shown in Figure 29.  The displacement readings across that 

line segment were then averaged to obtain a single vertical displacement value at the 

monitored location.  This approach was completed for all displacement readings that 

follow in the next sections of the report. 

 In ARAMIS under File>>New Project, name the project and select 3D analysis 

and then facet size and facet step are selected 21 and 15 respectively. The standard 

deviation is selected between 0.3 to 0.9. The images were extracted from their respective 

folders and then the calibration file was pulled out. After processing the images, the 

mapped version of span of beam appears on the interface. The mapped version of the 

beam has strain profile already attached to it. The scale on the right-hand side of the 

screen depicts strain levels which is in various scales. The images are referred to as stages 

and displacement is measured comparatively to the displacement with previous stages. 

The computation time for every analysis was under a minute and there was a total of 800 

images that was analyzed. Not all beams were mapped because of facet size and 

deviation were small. The deviation was increased for this problem which resulted in 

good mapping of the beams. However, the increase in deviation compromised the local 

deformation within the facet but it resulted in proper mapping which was crucial.  
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Figure 29. Y Displacement of an UHPC beam obtained from ARAMIS 

 

After the images were mapped, a section along the middle section of the beam 

was created. The section was parallel to the X-axis. Every point along the section 

represented a data point which had a value for displacement (see figure 30). Every stage 

had its own displacement value. For every stage the displacement along the section was 

averaged and a single displacement value for each stage was obtained. The displacement 

value was then plotted against the span length along the bridge and then deflection profile 

of the beam was obtained. The process was done for all six camera systems. 

 
Figure 30. Vertical displacement value of a UHPC beam under single truck 

loading on path along a line segments (NOTE: 1 in. = 25.4 mm) 
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The UHPC beam was monitored by IL5 and Go Pro Hero 3 camera system along 

the span and monitored by 2M system from beneath. The HPC beam was monitored by 

Hi-spec 1 system, Go Pro Hero + camera system along the span and was monitored by 

DMK system from underneath.  

5.2 Experimental testing results for vertical displacement 

The vertical displacements were measured by taking a section along the span of 

the bridge. The displacement values were averaged over a sectional length and average 

value of displacement was obtained for a particular stage. The displacement value was 

plotted against span length of the bridge to develop displacement profile. 

5.2.1 Performance of the HPC span 

The HPC span was monitored using the HiSpec1, and GoPro Hero + systems at 

the mid-span of the fascia girders and the DMK system at the mid-span of an interior 

girder.  Upon completion of testing it was determined that none of the images from the 

DMK system were not able to be used successfully in determining displacements.  

Therefore, no data from the DMK system will be presented in this report.  Additionally, it 

should be noted that some stages were not captured and as a result some displacement 

values are missing from the influence line plots of vertical displacement.  A negative 

displacement indicates downward deflection while a positive displacement would mean 

the element moved upward.  The rear axle placement is in relation to the start of the 

UHPC span. 

The HiSpec1 camera system monitored the behavior of an exterior girder on the 

HPC span of the bridge.  The influence line plots for vertical displacement of a single H-
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Truck on the bridge for paths 1-6 shown in Figure 2 are presented in Figure 31 with the 

corresponding numerical values in Table 4.  It is noted that path 1 is closest to the 

HiSpec1 system while path 6 is farthest away.  As expected, the greatest response is 

when the truck is moving along path 1 and the rear axle is directly over the location of the 

measured field.  The peak vertical displacement for this test run is 1.2 mm (0.05 in.).  It is 

interesting to note that when the truck is running along path 3 there appears to be some 

twisting in the bridge with the exterior girder moving slightly upward 0.47 mm (0.02 in.).  

This upward motion is present but faint for paths 5 and 6.  The data from path 2 seems to 

suggest some continuity between the two spans as there is a slight downward movement 

on the HPC side when the truck is on the UHPC span.       

 
Figure 31. Displacement vs rear axle placement for an exterior HPC beams for 

single truck loading measured by the HiSpec1 system  
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Table 4.  Numerical values for the vertical displacements corresponding to Figure 31  

Rear Axle 

Location 

(m) 

PATH 1 

(mm) 

PATH 2 

(mm) 

PATH 3 

(mm) 

PATH 4 

(mm) 

PATH 5 

(mm) 

PATH 6 

(mm) 
 

0 0 0 0 0 0 0 

3.048 0.0339 -0.216 0.034 0.0151 0.0338 0.0315 

4.572 -0.0234 -0.183 -0.0153 0.0288 -0.034 0.0311 

6.096 0.0949 -0.388 0.278 0.0334 0.109 0.00885 

7.62 -0.604 -0.421 0.276 0.0198 0.126 -0.0165 

9.144 -0.627 -0.514 0.345 0.0503 

  
10.668 -0.986 -0.776 0.467 

   
12.192 -1.19 -0.875 -0.0109 

  
13.716 -0.576 -0.603 0.0272 

   
 

 

 

Data for vertical displacements captured from the HiSpec1 system due to the 

back-to-back truck configuration is shown for paths 2, 3, 5 and 6 in Figure 32.  Data was 

only captured for this system when the centerline of the two rear truck axles were on the 

UHPC span.  For each path, there appears to be a minimal downward displacement at the 

mid-span of the HPC exterior girder when the vehicles are on the UHPC span.  However, 

when the centerline of the two axles are positioned on the HPC span there is more 

vertical displacement, up to 1.35 mm (0.053 in.) and the displacement is greatest when 

the trucks are closest to the sensor. 
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Figure 32. Displacement vs centerline location of rear axle placement for an 

exterior HPC beams for back-to-back truck loading measured by the HiSpec1 system 

Table 5. Numerical values for the vertical displacements corresponding to Figure 32  

Center Location of 

Rear Axles (m) 

PATH 2 

(mm) 

PATH 3 

(mm) 

PATH 5 

(mm) 

PATH 6 

(mm) 

0 0 0 0 0 

3.048 -0.169 -0.051 -0.0682 -0.0112 

4.572 -0.0741 -0.135 -0.0847 0.0742 

6.096 -0.103 -0.319 -0.211 -0.0399 

7.62 -1.35 -0.56 -0.156 0.0828 

9.144 
 

-0.608 
  

 

Three trucks were positioned side-by-side-by-side to maximize the transverse 

load across the bridge spans.  Displacements were computed from the images gathered 

with the HiSpec1 system and reported in Figure 33 and Table 6.  The data shows that as 

the trucks are on the UHPC span there is some slight upward displacement on the UHPC 

side.  When the trucks transition to the UHPC span the displacements are downward with 
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a maximum of 0.65 mm (0.026 in.) when the axles are near the mid-span.  This again 

suggests some continuity between the UPHC and HPC spans. 

 
Figure 33. Displacement vs centerline location of rear axle placement for an exterior 

HPC beams for three side by side trucks measured by the HiSpec1 system 

Table 6.  Numerical values for the vertical displacements corresponding to Figure 33  

Center Location of Rear Axles (m) Vertical Displacement (mm) 

0 0 

1.524 0.080180332 

3.048 0.16 

4.572 0.124996108 

6.096 -0.584978157 

7.62 -0.396649023 

9.144 -0.106802757 

10.668 -0.443748364 

12.192 -0.65889513 

13.716 -0.653352452 

 

-2

-1

0

1

2

0 2 4 6 8 10 12 14

D
is

p
la

ce
m

en
t 

(m
m

)

Rear Axle Placement (m)



55 

 

The GoPro Hero+ was used as two separate cameras capturing the same field of 

view on the exterior girder opposite of the HiSpec1 cameras.  Since the cameras were run 

separately, the images were processed using 2D DIC analysis. The Hi-spec camera 

system was monitoring the girder where load path 1 and 2 were closest to the girder 

where the Hero+ camera system was closest to the load path 5 and 6 of the camera 

system. Figure 34 shows the data gathered from the GoPro Hero+ system. The path is 

compared in a such a way that both loading path are similar for both camera system. The 

deflection starts immediately for both system as the truck loading also began from the 

UHPC side of the bridge. The deflection for the Go Pro is higher in magnitude compared 

to the displacement observed by the Hi-spec camera system. 

 
Figure 34. Displacement vs rear axle placement for an exterior HPC beams for 

single truck loading along path 4,5,6 measured by the GoPro Hero+ system 
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Table 7.  Numerical values for the vertical displacements corresponding to Figure 34  

Span(m) Path4 (mm) Path5 (mm) Path6 (mm) 

0 0 0 0 

1.524 -0.008335298 0.082656 -0.09783 

3.048 -0.100663181 0.049693 -0.66534 

4.572 -0.02785 -0.24501 -1.96393 

6.096 -0.188083266 -0.47734 -1.51371 

7.62 -0.255292257   
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(b) 

Figure 35. Comparison of vertical displacement vs rear axle placement for the 

exterior HPC beams for single truck loading along path 1 and 2 (b) with 5 and 6 (a). 

 

5.2.2 Performance of UHPC span  

The UHPC span was monitored using the IL5, and GoPro Hero 3 systems at the 

mid-span of the fascia girders and the 2M system at the mid-span of an interior girder.  It 

should be noted that some stages were not captured and as a result some displacement 

values are missing from the influence line plots of vertical displacement.  A negative 

displacement indicates downward deflection while a positive displacement would mean 

the element moved upward.  The rear axle placement is in relation to the start of the 

UHPC span. 

The IL5 camera system monitored the behavior of an exterior girder on the UHPC 

span of the bridge.  The influence line plots for vertical displacement of a single H-Truck 
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on the bridge for paths 1-6 shown in Figure 2 are presented in Figure 3b and Table 10.  It 

is noted that path 1 is closest to the IL5 system while path 3 is closer to the centerline of 

the bridge.  For paths 1 and 2 as the truck enters on the bridge the displacements at the 

mid-span begin to increase.  As expected, the greatest response is when the truck is 

moving along path 1 and smallest for paths 3, 5 and 6.  The peak vertical displacement 

for this test run is approximately 1 mm (0.04 in.).  When the truck is running along paths 

3-6 there appears to be some twisting in the bridge with the exterior girder moving very 

slight upward with a maximum displacement of 0.43 mm (0.017 in.).  This is slightly 

lower than what was seen for the HPC span.  The data from path 1 seems to suggest some 

continuity between the two spans as there is a slight upward movement on the UHPC side 

when the truck is on the HPC span. 

  
Figure 36. Displacement vs rear axle placement for an exterior UHPC beams for 

single truck loading measured by the IL5 system  
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Table 8.  Numerical values for the vertical displacements corresponding to Figure 36  

Rear Axle 

Location 

(m) 

PATH 1 

(mm) 

PATH 2 

(mm) 

PATH3 

(mm) 

PATH 4 

(mm) 

PATH 5 

(mm) 

PATH 6 

(mm) 

0 0 0 0 0 0 0 

1.524 -0.215 -0.1715 0.0361 -0.0769 -0.03916 0.0463835 

3.048 -0.43 -0.343 0.0722 -0.15381 -0.07832 0.092767 

4.572 -0.638 -0.39 0.0817 0.425234 0.001695 0.0949137 

6.096 -0.62 -0.687 0.0787 0.282311 -0.06844 0.1377856 

7.62 -1.02 -0.233 0.13 0.312833 0.026139 0.1447496 

 

9.144 

 

-0.147 

 

-0.363 

 

0.114 

 

0.418648 

  
10.668 -0.0824 

 

0.105 

   
12.192 0.311 

 

0.0995 

   
13.716 0.267 

 

0.0293 

   
 

The GoPro Hero 3 was used as was used as two separate cameras capturing the 

same field of view on the exterior girder opposite of the IL5 cameras.  Since the cameras 

were run separately, the images were processed using 2D DIC analysis.  To verify both 

sets of images were capturing the same, or nearly the same, displacements, the results 

were compared then averaged. The results are shown in Table 9 and Figure 37. 
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Figure 37. Displacement vs rear axle placement for an exterior UHPC beams for 

single truck loading along path 4,5,6 measured by the GoPro Hero3 system 

Table 9. Numerical values for the vertical displacements corresponding to Figure 37 

Span(m) Path4(mm) Path5(mm) Path6(mm) 

0 0 0 0 

1.524 0.004945633 -0.600313392 -1.725673444 

3.048 -0.223681951 -0.85098924 -1.759114343 

4.572 -0.445042929 -0.822700476 -0.68743 

6.096 -0.31608275 -0.299346143 -0.065599409 

7.62 -0.02904814   
 

The UHPC side of the bridge was monitored by GoPro Hero 3 and IL5 camera system. 

The IL5 camera system was monitoring the girder where load path 1 and 2 were closest 

to the girder where the Hero3 camera system was closest to the load path 5 and 6 of the 

camera system. The path is compared in a such a way that both loading path are similar 

for both camera system. The deflection starts immediately for both system as the truck 

loading also began from the UHPC side of the bridge. The deflection for the Go pro is 
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higher in magnitude compared to the displacement observed by the Hi-spec camera 

system. 

 
(a) 

 
(b) 

Figure 38. Comparison of vertical displacement vs rear axle placement for the 

exterior UHPC beams for single truck loading along path 1 and 2 (b) with 5 and 6 (a). 
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A comparison of vertical displacement was completed at the mid-span of the exterior 

girders monitored by the IL5 and HiSpec1 systems for a single vehicle on paths 1-3.  The 

results for this are shown in Figure 39 with the corresponding numerical values in Table 

15.  The dashed and solid lines correspond to the IL5 and HiSpec1 systems respectively.  

For both beams the maximum downward vertical displacements occur when the truck is 

along path 1.  This maximum value is 1.02 mm (0.04 in.) and 1.19 mm (0.047 in.) for the 

UHPC and HPC spans respectively.  Path 3 produces an upward movement of the 

exterior girder for both spans with the larger result on the HPC span.  While comparing 

the values for displacement for UHPC and HPC beams at similar stages and under similar 

loading stages, the displacement value of HPC beam are comparatively higher than the 

UHPC beam. 

 
Figure 39. Comparison of displacement vs rear axle placement for the exterior 

beams from IL5 (dashed lines) and HiSpec1 (solid lines) under single truck loading 
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Table 10.  Numerical data for vertical displacements corresponding to Figure 39 

Center 

Location 

of Rear 

Axles 

(m) 

PATH 1 

HiSpec1 

Vertical 

Displacement 

(mm) 

PATH 1’ IL5 

Vertical 

Displacement 

(mm) 

PATH 2 

HiSpec1 

Vertical 

Displacement 

(mm) 

PATH 2’ IL5 

Vertical 

Displacement 

(mm) 

PATH 3 

HiSpec1 

Vertical 

Displacement 

(mm) 

PATH 3’ IL5 

Vertical 

Displacement 

(mm) 

0 0 0 0 0 0 0 

3.048 0.0339 -0.43 -0.216 -0.343 0.034 0.0722 

4.572 -0.0234 -0.638 -0.183 -0.39 -0.0153 0.0817 

6.096 0.0949 -0.62 -0.388 -0.687 0.278 0.0787 

7.62 -0.604 -1.02 -0.421 -0.233 0.276 0.13 

9.144 -0.627 -0.147 -0.514 -0.363 0.345 0.114 

10.668 -0.986 -0.0824 -0.776 

 

0.467 0.105 

12.192 -1.19 0.311 -0.875 

 

-0.0109 0.0995 

13.716 -0.576 0.267 -0.603 

 

0.0272 0.0293 

 

The 2M system was near the mid-span of an interior girder on the UHPC span of the 

bridge.  Figure 40 and Table 11 depict the vertical displacements as a single truck passes 

over paths 1-6. For each influence line the vertical displacement is in the downward 

direction as expected.  The largest displacement occurs for paths 1 and 2 with a 

maximum displacement of 1.7 mm (0.07 in.).  The displacements are smallest for paths 5 

and 6 which are farthest from the monitored location.  Very small amounts of 

displacement are seen at this location when the vehicle is positioned on the HPC span of 
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the bridge.  While they are small, there does appear to be some interaction between the 

two spans.   

