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Unionid mussels are a guild of freshwater, sedentary filter-feeders, which 

play a critical role in freshwater systems. Mussels are currently experiencing a 

global decline in both species richness and abundance, due to invasive species, 

human alteration of water systems, and climate change. In North America, which 

is considered to have the highest global diversity of bivalve species, native 

mussels are currently declining rapidly with at least 37 species considered to 

already be extinct. If extant mussel species are to be preserved, then it is vital 

that conservation efforts be prioritized towards areas in which they are likely to 

be found. Often this is done through ecological niche models. Maxent for 

example uses the principle of maximum entropy on presence data and 

environmental variables to create a suitability score for a particular area, and is 

one of the most widely used of the ecological niche modeling programs.  It has 

been used to make maps predicting the suitability scores for multiple species but 

very little ground-truthing to see if the maps are assigning the correct scores has 

been conducted. Ground-truthing was done by sampling at 138 sites throughout 

East Texas. These sites had been assigned suitability scores from a previous 

study, and the mussels found at the site were compared to those that were 
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predicted to be there by Maxent. The new maps created by Maxent were 

compared to the original maps to see if new occurrence points added to the 

predictive ability of the maps by looking at the test AUC and test gain values. The 

influences of new data on Maxent’s predictive ability for finding a particular 

mussel species at a site, and the number of mussels found at a site were also 

investigated by linear and logistic regression. Additional occurrence points were 

found to significantly improve the predictive maps for the Triangle Pigtoe, the 

Texas Heelsplitter, and the Southern Hickorynut, and all maps were found to 

accurately predict locations for mussels. Maxent’s predictive ability via their 

suitability scores was improved for all species with additional occurrence points. 

However, for almost all of the species looked at, there was a data cap, which was 

a point at which additional data no longer improved the models. This suggests 

that the amount of data necessary to make accurate maps may not be as large 

as originally thought, and when trying to conserve an organism this could be 

important.  
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Chapter One: Life History and General Background 

Extinctions are natural events that are caused by disturbances, and are 

counterbalanced by the evolution and migration of new species (Barnosky et al., 2011). 

The current wave of extinctions, however, is thought to have been brought about by 

human demands on the planet. Since the 1600’s, there have been 490 animal and 580 

plant extinctions worldwide. More than half of these have occurred in the last 100 years 

(May et al., 1995). Although the rate of the current extinction wave cannot be completely 

determined, it is clear that species are going extinct extremely rapidly, and that if  trend 

continues, it will erode human well-being considerably, possibly leading to another mass 

extinction (Barnosk et. al, 2011; Jansson, 2009; Regan et al., 2001; Balmford et al., 

2005; Lydeard et al., 2004).  

Human modification of the land and climate are greatly influencing the habitat 

and biodiversity in ecosystems both worldwide and in North America. Some of the most 

vulnerable areas are freshwater communities such as those found in streams or rivers. 

The biodiversity in freshwater areas is decreasing by as much as 4% of their total 

biodiversity per decade worldwide (Poole & Downing, 2004; Vaughn, 2010). Freshwater 

communities depend upon the landscape around them, which constrain and control the 

local factors of the stream (Frissel et al., 1986; Smiley et al., 2008). In considerable 

danger in water systems are freshwater bivalves which are currently among the most 

endangered organisms in the world (Williams et al., 1992). 

Worldwide, freshwater mussels are one of the most threatened groups of animals 

on the planet, and their decline is readily apparent in North American waters (Williams et 

al., 1992; Strayer et al., 2004; Galbraith & Vaughn, 2011). Freshwater mussels are 
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divided into 19 families worldwide. Most of these families include only a few genera or 

species. The family Unionoida is one of the larger families, including six genera, and 850 

species, and includes almost all freshwater bivalve families except the Sphaeriidae 

(Bogan, 2008; Haag, 2012). Unionids are found worldwide except for in Antarctica and 

the Pacific Islands (Bogan, 2008).  

