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Abstract

GROUP ACTIONS ON HYPERSPACES

Manpreet Singh

Thesis chair: Alex Bearden, Ph.D.

The University of Texas at Tyler
July 2021

In this thesis, we will look at the structure of two spaces associated with a topological
space X, C (X) and P(X). Furthermore, from the group action of a topological group G
on X, we get the induced group action of G on C (X) and P(X). We will also look at few
properties for actions ofG on a compact Hausdorff spaceX: proximality, strong proximality
and extreme proximality followed by the main result to give parallel characterizations of
proximality and extreme proximality.
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Chapter 1

Introduction

Topological dynamics is the study of topological group actions on topological spaces.
Often, it yields interesting insights into the acting topological group which are beyond than
that can be attained through a direct study of the group itself. A very common way of
attaining such insights is to pass from a (continuous) action of a topological group G on
a topological space X to an action of G on a space closely associated to, but with more
properties, than the original space X.In the context of this paper, it turns out that an action
G yα X on a compact Hausdorff space X induces an action of G on P(X), the space of
Radon probability measures on X and C (X), the space of nonempty closed subsets of X.

Apart from being compact Hausdorff spaces, P(X) and C (X) have an extra structure:
P(X) has a natural convex structure (that is, for µ, ν ∈ P(X) and t ∈ [0, 1], there is a
canonical way to define a measure tµ + (1 − t)ν ∈ P(X)) and C (X) has the structure of
a join semilattice (where the partial order is given by set inclusion). In fact, as we will
see, for C1, C2 ∈ C (X), one can view the union operation C1 ∪ C2 as a kind of ”nontrivial
convex combination” of C1, C2, and under this, some main results from the theory of com-
pact convex subsets of a locally convex topological vector space (namely, the Krein-Milman
theorem and Milman’s converse) have analogues in C (X).

In this thesis, we will look at a few properties for actions of a topological group G on a
compact Hausdorff space X: proximality, strong proximality, and extreme proximality. Our
main result will be to give parallel characterizations of proximality and extreme proximality.
In Chapter 2 we begin by providing some background information about the structures of
P(X) and C (X). Furthermore, in Chapter 3, we talk about the group action of topological
group on the spaces associated with compact Hausdorff space X, followed by our main
result.
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Chapter 2

Two spaces associated with a topological space

2.1 Preliminaries

See [6, Section 2.5] for more information about convex subsets of a locally convex
topological vector space, the proof of the Krein-Milman theorem, and the proof that
ext(P(X)) = {δx : x ∈ X}. Throughout this paper, the field F is either R or C.

Definition. Suppose B is a vector space over F and A ⊆ B. A is said to be a convex
subset of B, if for every a1, a2 ∈ A and any p ∈ (0, 1) we get pa1 + (1− p)a2 ∈ A.

Definition. A topological vector space X over the topological field F is a vector space
equipped with a Hausdorff topology such that the vector addition +: X ×X → X and the
scalar multiplication : F×X → X are continuous functions.

Note 2.1. The domains of the vector addition and scalar multiplication functions have the
product topologies.

Definition. Let (X, τ) be a topological space. If N ⊆ X and x ∈ X, we say that N is a
neighborhood of x if there is some U ∈ τ i.e. U is an open set in X, such that x ∈ U ⊆ N .

Note 2.2. An open set is a neighborhood of every element of itself.

Definition. Let (X, τ) be a topological space. For each x ∈ X, let Fx be the collection of
neighborhoods of x; we call Fx the neighborhood filter of x.

Definition. A topological vector space X is said to be locally convex, if for all x ∈ X
and N ∈ Fx, there is a convex set C ∈ Fx such that C ⊆ N .

Definition. Let X be a convex subset of a vector space V over F, then x ∈ X is said to
be an extreme point of X, if there does not exist x1, x2 ∈ X and 0 < p < 1 such that
x1 6= x2 and x = px1 + (1− p)x2. In other words, an extreme point of X is a point which
does not lie on the line segment between any two distinct points of X. The set of extreme
points of X is denoted by ext(X).