 
Figure 40. Displacement vs rear axle placement for an interior UHPC beams for 

single truck loading along paths 1-6 measured by the 2M system 

Table 11.  Numerical values for the vertical displacements corresponding to Figure 40 

Rear 

Axles (m) 

PATH 1 

(mm) 

PATH 2 

(mm) 

PATH 3 

(mm) 

PATH 4 

(mm) 

PATH 5 

(mm) 

PATH 6 

(mm) 

0 0 0 0 0 0 0 

1.524 -0.47611 -0.29954 -0.26366 -0.224 -0.18207 -0.201 

3.048 -0.65278 -0.59908 -0.52732 -0.44799 -0.36414 -0.402 

4.572 -0.79429 -0.74122 -0.66743 -0.54134 -0.4022 -0.35892 

6.096 -1.69298 -1.59879 -1.17877 -0.80367 -0.37115 -0.27376 

7.62 -0.96249 -0.9267 -0.60335 -0.45845 -0.25334 -0.2643 

9.144 -0.2051 -0.18447 -0.23237 -0.25041 

  
10.668 -0.08933 -0.11286 -0.18711 

   
12.192 -0.06834 -0.09031 -0.19044 

   
13.716 

 

-0.09513 -0.20781 

   

 

-2

-1

0

1

2

0 2 4 6 8 10 12 14

D
is

p
la

ce
m

en
t 

(m
m

)

Rear Axle Placement (m)

PATH1 PATH2

PATH3 PATH4

PATH5 PATH6



65 

 

The IL5 and 2M systems were compared for testing in paths 1-3 for a single truck loading 

and shown in Figure 41 and Table 12.  The data indicates higher vertical displacement 

measured by the 2M system towards the center of the bridge compared to that measured 

by the IL5 on the exterior.  It was expected that the exterior girder should have higher 

displacements than an interior girder because the loading is near the exterior.  Path 2 on 

the other hand is more directly over the location of the 2M system so that should have 

higher displacement.  A possible reason for the lower displacements on the exterior girder 

is the result from a stiffer cross-section compared to an interior beam.  More investigation 

into this finding needs to be completed before any conclusions can be drawn. 

 
Figure 41. Comparison of vertical displacement vs rear axle placement for beams 

from IL5 (solid lines) and 2M (dashed lines) systems under single truck loading 
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Table 12.  Numerical values for the vertical displacements corresponding to Figure 41 

Rear 

Axles 

(m) 

IL5 PATH 1 

Displacement 

(mm) 

2M PATH 1 

Displacement 

(mm) 

IL5 PATH 2 

Displacement 

(mm) 

2M PATH 2 

Displacement 

(mm) 

IL5 PATH 3 

Displacement 

(mm) 

2M PATH 3 

Displacement 

(mm) 

0 0 0 0 0 0 0 

1.524 -0.215 -0.238057 -0.1715 -0.29953955 0.0361 -0.2636576 

3.048 -0.43 -0.4761139 -0.343 -0.59907909 0.0722 -0.5273152 

4.572 -0.638 -0.6527754 -0.39 -0.74121914 0.0817 -0.6674349 

6.096 -0.62 -0.7942945 -0.687 -1.59879403 0.0787 -1.1787692 

7.62 -1.02 -1.6929848 -0.233 -0.92669697 0.13 -0.6033512 

9.144 -0.147 -0.9624898 -0.363 -0.18447343 0.114 -0.2323686 

10.668 -0.0824 -0.2050996 

 

-0.11286294 0.105 -0.1871089 

12.192 0.311 -0.089333 

 

-0.09031235 0.0995 -0.1904354 

13.716 0.267 -0.068345 

 

-0.09513039 0.0293 -0.2078125 

  

Load testing of a 2 span multi-girder/stringer pre-stressed concrete bridge was 

undertaken in New Mexico.  One span of the structure was constructed using UHPC and 

the other HPC.  During this testing four 3D and four 2D DIC systems were deployed to 

monitor displacements at various locations of the structure under controlled prescribed 

loading.  The loading was selected as to generate maximum flexural and shear responses 

within both spans.  Images were captured at each static positioning of the loading on the 

bridge.  These images were processed using the ARAMIS GOM DIC software package to 

generate displacement measurements.  The results appear to indicate that the UHPC span 

is stiffer than the HPC span.  This can be seen from the smaller displacements of the 
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exterior fascia girders monitored by the HiSpec1 and IL5 systems under identical loading 

conditions.  It was noted in some tests that there was very small upward displacement of 

an exterior girder which suggests the possibility of the bridge twisting slightly.  In any 

case, all displacement measurements were well below the maximum allowed by 

AASHTO Bridge Design Specifications (Bell et al., 2010). 

The test was carried out for single truck loading and displacement were 

calculated. However, double truck loading and triple truck loading were also used for the 

testing. The test had two trucks placed back to back and also three trucks side by side 

which also marked the highest loading for the test. The observation for the test with 

loading more than a single truck are shown and discussed below.  

The displacement calculated using DIC has advantages over many techniques 

used today. Finite Element Analysis can also be used to calculate deformation on a 

structure but DIC is able to capture the current condition of the structure as well. FEA 

analysis such as SAP2000 can calculate deformation but conditions like age of the 

structure, deterioration cannot be accurately defined. The use of image helps to capture 

the condition of the structure as it is in the current situation and will be able to give data 

accurately with less assumptions. This is a crucial aspect of DIC in cases where micro 

measurements are considered. The deviation in accuracy of data can be minimized using 

DIC. Although, FEA analysis is obligatory during deformation analysis, DIC can paint an 

accurate view of how a structure behaves in present conditions. The advantage of DIC for 

structural health monitoring is vital as it can depict present condition of structure with 

reasonable accuracy and relatively easily compared to other methods. 
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The loading greater than a single truck loading were conducted to calculate 

maximum displacement in both UHPC and HPC beam. The deflection of two beams are 

calculated separately to measure the performance of both beams. 

 

(a)       (b) 

Figure 42.  Comparison of displacement of HPC (left) (a) and UHPC (right) (b) 

under single truck loading 

 

The comparison between displacement value captured by Hi-spec and IL5 can be 

studied side by side. The displacement value obtained from Hi-spec camera showed 

larger displacement values than the IL5. This UHPC beam gave less deflection value than 

the HPC beam under similar loading condition. For test done under similar path with 

different truck loadings the displacement obtained from UHPC beam was less than the 

displacement obtained from the HPC beams. The deflection values for similar loading in 

same path was compared side by side for both UHPC and HPC beams. The downward 

displacement was lesser compared to the HPC beams which implies the beam deflected 

lesser than the HPC beam. The positive displacement (upward displacement) is also 

lesser in UHPC beam compared to the HPC beam concluding that the UHPC beams are 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 1 3 5 7 9

D
is

p
la

ce
m

en
t 

(m
m

)

Rear Axle Placement (m) -2

-1

0

1

2

-1 1 3 5 7 9

D
is

p
la

ce
m

en
t 

(m
m

)

Rear Axle Placement (m)

PATH 1

PATH2

PATH3



69 

 

stiffer than the HPC beams. The comparison for two beams for different loading is shown 

from Figure 43-45.   

 
Figure 43. Comparison of HPC and UHPC under similar loading condition on 

same path 

 
 

 
Figure 44. Comparison of HPC and UHPC under similar loading condition on 

same path 
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Figure 45. Comparison of HPC and UHPC under similar loading condition on 

same path 
 

5.3. Strain analysis 

 

This technique works by applying a pattern to the surface of a test specimen, 

capturing a series of images of the specimen during a test, and then analyzing the images 

with an algorithm that determines first the displacement field and then the strain field for 

each image. The first image which is processed has no strain associated with it. The 

image is then split into small subsets and the patterns within each subset of subsequent 

images are compared to the reference image and displacements are calculated. From 

these displacements, a strain map is calculated. The strain maps of all the strain 

components (axial, transverse, shear strain), along with maximum and minimum normal 

strains, can be determined. Compared to traditional methods of local strain (e.g. strain 

gauges) or average strain over a large gauge length (e.g. extensometers) measurement, 

full-field strain measurement yields an enormous amount of additional information that 
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can help engineers and scientists better understand the behavior of materials and 

structures. 

ARAMIS has built in algorithm to compute strain fields. The in-plane stress along 

X axis and Y axis are computed from displacement fields. However, the out- of plane 

stresses are calculated by plane stress or plane strain model. There are two ways to 

compute the strain from the data points:  linear strain computation and spline strain 

computation.  The linear strain computation uses displacement data points (facets points) 

to calculate the strain, whereas the spline strain computation interpolates the 

displacement data points to create additional points first and then uses both the 

interpolated and original data points to calculate the strain.   The default linear strain 

computation size is three, which means a total of nine neighboring facet points, including 

the center facet, are used to compute the strain at the center facet.  A large computation 

size reduces the noise, but it also may reduce the total number of strain computation 

points.  A validity quote of 100% means 100% of the neighboring facets points must be 

present in order to compute the strain.  This value is usually not set to 100%.  Instead, it 

is set to 55% in order to compute the strain near the edges or cracks on the target. The 

spline strain computation is able to compute the strain in a location where there is a small 

radius of curvature.  The spline strain can calculate the strain on the surface or in the 

middle of the target.  There are also two ways to present the computed strain results:  the 

total strain method and the step-by-step method.  The first method uses the first stage as 

the reference stage, whereas the latter method always uses the previous to current stages.  

To compute the stress on the target, the material properties, such as the Young’s 
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modulus, are required.  The plane stress model is appropriate for thin materials, whereas 

the plane strain model is suitable for thick material. 

The strain computation method used for the test was linear strain computation 

method. The first step is similar to the one used to calculate displacement. After mapping 

of the HPC and UHPC beam a section along the beam is created. Unlike during the 

calculation of displacement. The section is created 1inch from the bottom of the beam. 

Strain gauges were used at the bottom of every fascia girders and the section was created 

1” above the area where the strain gauges were placed. The reason for selecting 1inch 

from the bottom was to avoid potential noise which is obtained at the edges of the 

mapped object. The other reason being the mapped surface might not have the edge of the 

beam mapped completely which brings inconsistency in the data. After the section is 

created, linear computation of strain is chosen. Since every point along the section has its 

own strain value, the average value along the section of the beam is taken. The strain 

value for every stage is calculated. The strain value for every stage represents the strain 

produced during each stage of loading.  

The calculated value of strain is then plotted against the distance along the span of 

the beam. The change in strain at different level of loading during the test can also be 

represented by color code which is incorporated with ARAMIS. The change in strain can 

also be monitored as the loading on the bridge changes. Along with the color code the 

strain values are displayed on a scale. The strain gauges were deployed in every girder to 

calculate the strain measurements. The strain values obtained from DIC was also 

compared with the strain values obtained from the strain gauges to validate the strain 
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measuring method using DIC. Similar to the displacement analysis, the strain values are 

measured for single truck loading, double truck loading and triple truck loading. 

When looking at very small strains, high noise levels may make it difficult to get 

good results. As with all measuring techniques, noise is not avoidable in DIC, but steps 

can be taken to minimize it. 

In most of the cases while measuring strain values of a bridge the measured value 

of strain is very small and high noise level makes it very difficult to get good results. 

There are various methods to reduce noise levels during a test. Necessary steps can be 

taken to reduce the level of noise during a test.  

One of the reasons is the speckle pattern created on the specimen before the 

testing. A good pattern will allow the correlation to be made with high confidence and 

produce low noise. The pattern should meet requirements to produce good results. The 

color used to create speckle should be high in contrast, the speckle pattern should be 

consistent in size. The speckle size should be adequate because if the size of the speckle 

is too small the resolution of the camera might not be able to pick it up. If the size is too 

big the speckle might cover a large area and the small displacement cannot be observed. 

Inconsistent size and repetitive pattern can be a potential cause to create a high noise 

band for the test. The original displacement fields calculated at discrete locations using 

DIC are unavoidably contaminated by noises. If the strain fields are directly computed by 

differentiating the original displacement fields, the noises will be amplified even at a 

higher level, and the resulting strain fields are untrustworthy. The criteria which required 

the pattern to be in contrast was satisfied for the test AASTHO (2010). 
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Noise is unavoidable during testing of DIC but can be minimized by taking the 

necessary precautions. Pattern being one of the most important elements to minimize the 

noise level. There are other components which can be considered: a) focus b) contrast c) 

lighting d) glare e) F-stop. 

Sharp focus on the pattern can detect it more accurately than otherwise. Hard and 

sharp edges would help to keep the facet size to a minimum and still produce good 

mapping of the specimen. 

The contrast of the marker used also determines the effectiveness of mapping and 

noise reduction. Hard edges, constant speckle size and less bright areas gives good 

mapping. The aperture of lens also has a vital role in determining the appropriate amount 

of light going inside the camera.  

5.3 Experimental Testing Results for Strain Measurement 

The strain measurement was calculated over a section on a beam. The section was 

selected at a distance of one inch from the bottom of the span. The strain value was 

averaged along the section created. The strain value was obtained for every loading stage. 

5.3.1 Performance of HPC span 

The HPC span of the bridge was monitored by the Hi-spec camera system and Go 

Pro Hero + on the fascia girders and the interior girders were monitored by DMK camera 

system. The span monitored by the Hi-spec 1 is closer to path 1 whereas path 6 was 

closer to Go Pro Hero + camera system. The strain values were also measured using 

strain gauges for fascia girders and also for internal girders. The strain values obtained 

from the strain gauges are shown in Table 13. 
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Table13. Strain Values measurement of bridge girders for HPC beams measured by 

strain gauges 

Diagnostic Test: HPC Single Moving Truck Load   

Strain (με) 

Gauge Location  Path 1 Path 2 Path 3 Path 4 Path 5 Path 6  

HPC NBG1  73.7 37.5 11.8 5.9 1.8 2.36 

HPC SBG1  76.0 50.3 19.2 13.5 5.7 5.69 

HPC NBG2 78.0 60.1 27.7 17.3 6.5 7.18 

HPC SBG2 69.8 72.3 44.8 29.4 14.7 14.72 

HPC NBG3  66.8 68.1 44.2 30.4 15.7 12.86 

HPC SBG3  56.0 60.8 62.7 49.9 29.9 24.49 

HPC NBG4 55.9 61.0 65.1 54.7 34.6 26.08 

HPC SBG4  49.3 52.7 74.9 73.0 59.9 53.67 

HPC SBG5 24.6 29.5 57.2 71.5 74.3 72.74 

HPC SBG6  9.4 11.5 27.5 42.7 69.9 77.35 

HPC SBG7 2.3 5.2 13.1 22.0 42.6 77.76 

HPC SBG8 -1.8 2.7 7.2 10.3 24.7 77.98 

 

For every girder in the bridge one strain gauge was deployed named as north 

bound gauge and other as south bound gauge. For eight girders a total of 12 strain gauges 

were used. The data obtained from DIC was compared with the data obtained from the 

strain gauges in Table 14. 
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Table14. Strain values comparison of bridge girders for HPC beams measured by strain 

gauges and DIC 

Path Strain Gauge (με) Digital Image correlation (με) 

1 76.03 130.62 

2 69.76 69.16 

3 55.98 -6.57 

4 49.3 -9.56 

5 -1.79 -2.06 

 

The strain gauges measured strain for the fascia girder for loading on all load 

paths. The strain values also decreased gradually as the truck moved further from the 

outer girder. The maximum value of strain obtained from DIC was 130.62 με whereas the 

strain gauge measured a value of 76.03 με. The minimum value measured by DIC was -

9.568 με whereas the minimum value measured by the strain gauge was -1.79 με. For 

strain measurement on HPC beam DIC did not show good accuracy based on the results. 