Freshwater mussels are a large guild of sedentary, burrowing, filter-feeding 

bivalves, which have a suite of life history traits that cause them to be vulnerable to 

changes in the aquatic ecosystem (Vaughn, 2010). Mussels are mostly sedentary and 

are unable to move away from areas which are no longer suitable for them. Mussels 

cannot escape from disturbances to their habitat such as impoundments (Galbraith, et 

al., 2010). Impoundments are features such as dams, which alter the flow of the water, 

and change the sediment flow and other aquatic processes that mussels need to 

survive. These changes can also alter the velocity of the water which changes the 

amount of sediment that settles in the river, and can suffocate mussels if they cannot get 

above this new sediment layer (Watters, 2000). An increase of just 2.5 cm of silt can 

lead to the mortality of about 90% of the mussels in that area. The amount of light 

entering the river is also altered by impoundments, which can change the amount of 

algae in an area. Algae can make up a large portion of a mussel’s diet so this can have 

a large impact on a mussel community (Ellis, 1936). Substrates in impounded area are 

often changed, which can lead to new mussel species entering an area, typically those 

that are more silt tolerant or those which can take harsh flood events (Watters, 1999). 

Dams have been found to impede fish migrations from one area to another, or to cause 

them to take another, longer route to an area, resulting in a necessary fish not being in 

an area during larval release by a mussel. Thus, environmental dynamics that can alter 

fish migrations can alter mussel recruitment as well (Watters, 2000).  
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Native freshwater bivalves tend to not reproduce until they are at least seven 

years old, leading to long generation times and an inability to rapidly recover from 

disturbances and invasive species (Kacar, 2011). Invasive species typically reproduce 

much faster than native species, and alter the physical, chemical and biological 

characteristics of an area (Strayer, 2006). One species in particular, Dreissena 

polymorpha, the zebra mussel, has had a major impact on mussels native to the United 

States. Dreissena polymorpha are epifaunal, and can attach themselves to almost any 

hard surface with byssal threads, allowing them to colonize new areas much faster than 

native freshwater mussels, where they quickly become the dominant mussel species. In 

any area in which they can survive they can reach densities of more than 100,000/m2 

(Strayer, 1999). Larval D. polymorpha will settle onto any surface, including other 

mussels, typically in densities of about 100-200 per individual mussel, but can exceed 

over 10,000 D. polymorpha on a single mussel (Hebert et al., 1991; Ricciardi et al., 

1995; Martel et al., 2001). This increase in the mass of the host mussel, limits the 

mussel’s movements along with its ability to open and close its shell, impacting its 

survivability (Vaughn & Heakenkamp, 2001). D. polymorpha waste increases toxic 

chemicals in the water, often in places where native mussels already congregate 

(Vaughn & Heakenkamp, 2001).  The biggest impact that D. polymorpha have on native 

mussels, however, is through nutrient removal. In habitats where zebra mussels are 

found in high concentrations, there is a large decline in phytoplankton and zooplankton, 

sometimes as high as 90%. Plankton are eaten by native mussels, and native mussel 

body condition has been found to be significantly lower in areas where D. polymorpha 

occur, from a lack of nutrient uptake (Vaughn and Heakenkamp, 2001). Body condition 

is lower even for mussels who do not have zebra mussels directly on them but just 

inhabit the same areas (Haag, 1993; Strayer, 1999). In the Great Lakes area where D. 

polymorpha first appeared in the United States, they have virtually eliminated native 
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mussel populations, and in areas where they have since spread to, D. polymorpha have 

led to greater than 90% declines in native mussel populations. This trend in mussel 

decline is expected to continue as zebra mussels move southwards (Ricciardi et al., 

1998).  

Mussels feed by pumping of large amounts of water through their body tissues. 

