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ABSTRACT 
 
 

USING ECOLOGICAL NICHE MODELING TO PREDICT OCCURRENCE OF 
RARE FISH AND UNIONIDS IN EAST TEXAS 

 
Ashley Dunithan 

 
Thesis chair: Lance Williams, Ph.D. 

 
The University of Texas at Tyler 

May 2012 
 

 Fish and Unionid mussels are important components of aquatic ecosystems and 

the population decline of these organisms has become a topic of concern. Currently, 

there are six species of concern and three state-threatened fish species and six state-

threatened Unionid species that occur in East Texas. However, little information is 

known about the ecology of these species. 

  In this study, I used ecological niche modeling, the software package Maxent, 

and eleven abiotic environmental parameters to predict the probability of occurrence of 

rare fish and mussel species in East Texas.  

 We were unable to model the fish species; however, the models for the 

Unionids were statistically significant (AUC >0.75). We used ENMtools to determine 

if the Unionid species exhibited statistically significant ecological differences and 

concluded that the niche models were significantly different from one another.  

Through the use of this software, we were able to determine locations and quantities of 

similar habitat and geomorphology in east Texas to help describe the amount of 

available habitat for these species and predict their probability of occurrence.
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CHAPTER 1: A COMPARISON OF ECOLOGICAL NICHE MODELING 

APPROACHES 

INTRODUCTION TO ECOLOGICAL NICHE MODELING 

 Knowledge regarding geographic distribution of species is important for 

conservation biology and management of biodiversity (Margules and Pressey, 2000).  

Species distributions can be inferred through a variety of statistical methods used to 

create models that estimate and predict species’ geographic distribution. Predictive 

models are an important technique used in analytical biology and have been applied to a 

variety of areas in ecology including conservation, invasive species management, and 

evolution  (Yom-Tov and Kadmon, 1998; Corsi et al., 1999; Peterson et al., 1999; Welk 

et al., 2002). Ecological niche models provide information regarding potential geographic 

distributions of species by quantifying relationships between the species known 

distribution and environmental variables, both abiotic and biotic. Ecological niche models 

represent a species’ ecological niche within a set of environmental dimensions 

(Rotenberry et al., 2006). A species’ fundamental niche consists of the set of all 

conditions that allow for long-term survival; whereas, the realized niche is a subset of the 

fundamental niche that the species actually occupies (Hutchinson, 1957).  The species’ 

realized niche is often smaller than the fundamental niche, because of historical factors 

(dispersal limitations), biotic interactions (competition, predators), and realized 

environment (e.g. current conditions) (Pulliam, 2000; Anderson and Martínez-Meyer, 
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2004). Geographic areas that satisfy the conditions of a species’ fundamental niche 

represent the potential distribution; whereas, the areas actually inhabited represent the 

realized distribution.  Predictions of species distributions can provide a complete, fine-

scale spatial coverage of the potential distribution, including areas where data are limited 

or unavailable. Predicted distributions can be used for further analysis, including 

assessing the quality of nature reserves, creating more efficient surveys, and determining 

the actual distribution of rare and endangered species (Yom-Tov and Kadmon, 1998).  

Predicted distributions are important for conservation because information regarding 

distributions is a necessary precursor for plans to mitigate decline or to create new 

populations through reintroduction (Martínez-Meyer et al., 2006).  Ecological niche 

modeling has been used to facilitate the study of spatial patterns of animal diversity 

(Rosenzweg, 1995; Yom-Tov and Kadmon, 1998; Brown and Lomolini, 1998; Ricklefs, 

2004; Graham et al., 2006).  In addition to examining spatial patterns of animal diversity, 

ecological niche models have been used to identify unknown distributional areas and 

previously undiscovered species (Raxworthy et al., 2003; Bourg et al., 2005), determine 

potential impacts of climate change (Iverson and Prasad,1998; Thomas et al., 2004; 

Thuiller et al., 2005a; Lawler et al., 2006), predict species invasions (Welk et al., 2002; 

Peterson and  Shaw, 2003; Peterson and  Shaw, 2003; Goolsby, 2004; Iguchi et al., 2004; 

Thuiller et al., 2005b), and to support conservation planning (Corsi et al., 1999; Araújo 

and Williams, 2000; Ferrier et al., 2002; Funk and Richardson, 2002; Rushton et al., 

2004).  

 Ecological niche models have broad applications and are in widespread use. 

Therefore, multiple approaches have been developed. They utilize either regression 
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models or machine learning models (Hijmans and Elith, 2011). These approaches differ 

in their data requirements and statistical methods, and they often make different 

predictions about species’ distributions (Guisan and Zimmerman, 2000; Elith and 

Burgman, 2003; Elith et al., 2006). Therefore, it is crucial to choose an appropriate 

approach to niche modeling for a particular situation, which depends on the assumptions 

one is comfortable making and on the type of data that is available.  

REGRESSION MODELING METHODS 

 Regression modeling methods for niche modeling are either general linear models 

(GLMs; McCullagh and Nelder, 1989) or general additive models (GAMs; Hastie and 

Tibshirani, 1990). Regression modeling is the most appropriate when there is both 

presence and absence data available, and when the sampling regimen has been systematic 

and unbiased (Austin and Cunningham, 1981). Both GLMs and GAMs use regression 

analysis to model realized niches and are widely used because of the strong statistical 

component and accuracy in modeling ecological relationships (Austin, 2002). GAMs use 

non-parametric, data defined smoothers to fit non-linear functions, whereas GLMs fit 

parametric terms, usually some combination of linear, quadratic and/or cubic terms (Elith 

et al., 2006). GLMs offer a slightly more flexible modeling framework because they 

allow for the modeling of alternative distributions in the response variable and non-

constant variance functions (Guisan et al., 2002). GLM is one of the most established 

statistical frameworks for species distribution models (Austin and Cunningham, 1981); 

however, GAMs are able to model more complex ecological response shapes than GLMs 

(Yee and Mitchell, 1999). Statistical approaches require both presence and absence data; 

however, when absence data are unavailable the background pixels may be used as 
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pseudo-absences instead of true absences and the output is interpreted as the relative 

result of environmental suitability (Ferrier et al., 2002).  

MACHINE LEARNING APPROACHES 

 As mentioned above, regression model approaches should ideally use absence 

data as well as presence data. But the validity of absence data is often questionable 

(Anderson et al., 2003) and in any event it is rarely available (Soberón, 1999; Ponder et 

al., 2001). Therefore machine learning approaches which are more robust to the lack of 

true absence data, are gaining in popularity (Elith et al., 2006). Commonly used machine 

learning modeling methods include classification and regression tree (CART; Brieman et 

al., 1984), Genetic Algorithm for Rule-Set Prediction (GARP; Peterson et al., 2002), and 

maximum entropy modeling (Maxent; Dudik et al., 2007).  

Classification and Regression Trees  

 While GLMs describe general relationships between environmental variables and 

species distributions, CART uses an algorithm that repeatedly separates the 

multidimensional space into subsets based on the best predictor variable (Chambers and 

Hastie, 1992). Modeling with CART has provided advantages over regression-based 

approaches in describing relationships between environmental factors and species 

distributions in multiple studies (Iverson and Prasad, 1998; Vayssieres et al., 2000) 

because it is less restricted by parametric assumptions and has an improved ability to 

handle non-linear interactions (Brieman et al., 1984). CART, however, is not as effective 

as other modeling methods at predicting occurrence of rare species (Kintsch and Urban, 

2002).  
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Genetic Algorithm for Rule-Set Prediction (GARP) 

  GARP uses a genetic algorithm, a search heuristic for binary classification, to 

produce a set of rules to describe a species’ distribution (Stockwell and Noble, 1992). 

The rules are used to iteratively search for non-random correlations between presence and 

pseudo-absence data and environmental predictors to develop a final set of rules.  The 

rules are produced after 1000 iterations or convergence is reached (Peterson and Kluza, 

2003). The final output from GARP is stochastic resulting in different models, with a 

variation in results, produced from the same data (Anderson et al., 2003). Approximately 

10 to 100 models should be retained, each rule set should be used to predict presence, and 

the proportion of models predicting presence for an observation, or pixel, should be 

interpreted as the probability of occurrence (Stockwell et al., 2006). Although GARP has 

been successful at predicting species distributions, this method tends to have higher 

omission errors than alternative modeling methods and is known to overpredict species 

distributions (Hernandez et al., 2006; Phillips, 2008; and Elith and Graham, 2009).  

Maxent 

 A more recently developed software package called Maxent (Dudik et al., 2007), 

is becoming the more commonly used modeling method to predict species distributions. 

Maxent is considered the most accurate modeling technique when presence-only 

information is available. In fact, Maxent actually outperforms statistical methods that use 

presence-absence information such as GAMs and GLMs (Elith et al., 2006). Maxent uses 

the statistical approach of maximum entropy to make predictions from occurrence 

localities and environmental variables corresponding to the geographic region of interest.  

The maximum entropy principle states that probability distributions with maximum 
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entropy (the most spread out, closest to uniform), taking into consideration the constraints 

(determined by the expected value of the distribution, which is estimated from the 

presence observations), is the best estimate of an unknown distribution because it agrees 

with everything that is known but avoids assuming anything that is unknown (Jaynes, 

1990). Maxent models distributions directly by estimating the density of environmental 

variables conditional on presence of the species. The program starts with a uniform 

probability distribution and iteratively alters one environmental variable at a time to 

maximize the likelihood of the occurrence dataset. The algorithm is guaranteed to 

converge to the optimum probability distribution and because the algorithm does not use 

randomness, the outputs are deterministic (Hernandez et al., 2006). An important 

distinction between Maxent and regression models is that locations without species 

occurrence points are represented as background information in Maxent and not as 

absences (Franklin, 2009). 

ADVANTAGES OF MAXENT 

  There are several advantages to using the Maxent approach compared to other 

modeling methods. Maxent provides a continuous description of habitat suitability by 

distinguishing between those with a sufficiently strong prediction versus those with 

increasingly stronger predictions allowing it to provide a more detailed output when 

compared with GARP (Phillips et al., 2006).  This is likely the result of Maxent 

performing additively, the contribution of all environmental variables at each pixel (Elith 

and Graham, 2009). GLMs and GAMs are discriminative approaches which estimate the 

probability distribution over environmental variables given occurrence points directly 

while Maxent is generative which builds a probabilistic model for each environmental 
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variables and identifies which variable was most likely to have generated the occurrence 

point. The generative approach allows Maxent to produce better predictions when the 

amount of training data is small (small sample sizes) (Ng and Jordan, 2001).  Because it 

uses a maximum entropy algorithm, Maxent appears to be less sensitive to sample sizes 

when compared to modeling methods such as GARP, GLMs, and GAMs; Maxent 

consistently outperform these methods at the smallest sample sizes (Wisz et al., 2008).  