Definition. Convex hull of a set A, is the smallest convex set that contains A. It is
denoted as co(A). Closed Convex Hull is the closure of the convex hull.

Lemma 2.3. If X is a topological vector space over F and A ⊆ X, then co(A) is convex.
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(Proof) Let a1, a2 ∈ co(A) and t ∈ (0, 1). We need to show that ta1 + (1 − t)a2 ∈ co(A).
Let U be an open set such that ta1 + (1 − t)a2 ∈ U , which gives a1 ∈ t−1(U − (1 − t)a2);
where aU + b = {au+ b : u ∈ U, b ∈ X and a ∈ F} and aU + b is an open set.
Since a1 ∈ co(A), then there is x1 ∈ co(A) such that x1 ∈ t−1(U − (1 − t)a2) so that
tx1 + (1− t)a2 ∈ U which implies a2 ∈ (1− t)−1(U − tx1).
Since a2 ∈ co(A), then there is x2 ∈ co(A) such that x2 ∈ (1− t)−1(U − tx1) which implies
tx1 + (1− t)x2 ∈ U , where tx1 + (1− t)x2 ∈ co(A). Hence co(A) is convex. �

Theorem 2.4 (Krein Milman Theorem). A compact convex subset of a Hausdorff locally
convex topological vector space is equal to the closed convex hull of its extreme points.

Theorem 2.5 (Milman Theorem). Let X be a locally convex topological vector space and
K be a compact subset of X. If closed convex hull co(K) of K is also compact, then K
contains all ext(co(K)).

2.2 Probability Measures on X

In this section, we will be defining our first space associated with topological space X,
which is P(X). We will define P(X) in two different ways, first as the set of Radon Borel
probability measures on X and second as the subset of (C(X))∗, where C(X) is the space
of real valued continuous functions on X and (C(X))∗ is the dual space of C(X).

Definition. Two points x and y in a topological space X are said to be neighborhood-
separable if there exist a neighborhood U of x and a neighborhood V of y such that U
and V are disjoint.

Definition. A topological space X is called Hausdorff space, if all distinct points in X
are pairwise neighborhood-separable.

Definition. A collection S of subsets of X is called a σ-algebra if it contains X, is closed
under complement, is closed under countable unions. It follows that σ-algebra is closed
under countable intersections.

Definition. For a topological space X, the collection B of Borel sets is defined as the
smallest σ-algebra of subsets of X that contains all open sets of X (equivalently, contains
all the closed sets of X).

Definition. The measure µ is called outer regular if, for any Borel set B, µ(B) is the
infimum of µ(O) over all open sets O of X containing B.

Definition. The measure µ is called inner regular on open sets if, for any open set O,
µ(O) is the supremum of µ(C) over all compact sets C of X contained in O.

Definition. A Radon Borel probability measure on X is a function
µ : B → [0, 1] that is finite on all compact sets, inner regular on open sets and outer regular
and µ(X) = 1

Definition. Let X, Y and V be vector spaces over the same field F. A bilinear map is a
function b : X × Y → V such that for all x ∈ X, the map y → b(x, y) is a linear map from
Y to V , and for all y ∈ Y , the map x→ b(x, y) is a linear map from X to V .
Notation : y → b(x, y) is denoted by b(x , .) : Y → V and x→ b(x, y) is denoted by b(. ,
y) : X → V .
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Definition. Let X and Y be vector spaces over the topological field F and b : X × Y → F
be a bilinear map. The weak topology on X induced by Y and b, is the weakest topology
on X, which make all the maps b(. , y) : X → F continuous for all y ∈ Y .

Definition. LetX be a normed vector space over the field F andX∗ be the set of continuous
linear functionals on X. Now X∗ is a vector space over the same field F. There exists a
bilinear map b(. , .) : X ×X∗ → F defined as b(x, φ) = φ(x), for x ∈ X,φ ∈ X∗.
The weak∗ topology on X∗ is defined as the weak topology induced by X and b as defined
above.