Consequently they are exposed to contaminants that are dissolved in the water, 

resulting in the bioaccumulation of toxic substances in their tissues (Naimo, 1995). Toxic 

metals and chemicals that enter an aquatic system can be absorbed by suspended 

particles, which then accumulate in the sediments (Salomons et al., 1987; Tessier & 

Campbell, 1987). These sediments are filtered by mussels, leading to the accumulation 

of these toxins in the mussels (Giesy & Hoke, 1989). Toxins can have a wide range of 

effects depending upon their concentration, as well as the species in question; however, 

all have at least some kind of a negative effect on mussel survivability. High 

concentrations of Cd, Cu, Hg, and Zn have been found to cause mortality, alterations in 

weight, changes in enzyme activity, and modifications in a mussel’s normal behavior, 

such as reduction in their time spent filtering water (Naimo, 1995). 3-Trifluoromethyl-4-

nitrophenol (TFM), which is an endocrine disruptor used to kill larval sea lamprey, 

Petromyzon marinus, in the Great Lakes region, has a narcotic effect on mussels. When 

exposed to the chemical, mussels will relax most of their tissues, and extend their feet 

and other muscles (Waller et al., 1998). DNA damage occurs in the mussel Unio 

pictorum, when found downstream of paper mills and oil refineries (Sˇtambuk et al., 

2009). The abundance of mussels found both upstream and downstream of waste water 

treatment plants is significantly lower than what is historically known, and is thought to 

be a product of the ammonia and other chemicals that are pumped into the water 

(Goudreau et al., 1993). Chlorine, which is added to most drinking water, increases 
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mortality in mussels, along with reductions in their growth and the detachment of settled 

larvae (Khalanski & Bordet, 1980).   

Mussels are also thermo-conformers, whose physiological processes depend on 

the temperature of the surrounding water. Temperature controls when larval mussels 

complete their metamorphosis to adult mussels, and there is both a high and low 

temperature threshold that the water must reach. When the water is too cold, the larvae 

do not metamorphosis, and if it is too hot the larvae simply die (Watters, & O’Dee, 1999).  

Thus, changes in water temperature can lead to shifts in the rates and magnitudes of the 

biological processes that mussels employ for survival (Spooner & Vaughn, 2008; 

Vaughn, et al., 2008). These changes in temperature sometimes occur because of 

impoundments placed upon the river (Watters, 2000).  

Direct harvest has also contributed to the endangerment of freshwater mussels, 

again because they lead a relatively sedentary lifestyle. Humans have used mussels for 

food, tools, and jewelry since prehistoric times (Strayer, 2006). In North America, 

humans have been harvesting mussels for about 10,000 years, mostly as a food source, 

although they have made use of their shells in other ways (Haag, 2012). Starting about 

1,500 years ago, the fossil record indicates that mussel shells became a major element 

of tempering clay and in pottery production (Theler, 1990; Weinstein & Dumas, 2008). 

Shells were also used as implements such as spoons, dippers, scrapers and fishing 

lures (Parmalee & Bogan, 1998; Cartwright, 2003). Mussel harvesting has continued to 

modern day, and is still influencing mussel populations in North America (Haag, 2012). 

Mussels can be an abundant and conspicuous component of freshwater 

ecosystems and often compose more than 50% of the total biomass in the community, 

therefore the loss of mussel biomass could have a serious impact on an ecosystem 

(Haag, 2012). Bivalves tend to be much larger in size compared to other benthic 

organisms and have numerous influences on the aquatic community. They can change 
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the sediment and nutrient levels in the water by sequestering them in their tissues and 

shells as they feed (Vaughn & Hakenkamp, 2001). Bivalve filtration can lead to large 

decreases in plankton and other particles in the water column, especially when the 

biomass of the bivalves is very large (Kasprzak, 1986; Kryger & RiisgaÊrd, 1988; Welker 

& Walz, 1998; Strayer et al., 1999). The amount of water filtered by mussels in a dense 

bed can sometimes even exceed the daily stream discharge for an area which can lead 

to `biological oligotrophication' by decreasing phytoplankton biomass and total 

phosphorus, and increasing water clarity (Welker & Walz, 1998). The intensification in 

water clarity increases the food available for other organisms by increasing the algal 

content in the water (Haag, 2012). Mussels can also be important source of dissolved 

nutrients for the water column, since they are able to translocate (feed and pump back 

out) and transform (change the chemical form of) nutrients in the water (Kuenzler, 1961). 