Maxent had a higher accuracy (higher AUC values) with smaller datasets than GARP and 

produced accurate results in instances with low occurrence data (Hernandez et al., 2006). 

One study found high success rates and statistical significance in jackknife tests with 

sample sizes as low as five (Pearson et al., 2007), which is likely the result of the 

regularization process in Maxent that inhibits the over-fitting of models when occurrence 

data is limited (Phillips et al., 2006). The ability to provide significant results and 

accurate prediction with fewer occurrence points is useful when considering rare or 

specialist species that occupy limited geographic distributions and occur in relatively low 

numbers (Gaston, 1997). These advantages allow for the use of Maxent to predict 

distributions for rare and endangered species and helps elucidate the amount of potential 

habitat at larger spatial scales, or areas. 

RESEARCH OBJECTIVES 

 The objective of my thesis is to use landscape characteristics and the ecological 

niche modeling software, Maxent, to predict the probability of occurrence for rare fish 

and state-threatened mussel species in the Neches and Sabine rivers in east Texas, USA.  

Information regarding relationships between species and environmental variables will 

enhance knowledge of each species’ ecology.  Prediction and mapping of potential 
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suitable habitat for rare species may be used to assess impacts of disturbances and to 

guide management decisions and restoration efforts (Gaston, 1996). 
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CHAPTER TWO: USING ECOLOGICAL NICHE MODELING TO PREDICT 
OCCURRENCE OF RARE FISH AND UNIONID SPECIES IN EAST TEXAS 

 
 INTRODUCTION 
 

 Information regarding geographic distributions of species is important for 

conservation and management of biodiversity (Margules and Pressey, 2000). The use of 

predictive models of species geographic distributions is an important technique in 

analytical biology and has been applied to a variety of areas of conservation and ecology 

(Corsi et al., 1999; Welk et al., 2002; Yom-Tov and Kadmon, 1998). Models and 

information regarding potential habitat may be used to assess impacts of disturbances and 

to guide management decisions and restoration efforts (Gaston, 1996). Landscape level 

characteristics can be used to predict smaller scale habitats associated with a particular 

species and will enhance knowledge of the species’ ecology. 

Spatially explicit methods that combine information regarding landscape 

characteristics and localities of known occurrence are useful for understanding the 

ecological processes driving species’ distributions. A niche modeling approach known as 

maximum entropy distribution (Maxent Phillips et al., 2006) provides an understanding 

of habitat suitabilities of individual species on the landscape.  Maxent models the specific 

environmental requirements for a species, or the realized niche (Hutchinson, 1957). 

Maximum entropy distribution modeling outperforms other machine-learning and 

regression modeling methods (Elith et al., 2006; Ortega-Huerta and Peterson, 2008) and 
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performs well at small sample sizes (Hernandez et al., 2006; Kumar and Stohlgren, 2009; 

Wisz et al., 2008).  The ability to provide accurate predictions with fewer known 

localities is useful when considering rare or specialist species that occupy limited 

geographic distributions and occur in relatively low numbers (Gaston, 1997).  Maxent 

produces a geographic model of habitat suitability by searching for the best solution 

comparing the distribution of the occurrence points to the predetermined environmental 

variables (i.e., ArcGIS layers) (Phillips et al., 2006).  In ecological niche modeling, there 

are implicit ecological assumptions (Elith et al., 2011).  Therefore selection of variables 

requires expert knowledge of the species’ ecology. The environmental variables should 

coincide temporally with the occurrence localities (Anderson and Martínez-Meyer, 

2004). The GIS maps of environmental parameters used should correspond to the years of 

data collection.  Also, geographic extent should be taken into consideration when 

choosing environmental variables. Environmental variables should affect the species’ 

distribution at the relevant scale (Pearson et al., 2004). Species’ responses to 

environmental parameters is determined by the scale of the study area.  Topographic and 

landcover variables likely influence species’ distributions at meso- and topo-scales 

(Mackey and Lindenmayer, 2001).   Maxent produces a map with a logistic score for 

each grid cell which can be interpreted as the degree of suitability of a particular location 

for the species, given the environmental attributes of that location (Phillips and Dudik, 

2008). The resulting predictive models can be used as a conservation tool to predict 

patterns of species distributions across the landscape and aid in the development of 

recovery plans for imperiled fish and mussel species.   
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 In lotic environments, biological patterns are influenced by abiotic conditions. 

Stream assemblages are structured through a hierarchical framework where landscape-

level features constrain and control local factors such as hydrology, sedimentation, 

nutrient dynamics, and channel morphology (Frissel et al., 1986; Tonn et al., 1990; 

Smiley et al., 2005). One of the most significant threats to riverine ecosystems is 

alteration of the natural flow regime (Dynesius and Nilsson, 1994; Nilsson and Berggren, 

2000).  Fragmentation of natural habitat and alterations of natural flow regime have been 

reported as the most significant threats to freshwater mussels and fishes of the southern 

United States (Williams et al., 1993; Warren et al., 2000; Vaughn and Taylor, 1999). 

Determining the impact river alterations may have on rare species can be accomplished 

with landscape-level knowledge of the availability and quality of habitat that currently 

exists in the watershed.  In the state of Texas, there has been a dramatic increase in 

human population resulting in an increased demand for water.  Depletion of groundwater 

resources places an increased demand on surface waters (Wurbs, 1985). Northeast Texas 

has become a prime site for reservoir development and commercial interest because of an 

abundance of water resources in the area. The Neches and Sabine River systems of east 

Texas are one focus of this increased demand for water resources and have planned 

reservoir projects.    

Fishes are ecologically important components of lotic ecosystems (Holmlund and 

Hammer, 1999; Warren et al., 2000). Some of the richest fish faunas in North America 

occur in the southern region of the United States.  Texas has a diverse fish fauna 

consisting of 247 species in 45 families with highest species diversity occurring in the 

eastern part of the state (Thomas et al., 2007).  In the last three decades there has been a 
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consistent decline in diversity of fishes in east Texas because of human activities and 

alteration of lotic environments (Anderson et al., 1995). The number of fish species 

classified as imperiled in the south has increased by 75% since 1989 (Warren et al., 2000) 

and 20% of the fishes native to Texas are in need of conservation (Hubbs et al., 1991). In 

the eastern part of the state, six fish species are considered to be species of concern, 

Anguilla rostrata, American Eel; Notropis atrocaudalis, Blackspot Shiner; Notropis 

chalybaeus, Ironcolor Shiner; Notropis sabinae, Sabine Shiner; Notropis shumardi, 

Silverband Shiner; and Erimyzon oblongus, Creek Chubsucker, and three are considered 

state threatened: Polyodon spathula, Paddlefish; Pteronotropis hubbsi, Bluehead Shiner; 

and Cycleptus elongatus, Blue Sucker (Bender et al., 2005).   

 Along with fish species mentioned above, there are several species of mussels, 

whose life history is intertwined with fish (Howells et al., 1996), that are also imperiled 

in East Texas. Freshwater mussels belonging to the family Unionidae often occur in 

dense multispecies beds that perform functional ecosystem roles such as removing 

suspended organic matter, moving sediments, and providing habitat for other animals 

(Christian and Berg, 2000; Strayer et al., 1997; Vaughn and Hakencamp, 2001).  

Freshwater mussels are the most imperiled group of animals in North America. Over the 

last century, North American mussel populations have decreased with 35 species now 

considered extinct and approximately 50% imperiled (Shannon et al., 1993; Williams et 

al., 1993; Neves et al., 1997; Vaughn, 1997). Historically, freshwater mussels were 

abundant in riverine systems in the southeastern United States (Strayer et al., 1994; 

Parmalee and Bogan, 1998).  There are approximately fifty species of Unionid mussels in 

the state of Texas, of which many have a distinct species composition in east Texas 
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(Neck,1982; Howells et al.,1996). Fifteen species in Texas are state-threatened with six 

of these occurring in east Texas:  Obovaria jacksoniana, Southern Hickorynut; 

Pleurobema riddellii, Louisiana Pigtoe; Lampsilis satura, Sandbank Pocketbook; 

Potamilus amphichaenus, Texas Heelsplitter; Fusconaia lananensis, Triangle Pigtoe; and 

Fusconaia askewi, Texas Pigtoe. Additionally, one species is federally listed as 

endangered, Arkansis wheeleri, Ouachita Rock Pocketbook.  

RESEARCH OBJECTIVES 

 I had two objectives in this study: 

 (1) Use ecological niche modeling to predict occurrence of rare fish and mussel species 

in east Texas. 

(2) Determine which environmental variables (i.e., soil, vegetation, groundwater 

recharge, overland flow, etc.) are most important for rare species distribution.  
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METHODS 

SAMPLING DESIGN 

 In 2010-2011, mussels and fish were surveyed in the Neches and Sabine Rivers of 

east Texas between April and October (Fig. 2.1). Biota were collected at five sites on the 

Neches River and nine sites on the Sabine River.  The sampling locations were chosen to 

provide adequate coverage of the rivers in northeast Texas. Sites were sampled in a 200m 

reach containing as many geomorphic units as possible (i.e., riffle, pool, run) to be 

representative of the actual conditions. Fish were collected throughout each reach with a 

Smith-Root 2.5 generator powered pulsator (GPP) tote barge electroshocker.  Studies 

have shown electrofishing to be the most effective technique for obtaining fish data in 

freshwater habitats (Yoder and Smith, 1999).  Fish were identified to species, 

enumerated, and released except for voucher specimens. All difficult to identify 

specimens were preserved in formalin and keyed out in the lab. Mussels were sampled 

using one person hour tactile and visual searches in four 50m transects perpendicular to 

the channel at each site. Qualitative and quantitative methods have provided similar 

results for mussel species diversity, evenness, and richness values allowing for the use of 

visual surveys (Hornbach and Deneka, 1996). Living and recently dead mussels, 

indicated by the presence of tissue and shiny nacre, were identified to species, 

enumerated, and replaced except for voucher specimens.  Long deceased mussels were 

not included in samples because stream flow can transport them from upstream locations 
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that are outside of the sampling area, which would provide inaccurate evidence of habitat 

suitability.  

 Additional mussel data were obtained from a database created by Bob Howells, 

(Appendix A). Lake Tawakoni, on the Sabine River, was the last reservoir constructed in 

the east Texas region and formation of the dam was finalized in 1980 allowing for mussel 

occurrence data dating back to the dam’s construction to be incorporated into the models.  

Additional fish data were collected from Kevin Mayes, Texas Parks and Wildlife, and 

Matt Troia, University of Texas at Tyler (Appendix B).  