The noise band can be considered as one of the reasons to affect the accuracy of DIC 

while measuring micro-strain values. The value measured for strain on the fascia girder 

of the HPC beam is tabulated in Table 15. 
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Table 15. Strain values for HPC beam on single truck loading  

SPAN PATH1 PATH2 PATH3 PATH4 PATH5 

0 0 0 0 0 0 

1.524 -6.1896281 -73.39129 -55.2512 -30.10881 -2.34252127 

3.048 -25.028789 -57.54847 -75.43354 -55.98545 -4.73808453 

4.572 26.5990212 -35.11456 -58.74307 -26.37857 -2.06622648 

6.096 -86.72323 31.037274 -6.572099 -9.568169 -4.50330627 

7.62 38.2373913 -9.632036 -16.56176   

9.144 84.43159 49.152845 -26.56315   

10.668 130.625787 69.164651 -43.01237   

12.192 -20.7522379 20.980115 -8.695627   
 

5.3.2 Performance of UHPC span 

The UHPC span of the bridge was monitored by the IL5 camera system and Go 

Pro Hero plus on the fascia girders and the interior girders were monitored by 2M camera 

system. The span monitored by the IL5 is closer to path 1 whereas path 6 was closer to 

Go Pro Hero plus camera system. The strain values were also measured using strain 

gauges for fascia girders and also for internal girders. Unlike the DMK camera system 

the 2M system was able to give decent displacement data and therefore it was also used 

to process the strain data. The strain values obtained from the strain gauges are shown in 

Table 16. 
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Table 16. Strain values measurement of bridge girders for UHPC beams measured by 

strain gauges 

Diagnostic Test: UHPC Single Moving Truck Load   

Strain (με) 

Gauge Location  Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 

UHPC NBG1  80.7 47.4 19.2 8.4 4.2 3.28 

UHPC SBG1  87.9 61.8 27.9 16.9 9.2 6.87 

UHPC NBG2 81.0 61.3 29.0 19.2 7.0 5.62 

UHPC SBG2 67.0 63.2 41.5 28.9 12.5 10.13 

UHPC NBG3  66.1 64.7 48.0 32.1 14.9 13.51 

UHPC SBG3  60.5 65.5 64.0 51.1 27.8 25.78 

UHPC NBG4 54.2 54.7 60.0 54.2 31.7 24.47 

UHPC SBG4  45.2 47.5 66.0 69.2 55.8 47.54 

UHPC SBG5 21.4 22.8 47.0 62.9 60.1 62.38 

UHPC SBG6  12.5 11.6 28.2 44.4 64.2 71.16 

UHPC SBG7 4.7 4.7 13.7 25.0 45.8 86.42 

UHPC SBG8 1.9 1.5 5.3 17.8 31.8 85.34 

 

For every girder in the bridge one strain gauge was deployed named as North 

bound gauge and other as south bound gauge. For eight girders a total of 12 strain gauges 

were used. The data obtained from DIC was compared with the data obtained from the 

strain gauges in Table 17. 
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Table 17. Strain values measurement of bridge girders for UHPC beams measured by 

strain gauges and DIC (mention girder) 

Path Strain Guage (με) Digital Image correlation (με) 

1 87.88 81.29 

2 67.04 72.04 

3 60.49 17.45 

4 45.23 47.70 

5 4.72 97.45 

6 1.93 33.5 

 

The strain gauges measured strain for the fascia girder for loading on all load 

paths. The strain values also decreased gradually as the truck moved further from the 

outer girder. The maximum value of strain obtained from DIC was 97.45 με whereas the 

strain gauge measured a value of 87.88 με. The minimum value measured by DIC was 

17.458 με whereas the minimum value measured by the strain gauge was 1.93 με. For 

strain measurement on HPC beam DIC did not show good accuracy based on the results. 

The strain value measured from two different method were not found to be similar. The 

strain value from DIC had more errors and accuracy was very less. Similar reasons 

regarding noise bands ranging between -100 micro-strain to 100 micro-strain, the other 

reason being the bridge girder was directly monitored only on the fascia girder and not on 

the internal girders. The strain measurement from IL5 measured strain only for the outer 

girder and the measurement of strain gauges were more comprehensive as it covered 

most part of the bridge. The DIC gave values for changes in strain only for the outer 

girder. Further studies can be implemented by using camera system on the internal girder 
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and comparison must be done with the strain values obtained from it. The value measured 

for strain on the fascia girder of the UHPC beam is tabulated in Table 18. 

Table 18. Strain value for UHPC beam on single truck loading 

SPAN(m) PATH1(με) PATH2(με) PATH3(με) PATH4(με) PATH5(με) PATH6(με) 

0 0 0 0 0 0 0 

1.524 78.9202272 -86.46709 -73.4959 -19.76298 27.36017466 -3.74064 

3.048 9.55724956 -65.86747 -182.984 -57.12862 97.45725766 26.94795 

4.572 81.2994149 72.043668 -25.31237 37.54688 74.04209235 33.5 

6.096 -16.2302353 62.151391 -44.23032 47.709794 86.48795207 29.75576 

7.62 31.8431635 108.1673 -184.0114 -24.7848   

9.144 -101.685347  -21.5419    

10.668 53.9294455  -58.27356    

12.192 -21.0629254  17.458725    
 

5.3.3 Performance of UHPC span from 2M system 

The 2M camera system measured the bridge directly from underneath the UHPC 

bridge. The camera system was located around the mid-span of the bridge. The 2M 

system measured strain for loading along the bridge and since the displacement values 

were along Z direction, out-of-plane displacement was measured. The strain values 

measured from the 2M camera system are summarized in Table 19. 
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Table 19. Strain values measurement of bridge girders for UHPC beams measured by 2M 

system 

SPAN (m) PATH1 (με) PATH2 (με) PATH3 (με) 

0 0 0 0 

1.524 186.2 23.2 15.4 

3.048 192.1 145.2 121.2 

4.572 212.2 188.2 175.3 

6.096 228.6 198.3 192.3 

7.62 198.2 156.2 165.8 

9.144 263.4 144.2 172.5 

10.668 176.5 112.7 92 

12.192 117.2 109.2 56.2 

13.716 56.2 72.3 82.8 

 

The strain values were measured for loading on path 1,2 and 3 for single truck 

loading. Again, the strain value measured from DIC was not accurate for the 2M system. 

The value ranged for a highest value of 263.4 με to a lowest of 15.4 με. The DIC system 

was unable to represent strain value for the bridge. The strain modelling to obtain a single 

value of strain as obtained by the bridge should be checked for further tests. The camera 

system should capture the portion of the bridge where the strain gauges are precisely 

located. This would involve more camera system to be deployed. The strain value should 

then be calculated by choosing a section that would pass through the point where the 

strain gauges are measuring strain values. Correction factors are developed from data 

analysis to improve the accuracy of DIC data for strain measurement. 
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5.4 Comparison of strain value from 2M system with strain gauges for north bound 

girder 3 (NG3) 

The 2M system was a 3D system monitoring two internal girders. The 2M system 

was measuring 2 stems of the internal girder. The strain gauges were placed on the south 

bound girder and a north bound of girder 2 and 3 respectively. The strain value was 

measured from DIC for single truck loading on path 1,2 and 3. The value was compared 

with the north bound strain gauge monitoring of girder 3. A comparison is made for the 

strain measured from the 2M system with the BDI strain gauges in Table 20. 

Table 20. Strain Values measurement of bridge girders for UHPC beams measured by 

strain gauges and DIC (NG3) 

Path Strain Gauge (με) Digital Image correlation (με) 

1 54.2 228.6 

2 54.7 198.3 

3 60 192.3 

5.4 Comparison of strain value from strain gauges to measure performance of 

UHPC and HPC beam 

According to the strain measurement from strain gauges, the UHPC beams 

experience more strain than the HPC beams on the fascia girders whereas for the internal 

girders the strain values for UHPC beams were obtained more than the HPC beam. The 

strain values were recorded when the loading was a single moving truck load. The UHPC 

beam measured a highest value of 87.88 με whereas the HPC beam measures a highest 

value of 78.0 με under single truck loading on various load path 1. The strain values for 

other paths are summarized in Table 21. 
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Table 21. Strain values measurement of bridge girders for UHPC and HPC from strain 

gauges 

Diagnostic Test: Single Moving Truck Load 

Strain (με) HPC UHPC 

Path 1 78 87.88 

Path 2 72.32 65.45 

Path 3 74.88 66 

Path 4 73.01 69.23 

Path 5 74.29 64.23 

Path 6 77.98 86.42 

 

According to the measurement from strain gauges, the UHPC beams experience 

more strain on the fascia girders than the internal girders. The strain values for HPC 

beams were obtained more than the UHPC beam when the loading was increased from 

single truck to double truck. The UHPC beam measured a highest value of 113.5 με 

whereas the HPC beam measures a highest value of 125.6 με under double truck loading. 

The strain values for other paths are summarized in Table 22. 

Table 22. Strain Values measurement of bridge girders for UHPC and HPC from strain 

gauges 

Diagnostic Test: Double Moving Truck Load 

 HPC(με) UHPC(με) 

Path 1 110.7 113.5 

Path 2 125.6 110 

Path 3 121.1 113.1 
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According to the measurement from strain gauges, the UHPC beams and HPC 

beam experience the same trend when the loading is changed from double truck loading 

to triple truck loading. The UHPC beam measured a highest value of 127.5 με whereas 

the HPC beam measures a highest value of 127.3 με under triple truck loading. The strain 

values for other paths are summarized in Table 23. 

Table 23. Strain values measurement of bridge girders for UHPC and HPC from strain 

gauges 

Diagnostic Test: Triple Moving Truck Load 

Strain  HPC(με) UHPC(με) 

Path 1 127.3 127.5 

Path 2 121.5 121.4 

 

5.5 Conclusion 

The strain value obtained from DIC were not as accurate as the data measured 

from the strain gauges. The reasons can be because of the incapability of DIC to measure 

micro-strain especially in the region of -100 to +100 με. Another reason can be the 

section taken for consideration for strain measurement. The section taken for strain 

measurement was 1 inch from the bottom of the fascia girder. This was done to find the 

strain value closest to the strain gauges. The strain values obtained from the strain gauges 

were used to characterize the performance of UHPC and HPC beam. The data obtained 

from DIC was discarded as the values were inconsistent. Although, the magnitude of 

strain values also increased with the increase in loading conditions there was big 

fluctuations which can be caused because of the noise band. The use of DIC for micro-
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strain measurement was poor compared to the strain gauges. Therefore, strain values for 

DIC were not taken for study. 
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Chapter 6 

Deformation Analysis for Test 2 

Introduction 

The second test used eight 2-D and three 3-D systems. The 2-D systems were 

used to monitor the displacement of internal girders. There was no strain measurement 

done for the second test. Displacement was calculated using ARAMIS and plotted to get 

the displacement profile at a point as the truck moves along the bridge. The loading 

protocol used was similar to the first test which was single truck loading, double truck 

loading and triple truck loadings. The second test had a different processing approach 

compared to the first one. The second process involved calculation of displacement using 

single point instead of a section. The first test used a section to calculate the displacement 

whereas point displacement on the center of the target was used to calculate the 

displacement for the 2-D system. The displacement was calculated for eight camera 

systems. New Mexico State University also measured displacement for the same testing 

conditions using dial gauges, LVDTs and string pots. The data obtained from the dial 

gauges and transducers were compared with the displacement obtained from DIC.  

6.1 Analysis of displacement using ARAMIS 

The ARAMIS software program, a DIC platform from GOM, was used in 

processing the images from the camera systems to obtain the displacements at the 

locations monitored.  For each test, an image was taken prior to loading on the bridge to 

obtain a reference, or baseline measurement.  An image, or stage, was also taken each 

time the truck stopped on the bridge.  The images from the test were then input into 
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ARAMIS and processed to obtain a full field of displacements over the patterned area.  

Because the displacements are computed for the entire field of the pattern there is a lot of 

flexibility in where to take the displacement measurement.  A point on the center of the 

pattern as shown in figure 47 was chosen to calculate displacement values. This approach 

was completed for all displacement readings that follow in the next sections of the report. 

  In ARAMIS under File>>New Project, name the project and select 3D analysis 

and then facet size and facet step are selected 15 and 13 respectively. The standard 

deviation is selected between 0.3 to 0.7. The images were extracted from their respective 

folders and then the calibration file is was pulled out. After processing the images, the 

mapped version of span of beam appears on the interface. The images are referred to as 

stages and displacement is measured comparatively to the displacement with previous 

stages. The computation time for every analysis was under a minute and there was a total 

of 1122 images that was analyzed.  

The displacement for the second test was plotted against stops where every 

stopped represented the placement of the axle loading of the truck used. The two beams 

were divided quarterly and were named as Q1, M and Q2 for first quarter, mid-span and 

second-quarter respectively. The truck axles are represented in figure 46 where a double 

back-to-back loading is on the bridge. The front axle of the truck on the UHPC beam was 

marked as the first 3 stops, the front axle of the truck on the HPC beam was marked as 

the next 3 stops and the rear axle of the truck on the HPC beam was considered as the last 

three stops. Therefore, the testing had a distinct 9 stops depending on the position of the 

axle of the truck. 
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Figure 46. Axle load representation on bridge 

 

 
Figure 47. Y Displacement of an internal girder on UHPC beam obtained from ARAMIS 

 

After the images were mapped, a point on the mid-section of the pattern was 

created. Since it was a point displacement, there was a single value for displacement 

which was used in the displacement profile. The displacement value was then plotted 

against the stop along the bridge and then deflection profile of the beam was obtained. 