Mussels are also important cyclers of nitrogen in water bodies, releasing ammonia and 

dissolved organic nitrogen that can be taken up directly by phytoplankton and benthic 

algal communities (Dame, 1996; Lauritsen & Mozley, 1989). These nutrients come from 

a hypo-osmotic urine that consists primarily of ammonia which is produced by freshwater 

mussels. The excretion rate and concentration of the urine varies between species, size 

classes, and seasons, as well as other variables (Burton, 1983; Vaughn & Hakenkamp, 

2001).  

Mussels can pull up nutrients that cannot readily be accessed by other 

organisms from the substrate, either through filtering water internally or by deposit 

feeding (McMahon, 1991). Mussels filter water internally by utilizing an elongated 

inhalant siphon to vacuum organic detritus and bacteria from the stream or lakebed 

surface (Way, 1989). Deposit feeding is a primitive bivalve function that has been found 

to be nearly universal in mussels, and contributes to about 50% of a mussels’ diet 

(Vaughn & Hakenkamp, 2001). Mussels accomplish deposit feeding by using cilia on 
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their foot to collect buried organic matter from the substrate, which they then ingest via 

those same cilia (Way, 1989).  

In stream and lake communities the biodeposition of fecal matter and 

pseudofecal matter by bivalves can be an important sedimentation process that places 

high-quality pelagic resources back into the sediment. The resources that are put back 

into the water column by mussel’s can influence adjacent benthic communities, resulting 

in changes in species composition and abundance (Reusch, et al, 1994; Vaughn & 

Hakenkamp, 2001). In areas where mussels are in abundance there are significant 

increases in the amount and concentrations of organic matter in the substrate when 

compared to similar areas that lack large mussel populations (Prokopovich, 1969). The 

biodeposition can lead to an increase in the local abundance of macroinvertebrates, 

especially those that feed on decaying matter such as detritivores (Vaughn & 

Hakenkamp, 2001).  

As bivalves locomote and burrow into the substrate they can release sediments 

into the water body for other organisms to access. Deposit feeding leads to an increase 

in the oxygen penetration into the sediments, and can stimulate microbial metabolisms 

(Dame, 1996; Levinton, 1995). As mussels burrow into the substrate they bioturbate the 

sediment, or remix the sediments, leading to changes in the chemical composition of the 

water body. These changes can increase the sediment levels in the water, increase 

sediment homogenization and increase the depth that oxygen can penetrate into the 

substrate (McCall et al., 1979). The rates at which these changes occur per mussel 

depend on the size of the mussel because larger mussels can mix sediments at greater 

rates (McCall et al., 1995). These changes also depend on the species of the mussel. 

Some species move and feed more than others (McCall et al., 1995). Bivalve activity 

also changes the flux rates of some solutes across the sediment-water gradient. Their 
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movements help to enhance the release of nitrates and chloride and inhibit the release 

of calcium carbonate from the sediments (Matisoff et al., 1985).   

The physical presence of mussels can influence the water body in several ways, 

in addition to the biological effects that bivalves can have. Both living and dead mussel 

shells act as suitable substratum for benthic algae, and as habitat for epizoic and 

epiphytic plants and algae to colonize (Beckett et al., 1996). Mussels can act as habitats 

for numerous types of invertebrates and small fish (Wooton, 1992; Navarrette, 1996). 