MODELING 

 We used the software package Maxent for our ecological niche modeling (Dudik 

et al., 2010). The analysis was limited to locations falling within east Texas, including the 

Trinity River as our western boundary and incorporating the Cypress, Sulphur, Sabine, 

Neches, and Angelina Rivers into our models.  Habitat suitability models were built 

separately for each species. Species with less than five occurrence points were not 

modeled (Pearson et al., 2007). Eleven GIS layers were incorporated in the model, 

including infiltration excess and overland flow, groundwater recharge, soil type, 

vegetation type, sunlight, aquifers, spring source density, density of roads, density of 

dams, total nitrogen load, and landform.  The sunlight layer provided information 

regarding solar radiation and mean annual cloud cover (Kriticos et al., 2012). Freshwater 

mussels are filter feeders and require a food supply rich in filamentous algae and other 

algae species which are photosynthetic organisms. We performed a kernel density 

function (Silverman, 1986), on the roads layer in ARCMap version 9.3 (ESRI Inc., 2008) 

to provide road densities. Density of roads provides information regarding anthropogenic 
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activity in an area and information regarding urbanization. Reservoirs (Ruddy and Hitt, 

1990) was obtained as a point coverage and we used a kernel density function to provide 

densities of the specified features. It has been reported that reservoir construction is the 

most significant factor influencing mussel populations (Neck, 1982). Landcover types 

were described in the vegetation layer (McMahan et al., 1984), major soil types were 

provided in the soil layer (Soil survey staff, 2006).  The landform layer describes slope, 

local relief, profile type, percentage of area occupied by sand, ice and standing water, and 

patterns of major peaks (Hammond, 1964). In streams and rivers, habitat parameters 

including land use and landform characteristics are known to influence local habitat and 

biological diversity (Allan and Flecker, 1993; and Strayer, 2008). Landcover is a vital 

component in determining species endangerment “hot spots” in the United States (Flather 

et al. 1998). Soil type, vegetation, and land-use characteristics influence the hydrology 

and movement of water into a watershed. We also performed the kernel density function 

on the spring layer (Heitmuller and Williams, 2006). Hydrography features and the major 

aquifers were obtained from the aquifers layer (Hayes, 2006). The groundwater recharge 

layer provided the mean annual ground water recharge estimates (Wolock, 2003a). 

Information regarding infiltration excess and overland flow estimates were provided in 

the TopModel layer (Wolock, 2003b).  River systems behave differently depending on 

the relative contribution of groundwater versus surface flow; therefore, alterations in 

overland flow and groundwater recharge result in variations in velocities which may 

select for individuals that are capable of surviving in modified flow regimes (Statzner et 

al. 1988).  Sparrow modeling provided the estimate of total nitrogen loads in the 
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watershed (Smith et al., 1997) which influences the eutrophication of a system and may 

eliminate essential food supplies.  

Most environmental data were obtained as raster files; vector data were converted 

to raster format in ArcMap with the Feature to Raster Conversion tool. Environmental 

layers were clipped in order to constrain the models to lotic habitats. We did this by 

adding a 1000m buffer around water features (ponds, streams, river, canals, and dams), 

obtained from an environmental layer called “NHDFlowline” obtained from the US 

Geological Survey (USEPA and USGS, 2005), and clipping the environmental layers to 

match the lotic buffer. The environmental data were projected in the Universal 

Transverse Mercator coordinate system North American Datum 1983 (XY coordinate 

system GCS_North_America_1983), and the cell sizes were equalized to a resolution of 

0.014 arc-second resolution (approximately 4 m2).  Once the environmental layers were 

processed in this way, they were converted to ASCII format for Maxent analysis.   

 In Maxent, we used the cross-validation option to assess predictive ability and 

usefulness as a model (Pearson et al., 2007); each species occurrence data point was used 

as the test data, in turn, while all the other occurrence points were used as the training 

data.   In order to determine model fit for each species we used AUC and gain generated 

by the software. The area under the operator receiving curve, AUC (Fielding and Bell, 

1997), measures the probability that a randomly chosen presence site will be ranked 

above a randomly chosen pseudoabsence site (Phillips and Dudik, 2008). Models with 

AUC > 0.75 are traditionally thought of as useful (Elith, 2002), but this cutoff is arbitrary 

(Elith et al., 2006; Lobo et al., 2008).  Gain is the mean log probability of the occurrence 

samples, minus a constant that makes the uniform distribution have zero gain. In addition 
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to presenting the gain for the full model with all environmental variables, Maxent 

provides, for each environmental variable, gains for models created with only one 

environmental variable. We used the gains of each one-variable model and compared 

them to the gain of the full model, to determine what proportion of the total gain was 

accounted for by each variable. If an environmental variable’s gain when modeled alone 

was less than five percent of the gain for the entire model, the variable was removed.  

 The niche identity test allows the user to test whether the habitat suitability scores 

generated by the ecological niche models from two species exhibit statistically significant 

ecological differences. It does this by pooling empirical occurrence points and 

randomizing their identities to produce two new samples with the same numbers of 

observations as the empirical data.  

 For niche models that had a good fit to the data (AUC > 0.75), we further tested 

whether they were significantly different from one another. We did this using ENMTools, 

a software package that allows one to test whether the habitat suitability scores generated 

by niche modeling for two species exhibit statistically significant ecological differences 

(Warren et al., 2010).  Specifically, for every possible pair of species’ niche models, we 

used the “niche identity test” module which asks whether niche models generated from 

two or more species are more different than expected if they were drawn from the same 

underlying distribution.  It does this by pooling empirical occurrence points and 

randomizing (permuting) their identities to produce two new samples with the same 

numbers of observations as the empirical data (Warren et al., 2010). We repeated this 

procedure 100 times, generating niche similarity values based on the permutated data 
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from each run. This gave us our distribution under the null hypothesis of no difference in 

the niches of two species.   

ENMtools output provides three different statistics to measure niche similiarity: 

Schoener’s D (Schoener, 1968), the I statistic (Warren et al., 2008), and relative rank, RR 

(Warren and Seifert, 2011). All three metrics range from zero to one; zero indicating that 

species have completely different models and one meaning that the pair of species have 

identical models. The I and D statistic are calculated by taking the difference between the 

species suitability score at each grid cell, after the suitabilities have been standardized so 

that they sum to one over the geographic space being measured. The relative rank is an 

estimate of the probability that the relative ranking of any two patches of habitat is the 

same for the two models. Although the statistics emphasize different aspects of the data, 

we chose to use the I statistic because it has been shown that RR, I, and D metrics are 

highly correlated (Warren et al. 2008).  

We calculated the five percent quantile of the null distribution of the I statistic 

using the R statistics software package (R Development Team, 2008).  We considered 

two species to have significantly different niches if the observed I statistic was below the 

five percent quantile from the null distribution (corresponding to a 5% chance that two 

niche models would be that different if they were estimated from two species that 

actually had the same niche).   
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RESULTS 

 We did not obtain occurrence data for the Blackspot Shiner, Ironcolor Shiner, 

Silverband Shiner, Paddlefish, or the Bluehead Shiner. Only one occurrence point was 

provided for the American Eel and three for the Creek Chubsucker.  

Six Blue Sucker and fifteen Sabine Shiner specimens were collected throughout 

east Texas (Appendix A). For the Blue Sucker model, the training AUC was 0.9986 and 

the test AUC was 0.4884.  The model for Sabine Shiner had a training AUC of 0.998 and 

a test AUC of 0.36 indicating that the models did not perform better than random (Table 

2.1).   

The training AUC values for mussels ranged from 0.9898-0.9976 and test AUC 

values ranged from 0.7788-0.9097, indicating that all of the models are potentially useful 

(Table 2.2). As previously stated, environmental variables were only used if they 

contributed more than five percent to the full model (as measured by test gain when the 

model only included that particular environmental variable). The relative contributions of 

the different environmental variables to the niche models varied depending on the 

particular species. Out of the eleven environmental variables incorporated into this study, 

soil type contributed the most information to niche models of all mussel species. The 

only variable that contributed to the southern hickorynut model was soil type (Table 2.3). 

Aquifers, road density, landform, total nitrogen load, groundwater recharge, soil, annual 

mean cloud cover, Topmodel, and vegetation contributed more than five percent to the 

full model for Louisiana Pigtoe.  The variables incorporated into the Texas Pigtoe model 
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were aquifers, spring density, landform, total nitrogen load, groundwater recharge, soil 

type, mean annual cloud cover, Topmodel, and vegetation. The environmental variables 

used for the Triangle Pigtoe were aquifers, reservoir density, landform, total nitrogen 

load, soil type, mean annual cloud cover, groundwater recharge, Topmodel, and 

vegetation. The Sandbank Pocketbook model incorporated aquifers, landform, total 

nitrogen load, groundwater recharge, soils, mean annual cloud cover, Topmodel, and 

vegetation. Finally, aquifers, reservoir density, spring density, landform, total nitrogen 

load, soils, Topmodel, and vegetation were incorporated in the Texas Heelsplitter model.  

Each of the mussel species’ niche models was significantly different from the 

other species’ niche models, as indicated by the permutation tests (Table 2.4). Texas 

Pigtoe had the largest predicted distribution, including areas of the Trinity, Sabine, 

Neches, and Sulphur Rivers (Figure 2.2). The highest habitat suitabilities were predicted 

in the Sabine and lower Neches River, where a majority of the sampling efforts were 

concentrated. Louisiana Pigtoe and Triangle Pigtoe were both predicted to occur in the 

Neches and Angelina Rivers (Figure 2.3 and 2.4). Despite similarities between the 

potential distributions of these two species, Triangle Pigtoe showed higher habitat 

suitability in the Angelina River even though both the Louisiana Pigtoe and the Triangle 

Pigtoe have been found in the Angelina River.  Sandbank Pocketbook was predicted to 

occur in the Sabine, Neches, Trinity, and Angelina Rivers with the highest habitat 

suitabilities occurring in areas of the Sabine and the lower Neches Rivers (Figure 2.5). 

The model for Texas heelsplitter predicted a sparse distribution in the Neches and Sabine 

Rivers (Figure 2.6).  Southern hickorynut had the smallest predicted distribution, 

indicating occurrence only in the Neches River (Figure 2.7). The predicted distribution 
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for southern hickorynut corresponded with previous sampling efforts. A majority of 

occurrence localities for the Southern hickorynut occurred in the Neches River; however, 

one was found in the Sabine River in 1984 (Appendix B). The report of the southern 

hickorynut in the Sabine River may be caused by mistaken field identification providing 

an inaccurate distribution of this rare Unionid.  
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DISCUSSION 

Ecological niche distribution patterns for the Blue Sucker and Sabine Shiner were 

unable to be modeled at this time.  Two factors are known to inhibit predictive 

performance of the niche models of these species which are insufficient data of species 

occurrence and incorrect model specifications (e.g. environmental layers) (Barry and 

Elith, 2006). Our lack of occurrence data and choice of environmental layers may have 

contributed to our inability to successfully model the fish species.  