The process was done for all eight camera systems. Figure 49 is an example of the 

displacement for two stages along a line segment. 
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Figure 48. Vertical displacement value of a UHPC beam under single truck loading on 

path along a line segment  

 

6.2 Experimental testing results for vertical displacements 

The internal girder of HPC side was monitored using Ampscope 1, DMK 1, Go 

Pro Hero + Right and Go Pro Hero3 1. The eight internal girders were marked as A and B 

for north and south side respectively. Two girders were monitored by a single camera and 

displacement profile was plotted for different loading conditions. Similarly, the internal 

girder of UHPC side was monitored using Ampscope 2, DMK 0, Go Pro Hero + Left and 

Go Pro Hero3 2. The vertical displacement was plotted against the stop and displacement 

profile was obtained. 

a) Go Pro Hero3 1 

The Go Pro Hero 3 1 was monitoring internal girder 2A and 2B. A negative 

displacement indicates downward deflection while a positive displacement would mean 

the element moved upward.  The loading started from the UHPC span from stop 0 to stop 

8.  
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6.2.1 Displacement of internal girder under single truck loading from path 1-6 

Figure 49 shows the displacement near mid span of girder 2 on the HPC beam 

When the front axle is on path 1 of the UHPC span the HPC span moved upwards from 

stop 0 to 3 but when the truck moved towards the HPC span the deflection of the beam 

started to go downwards. The girders 2A and 2B are closest to path1. The girder stem 2A 

comes down the most with the maximum displacement value of 1.7049mm. The beam 2B 

comes down with a displacement value of -1.0034mm. The displacement decreases 

gradually when the single truck loading moves away from girder 2A and 2B. Minimum 

positive displacement is noticed when loading is on path6. The minimum value was 

0.0154mm as shown in Figure 49 and represented in Table 24. The upward movement of 

the girder suggests that there was continuity. 

 

Figure 49. Displacement data for single truck loading on path1 to path6 for HPC 

beam for stem 2A and 2B 
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Table 24. Numerical value of displacement data for single truck loading from path 1 to 6 

in figure 50 (mm). 

Stage 2B 2A 2B 2A 2B 2A 2B 2A 2B 2A 

(Stop) Path1 Path1 Path2 Path2 Path3 Path3 Path5 Path5 Path6 Path6 

0 0 0 0 0 0 0 0 0 0 0 

1 0.2791 0.0695 -0.0789 0.1184 -0.0134 0.0029 0.1262 0.1642 0.0154 0.0721 

2 0.5233 0.3146 -0.0233 0.0694 0.0503 0.0428 0.1976 0.2221 0.0797 0.1286 

3 0.5653 0.3633 -0.1327 -0.0573 -0.0685 -0.0499 0.1724 0.2186 0.0186 0.0269 

4 0.1126 -0.0966 -0.2145 -0.1194 -0.0237 0.0391 0.1165 0.1585 0.0551 0.0623 

5 -0.5602 -1.1524 -0.3151 -0.2205 -0.2039 -0.0558 0.1511 0.1766 0.0897 0.1025 

6 -1.0034 -1.7049 -0.6518 -0.5187 -0.4811 -0.2090 0.0803 0.1610 0.0119 0.0188 

7 -0.2804 -0.7479 -1.0381 -0.8208 -0.5534 -0.2678 -0.0024 0.0780 0.0462 0.1122 

8 0.8239 0.4813 -0.3951 0.0000 -0.2225 -0.0404 0.0949 0.1959 0.0195 0.0208 

 

6.2.2 Displacement of internal girder under double trucks back-to-back loading 

For double back-to-back truck loading there were only 5 stops. The maximum 

displacement occurs when the two axles reach the mid-span of the HPC beam. This the 

maximum loading condition as the girders 2A and 2B are closest to path 1. The girder 2A 

has the maximum displacement value of 2.609mm. The girder adjacent to 2A comes 

down. The displacement value decreases when the loading moves further away from 

girder 2A and 2B. Loading on Path 6 had the least displacement value on girder 2A and 

2B. The least value of displacement was 0.00044mm when the truck was moving on path 

6. The numeric displacement value is summarized in the table below. 
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Figure 50. Displacement data for back-to-back loading from path1 to 6 of HPC 

span 

Table 25. Numerical value of displacement data for double truck loading from path 1D to 

3D in Figure 50 (mm) 

Stage 2B 2A 2B 2A 2B 2A 

(Stop) Path1D Path1D Path2D Path2D Path3D Path3D 

0 0 0 0 0 0 0 

1 -0.339 -0.548 -0.257 -0.231 -0.082 -0.023 

2 -0.322 -0.375 -0.259 -0.237 -0.118 -0.022 

3 -1.746 -2.4 -1.588 -1.487 -0.985 -0.525 

4 -2.138 -2.609 -1.993 -1.846 -1.152 -0.545 

 

Table 26. Numerical value of displacement data for double truck loading from path 4D to 

6D in Figure 50 (mm) 

Stage 2B 2A 2B 2A 2B 2A 

(Stop) Path4D Path4D Path5D Path5D Path6D Path6D 

0 0 0 0 0 0 0 

1 -0.75546 -0.55513 -0.10748 -0.11993 -0.01557 -0.00044 

2 -0.75289 -0.55033 -0.16813 -0.19473 -0.07772 -0.06394 

3 -1.17724 -0.62147 -0.32636 -0.2539 -0.20913 -0.15822 

4 -1.39556 -0.8355 -0.50871 -0.29901 -0.29042 -0.21182 
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6.2.3 Displacement of internal girder under two double truck loading 

The displacement on stage 1 was not calculated as the image for the loading was 

not obtained. The two trucks were placed back-to-back and there was another back-to-

back truck adjacent to it. Four trucks were used as the loading condition. The internal 

girder 2A and 2B were closer to the loading path 7. This was the maximum loading 

condition among all load combination. The maximum displacement was obtained to be 

3.68 mm. The girder 2B which is located adjacent to girder 2A was also displaced 

similarly. Path8 was away from the girders producing small displacement values. The 

two girders showed similar behavior for the loading. There was small amount of positive 

displacement noticed when the loading was on path 8. The loading started from the 

UHPC span which caused the beam to move upwards when the load was on stage 2 of the 

test. The maximum value of displacement was obtained when the load was at stop 7. The 

numeric value for the test was summarized in Figure 51 and Table 27. 

 
Figure 51. Displacement data for double truck loading on path7 and path8 of 

HPC span 
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Table 27. Numerical value of displacement (mm) data of double truck loading of path 7 

and 8 in Figure 51 

Stage 2B 2A 2B 2A 

(Stop) Path7 Path7 Path8 Path8 

0 0 0 0 0 

1     

2 0.131724 0.120132 0.138351 0.183674 

3 -0.04414 -0.03618 0.035128 0.023665 

4 -0.4323 -0.24345 0.23344 0.198752 

5 -1.16188 -0.75588 0.029345 -0.13018 

6 -2.97415 -2.96361 -0.23055 -0.603 

7 -3.58761 -3.6831 -0.4234 -0.91873 

8 -3.22479 -3.30138 -0.37165 -0.77002 

 

6.2.4 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks parallel to each other 

placed at an equal distance from opposite guard rails. The displacement on stage 1 was 

not calculated as the image for the loading was not obtained. The maximum displacement 

was obtained on stop 7 where maximum axle load was placed. The maximum 

displacement value for the stop was 2.52 mm. The value was less compared to double 

truck load as the load was more distributed along the bridge compared to the loading 

condition of two trucks where the loading was considered on one side of the bridge. The 

two beams adjacent to each other demonstrated similar behavior and the maximum 

displacement value was 2.35 mm. There was some upward displacement on stage 2 as the 

loading started from UHPC span. The value of upward displacement was small compared 

to the negative displacement which amounted to 0.0377 mm. The numerical value for the 
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displacement is summarized in Figure 52 and Table 28.

 

Figure 52. Displacement data for triple truck loading on path 10 of HPC span 

Table 28. Numerical value of displacement data of triple truck loading on path 10 in 

Figure 52 

Stage 2B 2A 

(Stop) Path10 (mm) Path10 (mm) 

0 0 0 

1   

2 0.282535 0.348152 

3 0.037754 0.108797 

4 -0.51763 -0.40414 

5 -1.00609 -0.74585 

6 -1.57146 -1.43756 

7 -2.52683 -2.35645 

8 -1.62691 -1.40878 
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b) Go Pro Hero +  

The Go Pro Hero + was monitoring internal girder 4A and 4B. A negative 

displacement indicates downward deflection while a positive displacement would mean 

the element moved upward. The loading started from the UHPC span from stop 0 to stop 

8. The axle of the truck made three stops at first quarter, mid-span and second quarter of 

UHPC beam and also made similar stop on the HPC beam. The Go Pro Hero + camera 

was successful in capturing displacement for HPC beam. The camera was swapped for 

the test on day 2 and UHPC span was monitored for other loading conditions. 

6.2.5 Displacement of internal girder under single truck loading from path1-6 

When the front axle is on the UHPC span the HPC span moved upwards from 

stop 0 to 3 but when the truck moved towards the HPC span the deflection of the beam 

started to go downwards. There was a total of 9 stops which started from the UHPC span. 

The girders 4A and 4B are closest to path3. The girder 4A comes down the most with the 

maximum displacement value of 1.06mm. The beam 4B comes down with a 

displacement value of 0.9713mm. The maximum negative displacement was on path 7 

for all paths. The displacement decreases gradually when the single truck loading moves 

away from girder 4A and 4B. Minimum positive displacement is noticed when loading is 

on path6 on stop 2. The displacement profile is similar to the displacement of girder 2A 

and 2B. The displacement value decreases gradually when the loading moves farther 

from girder 4A and 4B.  The upward movement of the girder suggests that there was 

continuity between spans. The positive deflection on the beam is noticed when the truck 

loading is on the UHPC span of the bridge which is summarized in Figure 53 and Table 
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29.

 

Figure 53. Displacement data for single truck loading on path1 to path6 for HPC 

span 

Table 29. Numerical value of displacement (mm) for single truck loading from path 1 to 3 

in Figure 53 

Stage 4A 4B 4A 4B 4A 4B 

(Stop) Path1 Path1 Path2 Path2 Path3 Path3 

0 0 0 0 0 0 0 

1 0.020894 0.061561 0.076595 0.126923 0.010469 -0.012 

2 0.099217 0.173033 -0.00649 0.172085 0.063563 0.030365 

3 0.063277 0.057472 -0.02975 -0.00173 -0.07118 -0.07197 

4 0.095797 0.044904 -0.06585 -0.06022 -0.28872 -0.22945 

5 0.089873 -0.01006 -0.0477 -0.17566 -0.40921 -0.31159 

6 -0.03713 -0.13006 -0.44172 -0.49658 -0.76999 -0.5977 

7 -0.19559 -0.32607 -0.62986 -0.82232 -1.06896 -0.97173 

8 -0.03205  -0.27095  -0.56519 -0.39573 
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Table 29. Numerical value of displacement (mm) for single truck loading from path 3 to 6 

in figure 53 

Stage 4A 4B 4A 4B 4A 4B 

(Stop) Path4 Path4 Path5 Path5 Path6 Path6 

0 0 0 0 0 0 0 

1 0.000193 0.008673 0.077956 -0.00965 0.040625 0.121795 

2 0.084113 0.156235 0.156722 -0.01677 0.081104 0.133647 

3 -0.03988 -0.02184 0.031789 0.053586 0.016971 0.059126 

4 -0.17425 0.198053 -0.02836 0.048189 -0.02578 0.071803 

5 -0.20376 -0.04903 -0.14899 -0.12027 -0.13028 0.058042 

6 -0.56053 -0.23788 -0.30019 -0.12034 -0.22418 0.058653 

7 -0.92864 -0.36972 -0.54595 -0.2614 -0.44421 -0.05883 

8 -0.5705 -0.19946 -0.26931 -0.13392 -0.27897 -0.04662 

 

6.2.6 Displacement of internal girder under double trucks back-to-back loading 

For the double back-to-back truck loading there were only 5 stops. When the 

truck transition to the HPC span the beam starts to move down. The upward movement of 

the HPC beam does not occur in this test as the loading starts from the UHPC span. The 

maximum displacement occurs when the two axles reach the mid-span of the HPC beam. 

This the maximum loading condition as the girders 4A and 4B are closest to path 1. The 

girder 4B has the maximum displacement value of 2.11 mm. The girder adjacent to 4A 

comes down. The displacement value decreases when the loading moves further away 

from girder 4A and 4B. Loading on Path 6D had the least displacement value on girder 

4A and 4B. The least value of displacement was 0.04767 mm when the truck was moving 
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on path 6D. The numeric displacement value is summarized in Figures 54 and Table 31 

and 32. 

 
Figure 54. Displacement data for back-to-back loading from path 1 to 6 

 

Table 31. Numerical value of displacement (mm) data for double truck loading from path 

1D to 3D in Figure 54 

Stage 4B 4A 4B 4A 4B 4A 

(Stop) Path1D Path1D Path2D Path2D Path3D Path3D 

0 0 0 0 0 0 0 

1 -0.04827 -0.05815 -0.12774 -0.27882 -0.12903 -0.23889 

2 -0.04887 -0.12359 -0.18105 -0.21788 -0.18574 -0.3015 

3 -0.58013 -0.79011 -0.80034 -1.16742 -1.1945 -1.14682 

4 -0.79789 -0.95714 -1.17312 -1.66293 -1.80067 -1.80066 

Table 32. Numerical value of displacement (mm) data for double truck loading from path 

4D to 6D in Figure 54 

Stage 4B 4A 4B 4A 4B 4A 

(Stop) Path4D Path4D Path5D Path5D Path6D Path6D 

0 0 0 0 0 0 0 

1 -0.12529 -0.1784 -0.06427 -0.02941 -0.07779 -0.10778 

2 -0.1391 -0.2001 -0.08615 -0.10315 -0.04767 -0.05695 

3 -1.48252 -1.08622 -0.68921 -0.54284 -0.45657 -0.39234 

4 -2.11766 -1.38982 -1.02568 -0.8709 -0.6296 -0.50256 
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6.2.7 Displacement of internal girder under two double truck loading 

The displacement on stage 1 was not calculated as the image for the loading was 

not obtained. The two trucks were placed back-to-back and there was another back-to-

back truck adjacent to it. Four trucks were used as the loading condition. The internal 

girder 4A and 4B were equally away from path 7 and path8. This was the maximum 

loading condition among all load combination. The maximum displacement was obtained 

to be 2.82 mm. The girder 4B which is located adjacent to girder 4A was also displaced 

similarly. Path8 also resulted in similar displacement values. The load was distributed 

almost equally when the loading was on path 7 and 8. The two girders showed similar 

behavior for the loading. There was small amount of positive displacement noticed when 

the loading was on path 8. The loading started from the UHPC span which caused the 

beam to move upwards when the load was on stage 2 of the test. The maximum value of 

displacement was obtained when the load was at stop 7. The numeric value for the test 

was summarized in Figure 55 and Table 33. 

 
Figure 55. Displacement value for double truck back-to-back loading for path7 

and 8 for HPC span 

-4

-2

0

-1 1 3 5 7 9

D
is

p
la

ce
m

en
t 

(m
m

)

Rear Axle Placement

4B Path7 4A Path7

4B Path8 4A Path8



101 

 

Table 33. Numerical value of displacement (mm) data of double truck loading of path 7 

and 8 in Figure 55. 

Stage 4B 4A 4B 4A 

(Stop) Path7 Path7 Path8 Path8 

0 0 0 0 0 

1     
2 0.213296 0.148785 0.145555 0.015832 

3 0.077488 -0.01477 -0.00099 -0.01747 

4 -0.14408 -0.13052 -0.05916 0.012693 

5 -0.3644 -0.3145 -0.41281 -0.37488 

6 -1.73827 -1.83124 -1.45131 -0.95568 

7 -2.24293 -2.82897 -2.16408 -1.5827 

8 -1.82754 -2.21938 -1.87581 -1.23352 

  

6.2.8 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks parallel to each other 

placed at an equal distance from opposite guard rails. The displacement on stage 1 was 

not calculated as the image for the loading was not obtained. The maximum displacement 

was obtained on stop 7 where maximum axle load was placed. The maximum 

displacement value for the stop was 2.34 mm. The value was less compared to double 

truck load as the load was more distributed along the bridge compared to the loading 

condition of two trucks where the loading was considered on one side of the bridge. The 

two beams adjacent to each other demonstrated similar behavior and the maximum 

displacement value was 2.29 mm. There was some upward displacement on stage 2 as the 

loading started from UHPC span. The value of upward displacement was small compared 

to the negative displacement which amounted to 0.0209 mm. The displacement value is 

also similar to the displacements for girder 2A and 2B. The numerical value for the 
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displacement is summarized in Figure 56 and Table 34. 