Suppose X is a compact Hausdorff topological space.

Definition. P(X) is the set of all Radon Borel probability measures on X. It is a compact
Hausdorff space under weak * topology, which is induced on it as a subset of (C(X))∗.

Define φ : P(X) → (C(X))∗ such that φ(µ)(f) =
∫
fdµ where φ(µ) ∈ (C(X))∗ for

µ ∈ P(X)
Since the map φ is one-one, then P(X) ⊆ (C(X))∗.

Then the topology on the P(X) is the weak * topology induced from the (C(X))∗, de-
fined as below.
Let (µλ) be a net in P(X). Then the net (µλ) converges in the weak * topology to µ ∈ P(X),
if b(f, φ(µλ)) converges to b(f, φ(µ)) for all f ∈ C(X), where b : C(X) × (φ(P(X))) → R is
a bilinear form defined as b(f, φ(µ)) = φ(µ)(f) =

∫
fdµ .

noted : φ(µ) is the image of µ in (C(X))∗.

Lemma 2.6. ext(P(X)) = {δx : x ∈ X}, where

δx(A) =

{
1 x ∈ A
0 x 6∈ A

Therefore by Krein Milman theorem applied to P(X), we get that P(X) = co({δx;x ∈
X})

2.3 Closed subsets of X

In this section, we will be defining the second space associated with topological space
X, which is C (X). See [5] for more information about C (X).

Definition. C (X) is the collection of nonempty closed subsets of X. It is a compact Haus-
dorff topological space under the Vietoris topology.

This topology is generated by subsets of C (X) as given below.

〈U1, . . . , Un〉 := {E ∈ C (X) : E ⊆ ∪ni=1Ui and E ∩ Ui 6= ∅ ∀i}

where U1, . . . , Un are open subsets of X, and such a collection form the topology on
C (X)
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noted: For the next lemma, the nontrivial convex combinations in C (X) are defined
by tC1 + (1− t)C2 = C1 ∪ C2, for 0 < t < 1 and C1, C2 ∈ C (X). Indeed the singletons are
the extreme points.
Although, C (X) is not a compact convex subset of a locally convex topological space, even
then we get the analogous of Krein Milman theorem in C (X).

Lemma 2.7. C (X) = co({{x} : x ∈ X})

(Proof) Let C ∈ C (X) and 〈U1, . . . , Un〉 be any neighborhood of C, then
C ⊆

⋃n
i=1 Ui and C∩Ui 6= ∅ for all i ∈ {1, . . . , n}. Choose xi ∈ C∩Ui so that {x1, . . . , xn} ⊆⋃n

i=1 Ui and {x1, . . . , xn} ∩ Ui 6= 0 for all i ∈ {1, . . . , n} which gives that {x1, . . . , xn} ∈
〈U1, . . . , Un〉, where {x1, . . . , xn} ∈ co{{x};x ∈ X}. Therefore co{{x};x ∈ X} is dense in
C (X).
Since the set co({{x} : x ∈ X}) is dense in C (X), we get that co({{x} : x ∈ X}) = C (X).
�

Theorem 2.8 (Milman Theorem in the context of C (X)). If F ⊆ C (X) satisfies co(F) =
C (X), then {{x} : x ∈ X} ⊆ F .
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Chapter 3

Group Actions

See [4] for much more information about proximal, strongly proximal, and extremely
proximal actions.
Suppose X is a compact Hausdorff space and G be a topological group, that is a group such
that the group operations G→ G, g 7→ g−1; and G×G→ G, (g, h) 7→ gh, are continuous.

Definition. We denote the set of homeomorphisms from X to X by Homeo(X). Note that
this is a group under the usual operations of function inverse and composition.

Definition. A group action of G on X, denoted as G yα X, is defined to be a group
homomorphism α : G→ Homeo(X) such that G×X → X, (g, x) 7→ α(g)(x) is continuous.
We will usually write either αg(x) or g.x for α(g)(x). Note that since α is a homomorphism,
it satisfies the following three conditions:

1. αg1g2(x) = αg1(αg2(x)); for all g1, g2 ∈ G and for all x ∈ X.