 Because fish are mobile organisms, various types of habitats might need to be 

included in each pixel to fulfill the different environmental requirements of the species 

(e.g., foraging and reproduction) (Mackey and Lindenmayer, 2001). To ensure that all 

habitat types are incorporated, it may be important to use larger pixels to account for 

larger portions of the landscape (Jaberg and Guisan, 2001). Fish also tend to utilize 

different habitats during specific life stages. Adult Blue Suckers utilize riffles and are 

often associated with swift flows (Morey and Berry, 2003) while shallow, slack water 

habitats are vital nursery areas for juveniles (Adams et al., 2006). Variation in habitat 

during a lifecycle would indicate the importance of fitting separate models for the various 

life stages (Guisan and Thuiller, 2005). 

The spatial scale of the study should also be taken into consideration.  The size of 

the geographic region of interest influences the importance of abiotic versus biotic 

factors: small scale studies have indicated a greater impact of competition and large scale 

studies have emphasized abiotic controls (Jackson et al., 2001). A higher variation in 
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biotic factors can be seen at the smaller scale than at a larger scale.  A majority of 

variables in this study correspond to flow dynamics.  Biotic variables relating to species 

interactions were not incorporated into our models. Recent analyses have shown that the 

predictive power of models can be increased significantly by incorporating variables 

representing the presence-absence of known competitors suggesting that competition 

might influence species distributions (Leathwick and Austin, 2001; Anderson et al,. 

2002). Resource partitioning among fishes indicate that competition plays an important 

role in the organization of communities (Ross, 1986). Biotic interactions impact the 

geographic distribution of a species and must be taken into account when studying 

relationships between a species and its environment.  We may be able to improve the 

prediction accuracy of the models for the fish species by incorporating biotic variables 

such as competition and predation. 

Our study provides the first predicted niche distribution maps for rare mussels in 

east Texas.  The models identify regions that have similar environmental conditions to 

where current populations are maintained. Also, soil type was the most important 

environmental parameter for all rare mussel species in our models. Landform and 

vegetation were also important variables for predicting mussel niche distributions.  

Previous research has shown that, species distributions may be influenced by habitat 

parameters including landform, watershed slope, soil composition, vegetation and 

landuse characteristics (Morris and Corkum, 1996; Brainwood et al., 2006).  Because our 

models used landscape characteristics to map the fundamental niche of the species, the 

suitable habitat for these rare species may be overpredicted in some areas (Pearson 2007, 
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Murienne et al., 2009). However, the highest suitability scores appear to correspond to 

areas of occurrence. 

State-threatened mussels were predicted to inhabit all major rivers in east Texas; 

however, our models predicted that all rare species modeled occur in the Neches River, 

one of the largest rivers in east Texas.  This is likely a result of fewer alterations and an 

increase in habitat conservation efforts within the watershed including Davy Crockett 

National Forest, Big Thicket National Preserve, and the Neches River National Wildlife 

Refuge.   The riparian corridor of the Neches watershed is considered to be bottomland 

hardwood forest floors, with piney woods vegetation and oak-hickory pine forest in the 

uplands (Fish and Wildlife Service, 1979). The vegetation of this region helps reduce the 

influence of impervious overland flow that would cause increased velocities which is 

more typical of urbanized areas. Recent studies have also shown that the Neches River 

has sections that are adequately connected to its floodplain (Troia, 2010).  The lack of 

human alteration to the Neches watershed likely allows the mussels to remain in the 

substrate during seasonal flooding and inundation of the floodplain.  The Angelina River 

is a major tributary of the Neches River and shares characteristics with the Neches River 

because of its close proximity.   

The Sabine River is characterized by flat slopes and wide timbered floodplains. 

The upper reaches flow through prairie lands and contain deep sandy loam substrates. 

The lower portions of the Sabine River flow through flat terrain with hardwoods and 

forests consisting of hardwoods and conifers. Because of anthropogenic impacts, the 

Sabine River has low channel-floodplain connectivity (Phillips, 2008a). The Texas 

Pigtoe, Sandbank Pocketbook, and Texas Heelsplitter were predicted to occur in the 
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Sabine River and these species are known to occur in the Sabine River watershed 

(Howells et al., 1996). 

The Trinity River is very different from other east Texas rivers with regards to 

soil and vegetation. The Trinity River basin is defined by gentle topography and mostly 

clay loam soils with cropland and rangeland as the dominant land cover.   Research has 

shown that clay and loam soils impact surface water runoff and thus the addition of 

nitrogen in the Trinity River watershed (Chen et. al., 2000).  Along with agricultural 

practices, urbanized areas are prominent throughout the Trinity River watershed 

including the cities of Fort Worth and Dallas. Anthropogenic impacts may influence the 

ability of rare mussels to survive in and inhabit the Trinity River watershed. However, the 

low habitat suitability scores we found in the Trinity River could be a result of the lack of 

sampling intensity in this portion of east Texas (Phillips, 2008b).  Because the habitat in 

the Trinity River is drastically different from other east Texas rivers, correlations 

between mussel populations and environmental conditions in the Trinity River may not 

have been accurately portrayed.  Three species had low habitat suitability scores (0.04) in 

the Trinity River (i.e., Texas Pigtoe, Triangle Pigtoe, and Sandbank Pocketbook).  The 

Texas Pigtoe, Triangle Pigtoe, and Sandbank pocketbook are known to inhabit a majority 

of east Texas rivers; however, few specimens are reported in the Trinity River basin. The 

Sandbank Pocketbook has not been reported in the Trinity River basin (Howells, 1996) 

and the Triangle Pigtoe is considered an endemic of the Neches-Angelina drainage 

(Howells, 2011). The Texas Pigtoe has only recently been reported in the Trinity River 

(Appendix B).  
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CONCLUSIONS 

In summary, I was able to successfully create niche models that predict the known 

presences of several imperiled mussel species in known areas, and that forecast other 

suitable areas of the area that may potentially contain the mussels as well or that may be 

suitable for reintroduction programs. On the other hand, I was unsuccessful at 

constructing niche models for two fish species that may serve as hosts for some of these 

mussels during their early life cycle stage. The inability to model the fish species is 

perhaps related to the fact that adult mussels are sedentary; whereas, fish are mobile and 

can inhabit different environments and different times. Furthermore, while our study 

focused on adult mussels, we did not distinguish adult fish from juveniles, which may 

have different habitat preferences. Future work on modeling of the fish distributions 

could provide information regarding habitat associations, life history information, and 

identify factors limiting populations for imperiled fish species. Fish distribution models 

could identify high priority habitat and link imperiled species sites with threats to address 

management options and guide restoration efforts.  

Although several layers went into producing the potential geographic distribution 

maps, many factors influencing the dimensions of the realized niche were not taken into 

account, such as biotic interactions (e.g., predators, parasites and possible fish hosts). 

However, incorporating biotic components could improve the predictive accuracy of my 

models (Guisan and Zimmerman, 2000; Broennimann et al., 2007; Giovanelli et al., 

2008). Fish are important components of Unionid distributions because Unionids 
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experience an obligate ectoparasitic larval stage called glochidia that attach to a fish or 

salamander host after release from the adult mussel. Some species of Unionidae are able 

to parasitize a taxonomically wide variety of fish species (Trdan and Hoeh, 1982) while 

others can use only a few closely related species (Zale and Neves, 1982; Yeager and 

Saylor, 1995).  Integrating information regarding the presence of known fish host data 

through identification of potential glochidia-host relationships into our ecological niche 

models may provide a better understanding of the geographic distribution of east Texas 

Unionids and improve AUC test scores.  

Along with the integration of biotic variables, future research should be directed 

at determining the reliability of ecological niche models to forecast the occurrence of rare 

mussels. The potential distribution maps produced from this study will provide a guide 

for ground truthing the models I created. Ground truthing will help determine whether 

Maxent and ecological niche models in general provide an adequate representation of the 

true spatial distribution of rare mussels in east Texas. The information provided in this 

thesis is timely and highly relevant given the potential threats to lotic habitats and to 

overall diversity in East Texas rivers.  The information provided from the potential 

distribution maps may aid in field surveys and allocation of conservation resources by 

providing valuable biogeographical information that will help in planning land use 

management around existing populations, discovering  new populations, identifying top-

priority survey sites, or setting priorities to restore natural habitat  (Kumar and Stohlgran, 

2009; Raxworthy et al., 2003; Bourg et al., 2005).
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Figure 2.1. Points indicate locations of sampling reaches in the Upper Neches and Upper 

Sabine River. 
 
 
 



 43 

 
 
 

Figure 2.2 Predicted potential suitable habitat for Fusconaia askewi in east Texas. The 
colorization scheme represents the predicted habitat suitability for the F. askewi with red 

being the most suitable habitat and blue indicating the least suitable habitat. The black 
points indicate occurrence locations. 
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Figure 2.3. Predicted potential suitable habitat for Pleuroblema riddellii in east Texas. 
The colorization scheme represents the predicted habitat suitability for the P. riddellii 

with red being the most suitable habitat and blue indicating the least suitable habitat.  The 
black points indicate occurrence locations. 