 

Figure 56. Displacement data for triple truck loading on path 10 on HPC span 

Table 34. Numerical value of displacement (mm) data of triple truck loading on path 10 

in Figure 56 

Stage 4B 4A 

(Stop) Path10 Path10 

0 0 0 

1   

2 0.161097 0.144491 

3 -0.00209 -0.13022 

4 -0.36503 -0.42218 

5 -0.7193 -0.999 

6 -1.54193 -1.36401 

7 -2.34778 -2.29067 

8 -1.30783 -1.42176 
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c) DMK 1 

The DMK 1 was monitoring internal girder 6A and 5B of the HPC span of the 

bridge. A negative displacement indicates downward deflection while a positive 

displacement would mean the element moved upward.  The loading started from the UHPC 

span from stop 0 to stop 8.  

6.2.9 Displacement of internal girder under single truck loading from path1-6 

When the front axle is on the UHPC span the HPC span moved upwards from stop 

0 to 3 but when the truck moved towards the HPC span the deflection of the beam started 

to go downwards. The girders 6A and 5B are closest to path4 and path5. The girder 5B 

comes down the most with the maximum displacement value of 1.603 mm. The beam 6A 

comes down with a displacement value of 1.55 mm. The displacement decreases gradually 

when the single truck loading moves away from girder 6A and 5B. Girder 6A and 5B 

undergo similar displacement under loading along path 5. Minimum positive displacement 

is noticed when loading is on path1. There is an upward movement observed at the end of 

the test on path 1 when the truck had reached the last stop. The value for upward movement 

was 0.28 mm. The maximum negative displacement occurred at stop 7 for loading on all 

paths. The upward movement of the girder suggests that there was continuity among the 

spans. The numerical value of displacement is summarized in Figure 57 and Table 35 and 
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36.

 

Figure 57. Displacement of back-to-back loading for path1 to path 6 for HPC 

span 

Table 35. Numerical value of displacement (mm) for single truck loading from path 1 to 3 

in figure 57 

Stage 6A 5B 6A 5B 6A 5B 

(Stop) Path1 Path1 Path2 Path2 Path3 Path3 

0 0 0 0 0 0 0 

1 0.087679 0.064476 0.039011 0.036657 0.071936 0.05205 

2 0.078451 0.042753 0.069201 0.057832 0.124903 0.096142 

3 0.04165 0.017121 -0.01034 -0.02757 -0.06459 -0.09416 

4 0.023303 -0.01171 -0.11262 -0.12802 -0.20803 -0.26335 

5 -0.02059 -0.07842 -0.16431 -0.18583 -0.36125 -0.42827 

6 -0.09412 -0.15904 -0.31862 -0.37955 -0.62963 -0.74701 

7 0.009721 -0.05411 -0.46162 -0.50629 -0.91049 -1.0414 

8 0.284491 0.239294 -0.27923 -0.32878 -0.57771 -0.64573 
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Table 36. Numerical value of displacement (mm) for single truck loading from path 5 and 

6 in figure 58 

Stage 5B 6A 5B 6A 

(Stop) Path5 Path5 Path6 Path6 

0 0 0 0 0 

1 0.01399 -0.00561 0.096186 0.084554 

2 0.10417 0.070385 0.120223 0.106101 

3 -0.14738 -0.13056 -0.01281 -0.02468 

4 -0.42780 -0.40417 -0.16662 -0.16224 

5 -0.64014 -0.62989 -0.31518 -0.29348 

6 -1.14499 -1.1146 -0.64841 -0.60346 

7 -1.60354 -1.55926 -0.87573 -0.80744 

8 -1.22918 -1.18807 -0.63687 -0.58795 

 

6.2.10 Displacement of internal girder under two double truck loading 

The displacement on stage 1 was not calculated as the image for the loading was 

not obtained. The two trucks were placed back-to-back and there was another back-to-

back truck adjacent to it. Four trucks were used as the loading condition. The internal 

girder 6A and 5B were monitored when the truck moved on path 7 and 8. This was the 

maximum loading condition among all load combination. The maximum displacement 

was obtained to be 4.05 mm. The trucks were moving on path8 where the maximum 

negative displacement was obtained. The girder 5B which is located adjacent to girder 6A 

was also displaced similarly. Path7 was away from the girders producing small 

displacement values. The two girders showed similar behavior for the loading. There was 

small amount of positive displacement noticed when the loading was on path 8. The 

loading started from the UHPC span which caused the beam to move upwards when the 

load was on stage 2 of the test. The maximum value of displacement was obtained when 



106 

 

the load was at stop 7. The numeric value for the test was summarized in Figure 58 and 

Table 37. 

 
Figure 58. Displacement data of double back-to-back loading for path 7 and 

path8 on HPC span 

Table 37. Numerical value of displacement (mm) data of double truck loading of path 7 

and 8 in Figure 59. 

Stage 6A 5B 6A 5B 

(Stop) Path7 Path7 Path8 Path8 

0 0 0 0 0 

1     

2 0.118347 0.101907 0.209392 0.210816 

3 -0.0481 -0.07621 -0.18657 -0.17155 

4 -0.17631 -0.21817 -0.39643 -0.37746 

5 -0.42502 -0.47593 -1.11143 -1.06516 

6 -1.51127 -1.6333 -3.10793 -3.02987 

7 -1.98286 -2.12122 -4.05076 -3.96391 

8 -1.4672 -1.61834 -3.51718 -3.44511 
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6.2.11 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks next to each other and 

parallel. The displacement on stage 1 was not calculated as the image for the loading was 

not obtained. The maximum displacement was obtained on stop 7 where maximum axle 

load was placed. The maximum displacement value for the stop was 3.24 mm. The value 

was less compared to double truck load as the load was more distributed along the bridge 

compared to the loading condition of two trucks where the loading was considered on one 

side of the bridge. The two beams adjacent to each other demonstrated similar behavior 

and the maximum displacement value was 3.24 mm. There was significant upward 

displacement on stage 2 as the loading started from UHPC span suggesting continuity 

between spans. The value of upward displacement was small compared to the negative 

displacement which amounted to 0.629 mm. The numerical value for the displacement is 

summarized in Figure 59 and Table 38. 

 
Figure 59. Displacement data for triple truck loading on path 10 for HPC span 
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Table 38. Numerical value of displacement (mm) data of triple truck loading on path 10 

in Figure 59 

Stage 6A 5B 

(Stop) Path10 Path10 

0 0 0 

1   

2 0.62908 0.52703 

3 0.659581 0.566005 

4 -0.9038 -0.91311 

5 -1.54989 -1.54893 

6 -3.24005 -3.24124 

7 -2.34123 -2.35373 

 

d) Ampscope 1 

The Go Pro Hero 3 1 was monitoring internal girder 8A and 7B. A negative 

displacement indicates downward deflection while a positive displacement would mean 

the element moved upward.  The loading started from the UHPC span from stop 0 to stop 

8.  

6.2.12 Displacement of internal girder under single truck loading from path1-6 

When the front axle is on path 1 of the UHPC span the UHPC span moved 

downwards from stop 0 to 5 but when the truck moved towards the HPC span the deflection 

of the beam started to go upwards. The girders 8A and 7B are closest to path6. The girder 

8A comes down the most with the maximum displacement value of 1.65mm. The beam 7B 

comes down with a displacement value of 1.61 mm. The displacement decreases gradually 

when the single truck loading moves away from girder 8A and 7B. Minimum positive 

displacement is noticed when loading is on HPC side of the bridge. The upward movement 
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of the girder suggests that there was continuity in the beam. Figure 60 and Table 39 show 

displacement on stem 7B and 8A of UHPC span. 

 
Figure 60. Displacement data for single truck loading on path 1,2,3 and 6 on 

UHPC span 

Table 39. Numerical value of displacement (mm) data for single truck loading in Figure 

60 

Stage 7B 8A 7B 8A 7B 8A 7B 8A 

(Stop) Path1 Path1 Path2 Path2 Path3 Path3 Path6 Path6 

0 0 0 0 0 0 0 0 0 

1 -0.02606 -0.02058 -0.00084 -0.0008 -0.0288 -0.04056 -0.16891 -0.26699 

2 -0.07335 -0.0617 -0.03502 -0.03343 -0.0337 -0.03301 -0.54163 -0.66471 

3 -0.05787 -0.04251 -0.05327 -0.04174 -0.03626 -0.03778 -1.32042 -1.41141 

4 -0.06746 -0.0529 -0.04679 -0.03252 0.003842 0.011708 -1.95241 -2.08309 

5 -0.07916 -0.06176 -0.05303 -0.03559 0.009999 0.010725   

6 -0.08908 -0.06998 -0.06014 -0.04671 0.052 0.052614   

7 -0.11929 -0.09649 -0.07157 -0.04513 0.093449 0.094982   

8 -0.22332 -0.18528 -0.11235 -0.0915 0.018592 0.026289   
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6.2.13 Displacement of internal girder under two double truck loading 

The displacement on stage 1 was not calculated as the images for the loading was 

not obtained. The two trucks were placed back-to-back and there was another back-to-

back truck adjacent to it. Four trucks were used as the loading condition. The internal 

girder 8A and 7B were closer to the loading path 8. The displacement profile for this 

particular loading condition looked arbitrary. The reason for the random displacement 

pattern can be a missing image in the sequence. The missing image can be a reason for a 

shift in the displacement which can shift the graph and make the profile appear random. 

The numeric value for the test was summarized in Figure 61 and Table 40. 

 
Figure 61. Displacement profile for double back-to-back for path 7 and 8 on HPC 

span 
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Table 40. Numerical value of displacement (mm) data of double truck loading of path 7 

and 8 in Figure 62 

Stage 7B 8A 7B 8A 

(Stop) Path7 Path7 Path8 Path8 

0     

1     

2 0.006127 0.004615 0.134722 0.123993 

3 -0.01693 -0.03073 -0.24209 -0.29763 

4 -0.10301 -0.11772 -0.45194 -0.52908 

5 -0.38606 -0.40815 -1.00644 -1.04203 

6 -0.51947 -0.53929 -2.94911 -3.00389 

7 -0.27577 -0.29669 -3.85368 -3.94157 

 

6.2.14 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks parallel to each other 

placed at an equal distance from opposite guard rails. The displacement on stage 1 was 

not calculated as the image for the loading was not obtained. The maximum displacement 

was obtained on stop 7 where maximum axle load was placed. The maximum 

displacement value for the stop was 2.64 mm. The value was less compared to triple 

truck load as the load was more distributed along the bridge compared to the loading 

condition of two trucks where the loading was more concentrated to one side of the 

bridge. The two beams adjacent to each other demonstrated similar behavior and the 

maximum displacement value was 2.63 mm. There was some upward displacement on 
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stage 2 as the loading started from UHPC span. The value of upward displacement was 

small compared to the negative displacement which amounted to 0.08 mm. The 

numerical value for the displacement is summarized in Figure 62 and Table 41. 

 
Figure 62. Displacement data for triple truck loading on Path 10 of HPC span 

Table 41. Displacement data (mm) for triple truck loading on path 10 for Figure 62 

Stage 
 

7B 8A 

(Stop) 
 

Path10 Path10 

0 
 

0 0 

1 
 

0 0 

2 
 

0.082462 0.085731 

3 
 

-0.21273 -0.19954 

4 
 

-0.71023 -0.70613 

5 
 

-1.22546 -1.23302 

6 
 

-2.07166 -2.07477 

7 
 

-2.64404 -2.63942 

8 
 

-1.85991 -1.8554 
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e) Go Pro Hero3 2 

The Go Pro Hero 3 2 was monitoring internal girder 2A and 2B of the UHPC span. 

A similar camera Go Pro Hero 3 1 was monitoring the opposite side of the UHPC span. A 

negative displacement indicates downward deflection while a positive displacement would 

mean the element moved upward.  The loading started from the UHPC span from stop 0 to 

stop 8.  

6.2.15 Displacement of internal girder under double trucks back-to-back loading 

There was only 5 stops for the double back-to-back truck loading. When the truck 

start on the UHPC span the beam starts to move down. The upward movement of the 

UHPC beam does not occur in this test as the loading transitions from the UHPC span to 

the HPC span. The maximum displacement occurs when the two axles reach the mid-

span of the UHPC beam. This is the maximum loading condition as the girders 2A and 

2B are closest to path 2. The girder 2A has the maximum displacement value of 2.16mm. 

The girder adjacent to 2A comes down. The displacement value decreases when the 

loading moves further away from girder 2A and 2B. Loading on Path 6 had the least 

displacement value on girder 2A and 2B. The numeric displacement value is summarized 

in Figure 62 and Table 42 and Table 43. 
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Figure 62. Displacement data for back-to-back loading for path 1,2,4,5 and 6 for 

UHPC span 

Table 42. Displacement data (mm) for back-to-back loading on path 1,2 and 4 for Figure 

62 

 
Stage 2B 2A 2B 2A 2B 2A 

(Stop) Path1D Path1D Path2D Path2D Path4D Path4D 

0 0 0 0 0 0 0 

1 -2.07394 -1.99171 -1.68095 -2.16969 -1.5319 -1.79905 

2 -1.55555 -1.44998 -1.39289 -1.73839 -1.56687 -1.77942 

3 -0.16313 -0.10819 -0.26378 -0.27444 -1.3529 -1.31494 

4 -0.06884 -0.03691 -0.09836 -0.11659 -1.27317 -1.30163 

  

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-1 1 3 5

D
is

p
la

c
em

en
t 

(m
m

)

Rear Axle Placement

2B Path1D 2A Path1D

2B Path2D 2A Path2D

2B Path4D 2A Path4D

2B Path5D 2A Path5D

2B Path6D 2A Path6D



115 

 

Table 43. Numerical displacement data for back-to-back loading on path 5 and 6 for 

Figure 62 

Stage 2B 2A 2B 2A 

(Stop) Path5D Path5D Path6D Path6D 

0 0 0 0 0 

1 -0.26 -0.47834 -0.21173 -0.24815 

2 -0.2569 -0.41199 -0.19958 -0.21093 

3 -0.16115 -0.10944 -0.13143 -0.23072 

4 -0.18092 -0.1796 -0.09302 -0.16103 

 

6.2.16 Displacement of internal girder under two double truck loading 

The displacement on stage 1 was not calculated as the image for the loading was 

not obtained. The two trucks were placed back-to-back and there was another back-to-

back truck adjacent to it. Four trucks were used as the loading condition. The internal 

girder 2A and 2B were closer to the loading path 7. This was the maximum loading 

condition among all load combination. The maximum displacement was obtained to be 

3.47 mm. The girder 2B which is located adjacent to girder 2A was also displaced 

similarly. Path8 was away from the girders producing small displacement values. The 

two girders showed similar behavior for the loading. There was small amount of positive 

displacement noticed when the loading was on path 8. The loading started from the 

UHPC span which caused the beam to move upwards when the load was on stage 2 of the 

test. The numeric value for the test was summarized in Figure 63 and Table 44. 
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Figure 63. Displacement data for double back-to-back loading for path 7 and 8 

for UHPC span 

Table 44. Numerical value of displacement (mm) data of double truck loading of path 7 

and 8 for Figure 63 

Stage 2B 2A 2B 2A 

(Stop) Path7 Path7 Path8 Path8 

0 0 0 0 0 

1     

2 -0.94226 -0.92572 -0.07585 -0.13277 

3 -3.25648 -3.32491 -0.16867 -0.40182 

4 -3.32531 -3.47684 -0.21659 -0.68295 

5 -2.11398 -2.23881 -0.39576 -0.81207 

6 -0.63674 -0.56878 0.121103 -0.25274 

7 -0.24216 -0.20463 0.202452 0.144861 

8 -0.0469 0.053066 0.321206 0.288461 
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6.2.17 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks parallel to each other 

placed at an equal distance from opposite guard rails. The displacement on stage 1 was 

not calculated as the image for the loading was not obtained. The maximum displacement 

was obtained on stop 4 where maximum axle load was placed. The maximum 

displacement value for the stop was 1.87 mm. The value was less compared to triple 

truck load as the load was more distributed along the bridge compared to the loading 

condition of two trucks where the loading was considered on one side of the bridge. The 

two beams adjacent to each other demonstrated similar behavior and the maximum 

displacement value was 1.76 mm. There was some upward displacement on stage 7 as the 

loading started from UHPC span. The value of upward displacement was small compared 

to the negative displacement which amounted to 0.28 mm. The numerical value for the 

displacement is summarized in Figure 64 and Table 45. 