2. αe(x) = x; for all x ∈ X, where e is the identity element of G.

3. For all g ∈ G and x ∈ X, αg−1(x) = α−1g (x).

For x ∈ X, we define the orbit of x to be the set G.x = {g.x : g ∈ G}.

Definition. A group action G yα X is called minimal, if for all x ∈ X, the orbit G.x is
dense in X.

Proposition 3.1. A group action Gyα X is minimal if and only if there is no non empty
proper, closed and G-invariant subset of X.

(Proof) Suppose G yα X is minimal. Let A ⊆ X be a nonempty proper, closed and
G-invariant subset of X. Let x ∈ X and a ∈ A. Then x ∈ G.a = X. Since A is G-invariant
subset of X, then G.a ⊆ A. Also, since A is closed subset of X, then G.a ⊆ A = A i.e.
x ∈ A. Therefore X = A.
Conversely, suppose there is no non empty proper closed G-invariant subset of X. Let
x ∈ X. Now G.x is a nonempty closed and G-invariant subset of X. Therefore G.x = X.
�

Definition. For an action Gyα X, we make the following definitions:

• For C ⊆ X and g ∈ G, g.C = {g.c : c ∈ C}.

• For µ ∈ P(X) and g ∈ G, (g.µ)(B) = µ(g−1.B); for all B ∈ B.

6



The following proof is taken from the proof of [1, Theorem 2].

Lemma 3.2. If G y X is a continuous action of a topological group G on a topological
space X, then for each compact C ⊆ X and open V ⊆ X, the set

{s ∈ G : sC ⊆ V }

is open in G.

(Proof) Suppose g is in the set described above. Then, by continuity of the map G×X →
X, (g, x) 7→ g.x, for any x ∈ C, there exist an open neighborhood Vx of x and an open
neighborhood Ug,x of g such that Ug,xVx ⊆ V (where Ug,xVx = {sy : s ∈ Ug,x, y ∈ Vx}).
Now, C ⊆ ∪x∈CVx. Since C is compact set, then, there exists x1, . . . , xn such that

C ⊆ Vx1 ∪ · · · ∪ Vxn .

Set Ug = Ug,x1 ∩ · · · ∩ Ug,xn . Now Ug is an open neighborhood of g. We need to show
that Ug ⊆ {s ∈ G : sC ⊆ V }. Let s′ ∈ Ug, then for any x ∈ C, x ∈ Vxk , for some k and
s′ ∈ Ug,xk , s′x ∈ Ug,xkVxk . Therefore s′C ⊆ V . �

For the following, let G y X be a continuous action of a topological group G on a
compact Hausdorff space X. Denote by ϕ : G× C (X)→ C (X) the map ϕ(g, C) = gC.

The next two lemmas are essentially taken from [2, Remarks 4.1, 4.4, 4.6].

Lemma 3.3. For every open U ⊆ X, the set ϕ−1(〈U〉) is open in G× C (X).

(Proof) Let U ⊆ X be open, and set (g, C) ∈ ϕ−1(〈U〉). We need to find an open neigh-
borhood of (g, C) that is contained in ϕ−1(〈U〉).

Since gC ⊆ U , we have C ⊆ g−1U , so that X \ g−1U ⊆ X \ C. Since X is locally
compact, there exists an open set V ⊆ X such that

X \ g−1U ⊆ V ⊆ V ⊆ X \ C.

Then
C ⊆ X \ V ⊆ X \ V ⊆ g−1U,

which implies
gC ⊆ g(X \ V ) ⊆ g(X \ V ) ⊆ U.

Let W = {g ∈ G : g(X \ V ) ⊆ U}, which is open by Lemma 3.2, and consider the set

W × 〈X \ V 〉 ⊆ G× C (X).

This is an open neighborhood of (g, C).
Let (h,D) ∈W × 〈X \ V 〉, then

ϕ(h,D) = hD ⊆ h(X \ V ) ⊆ h(X \ V ) ⊆ U.