 45 

 
 

Figure 2.4. Predicted potential suitable habitat for Fusconaia lananensis in east Texas. 
The colorization scheme represents the predicted habitat suitability for the F. lananensis 
with red being the most suitable habitat and blue indicating the least suitable habitat. The 

black points indicate occurrence locations. 
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Figure 2.5. Predicted potential suitable habitat for Lampsilis satura in east Texas.  The 

colorization scheme represents the predicted habitat suitability for the L. satura with red 
being the most suitable habitat and blue indicating the least suitable habitat.  The black 

points indicate occurrence locations. 
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Figure 2.6. Predicted potential suitable habitat for Potamilus amphichaenus in east Texas. 
The colorization scheme represents the predicted habitat suitability for the P. 

amphichaenus with red being the most suitable habitat and blue indicating the least 
suitable habitat. The black points indicate occurrence locations. 
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Figure 2.7. Predicted potential suitable habitat for Obovaria jacksoniana in east Texas. 
The colorization scheme represents the predicted habitat suitability for the O. jacksoniana 
with red being the most suitable habitat and blue indicating the least suitable habitat. The 

black points indicate occurrence locations. 
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Table 2.1. Summary information for the individual fish species niche models. The AUC 

measures the probability that a randomly chosen presence site will be ranked above a 
randomly chosen presence site will be ranked above a randomly chosen pseudoabsence 
site; models with AUC > 0.75 are considered useful. Gain is the mean log probability of 
the occurrence samples, minus a constant that makes the uniform distribution have zero 

gain.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SPECIES TRAINING AUC TEST AUC TEST GAIN 

C. elongatus 0.9986 0.4884 -0.9524 

N. sabinae 0.9749 0.6352 -0.1771 
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Table 2.2. Summary information for the individual mussel species niche models. The 
AUC measures the probability that a randomly chosen presence site will be ranked above 
a randomly chosen presence site will be ranked above a randomly chosen pseudoabsence 
site; models with AUC > 0.75 are considered useful. Gain is the mean log probability of 
the occurrence samples, minus a constant that makes the uniform distribution have zero 

gain. 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SPECIES TRAINING AUC TEST AUC TEST GAIN 

P. riddellii 0.9927 0.899 0.9787 

F. askewi 0.9898 0.8168 0.9766 

F. lananensis 0.9941 0.9097 1.5025 

L. satura 0.9927 0.8703 1.2138 

O. jacksoniana 0.9969 0.7788 1.229 

P. amphichaenus 0.9976 0.8141 1.4583 
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Table 2.3. Test gain values with only specified variables. The test gain value for the one-variable model provides the proportion of the 
total gain accounted for by each variable. The environmental variables were removed if the test gain of the one-variable model was 

less than 5% of the full model. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

SPECIES 
AQUIFER

S 

KERNEL 
DENSITY 

RESERVOIRS 

KERNEL 
DENSITY 
ROADS 

KERNEL 
DENSITY 
SPRINGS 

LAND 
FORM NITROGEN 

GROUND 
WATER 

RECHARGE SOILS 

ANNUAL 
MEAN 

CLOUD 
COVER 

TOP- 
MODEL VEGETATION 

P. riddellii 0.2447 - 0.3854 - 0.347 0.3529 0.3254 1.1133 0.2971 0.4258 0.894 

F. askewi 0.2639 - - 0.0601 0.1454 0.2772 0.301 0.955 0.2646 0.3026 0.7522 

F. lananensis 0.2013 0.1871 - - 0.4934 0.2155 0.1298 0.9054 0.2902 0.145 1.3643 

L. satura 0.314 - - - 0.1954 0.233 0.2553 1.1697 0.2743 0.2043 0.3838 

O. jacksoniana - - - - - - - 1.229 - - - 

P. amphichaenus  0.1006 0.087 - 0.0926 0.0988 0.1035 - 0.8804 - 0.1481 1.0568 
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Table 2.4. Table for I values and 5% critical values. Two species were considered to have significantly different niches if the observed 
value was below the 5% critical value. 

 

 

Species comparison Observed value 5% critical value 

L. satura Vs. P. riddellii 0.86 0.91 
L. satura Vs. F. askewi 0.73 0.78 

L. satura Vs. F. lananensis 0.68 0.91 
O. jacksoniana Vs. P. riddellii 0.81 0.84 
O. jacksoniana Vs. L. satura 0.78 0.82 

O. jacksoniana Vs. P. amphichaenus 0.69 0.79 
P. amphichaenus Vs. F. riddellii 0.61 0.86 
P. amphichaenus Vs. L. satura 0.70 0.84 

F. askewi Vs. P. riddellii 0.82 0.91 
F. askewi Vs. P. amphichaenus 0.65 0.81 

F. lananensis Vs. P. riddellii 0.78 0.87 
O. jacksoniana Vs. F. askewi 0.77 0.79 

O. jacksoniana Vs. F. lananensis 0.85 0.76 
P. amphichaenus Vs. F. lananensis 0.49 0.86 

F. askewi Vs. F. lananensis 0.75 0.84 
O. jacksoniana Vs. P. riddellii 0.82 0.85 
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APPENDIX A: SITE DESCRIPTIONS OF OCCURRENCE LOCALITIES FOR FISH SPECIES. 

 
Species Location Drainage Source Date Latitude Longitude 

Cycleptus  elongatus North of 271 Sabine Williams and Dunithan 16-Aug-10 32.530388 -94.958797 
C. elongatus Hwy 59 Neches Williams and Dunithan 21-Sep-10 31.137817 -94.8218833 
C. elongatus above SH 294 or L1 Neches Troia 2010 Jul-Aug 2009 31.644950 -95.286780 
C. elongatus Below US 84 Neches Troia 2010 Jul-Aug 2009 31.7859 -95.38458 
C. elongatus Above US 175 Neches Troia 2010 Jul-Aug 2009 32.04528 -95.42312 
C. elongatus Downstream Hwy 190 Sabine Kevin Mayes 18-May-06 30.730158 -93.608689 

Notropis  sabinae 3 miles NW of Hwy 79 Sabine Ford and Dunithan 21-Jul-10 32.227133 -94.2478167 
N. sabinae 1/8 mile West 149 Sabine Ford and Dunithan 19-Aug-10 32.4123 -94.71338 
N. sabinae 1/4 mile Upstream 43 Sabine Ford and Dunithan 7-Oct-10 32.37211 -94.46267 
N. sabinae Hwy 79 Neches Williams and Dunithan 24-May-11 31.89721 -95.43678 
N. sabinae below SH 294 L3 Neches Troia 2010 Jul-Aug 2009 31.625430 -95.280270 
N. sabinae Bayou Anacoco Sabine Kevin Mayes 16-May-06 30.869428 -93.564325 
N. sabinae downstream of Hwy 190 Sabine Kevin Mayes 17-May-06 30.730158 -93.608689 
N. sabinae Big Cow Creek FM  1416 Sabine Kevin Mayes 18-May-06 30.605967 -93.79415 
N. sabinae Sabine River Sabine Kevin Mayes 18-Jul-06 30.33235 -93.757633 

N. sabinae East Fork San Jacinto 
River FM 945 Neches Kleinsasser and Bradsby 19-Jul-99 30.425087 -95.124613 

N. sabinae Peach Creek at FM 1485 San Jacinto Rosendale, J. 6-Aug-03 30.146956 -95.171224 
N. sabinae Caney Creek at FM 1485 San Jacinto Rosendale, J. 13-May-03 30.148786 -95.192074 
N. sabinae Lake Creek San Jacinto Rosendale, J. 15-Oct-02 30.254882 -95.557934 
N. sabinae Bonita Creek Neches Linam, Jurgensen, Bowles 8-Aug-00 31.643 -94.662583 
N. sabinae Bonita Creek Neches Linam, Boles, Gibson 17-Oct-00 31.643 -94.662583 
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APPENDIX B: SITE DESCRIPTIONS OF OCCURRENCE LOCALITITES OF UNIONID SPECIES. 
 

Species Location Drainage Source Date Latitude Longitude 
Pleuroblema 

riddellii 
Angelina R., US 59 N of Lufkin & S of 

Nacogdoches 
Neches USAO 4003 8-Aug-81 31.457670 -94.726370 

P. riddellii Angelina R., US 59 N of Lufkin & S of 
Nacogdoches 

Neches CMM 3375 8-Aug-81 31.457670 -94.726370 

P. riddellii Angelina R., US 59 N of Lufkin & S of 
Nacogdoches 

Neches Karatayev & Burlakova 
2007 

19-Aug-06 31.457670 -94.726370 

P. riddellii Big Sandy Creek, N of Segno (Village 
Creek drainage) Station 14 

Neches Bordelon and Harrel 
2004 

2001-2002 30.624770 -94.699980 

P. riddellii Neches R., SH 7 near Lufkin Neches N. Ford, pers. comm. 16-Sep-10 31.397160 -94.965970 

P. riddellii Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) 

Neches Howells 1997 MDS 
144 

17-Sep-96 30.792783 -94.167967 

P. riddellii Neches R., Big Slough (ScurlocksCamp), 
7 mi NNE of Ratcliff 

Neches USAO 1727 14-Aug-82 31.486010 -95.110180 

P. riddellii Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 2910-1 15-Aug-80 31.486010 -95.110180 

P. riddellii Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 2937 15-Aug-80 31.486010 -95.110180 

P. riddellii Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 2902 15-Aug-80 31.486010 -95.110180 

P. riddellii Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches USAO 4734 16-Aug-84 31.486010 -95.110180 

P. riddellii Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 3393 14-Aug-82 31.486010 -95.110180 

P. riddellii Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches USAO 1727 14 Aug 1982 31.486010 -95.110180 

P. riddellii Neches R., Hickory Creek Neches USAO 1705 14 Aug 1982 31.484560 -95.110850 
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P. riddellii Neches R., Hickory Creek Neches USAO 1706 14 Aug 1982 31.484560 -95.110850 

P. riddellii Neches R., near mouth Hickory Creek Neches USAO 1705 14-Aug-82 31.483910 -95.110910 

P. riddellii Neches R., SH 7 NW of Lufkin, SW of 
Pollok, E of Kennard 

Neches Karatayev & Burlakova 
2007 

7-Sep-07 31.396940 -94.965830 

P. riddellii Neches R., SH 94 NE Apple Springs (not 
Trinity R.) 

Neches CMM 2854 18-Aug-80 31.289090 -94.884020 

P. riddellii Neches R., SH 94, 7 mi NE Apple 
Springs, SW of Lufkin 

Neches CMM 2902 18-Aug-80 31.289400 -94.883980 

P. riddellii Neches R., SH 94, 7 mi NE Apple 
Springs, SW of Lufkin 

Neches CMM2854 18-Aug-80 31.289400 -94.883980 

P. riddellii Neches R., US 96, W of Evadale, E of 
Silsbee 

Neches USAO 6077 17 Aug 1990 31.357150 -94.093780 

P. riddellii Village Creek, FM 418 Neches Howells (2006) 3-Sep-05 30.292783 -94.167983 

P. riddellii Village Creek, NE of Lumberton, Station 
16 

Neches Bordelon and Harrel 
2004 

2001-2002 30.261960 94.17996 

P. riddellii Village Creek, near RR xing N of Creek 
Road N of Fletcher, Station 1 

Neches Bordelon and Harrel 
2004 

2001-2002 30.276060 94.18746 

P. riddellii Village Creek, SH 327 Neches Howells (2006) 3-Sep-05 30.346933 -94.239217 

P. riddellii Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW) 

Neches Howells (2006) 3-Sep-05 30.285083 -94.191467 

P. riddellii Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW) 

Neches USAO 3526 15-Aug-86 30.285083 -94.191467 

P. riddellii Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW), Station 

3 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

2-May-02 30.285083 -94.191467 
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P. riddellii Village Creek, Village Creek State Park Neches HMNS 18-Aug-80 30.255733 -94.170767 