 

Figure 64. Displacement data for triple truck loading on path 10 for UHPC span 
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Table 44. Numerical value of displacement (mm) data of triple truck loading on path 10 

for Figure 64 

Stage 2A 2B 

(Stop) Path10 Path10 

0 0 0 

1   

2 -0.28645 -0.32438 

3 -0.47294 -0.47884 

4 -1.7632 -1.87195 

5 -0.38834 -0.29442 

6 0.0234 0.0226 

7 0.286334 0.2763 

 

f) Go Pro Hero+  

The Go Pro Hero + was monitoring internal girder 4A and 4B of the UHPC span. 

A negative displacement indicates downward deflection while a positive displacement 

would mean the element moved upward.  The loading started from the UHPC span from 

stop 0 to stop 8. Another Go Pro Hero + was monitoring the HPC span on the other side of 

the UHPC span for the same loading condition. The UHPC beam began to deform as the 

loading started. The beam deflected upwards when the loading reached the HPC span. The 

upward displacement was less compared to the negative displacement. 

6.2.18 Displacement of internal girder under single truck loading from path1-6 

When the front axle is on path 1 of the UHPC span the UHPC span moved 

downwards from stop 0 to 6 but when the truck moved towards the HPC span the deflection 

of the beam started to go upwards. The girders 4A and 4B are closest to path2. The girder 

4B comes down the most with the maximum displacement value of 1.92 mm. The beam 
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4A comes down with a displacement value of 1.69 mm. The displacement decreases 

gradually when the single truck loading moves away from girder 4A and 4B. Minimum 

displacement effect was observed when the loading was on path 6 of the bridge. The 

upward movement of the girder suggests that there was continuity among the spans. Figure 

65 and Table 46 and 47 summarize those findings. 

 
Figure 65. Displacement data for single truck loading of path 1 to 6 on UHPC 

span 

Table 46. Numerical value of displacement (mm) for single truck loading from path 1 to 3 

in Figure 65 

Stage 4B 4A 4B 4A 4B 4A 

(Stop) Path1 Path1 Path2 Path2 Path3 Path3 

0 0 0 0.000000 0 0 0 

1 -0.58939 -0.38145 -0.642307 -0.51081 -0.34392 -0.27873 

2 -0.81613 -0.588 -0.971592 -0.93661 -0.46483 -0.46668 

3 -1.70564 -1.32407 -1.928393 -1.69066 -1.15144 -1.20814 

4 -1.47966 -1.35698 -1.421806 -1.56748 -0.68401 -0.69054 

5 -1.00671 -1.20458 -1.046424 -1.33297 -0.13414 -0.17409 

6 0.016653 0.016477 0.156980  -0.01765 -0.10545 

7 0.015716 0.00498 0.106676 0.114119 -0.06528 -0.14741 

8 0.009332 -0.01224 -0.020374 -0.08514 -0.19167 -0.23667 
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Table 47. Numerical value of displacement (mm) for single truck loading from path 4 to 6 

in Figure 65 

Stage 4A 4B 4A 4B 4A 4B 

(Stop) Path4 Path4 Path5 Path5 Path6 Path6 

0 0 0 0 0 0 0 

1 -0.13935 -0.2439 -0.06875 -0.20686 -0.02893 -0.11428 

2 -0.30087 -0.43894 -0.20023 -0.2714 -0.0076 -0.06726 

3 -0.72996 -1.15106 -0.3939 -0.65751 -0.20664 -0.33784 

4 -0.30302 -0.42457 -0.15639 -0.3499 -0.06766 -0.19045 

5 0.151732 0.120354 0.105104 -0.02475 0.022228 -0.07732 

6 0.282039 0.231669 0.133397 0.072703 0.042457 0.020314 

7 0.345153 0.264816 0.098765 0.120134 0.173279 0.028574 

8 0.278221 0.242284 0.170502 0.142618 0.12345 -0.03585 

 

6.2.19 Displacement of internal girder under double trucks back-to-back loading 

Only 5 stops were used for a  double back-to-back truck loading. When the truck 

start on the UHPC span the beam starts to move down immediately. The upward 

movement of the HPC beam does not occur in this test as the loading starts from the 

UHPC span. The maximum displacement occurs when the two axles reach the first 

quarter of the UHPC beam. The maximum displacement occurs on girder 4B of path 4 

with a value of 1.65 mm. The beam adjacent to beam 4B is displaced significantly less 

compared to beam 4A. This was similar case for all other loading paths. The minimum 

displacement occurred when the loading was on path6. The numeric displacement value 

is summarized in Figure 66 and Table 48 and 49. 
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Figure 66. Displacement data for back-to-back loading from path 1 to 6 on 

UHPC span 

Table 47. Numerical value of displacement (mm) data for double truck loading from path 

1D to 3D in Figure 66 

Stage 4A 4B 4A 4B 4A 4B 

(Stop) Path1D Path1D Path2D Path2D Path3D Path3D 

0 0 0 0 0 0 0 

1 -0.98502 -0.77003 -1.5052 -1.10338 -1.58977 -1.59696 

2 -0.64727 -0.38937 -1.15913 -0.80011 -1.34968 -1.36254 

3 -0.07535 0.056742 -0.25979 -0.16818 -0.29849 -0.3225 

4 -0.00204 0.103711 -0.15068 -0.00886 -0.19601 -0.21374 

Table 48. Numerical value of displacement (mm) data for double truck loading from path 

4D to 6D in Figure 66 

Stage 4A 4B 4A 4B 4A 4B 

(Stop) Path4D Path4D Path5D Path5D Path6D Path6D 

0 0 0 0 0 0 0 

1 -1.18046 -1.6562 -0.77054 -1.20731 -0.38349 -0.74718 

2 -0.85746 -1.34693 -0.54197 -1.06736 -0.27911 -0.44676 

3 -0.27341 -0.24663 -0.07809 -0.31373 0.055364 -0.00189 

4 -0.16444 -0.15171 -0.03450 -0.07003 0.061615 0.023985 
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6.2.20 Displacement of internal girder under two double truck loading 

The displacement on stage 1 was not calculated as the image for the loading was 

not obtained. The two trucks were placed back-to-back and there was another back-to-

back truck adjacent to it. Four trucks were used as the loading condition. The internal 

girder 4A and 4B were monitored when the loading was done on path 7 and path8. This 

was the maximum loading condition among all load combination. The maximum 

displacement was obtained to be 2.93 mm. The girder 4B which is located adjacent to 

girder 4A was also displaced similarly but with a value of 2.53. Path8 was away from the 

girders producing smaller displacement values. The two girders showed similar behavior 

for the loading. There was small amount of positive displacement noticed when the 

loading was on stop 8. The loading started from the UHPC span which caused the beam 

to move downwards immediately when the load was on stage 2 of the test. The loading 

condition is concentrated on path 7 unlike triple truck loading where the distributed along 

the bridge. During the maximum value of displacement was obtained when the load was 

at stop 7. The numeric value for the test was summarized in Figure 67 and Table 50. 

 
Figure 68. Displacement of double back-to-back loading from path 7 and 8 for 

UHPC span 
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Table 50. Numerical value of displacement (mm) data of double truck loading of path 7 

and 8 for Figure 68 

Stage 4A 4B 4A 4B 

(Stop) Path7 Path7 Path8 Path8 

0 0 0 0 0 

1     

2 -0.83632 -0.59147 -0.41501 -0.53807 

3 -2.86524 -2.48110 -1.77858 -2.25915 

4 -2.93613 -2.53342 -1.75679 -2.34245 

5 -1.84111 -1.63707 -0.74441 -1.23607 

6 -0.18623 -0.32964 -0.17663 -0.31980 

7 -0.02547 -0.08148 -0.12656 -0.18020 

8 0.13625 -0.01033 0.07143 0.00733 

` 

6.2.21 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks parallel to each other 

placed at an equal distance from opposite guard rails. The displacement on stage 1 was 

not calculated as the image for the loading was not obtained. The maximum displacement 

was obtained on stop 3 where maximum axle load was placed. The maximum 

displacement value for the stop was 2.78 mm. The value was less compared to triple 

truck load as the load was more distributed along the bridge compared to the loading 

condition of two trucks where the loading was considered on one side of the bridge. The 

two beams adjacent to each other demonstrated similar behavior and the maximum 

displacement value was 2.64 mm. There was some upward displacement on stage 7 as the 

loading moved towards the HPC span. The value of upward displacement was 
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significantly small compared to the negative displacement which amounted to 0.33 mm. 

The two girders 4A and 4B are displaced similarly. The displacement value obtained for 

the girder 4A and 4B. The numerical value for the displacement is summarized in Figure 

68 and Table 51. 

 

Figure 69. Displacement data for triple truck loading on path 10 for UHPC span 

Table 50. Numerical value of displacement (mm) data of triple truck loading on path 10 

in Figure 68 

Stage 4A 4B 

(Stop) Path10 Path10 

0 0 0 

1   

2 -1.024545 -0.954005 

3 -2.647856 -2.784289 

4 -0.844584 -0.878007 

5 0.082667 0.108991 

6 0.064651 0.183397 

7 0.331249 0.151896 

8 0.145936 0.125783 
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g) DMK 0 

The DMK 0 was monitoring internal girder 6A and 5B. A negative displacement 

indicates downward deflection while a positive displacement would mean the element 

moved upward.  The loading started from the UHPC span from stop 0 to stop 8. The loading 

started as single truck loading and later the loading was increased, and displacement profile 

was obtained respectively. The HPC span on the other side of the girder was monitored by 

DMK 1 camera system. 

6.2.22 Displacement of internal girder under single truck loading from path1-6 

When the front axle is on stop 3 for path 5 of the UHPC span the girder moved 

downwards from stop 0 to 5 but when the truck moved towards the HPC span the deflection 

of the beam started to go upwards. The girders 6A and 5B are adjacent to each other. The 

girder 6A comes down the most with the maximum displacement value of 1.48 mm. The 

beam 5B comes down with a displacement value of 1.41 mm for single truck loading on 

path 5. The displacement decreases gradually when the single truck loading moves away 

from girder 6A and 5B. Positive displacement was noticed when the loading was on HPC 

span. The magnitude of positive displacement is less compared to the negative 

displacement. The numerical data for displacements is summarized in Figure 69 and Table 

52 and 53.  
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Figure 69. Displacement data for single truck loading from path 1 to 6 for UHPC 

span 

Table 52. Numerical value of displacement (mm) for single truck loading from path 1 to 3 

in Figure 69 

Stage 5B 6A 5B 6A 5B 6A 

(Stop) Path1 Path1 Path2 Path2 Path3 Path3 

0 0 0 0 0 0 0 

1 -0.19346 -0.22339 -0.18828 -0.19474 -0.33634 -0.3094 

2 -0.21905 -0.22364 -0.25467 -0.24025 -0.46795 -0.32291 

3 -0.37489 -0.34919 -0.54193 -0.5213 -0.97789 -0.92524 

4 -0.18779 -0.18569 -0.19361 -0.1642 -0.43984 -0.43722 

5 0.015067 0.001245 0.084548 0.095558 0.085376 -0.07624 

6 0.050253 0.043872 0.209866 0.194736   

7 0.066015 0.057091 0.191475 0.172143 0.254407 0.147536 

8 0.046068 0.036695 0.152637 0.145853 0.212103 0.196808 
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Table 53. Numerical value of displacement (mm) for single truck loading from path 5 and 

6 in Figure 69 

Stage 5B 6A 5B 6A 

(Stop) Path5 Path5 Path6 Path6 

0 0 0 0 0 

1 -0.47304 -0.48363 -0.34546 -0.39557 

2 -0.63679 -0.63704 -0.48382 -0.57139 

3 -1.41621 -1.48429 -1.12141 -1.25891 

4 -0.69677 -0.73324 -0.52069 -0.59129 

5 0.012488 0.012141 0.074291 0.054671 

6 0.12554 0.166524 0.185897 0.157634 

7 0.108666 0.118056 0.200201 0.205777 

8 0.118538 0.145944 0.165027 0.149312 

 

6.2.23 Displacement of internal girder under double trucks back-to-back loading 

Only 5 stops were used for a double back-to-back truck loading. When the truck 

start on the UHPC span the beam starts to move down. The upward movement of the 

HPC beam does not occur in this test as the loading starts from the UHPC span. The 

maximum displacement occurs when the two axles reach the first quarter of the UHPC 

span. The girder 6A has the maximum displacement value of 2.11 mm. The displacement 

value decreases when the loading moves further away from girder 6A and 5B. The 

maximum displacement occurred when the Loading was on path 5. Path 1 had the least 

displacement value on girder 6A and 5B. The least value of displacement was 0.023 mm 

when the truck was moving on path 6. The numeric displacement value is summarized in 

Figure 70 and Table 54 and 55. 
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Figure 70. Displacement data for back-to-back loading from path 1 to 6 for 

UHPC span 

Table 54. Numerical value of displacement (mm) data for double truck loading from path 

1D to 3D for Figure 70 

Stage 5B 6A 5B 6A 5B 6A 

(Stop) Path1D Path1D Path2D Path2D Path3D Path3D 

0 0 0 0 0 0 0 

1 -0.49839 -0.42017 -0.87004 -0.77874 -1.5277 -1.46561 

2 -0.35592 -0.30914 -0.60999 -0.56331 -1.21544 -1.12728 

3 0.023934 0.026137 -0.04833 -0.05742 -0.25935 -0.22508 

4 0.078452 0.076468 -0.01895 -0.00788 -0.11585 -0.09669 

Table 55. Numerical value of displacement (mm) data for double truck loading from path 

4D to 6D for Figure 70 

Stage 5B 6A 5B 6A 5B 6A 

(Stop) Path4D Path4D Path5D Path5D Path6D Path6D 

0 0 0 0 0 0 0 

1 -2.07566 -2.05686 -1.99577 -2.11215 -1.74411 -1.91401 

2 -1.6835 -1.67486 -1.62775 -1.72617 -1.38479 -1.52412 

3 -0.35372 -0.32816 -0.38539 -0.44455 -0.31855 -0.36149 

4 -0.22335 -0.22238 -0.21723 -0.26231 -0.20891 -0.23451 
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6.2.24 Displacement of internal girder under two double truck loading 

The displacement on stage 1 was not calculated as the image for the loading was 

not obtained. The two trucks were placed back-to-back and there was another back-to-

back truck adjacent to it. Four trucks were used as the loading condition. The internal 

girder 6A and 5B were monitored for loading on path7 and path8. This was the maximum 

loading condition among all load combination. The maximum displacement was obtained 

to be 3.34 mm on path8 for girder 6A. The girder 5B which is located adjacent to girder 

6A was also displaced similarly. Path7 was away from the girders producing small 

displacement values. The two girders showed similar behavior for the loading. There was 

small amount of positive displacement noticed when the loading was on path 8. The 

loading started from the UHPC span which caused the beam to move upwards when the 

load was on stop 8. The maximum value of displacement was obtained when the load was 

at stop 4. The numerical value for the test was summarized in Figure 71 and Table 56. 