Thus, W × 〈X \ V 〉 ⊆ ϕ−1(〈U〉).
�
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For a subset S ⊆ X, make the following notation:

[S] = {C ∈ C (X) : C ∩ S 6= ∅}.

Note that if U ⊆ X is open, then [U ] is open in C (X), since [U ] = 〈U,X〉.

Lemma 3.4. For every open U ⊆ X, the set ϕ−1([U ]) is open in G× C (X).

(Proof) Let U ⊆ X be open, and take (g, C) ∈ ϕ−1([U ]). We need to find an open
neighborhood of (g, C) that is contained in ϕ−1([U ]).

Then by the definition of ϕ−1([U ]) and [U ], gC ∩ U 6= ∅. So there exists an x ∈ C
such that gx ∈ U . By the continuity of the map G × X → X, (s, y) 7→ s.y, there exist
an open neighborhood W of g and open neighborhood V of x such that WV ⊆ U (where
WV = {s.y : s ∈W, y ∈ V }). Consider the set

W × [V ] ⊆ G× C (X).

This is an open neighborhood of (g, C). Let (h,D) ∈W×[V ], then there is a point y ∈ D∩V ,
so that hy ∈ U . Hence hD ∩ U 6= ∅, i.e., (h,D) ∈ ϕ−1([U ]). Thus, W × [V ] ⊆ ϕ−1([U ]).

�

Proposition 3.5. If G yα X is an action, then the map α̃ : G → Homeo(C (X)),
α̃(g)(C) = g.C is an action on C (X).

(Proof) Let g1, g2 ∈ G and C ∈ C (X). Then (α̃(g1)α̃(g2))(C) = (α̃(g1))(α̃(g2)(C)) =
α̃(g1)(g2.C) = g1.(g2.C) = (g1g2).C = α̃(g1g2)(C). Therefore, α̃(g1)α̃(g2) = α̃(g1g2). So α̃
is a group homomorphism.
Let C ∈ C (X) and (g.xi) → y, for a net (xi) in C. Then xi = g−1(g.xi) → g−1.y. Since
g−1.y ∈ C, then y ∈ g.C. Therefore g.C ∈ C (X).
Let α̃(g)(C1) = α̃(g)(C2), then g.C1 = g.C2, which can be written as g−1g.C1 = g−1g.C2, so
that C1 = C2. Therefore α̃(g) is injective. Now for any C ∈ C (X) we have g−1.C ∈ C (X)
such that α̃(g)(g−1.C) = C, Therefore α̃(g) is surjective.
Let 〈U1, . . . , Un〉 ⊆ C (X) be any basic open set in C (X). Now (α̃(g))−1(〈U1, . . . , Un〉) =
{C ∈ C (X) : α̃(g)(C) ∈ 〈U1, . . . , Un〉} = {C ∈ C (X) : g.C ∈ 〈U1, . . . , Un〉} = {C ∈ C (X) :
C ∈ 〈g−1U1, . . . , g

−1Un〉}. So, α̃(g))−1(〈U1, . . . , Un〉) = 〈g−1U1, . . . , g
−1Un〉, which is open

in C (X). Therefore α̃(g) is continuous.
Let 〈U1, . . . , Un〉 be a basic open set in C (X) (for open sets U1, . . . , Un ⊆ X). Note that

〈U1, . . . , Un〉 = 〈∪nk=1Uk〉 ∩ [U1] ∩ · · · ∩ [Un],

so that
ϕ−1(〈U1, . . . , Un〉) = ϕ−1(〈∪nk=1Uk〉) ∩ ϕ−1([U1]) ∩ · · · ∩ ϕ−1([Un]),

which is open by Lemmas 3.3 and 3.4.
�

Lemma 3.6. G yα X gives G y C(X) such that for all f ∈ C(X), g → g.f is norm
continuous, where C(X) is the set of continuous functions from X to X.