P. riddellii Villlage Creek, off lower Village Creek 
Road NE of Lumberton, Station 2 

Neches Bordelon and Harrel 
2004 

2001-2002 30.255840 -94.172510 

P. riddellii Sabine R., US 271 at Gladewater Sabine USAO 1501 20-Aug-84 32.527590 -94.690170 

P. riddellii Sabine R., US 271 Gladewater Sabine USAO 3502 20 Aug 1984 32.527590 -94.690170 

P. riddellii Neches R., above US 75 (U2) Neches Troia 2010 Jul-Aug 2009 32.041670 -95.422920 

P. riddellii Neches R., above US 84 (M1) Neches Troia 2010 Jul-Aug 2009 31.784980 -95.394670 

P. riddellii Neches R., below US 84 (M2) Neches Troia 2010 Jul-Aug 2009 31.770530 -95.396690 

P. riddellii Neches R., below US 84 (M3) Neches Troia 2010 Jul-Aug 2009 31.764550 -95.400670 

P. riddellii Neches R., above SH 294 (D or L2) Neches Troia 2010 Jul-Aug 2009 31.639720 -95.283700 

P. riddellii Neches R., below SH 294 (D or L3) Neches Troia 2010 Jul-Aug 2009 31.625430 -95.280270 

P. riddellii Hwy 59 Neches Ford and Dunithan, 
2011 

21-Sep-10 31.1378167 -94.8218833 

P. riddellii Hwy 7 Neches Ford and Dunithan, 
2011 

16-Sep-10 31.3997 -94.9755 

P. riddellii Hwy 79 Neches Ford and Dunithan, 
2011 

24-May-11 31.89721 -95.43678 

P. riddellii US 59 crossing Angelina Bennett, 2006 19-Aug-11 31.486933 -94.8236 

P. riddellii SH 327 Village Creek Bennett, 2006 4-Sep-05 30.346933 -94.239217 

P. riddellii US 96 Village Creek Bennett, 2006 5-Sep-05 30.285083 -94.191467 

Lampsilis satura Angelina R., SH 21 at Old Lindwood Neches USAO 2795 9-Aug-94 30.254210 -94.129810 
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L. satura Angelina R., SH 7 crossing NE of 
Pollock Neches Karatayev & Burlakova 

2007 7-Sep-06 30.255840 -94.172510 

L. satura Angelina R., US 59 N of Lufkin & S of 
Nacogdoches Neches USAO 4010 8-Aug-81 30.261960 -94.179960 

L. satura Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) Neches Howells 1995 MDS 

119 3-May-93 30.268240 -94.179980 

L. satura Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) Neches Howells 1997 MDS 

144 30-Jan-96 30.276060 -94.187460 

L. satura Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) Neches Howells 1997 MDS 

144 17-Sep-96 30.285083 -94.191467 

L. satura Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) Neches McCullagh database 18-Jun-05 30.339790 -94.212190 

L. satura Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) Neches McCullagh database 18-Jun-05 30.369910 -94.265360 

L. satura Neches R., D-2, above FM 294 Neches Troia 2010 2009 30.792783 -94.167967 

L. satura Neches R., D-3, below FM 294 Neches Troia 2010 2009 30.792950 -95.167967 

L. satura Neches R., Hickory Creek Neches USAO 1688 14 Aug 1982 30.795630 -94.180110 

L. satura Neches R., M-1, above US 87 Neches Troia 2010 2009 31.289400 -94.883980 

L. satura Neches R., M-3, below US 87 Neches Troia 2010 2009 31.357150 -94.093780 

L. satura Neches R., near mouth Hickory Creek Neches USAO 1688 14-Aug-82 31.396940 -94.965830 

L. satura Neches R., SH 7 NW of Lufkin, SW of 
Pollok, E of Kennard Neches N. Ford, pers. comm. 16-Sep-10 31.397160 -94.965970 

L. satura Neches R., SH 94, 7 mi NE Apple 
Springs, SW of Lufkin Neches CMM 2846 18-Aug-80 31.457670 -94.726370 

L. satura Neches River, Evadale. US 96 Neches Roback et al. 1980  31.483910 -95.110910 
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L. satura Village Creek, E of Fletcher, Station 15 Neches Bordelon and Harrel 
2004 

2001-2002 31.484560 -95.110850 

L. satura Village Creek, E of Kountze, Station 21 Neches Bordelon and Harrel 
2004 

2001-2002 31.486010 -95.110180 

L. satura Village Creek, near RR xing N of Creek 
Road N of Fletcher, Station 1 

Neches Bordelon and Harrel 
2004 

2001-2002 31.625430 -95.280270 

L. satura Village Creek, SW of Silsbee, Station 19 Neches Bordelon and Harrel 
2004 

2001-2002 31.627140 -95.281910 

L. satura Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW) 

Neches USAO 3519 15-Aug-86 31.633300 -95.287680 

L. satura Villlage Creek, off lower Village Creek 
Road NE of Lumberton, Station 2 

Neches Bordelon and Harrel 
2004 

2001-2002 31.639720 -95.283700 

L. satura Sabine R., above US 69 (S of Mineola) Sabine N. Ford, pers. comm. 8-Jun-10 31.672490 -94.952730 

L. satura Sabine R., SH 149 S of Longview Sabine USAO 3595 14-Aug-81 31.674550 -95.400670 

L. satura Sabine R., SH 43, SW of Tatum Sabine Howells 1996 MDS 
120 

5-Jul-94 31.774530 -95.399080 

L. satura Sabine R., SH 43, SW of Tatum Sabine Howells (2006) 16-Aug-05 31.780520 -95.395540 

L. satura Sabine R., SH 43, SW of Tatum Sabine Howells (2006) 18-Aug-05 31.784980 -95.394670 

L. satura Sabine R., US 59 Sabine Karatayev & Burlakova 
2007 

19-Aug-06 32.312740 -94.526490 

L. satura Neches R., above SH 294 (D or L2) Neches Troia 2010 Jul-Aug 2009 32.329310 -94.353910 

L. satura Neches R., below SH 294 (D or L3) Neches Troia 2010 Jul-Aug 2009 32.417500 -94.710050 

L. satura Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) 

Neches H. McCullagh, pers. 
comm. 

11-Apr-00 32.613420 -95.487180 
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L. satura Hwy 7 Neches Ford, Dunithan 16-Sep-10 31.3997 -94.9756 

L. satura Hwy 79 Neches Ford, Dunithan 22-Jun-11 31.89721 -95.43678 

L. satura 1/2 Mile E of 149 Sabine Ford, Dunithan 8/19/2010 32.418667 -94.705433 

L. satura 1/8 Mile W of 149 Sabine Ford, Dunithan 20-Jul-10 32.4123 -94.71338 

L. satura 3 miles NW of Hwy 79 Sabine Ford, Dunithan 21-Jul-10 32.227133 -94.2478167 

L. satura N of 271 Sabine Ford, Dunithan 17-Aug-10 32.530388 -94.958797 

L. satura Downstream 59 Sabine Ford, Dunithan 2-Jun-11 32.31485 -94.34042 

L. satura SR 7 Angelina Bennett Sep-7-06 31.457087 -95.726190 

L. satura US 59 Sabine Bennett 18-Aug-06 32.327900 -94.352920 

L. satura CR 4400, Woodville Neches Bennett 28-Oct-05 30.792783 -94.167983 

Obovaria 
jacksoniana 

Neches R., Big Slough (ScurlocksCamp), 
7 mi NNE of Ratcliff 

Neches USAO 1725 14-Aug-82 30.25584 -94.17251 

O. jacksoniana Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches USAO 437 15-Aug-80 30.28508 -94.19147 

O. jacksoniana Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches USAO 4735 16-Aug-84 30.33423 -94.20413 

O. jacksoniana Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches USAO 1725 14 Aug 1982 30.33979 -94.21219 

O. jacksoniana Neches R., Hickory Creek Neches USAO 1694 14 Aug 1982 31.39716 -94.96597 

O. jacksoniana Neches R., near mouth Hickory Creek Neches USAO 1694 14-Aug-82 31.48391 -95.11091 

O. jacksoniana Neches R., SH 7 NW of Lufkin, SW of 
Pollok, E of Kennard 

Neches Karatayev & Burlakova 
2007 

7-Sep-07 31.48456 -95.11085 
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O. jacksoniana Village Creek, Baby Galvez boat ramp 
area, Station 5 

Neches Howells 2003 MDS 
214  /Bordelon and 

Harrel 2004 

10-May-02 31.48601 -95.11018 

O. jacksoniana Sabine R., US 59 ca 18mi N of Carthage Sabine USAO 3453 19-Aug-84 31.76981 -95.39754 

O. jacksoniana Neches R., 1.3 km below US 84 Neches Ford & Troia, In Press 9-Jul-09 31.77053 -95.39668 

O. jacksoniana Neches R., above US 84 Neches Troia 2010 Jul-Aug 2009 31.78498 -95.39467 

O. jacksoniana Neches R., below US 84 Neches Troia 2010 Jul-Aug 2009 32.32931 -94.35391 

Potamilus 
amphichaenus 

B.A. Steinhagen Reservoir, all sites 
combined 

Neches Howells 1997 MDS 
144 

27-30 Jan 
1996 

30.312140 -93.748000 

P. amphichaenus B.A. Steinhagen Reservoir, NE of US 
190 

Neches Howells (2006) 24-Oct-05 30.840050 -94.168500 

P. amphichaenus B.A. Steinhagen Reservoir, S side Martin 
Dies State Park at PR 48 

Neches Howells (2006) 24-Oct-05 30.852200 -94.209560 

P. amphichaenus B.A. Steinhagen Reservoir, several sites 
combined 

Neches Howells 1995 MDS 
119 

29-Dec-93 30.852517 -94.173517 

P. amphichaenus B.A. Steinhagen Reservoir, SW corner 
reservoir, W side of dam 

Neches Howells (2006) 24-Oct-05 30.854300 -94.218130 

P. amphichaenus Neches R., SH 7 near Lufkin Neches N. Ford, pers. comm. 16-Sep-10 30.862583 -94.182800 

P. amphichaenus Sabine R., between FM 1804 & FM 13 Sabine Howells (2006), N. 
Ford (pers. comm.) 

1-2 Apr 2004 31.358603 -94.088117 

P. amphichaenus Sabine R., SH 43, SW of Tatum Sabine Howells (2006) 18-Aug-05 32.312740 -94.526490 

P. amphichaenus Sabine, Tawakoni to SH 19 Sabine Ford et al. 2007  32.811330 -95.916080 

P. amphichaenus Neches R., US 96 Neches H. McCullagh, pers. 
comm. 

14-Apr-00 32.811580 -95.912030 

P. amphichaenus Neches R., below B.A. Steinhagen 
Reservoir (Town Bluff Dam B) 

Neches H. McCullagh, pers. 
comm. 