 
Figure 71. Displacement for double back-to-back loading for path7 and 8 for 

UHPC span 
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Table 56. Numerical value of displacement (mm) data of double truck loading of path 7 

and 8 for Figure 71 

Stage 5B 6A 5B 6A 

(Stop) Path7 Path7 Path8 Path8 

0 0 0 0 0 

1     

2 -0.61589 -0.47992 -1.06325 -1.09077 

3 -1.83468 -1.67234 -3.16508 -3.28566 

4 -1.94622 -1.75894 -3.2361 -3.34812 

5 -1.21558 -1.1081 -2.03518 -2.13011 

6 -0.18699 -0.11463 -0.77465 -0.81142 

7 -0.04018 0.070039 -0.50867 -0.53164 

8 0.234713 0.358829 -0.13756 -0.17372 

 

6.2.25 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks parallel to each other 

placed at an equal distance from opposite guard rails. The displacement on stage 1 was 

not calculated as the image for the loading was not obtained. The maximum displacement 

was obtained on stop 4 where maximum axle load was placed. The maximum downward 

displacement value for the stop was 1.01 mm. The value was less compared to triple 

truck load as the load was more distributed along the bridge compared to the loading 

condition of two trucks where the loading was considered on one side of the bridge. The 

two beams adjacent to each other demonstrated similar behavior and the maximum 

upward displacement value was 0.52 mm. There was some upward displacement after 

stage 4 as the loading started from HPC span. The girder experienced less displacement 

when the loading was spread along the bridge compared to the double truck loading 
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where the loading was concentrated on one side of the bridge. The numerical data for the 

displacement is summarized in Figure 72 and Table 57. 

 
Figure 72. Displacement data for triple truck loading on path 10 of UHPC span 

Table 57. Numerical value of displacement (mm) data of triple truck loading on path 10 

in Figure 72 

Stage 5B 6A 

(Stop) Path10 Path10 

0 0 0 

1   

2 -0.07198 -0.07786 

3 -0.04815 -0.03329 

4 -1.01707 -1.01721 

5 0.288744 0.294416 

6 0.510313 0.521324 

7 0.389813 0.398893 
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h) Ampscope 2 

The Ampscope 2 was monitoring internal girder 7B and 8A. A negative 

displacement indicates downward deflection while a positive displacement would mean 

the element moved upward.  The loading started from the UHPC span from stop 0 to stop 

8.  

6.2.25 Displacement of internal girder under single truck loading from path 1-6 

When the front axle is on path 1 of the UHPC span the UHPC span moved 

downwards from stop 0 to 5 but when the truck moved towards the HPC span the deflection 

of the beam started to go upwards. The girders 8A and 7B are closest to path6. The girder 

8A comes down the most with the maximum displacement value of 1.65mm. The beam 7B 

comes down with a displacement value of 1.61 mm. The displacement decreases gradually 

when the single truck loading moves away from girder 8A and 7B. Minimum positive 

displacement is noticed when loading is on HPC side of the bridge. 

 The findings are shown in Figure 73 and Table 58. 

 
Figure73. Displacement profile under single truck loading from path 1 to 6 for 

UHPC span 
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Table 57. Displacement (mm) value of single truck loading from path 1 to 3 in Fig 73 

 

 

6.2.26 Displacement of internal girder under double trucks back-to-back loading 

The double back-to-back truck for amp scope 1 monitored girder 8A and 7B of 

the UHPC span. The loading started on the UHPC side of the bridge and the bridge 

started to go down immediately after the loading started. Path 6 which was closest to the 

girder had the highest displacement value. The girder 8A and 7B went down in similar 

fashion and had similar displacement value. The displacement gradually decreased once 

the vehicle started to move further away from path 6. Small values of positive 

displacement were observed but the magnitude was very small compared to the negative 

deflection. The results are summarized in Figure 74 and Table 59 and 60. 

Stage 8A 7B 8A 7B 8A 7B 8A 7B 8A 7B 

(Stop) Path1 Path1 Path2 Path2 Path3 Path3 Path5 Path5 Path6 Path6 

0 0 0 0 0 0 0 0 0 0 0 

1 0.030541 0.010524 -0.00507 -0.01026 -0.06799 -0.10632 -0.32602 -0.32075 -0.32602 -0.32075 

2 -0.03858 0.012896 -0.0285 -0.03112 -0.0677 -0.07918 -0.49095 -0.47517 -0.49095 -0.47517 

3 0.041149 0.080801 -0.02706 -0.04683 -0.15842 -0.2151 -1.11913 -1.07182 -1.11913 -1.07182 

4 0.082181 0.088702 0.059207 0.053003 -0.00921 -0.01963 -0.53644 -0.52752 -0.53644 -0.52752 

5 0.163227 0.120128 0.134115 0.146166 0.193172 0.174369 0.152071 0.126083 0.152071 0.126083 

6 0.165811 0.122103 0.157915 0.183363 0.463518 0.373912 0.282113 0.274903 0.282113 0.274903 

7 0.177363 0.136571 0.212854 0.212084 0.299899 0.35558 0.320833 0.297508 0.320833 0.297508 

8 0.14872 0.088367 0.195822 0.195529 0.293794 0.35502 0.256767 0.241918 0.256767 0.241918 
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Figure 74. Displacement data for double truck loading path 1 to 6 for UHPC 

span 

Table 59. Numerical displacement (mm) value of double truck loading from path 1 to 3 

for Figure 74 

Stage 7B 8A 7B 8A 7B 8A 

(Stop) Path1D Path1D Path2D Path2D Path3D Path3D 

0 0 0 0 0 0 0 

1 0.008857 0.027526 -0.13494 -0.08185 -0.44331 -0.38021 

2 0.104284 0.091361 -0.04566 0.013985 -0.29816 -0.24081 

3 0.201532 0.191719 0.154252 0.18004 0.078111 0.110314 

4 0.26199 0.242639 0.20282 0.223831 0.190289 0.218725 
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Table 60. Numerical displacement (mm) value of double truck loading from path 4 to 6 

for figure 74 

Stage 7B 8A 7B 8A 7B 8A 

(Stop) Path4D Path4D Path5D Path5D Path6D Path6D 

0 0 0 0 0 0 0 

1 -0.95174 -0.8711 -1.86688 -1.81852 -2.6223 -2.68037 

2 -0.71015 -0.64956 -1.4973 -1.46349 -2.12254 -2.14704 

3 -0.05087 -0.03612 -1.4939 -1.46133 -0.43256 -0.42827 

4 0.045753 0.055851 -0.29216 -0.27388 -0.24663 -0.24051 

 

6.2.27 Displacement of internal girder under two double truck loading 

The two trucks were placed back-to-back and there was another back-to-back 

truck adjacent to it. Four trucks were used as the loading condition. The internal girder 

8A and 7B were closer to the loading path 8. This was the maximum loading condition 

among all load combination. The maximum displacement was obtained to be 3.78 mm on 

stage 3. The girder 7B which is located adjacent to girder 8A was also displaced 

similarly. Path7 was away from the girders producing small displacement values. The 

two girders showed similar behavior for the loading. This was the maximum loading 

condition which produced maximum displacement value in the girder. The loading 

started from the UHPC span which caused the beam to move downwards. The maximum 

value of displacement was obtained when the load was at stop 3. The numeric value for 

the test was summarized in Figure 75 and Table 61. 
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Figure 75. Displacement profile under double back-to-back loading for path 7 

and 8 for UHPC span 

Table 61. Numerical displacement (mm) value of double back-to-back truck loading from 

path 7 and 8 in Figure 75 

Stage 7B 8A 7B 8A 

(Stop) Path7 Path7 Path8 Path8 

0 0 0 0 0 

1     

2 -0.21738 -0.30223 -1.0902 -1.10954 

3 -0.64226 -0.78605 -3.48148 -3.51805 

4 -0.67419 -0.80137 -3.72111 -3.78941 

5 -0.40467 -0.46679 -2.36619 -2.41341 

6 0.030926 0.018048 -0.77188 -0.79664 

7 0.103275 0.063898 -0.49221 -0.52338 

8 0.219593 0.202438 -0.08293 -0.1151 
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6.2.28 Displacement of internal girder under triple truck loading 

The triple truck loading was conducted with three trucks parallel to each other 

placed at an equal distance from opposite guard rails. The maximum displacement was 

obtained on stop 2 where maximum axle load was placed. The maximum displacement 

value for the stop was 2.59 mm. The value was less compared to triple truck load as the 

load was more distributed along the bridge compared to the loading condition of two 

trucks where the loading was considered on one side of the bridge. The two beams 

adjacent to each other demonstrated similar behavior and the maximum displacement 

value was 2.58 mm. There was some upward displacement after stage 4 as the loading 

started from UHPC span. The value of upward displacement was small compared to the 

negative displacement which amounted to 0.42 mm. The numerical value for the 

displacement is summarized in Figure 76 and Table 62. 

 
Figure 76. Displacement profile under triple truck loading on path 10 for UHPC 

beam 
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Table 62. Numerical displacement (mm) value for triple truck loading on path 10 in 

Figure 76 

Stage 7B 8A 

(Stop) Path10 Path10 

0 0 0 

1 -1.14375 -1.16332 

2 -2.58194 -2.59517 

3 -0.97983 -0.9886 

4 0.210604 0.194725 

5 0.36324 0.343957 

6 0.429165 0.407525 

7 0.257081 0.247401 

 

6.3 Out-of-plane displacement for pier of the bridge 

The second test had a Hi-spec camera that observed the pier of the bridge. The 

HPC and UHPC span of the bridge were simply supported spans. The Z-displacement or 

out-of-plane displacement was captured. The double back-to-back truck was the loading 

combination which produced the highest displacement from the test. The z-displacement 

was checked for the same loading condition to account for maximum out-of-plane 

displacement. The z-displacement was small for single truck loading the value for z-

displacement for single truck loading for path 1,2 and 3 and for the maximum loading on 

path7. The results are shown from Figure 77-80 and in Table 63-66.  
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Figure 77. Out-of-plane displacement for single truck loading path1 from Hi-spec 

camera 

Table 63. Numerical displacement (mm) value for z-displacement of pier for single truck 

loading on path 1 

Stage Z-Displacement 

0 0 

1 -0.070677314 

2 -0.00431756 

3 0.003562614 

4 -0.016533767 

5 -0.016232499 

6 -0.041548514 

7 -0.055957544 

8 -0.04604118 
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Figure 78. Out-of-plane displacement for single truck loading path2 from Hi-spec 

camera 

Table 64. Numerical displacement (mm) value for z-displacement of pier for single truck 

loading on path 2 

Stage Z-Displacement 

0 0 

1 -0.044724071 

2 -0.019412208 

3 -0.024699118 

4 -0.036576338 

5 -0.044142375 

6 -0.074344365 

7 -0.094672779 

8 -0.083952587 
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Figure 79. Out-of-plane displacement for single truck loading path3 from Hi-spec 

camera 

Table 65. Numerical displacement (mm) value for z-displacement of pier for single truck 

loading on path 3 

Stage Z-Displacement 

0 0 

1 0.00208267 

2 0.006393366 

3 0.015736918 

4 0.018788801 

5 0.00991317 

6 0.008782212 

7 -0.041392949 

8 -0.054075772 
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Figure 80. Out-of-plane displacement for single truck loading path3 from Hi-spec 

camera 

Table 66. Numerical displacement (mm) value for z-displacement of pier for double truck 

loading on path 7 

Stage Z-Displacement 

0 0 

1 0.036729487 

2 0.10782282 

3 0.123955902 

4 0.082219066 

5 -0.049942586 

6 -0.127700855 

7 -0.115424829 

 

6.4 Strain value measured for fascia girder Test 2019 

The strain value for the test done in 2019 were computed similarly to the test done 

in 2018. A section was chosen one inch form the bottom of the beam and the strain value 

along the section was obtained from ARAMIS. The values were averaged for each 
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section and strain value for every loading stage was obtained and summarized in Table 

67.  

Table 67. Strain value measured for path1,2 and 3 for single truck loading measured by 

the 2M camera system 

Stage Path1(με) Path2(με) Path3(με) 

0 0 0 0 

1 -34.8697 104.3537 263.7668 

2 -67.1364 55.23288 263.4691 

3 -45.0611 79.78781 233.9504 

4 145.8111 102.9427 298.3275 

5 126.2731 138.7257 256.0396 

6 206.5304 33.8249 99.12555 

7 211.7528 69.51162 87.67319 

8 167.4417 72.06975 126.8744 

 

The camera system measured strain values for different path. The strain value 

ranged from -34.86 micrometers to 298.32 micrometers. The values were higher than the 

usual range. There were negative strain values for path 1. Path 3 which was away from 

the fascia girder had the highest strain values. 

6.5 Displacement comparison for 2018 test results vs 2019 test results 

The two tests were similar but different on one aspect. In the first test the 

displacement profile was plotted against span of the bridge in meters whereas the second 

test, the displacement was plotted against the stage. The stages were separated at a 
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distance of five feet. The comparison for displacement for fascia girder on HPC side of 

the bridge is shown in Figure 81-84. 

 

Figure 81. Displacement vs stage measured profile from 2M system for single 

truck loading for test on 2019 

 

 

Figure 82. Displacement vs stage measured profile from Hispec1 system for 

single truck loading for test on 2018 
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The displacement profile for the two tests are similar the bridge moved down for 

path1 and path2 and started to move to move up for another path. The other path such as 

3,4 and 5 moved away from the fascia girder which was being monitored by the 3D DIC 

system. 

 
Figure 83. Displacement vs stage measured profile from Il5 system for single 

truck loading for test on 2019 

 

 

Figure 84. Displacement vs stage measured profile from IL5 system for single 

truck loading for test on 2018 
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The displacement profile for the two tests are similar the bridge moved down for 

path1 and path2 and started to move to move up for another path. This was not similar for 

the second test. One reason can be the truck made stops at a different place for both tests.  