Proposition 3.7. If Gyα X is an action, then the map ˜̃α : G→ Homeo(P(X)), ˜̃α(g)(µ) =
g.µ is an action on P(X)
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(Proof) Let g1, g2 ∈ G and µ ∈ P(X). Then (˜̃α(g1) ˜̃α(g2))(µ) = (˜̃α(g1))( ˜̃α(g2(µ)) =
˜̃α(g1)(g2.µ) = g1.(g2.µ) = (g1g2).µ = ˜̃α(g1g2)(µ). Therefore, ( ˜̃α(g1) ˜̃α(g2)) = ˜̃α(g1g2). So ˜̃α
is a group homomorphism.
Let gi → g and µi → µ. Fix f ∈ C(X). We need to show that |〈giµi − gµ, f〉| → 0. By
Lemma 3.6 and gi → g, we get i1 such that ||g−1i f−g−1f || < ε

2 for all i ≥ i1. Choose i2 such
that |〈µi − µ, g−1f〉| < ε

2 for all i ≥ i2. Then for i ≥ max{i1, i2}|〈giµi − gµ, f〉| ≤ |〈giµi −
gµi, f〉|+ |〈gµi − gµ, f〉| = |〈µi, g−1i f − g−1f〉|+ |〈µi − µ, g−1f〉| ≤ ||g−1i f − g−1f ||+ ε

2 < ε.
Therefore the map G× P(X)→ P(X) is continuous.
Let ˜̃α(g)(µ1) = ˜̃α(g)(µ2), then g.µ1 = g.µ2, which can be written as g−1g.µ1 = g−1g.µ2, so
that µ1 = µ2. Therefore ˜̃α(g) is injective. Now for any µ ∈ P(X) we have g−1.µ ∈ P(X)
such that ˜̃α(g)(g−1.µ) = µ, Therefore ˜̃α(g) is surjective.
Let µi → µ in P(X), then for g ∈ G, we have g.µi → g.µ i.e. ˜̃α(g)(µi) → ˜̃α(g)(µ). Hence
the map ˜̃α(g) is continuous.

�

Definition. A group action G yα X is called proximal, if for any two points x, y in X,
there is a net (gi) in G such that limi gi.x = limi gi.y

Definition. A group action G yα X is called extremely proximal, if with respect to
the corresponding induced group action G yα̃ C (X), for all C ∈ C (X) and for all y ∈ X,
there exists a net (gi) in G such that limi gi.C is a singleton.

Definition. A group action G yα X is called strongly proximal, if for all µ ∈ P(X),
there exists a net (gi) in G such that gi.µ→ δx for some x ∈ X.

Proposition 3.8. If Gyα X is strongly proximal action then it is proximal action.

(Proof) Suppose G yα X is a strongly proximal action. Let x, y ∈ X. Since G yα X
is strongly proximal, then there exists a net (gi) in G such that gi.µ → δz for some z ∈ X
where µ = 1

2(δx) + 1
2(δy). By the compactness of X, we can assume that gi.x → x0 in X

and gi.y → y0 in X. Therefore, δgi.x → δx0 and δgi.y → δy0 . Now, consider µi = gi.µ =
1
2(δgi.x) + 1

2(δgi.y)→ 1
2(δx0) + 1

2(δy0). So, δz = 1
2(δx0) + 1

2(δy0). Since δz ∈ ext(P(X)), then
δz = δx0 = δy0 . Therefore x0 = y0 = z. Hence limi gi.x = limi gi.y. �

The following proposition was proved in [3, Theorem 2.3] (but the numbering in this paper
has a mistake, and this result should be Theorem 3.3).

Proposition 3.9. If Gyα X is extremely proximal then it is strongly proximal in the case
that X doesn’t have exactly two points (in which case minimal actions are always extremely
proximal and never strongly proximal).

Now let’s establish few results which will be used to prove the parallel characteristics of
proximal and extremely proximal for minimal actions.

Lemma 3.10. If sixj → yj for all j ∈ {1, . . . , n} then {six1, . . . , sixn} → {y1, . . . , yn} in
C (X).