11-Apr-00 32.909690 -95.999890 
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P. amphichaenus 1/8 mi N 1794 Sabine Ford and Dunithan 
2011 

22-Jul-11 32.293650 -94.335850 

P. amphichaenus 1/8 mi E 1794 Sabine Ford and Dunithan, 
2011 

22-Jul-11 32.281167 -94.325416 

P. amphichaenus Coal Company Sabine Neil Ford 27-Jul-11 32.397033 -94.500367 

P. amphichaenus Coal Company Sabine Neil Ford 25-Jun-11 32.394183 -94.497583 

P. amphichaenus Hwy 7 Neches Ford, Dunithan 16-Sep-10 31.3997 -94.9756 

P. amphichaenus Hwy 79 Neches Ford, Dunithan 22-Jun-11 31.89721 -95.43678 

P. amphichaenus N of Hwy 69 Sabine Ford, Dunithan 8-Jun-10 32.6129 -95.48643 

P. amphichaenus Upstream of Hwy 14 Sabine Ford, Dunithan 7-Oct-10 32.5631167 -95.2031833 

P. amphichaenus Downstream 59 Sabine Ford, Dunithan 2-Jun-11 32.314850 -94.340420 

P. amphichaenus US 59 Sabine Bennett 18-Aug-06 32.327900 -94.352920 

P. amphichaenus HWY 59 Sabine Bennett 16-Aug-05 32.327900 -94.352920 

P. amphichaenus Hwy 43 Sabine Bennett 16-Aug-05 32.390834 -94.441892 

Fusconaia askewi Big Cypress Bayou, 1 mi above US 59 Big Cypress Shafer et al. 1992 Aug-Sep 1992 32.757760 -94.358890 

F. askewi Big Cypress Bayou, 1.2 km below Fort 
Sherman Dam 

Big Cypress Howells (2006) 4-Jun-06 33.092067 -95.014583 

F. askewi Angelina R., SH 7 crossing NE of 
Pollock 

Neches Karatayev & Burlakova 
2007 

7-Sep-06 31.397160 -94.965970 

F. askewi Angelina R., US 59 N of Lufkin & S of 
Nacogdoches 

Neches USAO 4000 8-Aug-81 31.457670 -94.726370 

F. askewi Angelina R., US 59 N of Lufkin & S of 
Nacogdoches 

Neches CMM 3374 8-Aug-81 31.457670 -94.726370 
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F. askewi Beech Creek, Gore Store Road W of FM 
92 (Village Creek drainage) Station 12 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

31-May-02 30.490533 -95.262400 

F. askewi Turkey Creek, Hester Bridge, Village 
Creek State Park, Station 11 

Neches Howells 2003 MDS 
214/Bordelon and 

Harrel 2004 

28-May-02 30.551650 -94.332233 

F. askewi Village Creek, Baby Galvez boat ramp 
area, Station 5 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

10-May-02 30.334233 -94.204133 

F. askewi Village Creek, E of Fletcher, Station 15 Neches Bordelon and Harrel 
2004 

2001-2002 30.268240 -94.179980 

F. askewi Village Creek, E of Kountze, Station 21 Neches Bordelon and Harrel 
2004 

2001-2002 30.369910 -94.265360 

F. askewi Village Creek, FM 418 Neches Howells (2006) 3-Sep-05 30.292783 -94.167983 

F. askewi Village Creek, FM 418, Station 8 Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

20-May-02 30.292783 -94.167983 

F. askewi Village Creek, lower creek between 
northern-most tribs, Station 17 

Neches Bordelon and Harrel 
2004 

2001-2002 30.254210 -94.129810 

F. askewi Village Creek, lower creek, upstream of 
Neches R. and ponded area, Station 18 

Neches Bordelon and Harrel 
2004 

2001-2002 30.250660 -94.214760 

F. askewi Village Creek, NE of Lumberton, Station 
16 

Neches Bordelon and Harrel 
2004 

2001-2002 30.261960 -94.179960 

F. askewi Village Creek, near RR xing N of Creek 
Road N of Fletcher, Station 1 

Neches Bordelon and Harrel 
2004 

2001-2002 30.276060 -94.187460 

F. askewi Village Creek, New FM 418 NE on 
Kountze, Station 20 

Neches Bordelon and Harrel 
2004 

2001-2002 30.398100 -94.264400 

F. askewi Village Creek, SH 327, Station 6 Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

14-May-02 30.346933 -94.239217 
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F. askewi Village Creek, SW of Silsbee, Station 19 Neches Bordelon and Harrel 
2004 

2001-2002 30.339790 -94.212190 

F. askewi Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW) 

Neches USAO 3527 15-Aug-86 30.285083 -94.191467 

F. askewi Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW) 

Neches Howells (2006) 3-Sep-05 30.285083 -94.191467 

F. askewi Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW), Station 

3 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

2-May-02 30.285083 -94.191467 

F. askewi Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW), Station 

4 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

8-May-02 30.285083 -94.191467 

F. askewi Villlage Creek, off lower Village Creek 
Road NE of Lumberton, Station 2 

Neches Bordelon and Harrel 
2004 

2001-2002 30.255840 -94.172510 

F. askewi Neches R., Big Slough (ScurlocksCamp), 
7 mi NNE of Ratcliff 

Neches USAO 1726 14-Aug-82 31.486010 -95.110180 

F. askewi Neches R., Big Slough (ScurlocksCamp), 
7 mi NNE of Ratcliff 

Neches USAO 4733 16-Aug-84 31.486010 -95.110180 

F. askewi Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 2909 15-Aug-80 31.486010 -95.110180 

F. askewi Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 2912-3 15-Aug-80 31.486010 -95.110180 

F. askewi Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 2936 15-Aug-80 31.486010 -95.110180 

F. askewi Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches CMM 3392 14-Aug-82 31.486010 -95.110180 

F. askewi Neches R., Big Slough, 7 mi NNE of 
Ratcliff 

Neches USAO 1726 14 Aug 1982 31.486010 -95.110180 

F. askewi Angelina R., SH 21 at Old Linnwood Neches USAO 2800 9-Aug-84 31.672490 -94.952730 
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F. askewi Big Sandy Creek, N of Segno (Village 
Creek drainage) Station 14 

Neches Bordelon and Harrel 
2004 

2001-2002 30.624770 -94.699980 

F. askewi Hickory Creek, US 69 W of 
Hicksbourgh, Station 22 

Neches Bordelon and Harrel 
2004 

2001-2002 30.561520 -94.400070 

F. askewi Sabine R., Gladewater Sabine USAO 3500 20-Aug-84 32.527420 -94.960090 

F. askewi Sabine R., SH 43, SW of Tatum Sabine Howells 1996 MDS 
120 

5-Jul-94 32.312740 -94.526490 

F. askewi Sabine R., SH 43, SW of Tatum Sabine Howells (2006) 16-Aug-05 32.312740 -94.526490 

F. askewi Sabine R., SH 43, SW of Tatum Sabine Howells (2006) 18-Aug-05 32.312740 -94.526490 

F. askewi Sabine R., US 59 Sabine USAO 2793 19-Aug-84 32.329310 -94.353910 

F. askewi Sabine R., US 59 Sabine USAO 3454 19-Aug-84 32.329310 -94.353910 

F. askewi Sabine R., US 59 Sabine Howells 1996 MDS 
120 

5-Jul-94 32.329310 -94.353910 

F. askewi Sabine R., US 59 N of Carthage Sabine CMM 3379 9-Aug-81 32.329310 -94.353910 

F. askewi Sabine R., US 59 N of Carthage Sabine USAO 6716 17-Aug-92 32.329310 -94.353910 

F. askewi Sabine R., between US 59 and Black 
Shoals 

Sabine Howells 1996 MDS 
125 

28-Jun-95 32.328430 -94.353890 

F. askewi Sabine R., US 59 up- and down-stream Sabine Howells (2006) 16-Aug-05 32.329310 -94.353910 

F. askewi Sabine R., US 59 Sabine Karatayev & Burlakova 
2007 

19-Aug-06 32.329310 -94.353910 

F. askewi Sabine R., between FM 1804 & FM 14 Sabine Howells (2006), N. 
Ford (pers. comm.) 

1-2 Apr 2005 32.600060 -95.392470 

F. askewi Lake Fork Creek, US 80 Sabine Howells 1996 MDS 
120 

11-Jul-94 32.632720 -95.353810 
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APPENDIX B (CONTINUED) 
 

F. askewi Neches R., below US 84 (M3) Neches Troia 2010 Jul-Aug 2009 31.764550 -95.400670 

F. askewi Neches R., above SH 294 (D or L1) Neches Troia 2010 Jul-Aug 2009 31.644950 -95.286780 

F. askewi Neches R., above SH 294 (D or L2) Neches Troia 2010 Jul-Aug 2009 31.639720 -95.283700 

F. askewi Neches R., below SH 294 (D or L3) Neches Troia 2010 Jul-Aug 2009 31.625430 -95.280270 

F. askewi Lake Fork Creek, Near Hawkins Sabine Texas Mussel Watch/ 
Ford and Ranklev 

22-Oct-11 32.658332 -95.357437 

F. askewi Trinity Trinity Texas Mussel Watch Summer 2011 32.763195 -96.8069718 

F. askewi 1/8 mi N Hwy 43-upstream of coal shoal Sabine Ford, 2011 23-Mar-11 32.373083 -94.463417 

F. askewi 1/8 mi N 1794 Sabine Ford, 2011 22-Jul-11 32.291550 -94.334433 

F. askewi 1/8 mi E 1794 Sabine Ford, 2011 22-Jul-11 32.2811666 -94.325416 

F. askewi 1/4 mi N 79 Sabine Ford, 2011 1-Aug-11 32.2265833 94.23288333 

F. askewi Coal Company Sabine and Neil Ford 27-Jul-11 32.397033 -94.500367 

F. askewi Coal Company Sabine Neil Ford 25-Jun-11 32.394183 -94.497583 

F. askewi Coal Company Sabine and Neil Ford 26-Jul-11 32.390183 -94.484717 

F. askewi Coal Company Sabine Neil Ford 25-Jul-11 32.390183 -94.485583 

F. askewi Hwy 59 Neches Ford, Dunithan 22-Sep-10 31.137817 -94.821883 

F. askewi Hwy 79 Neches Ford, Dunithan 22-Jun-11 31.89721 -95.43678 

F. askewi 1/2 Mile E of 149 Sabine Ford, Dunithan 8/19/2010 32.418667 -94.705433 

F. askewi 1/8 Mile W of 149 Sabine Ford, Dunithan 20-Jul-10 32.4123 -94.71338 
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APPENDIX B (CONTINUED) 
 