6.6 Dynamic test  

Dynamic test was performed for both Test 1 and Test 2. The dynamic test was 

performed using the 3D camera system. The testing was done to assure if DIC is able to 

capture results for high speed run tests. The displacement and strain changes were 

captured using DIC. The change in color code on the beam shows displacement changes 

and strain changes. The results of displacements at the mid span of the north fascia HPC 

girder from the dynamic test are shown in Figure 85-92. 

The first stage of the test where no loading is on the beam. Since this is the HPC 

beam the loading starts from the UHPC beam. The truck was not on the bridge at this 

instant. There is no displacement value observed on the beam which is represented by 

orange color code. 

 

Figure 85. Dynamic test result for displacement on HPC span with no truck 

loading on the bridge 
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The loading had started from the UHPC side of the beam. The truck is already on 

the bridge. Small displacement occurred on the beam which was represented by Figure 86 

 

Figure 86. Dynamic test result for displacement on HPC span with  truck loading 

starts on the bridge 

 

This was the frame when front axle of the truck was on the HPC span of the 

bridge. The displacement value increased when front axle was on the bridge. The color 

code green represents displacement on the span. 

 

Figure 87. Dynamic test result for displacement on HPC span when front axle is 

on the midspan of the HPC beam  
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The truck was still on the HPC span. The displacement was still observed on the 

beam and the beam was still green. A puff of dust was also observed when the back axle 

approached the HPC beam. The color code green represented displacement on the span. 

 

Figure 88. Dynamic test result for displacement on HPC span when the entire 

truck is on the HPC beam  

 

When the rear axle of the truck which is the heavier axle reaches the HPC span of 

the bridge. The color code changed once the rear axle approached the mid span of the 

HPC beam.  

 

Figure 89. Dynamic test result for displacement on HPC span when rear axle is 

approaching on the midspan of the HPC beam  
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The rear axle reached the mid span of the HPC beam. This was the maximum 

loading condition. The color code changed to blue completely. This was the stage when 

the displacement obtained on HPC span was maximum. 

 

Figure 90. Dynamic test result for displacement on HPC span when rear axle is  

on the midspan of the HPC beam  

Once the rear axle moved further on the bridge. The color code changed back to 

green. Small displacement values were represented. The truck at that instant was not off 

the bridge completely. Therefore, displacement was still observed on the span. 

 

Figure 91. Dynamic test result for displacement on HPC span when the truck is 

leaving the bridge 
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The truck moved further and away from the HPC span. No displacement is 

observed on the bridge. The color code is similar to that of the no loading on the first 

stage where the truck was on the other side of the bridge. No displacement values are 

observed during this stage of test. 

 

Figure 92. Dynamic test result for displacement on HPC span when the truck is 

completely off the bridge 

 

Similarly, the major strain changes in the fascia beam of the HPC span are shown 

in the Figure 93-99 below. In Figure 93 no strain is observed as there was no loading on 

the bridge. The condition was when the truck was not on the bridge. 

 
Figure 93. Dynamic test result for strain on HPC span when the truck is 

completely off the bridge 
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From Figure 94 the pattern starts to appear on the beam when the loading started 

on the UHPC span of the bridge. Small changes on the span of the bridge appeared 

representing strain produced when the loading started on the UHPC span of the bridge. 

 
Figure 94. Dynamic test result for strain on HPC span when the truck is on the 

bridge 

 

When the front axle of the truck was on the HPC span (Figure 95) the bridge 

started to show more strain which was represented by the patterns seen. The pattern 

started to become more distinct when the loading increased. 

 

Figure 95. Dynamic test result for strain on HPC span when the front axle of the truck is 

on the bridge 
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When the axle load moved further the pattern started to dissipate slowly (Fig 96). 

A puff of dust was observed when the rear axle of the truck approached the HPC span.

 

Figure 96. Dynamic test result for strain  on HPC span when rear axle is 

approaching on the midspan of the HPC beam  

 

The pattern started to reappear when the rear axle of the truck was on the HPC span 

(Figure 97). This was the maximum loading condition of the test. 

 

Figure 97. Dynamic test result for strain on HPC span when rear axle is on the 

midspan of the HPC beam  

 

The truck then moved further, and no axle load was present on the bridge. The pattern 

started to dissipate, and the span was back at its original color (Figure 98).  
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Figure 98. Dynamic test result for strain on HPC span when rear axle is off the 

midspan of the HPC beam  

 

 

 

Figure 99. Displacement profile is captured for the High-Speed test run captured 

by the Hi-spec camera when loading was on the HPC span of the bridge. 
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The result obtained from the dynamic test was used to compute frequency of the 

bridge. Figure 99 shows the displacement versus stage of dynamic test at midspan of the 

HPC fascia girder. Free vibration of the span can be observed after stage 1050 where the 

truck was already out of the span. The bridge was in free vibration after the loading. The 

frequency of the span of the bridge was calculated by measuring the time between two 

successive peaks after the truck is completely off the bridge. The frequency can be used 

to compute stiffness of the bridge. The frequency for the bridge was 19.23 Hertz. 

6.7 Comparison of Displacement data with dial gauges 

The displacement data obtained from DIC was compared with the data obtained 

from dial gauges. The dial gauge data was calibrated, and the first reading was taken in 

the morning. The reference data was the first reading for every test throughout the day. 

This didn’t account for temperature changes during the day. The test conducted using 

DIC used a new zero every time a test was done. The DIC data was compared with the 

dial gauges and following observation was made and was summarized from Table 68-71. 

Table 68. Comparison between dial gauge vs DIC displacement data for single truck 

loading 

Path 1 Single Truck Loading on UHPC beam Girder 6 Southern Stem 

Axle Position DIC (mm) Dial Gauge (mm) 

Q1 0.10 0.10 

M 0.12 0.13 
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Table 69. Comparison between dial gauge vs DIC displacement data for single truck 

loading 

Path 2 Single Truck Loading on HPC beam Girder 1 Southern Stem 

Axle Position DIC (mm) Dial Gauge(mm) 

Q1 -0.65 -0.55 

M -1.04 -0.85 

Q2 -0.40 -0.39 

 

Table 70. Comparison between dial gauge vs DIC displacement data for triple truck 

loading 

Path 10 Triple Truck Loading on HPC beam Girder 6 Southern Stem 

Axle Position DIC (mm) Dial Gauge (mm) 

Q1 -1.55 -2.36 

M -3.24 -3.10 

Q2 -2.34 -2.26 

 

Table 71. Comparison between dial gauge vs DIC displacement data for triple truck 

loading 

Path 10 Triple Truck Loading on HPC beam Girder 1 Southern Stem 

Axle Position DIC (mm) Dial Gauge (mm) 

Q1 -0.40 -0.55 

M -0.75 -0.85 
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The data presented in the table above are comparisons for the test done in the 

morning. The dial gauges compared well with the measurement obtained from DIC for 

many of the tests. As the day progressed the dial gauges were not able to account for 

temperature changes whereas the DIC was using a new zero every time a test was 

conducted. The Table 72-75 below represent the comparison of DIC data with dial gauge 

data for the test that were conducted on the later part of the day. 

 

Table 72. Comparison between dial gauge vs DIC displacement data for double truck 

loading 

Path 1D Double Truck Loading on HPC beam Girder 1 Southern Stem 

Axle Position DIC (mm) Dial Gauge (mm) 

M -0.32 -0.87 

Q2 -1.75 -1.33 

 

Table 73. Comparison between dial gauge vs DIC displacement data for double truck 

loading 

Path 3D Double Truck Loading on HPC beam Girder 1 Southern Stem 

Axle Position DIC (mm) Dial Gauge (mm) 

Q1 -0.12 0.67 

M -0.99 0.48 
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Table 74. Comparison between dial gauge vs DIC displacement data for double truck 

loading 

Path 4D Double Truck Loading on HPC beam Girder 1 Southern Stem 

Axle Position DIC (mm) Dial Gauge (mm) 

Q1 -0.75 1.01 

M -1.18 0.90 

 

Table 75. Comparison between dial gauge vs DIC displacement data for double truck 

loading 

Path 6D Double Truck Loading on HPC beam Girder 1 Southern Stem 

Axle Position DIC (mm) Dial Gauge (mm) 

Q1 -0.08 1.36 

M -0.21 1.34 

 

The data presented in the Tables 72-75 varied. The dial gauge was taking the 

same reference value throughout the test. The error due to temperature changes 

accumulated and erroneous results were obtained during the end of the testing period. 

The displacement given by dial gauge reading were positive when the trucks were on the 

mid span of the bridge which is not possible. The difference in displacement was large. 
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Chapter 7 

Conclusions and Recommendation for Future Work 

This thesis analyzes the ability of DIC to adequately measure strain and 

displacement in highway bridges. This was done by testing on two spans UHPC and HPC 

reinforced concrete bridge superstructure designed by New Mexico State University 

(NMSU) and constructed outside of Las Cruces, New Mexico. The testing was completed 

using Digital Image Technology. The conclusion of this study is specified as a) Test 1 and 

b) Test 2 

Test 1 

• One span of the structure was constructed using UHPC and the other HPC.  During 

test 1 four 3D and four 2D DIC systems were deployed to monitor displacements 

at various locations of the structure under controlled prescribed loading.  The 

loading was selected as to generate maximum flexural and shear responses within 

both spans.  Images were captured at each static positioning of the loading on the 

bridge.  These images were processed using the ARAMIS GOM DIC software 

package to generate displacement and strain measurements.   

• The displacement data obtained from DIC were used to obtain deflection profile of 

the two spans of the bridge. The deflection profile was used to monitor the behavior 

and performance of UHPC and HPC beams. The maximum displacement was 

obtained higher for HPC beam than the UHPC beam for all types of load test. The 

loading conditions and load paths were similar for both tests and the results 

obtained showed UHPC beam deflected less than the HPC beam. The maximum 
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displacement data for single truck loading test for HPC beam was found to be 

1.19mm whereas the maximum displacement data for the UHPC beam was found 

to be 1.02mm. The results appear to indicate that the UHPC span is stiffer than the 

HPC span.  This can be seen from the smaller displacements of the exterior fascia 

girders monitored by the HiSpec1 and IL5 systems under identical loading 

conditions.  It was noted in some tests that there was very small upward 

displacement of an exterior girder which suggests the possibility of the bridge 

twisting slightly.  In any case, all displacement measurements were well below the 

maximum allowed by AASHTO Bridge Design Specifications. 

• The strain data obtained from the DIC had very little accuracy when compared to 

the data obtained from strain gauges. Therefore, for the purpose of performance 

evaluation for UHPC and HPC beams strain data were used from the strain gauges. 

The data obtained from the strain gauges was more comprehensive and the behavior 

of the UHPC and HPC beam were characterized based on the data from strain 

gauges.  

• Since this was the first time this team has deployed DIC in the field there was 

uncertainty as to the best method for calibrating the 3D DIC systems.  The team 

elected to calibrate the systems in the structural engineering laboratory at NMSU 

then carefully transport the systems to the field for installation.  Once in the field 

some systems became uncalibrated and needed to be recalibrated in the field using 

either a large GOM calibration cross or GOM calibration panel.  This resulted in a 

delayed start in when data was able to be gathered and therefore some load tests 
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were not able to be monitored.  The load testing occurred over a 3-day period.  Each 

day, the GoPro, IL5 and HiSpec1 systems were taken down and the cameras left in 

their same position and orientation in relation to each other in attempts to reduce 

the need to calibrate the systems each night. The HiSpec1 system was able to say 

calibrated however the IL5 system needed to undergo recalibration each day.  The 

2M system was left out each night and kept in place.  This system kept its 

calibration throughout the entire testing.  There were also instances where the IL5 

and HiSpec1 systems lost connection with the computer which required a restart of 

the system and some load testing data was not captured.  The GoPro systems were 

used for 2D DIC analysis, so no calibration was needed.  The GoPro systems were 

both operated using a remote control from the command station which was near the 

IL5 and HiSpec1 systems.  It was noticed that occasionally some images were not 

actually taken by these cameras as the signal from the remote was not received.  

This again resulted in some data not being collected.  The challenges faced were all 

overcome, and the team showed that DIC is a feasible method for measuring 

deformations during load testing of highway bridges.    

• This being the research teams first deployment of DIC systems for in-situ structural 

evaluation of bridges there were challenges that needed to be overcome and were.  

To the knowledge of the research team this testing was the largest number of DIC 

systems deployed at one time for bridge load testing.  This work shows the 

feasibility of using DIC to measure in-situ displacement measurements for 

experimental load testing of highway bridges. 
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Test 2 

• The second test was conducted on February 2019. The second test included the 

use of eight 2D system and the internal girders were monitored during the test. 

The loading condition were similar to the one on the first test. The displacement 

was better explained for the second test and were a better interpretation to the 

loading conditions. The upward displacement was again observed on the second 

test and also was confirmed by dial gauges shows that there is presence of 

continuity in the bridge causing the bridge to move upwards when loading is on 

other half of the bridge. 

• The test was also conducted with dial gauges. The readings obtained from the 

dial gauges were both positive and negative values. The values supported the 

upward movement of the bridge which was also observed from DIC. The 

displacement data from DIC was compared with the dial gauges and reasonable 

accuracy was observed. The displacement was accurate when the loading 

condition was increased during the test, i.e. when the loading condition 

increased from single truck loading to double truck loading. The magnitude of 

displacement can have a relation with the accuracy of the measurement. 

• The behavior of the bridge was observed more precisely during the second test 

as 4 separate camera systems were able to produce similar result which was a 

big improvement over the first test. The displacement pattern was similar for 

all internal girders for similar loading conditions. A small upward displacement 

was observed when the loading was on the other span. 
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• This being the research teams second deployment of DIC systems for in-situ 

structural evaluation of bridges there were challenges that needed to be 

overcome and were.  To the knowledge of the research team this testing was 

the largest number of DIC systems deployed at one time for bridge load testing.  

This work shows the feasibility of using DIC to measure in-situ displacement 

measurements for experimental load testing of highway bridges. 

• Dynamic high-speed test was also conducted for both test and DIC was able to 

capture results for the test. The speed of the vehicle was obtained and dynamic 

displacement and strain results were also captured by the 3D DIC camera 

system. 

Future Work 

The work presented in the study contributes to health monitoring work done on 

bridge assessment from Digital Image Technology. The deflection profile for the span of 

the bridge was easily obtained and performance of the two different spans were analyzed. 

The strain data obtained were less accurate compared to the data obtained from strain 

gauges. Since the camera system were only capturing the images for fascia girders, further 

studies can install a camera system for every girder in the bridge. The results for 

displacement would also result in accurate data when there is separate camera system for 

every girder. During the processing of the images in ARAMIS, the deviation size had to be 

increased for the software to recognize the pattern. For the strain data the number of input 

images can be increased by taking the images in smaller intervals. This would provide a 

lot of input data and reduce the noise while micro-strains are being measured. After 
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obtaining the strain value across the girders in the bridge distribution factor for the bridge 

can be calculated and compared. A comparison of distribution of load along the bridge can 

be vital to characterize the performance of UHPC beam with HPC beam.  

In this time, cameras and image technologies has been improving in leaps and 

bounds, the civil engineering community can significantly benefit from new applications 

and models for improved condition assessment. As is currently done in steel structures and 

mechanical engineering industries DIC is being used to quantify deformation, similar 

concept should be applied in civil engineering. While much work and additional testing 

similar to what was presented in this study, needs to be undertaken, there is no doubt that 

improvements can be made to an existing system which needs improvements. 
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