(Proof) Let U be a basis set of Vietoris topology on C (X) then U = 〈U1, . . . , Um〉 for open
sets Uk in X.
Now {y1, . . . , yn} ∈ 〈U1, . . . , Um〉.
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Fix yj ∈ {y1, . . . , yn}. Now by definition we get open sets U j1 , . . . , U
j
l where 1 ≤ l ≤ n such

that yj ∈ U jq for q ∈ {1, . . . , l}.
Since sixj → yj , then for U jq there is N j

q ∈ N such that skxj ∈ U jq for all p ≥ N j
q where

q ∈ {1, . . . , l}.
Choose N j = max{N j

1 , . . . , N
j
p} then spxj ∈ U jq for all p ≥ N j

where q ∈ {1, . . . , l}. This holds for all yj ∈ {y1, . . . , yn}.
Choose N = max{N1, . . . , Nn} such that skxj ∈ U jq for all p ≥ N and all j ∈ {1, . . . , n}
where q ∈ {1, . . . , l} i.e. {spx1, . . . , spxn} ∈ 〈U1, . . . , Um〉 for all p ≥ N . �

Lemma 3.11. Suppose G yα X is minimal. If K ⊆ F (X) is a G-invariant, convex,
relatively closed and contains any singleton set then K = F (X).

(Proof) Suppose {x0} ∈ K for x0 ∈ X. Let x ∈ X such that x 6= x0. Now the minimality
of Gyα X gives (gi)i∈I ∈ G such that (gi.x0)i∈I → x.
Therefore gi.{x0} = {gi.x0} → {x}. Since K is G-invariant and relatively closed, then
{x} ∈ K.
Therefore K contains {{x};x ∈ X}. Let A ∈ F (X), then A =

⋃
x∈A{x}.

Since K is convex, then A ∈ K. Hence K = F (X). �

Lemma 3.12. Suppose Gyα X is minimal
Gyα X is extremely proximal iff {{x};x ∈ X} ⊆ G.C for all C ∈ C (X) \ {X}.

(Proof) Suppose G yα X is an extremely proximal. Let C ∈ C (X), then there exists
some x ∈ X such that {x} ∈ G.C, i.e. G.{x} ∈ G.C so that G.{x} ⊆ G.C. Let y ∈ X
such that y 6= x. By the minimality of G yα X, we get y ∈ G.x; for all y ∈ X, so that
{y} ∈ G.{x} ⊆ G.C.
Therefore, {{x};x ∈ X} ⊆ G.C; for all C ∈ C (X) \ {X}.
Conversely, suppose {{x};x ∈ X} ⊆ G.C for all C ∈ C (X) \ {X}. It follows trivially that
for all C ∈ C (X) and for all x ∈ X, {x} ∈ G.C. Hence Gyα X is extremely proximal. �

Lemma 3.13. If K ⊆ C (X) is a nonempty convex subset of C (X), such that K \ {X} =
C (X) \ {X}, then K = C (X).

(Proof) Assume that K ⊆ C (X) is a convex subset of C (X) such that
K \ {X} = C (X) \ {X}. It suffices to show that X ∈ K.
If X is singleton, then C(X) = {X} and since K is non empty, we must have K = {X} =
C (X).
Assume X contains two distinct points x, y. Let U , V be disjoint open subsets of X such
that x ∈ U and y ∈ V . Then y /∈ U , so U ∈ C (X)\{X}. Thus, U ∈ K. On the other hand,
since x ∈ U,X \ U ∈ C (X) \ {X}, so that X \ U ∈ K. Thus, X = U ∪ (X \ U) ∈ K, since
K is a convex subset of C (X). �

Our main result gives parallel characteristics of proximal and extremely proximal for
minimal actions.

Theorem 3.14. Suppose Gyα X is minimal.

1. Gyα X is proximal if and only if F (X) has no nonempty proper G-invariant, convex,
relatively closed subsets.
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2. G yα X is extremely proximal if and only if C (X) \ {x} has no nonempty proper
G-invariant, relatively convex, relatively closed subsets.