F. askewi 3 Miles NW of Hwy 79 Sabine Ford, Dunithan 21-Jul-10 32.227133 -94.2478167 

F. askewi N of 271 Sabine Ford, Dunithan 17-Aug-10 32.530388 -94.958797 

F. askewi Upstream Hwy 14 Sabine Ford, Dunithan 21-Jun-10 32.5631167 -95.2031833 

F. askewi Downstream 59 Sabine Ford, Dunithan 2-Jun-11 32.31485 -94.34042 

F. askewi SR 7 Angelina Bennett Sep-7-06 31.457087 -95.726190 

F. askewi US 59 Sabine Bennett 18-Aug-06 32.327900 -94.352920 

F. askewi Fort Sherman Dam Road Big Cypress Bennett 4-Jun-06 33.080767 -94.999267 

F. askewi Texas 43 Sabine Bennett 18-Sep-05 32.369733 -94.457767 

F. askewi US 59 Sabine Bennett 16-Aug-05 32.327900 -94.353930 

F. askewi SR 43 Sabine Bennett 16-Aug-05 32.547383 -94.589800 

F. askewi FM 418 Hardin Bennett 3-Sep-06 30.2927833 -94.168 

F. askewi US 96 Hardin Bennett Sep-5-05 30.285083 -94.191500 

F. askewi HWY 59 Sabine Bennett 16-Aug-05 32.547383 -94.589800 

F. askewi Hwy 43 Sabine Bennett 16-Aug-05 32.369733 -94.457800 

Fusconaia 
lananensis 

Angelina R., SH 7 crossing NE of 
Pollock 

Neches Karatayev & Burlakova 
2007 

7-Sep-06 31.48629 -94.82364 

F. lananensis Angelina R., US 59 N of Lufkin & S of 
Nacogdoches 

Neches Karatayev & Burlakova 
2007 

19-Aug-06 31.45767 -94.72637 

F. lananensis Beech Creek, Gore Store Road W of FM 
92 (Village Creek drainage) Station 12 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

31-May-02 30.4905333 -94.2624 
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APPENDIX B (CONTINUED) 
 

F. lananensis Turkey Creek, Hester Bridge, Village 
Creek State Park, Station 11 

Neches Howells 2003 MDS 
214/Bordelon and 

Harrel 2004 

28-May-02 30.55165 -94.3322333 

F. lananensis Village Creek, Baby Galvez boat ramp 
area, Station 5 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

10-May-02 30.334233 -94.2041333 

F. lananensis Village Creek, E of Fletcher, Station 15 Neches Bordelon and Harrel 
2004 

2001-2002 30.26824 -94.17998 

F. lananensis Village Creek, E of Kountze, Station 21 Neches Bordelon and Harrel 
2004 

2001-2002 30.36991 -94.26536 

F. lananensis Village Creek, FM 418 Neches Howells (2006) 3-Sep-05 30.292923 -94.165258 

F. lananensis Village Creek, lower creek between 
northern-most tribs, Station 17 

Neches Bordelon and Harrel 
2004 

2001-2002 30.25421 -94.12981 

F. lananensis Village Creek, Nature Conservancy area 
downstream of FM 418 

Neches Karatayev & Burlakova 
2007 

3-Jun-07 30.3962 -94.26629 

F. lananensis Village Creek, NE of Lumberton, Station 
16 

Neches Bordelon and Harrel 
2004 

2001-2002 30.26196 -94.17996 

F. lananensis Village Creek, near RR xing N of Creek 
Road N of Fletcher, Station 1 

Neches Bordelon and Harrel 
2004 

2001-2002 30.27606 -94.18746 

F. lananensis Village Creek, New FM 418 NE on 
Kountze, Station 20 

Neches Bordelon and Harrel 
2004 

2001-2002 30.3981 -94.2644 

F. lananensis Village Creek, SW of Silsbee, Station 19 Neches Bordelon and Harrel 
2004 

2001-2002 30.33979 -94.21219 

F. lananensis Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW) 

Neches Howells (2006) 3-Sep-05 30.2850833 -94.1914666 

F. lananensis Village Creek, US 96  between 
Lumberton (NE) & Silsbee (SW), Station 

3 

Neches Howells 2003 MDS 
214 /Bordelon and 

Harrel 2004 

2-May-02 30.2850833 -94.1914666 
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APPENDIX B (CONTINUED) 
 

F. lananensis Villlage Creek, off lower Village Creek 
Road NE of Lumberton, Station 2 

Neches Bordelon and Harrel 
2004 

2001-2002 30.25584 -94.17251 

F. lananensis Attoyac Bayou, FM 138 SW of 
Stockman 

Neches Karatayev & Burlakova 
2007 

5-Jun-07 31.768386 -94.426159 

F. lananensis Attoyac Bayou, CR 392 (New Hope 
xing) upstream of SH 21 

Neches Howells (2006) 2-Sep-05 31.543207 -94.306867 

F. lananensis Big Sandy Creek, N of Segno (Village 
Creek drainage) Station 14 

Neches Bordelon and Harrel 
2004 

2001-2002 30.62477 -94.69998 

F. lananensis Attoyac Bayou, CR 392 (New Hope 
xing) upstream of SH 21 

Neches Howells 1996 MDS 
120 

25-Jul-94 31.543133 -94.30691 

F. lananensis Sandy Creek (Attoyac Bayou drain.), CR 
2913 

Neches Howells (2006) 2-Sep-05 31.6868833 -94.38345 

F. lananensis US 59 crossing Angelina Bennett, 2006 19-Aug-05 31.486933 -94.8236 

F. lananensis SR 7 Angelina Bennett, 2006 7-Sep-06 31.457087 -94.72619 

F. lananensis FM 138 Attoyac Bayou Bennett, 2006 5-Jun-06 31.768386 -94.426159 

F. lananensis Nature Conservancy Village Creek Bennett, 2006 27-Jun-06 31.646732 -94.268492 

F. lananensis CR 392 Attoyac Bayou Bennett, 2006 2-Sep-05 31.5432833 -94.3069833 
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APPENDIX C: TEST GAIN VALUES FOR MODELS WITH ONLY THE SPECIFIED VARIABLE. THE VARIABLES WERE 
REMOVED IF THE TEST GAIN VALUES FOR THE ONE-VARIABLE MODELS WERE LOWER THAN THE TEST GAIN FOR 

THE FULL MODEL.  
 

 
 
 
 
 
 
 
 
 
  

 
 

 

SPECIES TRAINING AUC TEST AUC TEST GAIN 

P. riddellii 0.992 0.8777 0.9652 

F. askewi 0.9901 0.8197 1.1398 

F. lananensis 0.995 0.8676 1.2273 

L. satura 0.9934 0.852 1.2518 

O. jacksoniana 0.9973 0.7284 0.4746 

P. amphichaenus  0.9975 0.8131 1.3045 

SPECIES AQUIFERS 

KERNEL 
DENSITY 

RESERVOIRS 

KERNEL 
DENSITY 
ROADS 

KERNEL 
DENSITY 
SPRINGS 

LAND 
FORM NITROGEN 

GROUND 
WATER 

RECHARGE SOILS 

ANNUAL 
MEAN 

CLOUD 
COVER TOP-MODEL VEGETATION 

P. riddellii 0.2474 0.0383 0.3789 -0.0935 0.3611 0.3508 0.3242 1.0709 0.2978 0.4279 0.9962 

F. askewi 0.2545 -0.0092 0.028 0.0683 0.1423 0.2674 0.2884 1.1119 0.2593 0.2819 0.7483 

F. lananensis 0.1996 0.1841 0.0309 -0.0861 0.4882 0.2111 0.1263 0.9318 0.2753 0.1428 1.3975 

L. satura 0.316 0.007 -0.0569 -0.0159 0.2046 0.2442 0.2682 1.3018 0.2856 0.2216 0.3872 

O. jacksoniana -0.067 -0.0124 -0.0149 0.0061 -0.3216 -0.0252 -0.0113 1.1951 -0.0183 -0.023 -0.1671 
P. 

amphichaenus  0.1048 0.0723 0.0488 0.0839 0.0918 0.0788 0.0431 0.9232 0.023 0.1392 0.9084 



70 

APPENDIX D: SCHOENER’S D OBSERVED AND 5% CRITICAL VALUES. TWO 
SPECIES WERE CONSIDERED TO HAVE SIGNIFICANTLY DIFFERENT NICHES 

IF THE OBSERVED VALUE WAS BELOW THE 5% CRITICAL VALUE. 
 

Species comparison Observed value 5% critical value 
L. satura Vs. P. riddellii 0.66 0.73 
L. satura Vs. F. askewi 0.61 0.70 

L. satura Vs. F. lananensis 0.37 0.70 
O. jacksoniana Vs. P. riddellii 0.52 0.55 
O. jacksoniana Vs. L. satura 0.49 0.57 

O. jacksoniana Vs. P. amphichaenus 0.43 0.51 
P. amphichaenus Vs. F. riddellii 0.37 0.57 
P. amphichaenus Vs. L. satura 0.45 0.60 

F. askewi Vs. P. riddellii 0.59 0.71 
F. askewi Vs. P. amphichaenus 0.39 0.56 

F. lananensis Vs. P. riddellii 0.51 0.61 
O. jacksoniana Vs. F. askewi 0.48 0.49 

O. jacksoniana Vs. F. lananensis 0.47 0.58 
P. amphichaenus Vs. F. lananensis 0.23 0.61 

F. askewi Vs. F. lananensis 0.51 0.59 
O. jacksoniana Vs. P. riddellii 0.52 0.57 
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APPENDIX E: OBSERVED AND 5% CRITICAL RELATIVE RANK VALUES. TWO 
SPECIES WERE CONSIDERED TO HAVE SIGNIFICANTLY DIFFERENT NICHES 

IF THE OBSERVED VALUES WERE BELOW THE 5% CRITICAL VALUES. 
 

Species comparison Observed value 5% critical value 
L. satura Vs. P. riddellii 0.76 0.77 
L. satura Vs. F. askewi 0.73 0.78 

L. satura Vs. F. lananensis 0.62 0.77 
O. jacksoniana Vs. P. riddellii 0.03 0.62 
O. jacksoniana Vs. L. satura 0.03 0.64 

O. jacksoniana Vs. P. amphichaenus 0.03 0.59 
P. amphichaenus Vs. F. riddellii 0.53 0.63 

P. amphichaenus Vs. L. satura 0.60 0.70 
F. askewi Vs. P. riddellii 0.70 0.77 

F. askewi Vs. P. amphichaenus 0.53 0.59 
F. lananensis Vs. P. riddellii 0.63 0.72 
O. jacksoniana Vs. F. askewi 0.03 0.55 

O. jacksoniana Vs. F. lananensis 0.02 0.62 
P. amphichaenus Vs. F. lananensis 0.42 0.68 

F. askewi Vs. F. lananensis 0.646 0.647 
O. jacksoniana Vs. P. riddellii 0.03 0.63 
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