(Proof) 1. Suppose G yα X is proximal. Let K ⊆ F (X) be nonempty G-invariant,
convex, relatively closed. By Lemma 3.11 it is enough to show that K contains a
singleton subset of X.
Let A ∈ K. Now A = {x1, . . . , xk}. Since G yα X is proximal, then there is
(g1i )i∈I ∈ G such that lim g1i .x1= lim g1i .x2 =x11. Since X is compact, then there is
a subnet of (g1i .x3)i∈I say (g3i .x3)i∈I (after relabeling) such that (g3i .x3)i∈I → x31.
Using the compactness of X, we get a subnet of (g3i .x4)i∈I say (g4i .x4)i∈I (after rela-
beling) such that (g4i .x4)i∈I → x41.
Proceeding this way, we get a subnet of (gk−1i .xk)i∈I say (gki .xk)i∈I (after relabeling)
such that (gki .xk)i∈I → xk1. Note that (gki )i∈I is a subnet of (g1i )i∈I . By Lemma 3.10,
we get (gki ).{x1, . . . , xk} = {gki .x1, . . . , gki .xk} → {x11, . . . , xr1}, where r ≤ k − 1. Since
K is G-invariant and relatively closed, then {x11, . . . , xr1} ∈ K.
Repeating the same argument on {x11, . . . , xr1}, we get a sequence (gk+1

i )i∈I such that
gk+1
i .{x11, . . . , xr1} → {x12, . . . , xs2}, where s ≤ r − 1 < k and
{x12, . . . , xs2} ∈ K. Proceeding this way, we get (gpi )i∈I ∈ G such that gpi .{x1p, x2p} →
{x}, where {x1p, x2p} ∈ K. and {x} ∈ K.
Conversely, let x, y ∈ X. Consider F = G.{x, y} ⊆ C (X). Since F ⊆ C (X) is G-
invariant, then co(F )∩F (X) ⊆ F (X) is G-invariant, convex and relatively closed in
F (X). Hence co(F ) ∩F (X) = F (X).
Density of F (X) in C (X) gives co(F ) = C (X). By the Milman theorem in the con-
text of C (X), we get {{x};x ∈ X} ⊆ F = G.{x, y}. i.e. there is a net (gi)i∈I such
that
gi.{x, y} → {z} for some z ∈ X i.e. gi.x→ z and gi.y → z.

2. Suppose Gyα X is extremely proximal. Let K ⊆ C (X)\{X} be a nonempty proper,
G-invariant, relatively convex and relatively closed set. So there exists a closed set L
in C (X) such that K = (C (X) \ {X}) ∩ L. By Lemma 3.12, for any C ∈ K, we have
{{x};x ∈ X} ⊆ G.C ⊆ K ⊆ L.
So co{{x};x ∈ X} ⊆ K ⊆ L.
Since co{{x};x ∈ X} is dense in C (X), then C (X) = co{{x};x ∈ X} ⊆ L. Therefore
L = C (X). Hence K = C (X) \ {X}.
Conversely, suppose that there is no nonempty proper, G-invariant, relatively convex
and relatively closed subset of C (X) \ {X}. Let C ∈ C (X) \ {X}, then co(G.C) is
closed and convex subset of C (X). Therefore co(G.C)\{X} = co(G.C)∩(C (X)\{X},
where co(G.C) \ {X} is nonempty G-invariant, relatively closed and relatively convex
subset of C (X) \ {X}. Thus by hypothesis, co(G.C) \ {X} = C (X) \ {X}. By
lemma we get that co(G.C) = C (X). Using Milman’s theorem for G.C, we get that
{{x};x ∈ X} ⊆ G.C. By lemma 4, we get that Gyα X is extremely proximal.

�

Question 3.15. Is there any collection A (X), where F (X) ⊆ A (X) ⊆ C (X) such that
G yα X is strongly proximal if and only if A (X) has no nonempty proper G-invariant,
convex, relatively closed subsets?
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