Shells act as refugia for small fish to avoid predators as they hunt for food (McCall et al., 

1979; Strayer et al., 1994). Mussel shells can accumulate organic matter which can be a 

food source for other organisms, which can lead to increases in the abundance of 

chironomids and other detritivores (Gosselin & Chia, 1995). Mussels, both when alive 

and dead, alter the flow characteristics of a water body by helping to stabilize the 

substrate and limiting sheer stress on other organisms. Sheer stress is the stress on an 

organism from water flowing over it. Mussels simply by being present in an aquatic 

ecosystem can change the organism composition of an area by allowing creatures which 

are less tolerant of sheer stress to be able to live in an area (Zimmerman & de Szalay, 

2007).  

Bivalves are often very long lived, and store nutrients in their tissues that they 

have bioaccumulated during their lifetime (Vaughn, & Hakenkamp, 2001). When they 

die, they release these nutrients back into the water column, which can be an important 

source for calcium and other nutrients (Green, 1980). A bivalve’s ability to store nutrients 

can cause a mussel to serve as both nutrient sources and sinks depending on the 

circumstances. If the population of bivalves is declining and releasing more nutrients 

than they take in, it is a source, putting nutrients back into the water. If the mussel 

biomass is growing, or if mussels are being removed from the ecosystem permanently, 

then they are acting as a sink, removing nutrients from the water (Vaughn, & 
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Hakenkamp, 2001). Thus the health of the mussel population can influence the nutrient 

levels of the water body. Finally, mussels serve as food for numerous organisms, 

including humans, other mammals, fishes, reptiles, and birds (Haag, 2012).   

The loss of diverse mussel assemblages can permanently alter the functioning of 

an aquatic ecosystem. The rates of ecological processes performed by bivalves are 

linearly related to the biomass of the organisms in the area, thus a significant decline in 

unionid biomass, regardless of species, could result in an alteration of the ecosystem. 

The degree and significance of these alterations will be context-dependent on system 

size, system stability and bivalve biomass (Vaughn & Hakenkamp, 2001). North America 

is seeing major declines in its freshwater mussel diversity (Howard & Cuffey 2003).  

Conservation of mussels, particularly in areas of high mussel diversity and density, has 

become a concern in recent years. Predictive models based upon various niche 

dimensions of mussels can be used to discriminate those areas with the highest 

potential to sustain healthy mussel communities and thus promote a more efficient 

allocation of resources to protect these areas. 

A species’ geographic distribution and its various niche dimensions are important 

factors in the effective study and conservation of freshwater mussels. Such data can 

indicate areas that may need conserving (Yom-Tov & Kadmon, 1998). However, 

creating individual conservation plans for every species, or even just the threatened 

species in an ecoregion, is impractical and nearly physically impossible (Margules & 

Pressey, 2000). Instead, a predictive model that combines information regarding 

landscape characteristics and occurrence data can be created that attempts to predict 

where a species should occur. These species distribution models can be used to 

improve ongoing and future conservation activities that are focused on species recovery 

and habitat restoration. From a more practical standpoint, these models can be used 

when planning surveys to economize limited resources such as time or money by 
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prioritizing sites based on the probability of various impacts (Yom-Tov & Kadmon, 1998). 

In recent years, these models have been used to predict changes in factors such as 

global warming, invasive species, and species reintroductions (Esselman & Allan, 2011; 

Marmion et al., 2009; Lenoir et al., 2011).  

Species distribution models (SDM) extrapolate species distribution data in space 

and time, usually using a statistical model (Franklin, 2009). These models are created by 

taking observations of species occurrences and matching those occurrences with 

environmental variables thought to influence habitat suitability and thus species 

distribution. SDMs produce outputs that can be interpreted in two different ways. First 

they give estimates of the probability that a species might occur at a given unrecorded 

location. The second are estimates of an area’s suitability for a particular species. The 

interpretation depends on the assumptions that are made (Segurado & Araugo, 2004).  

There are several elements that make up a useable SDM. There must be a 

theoretical or conceptual model of the biotic and abiotic factors that control a species’ 

distribution through space and time, at different scales, and the organismal responses 

for these factors (Franklin, 2009). Data are needed on the occurrence of a species in 

geographical space, and can be measured in presence data, habitat use data, 

abundance data, or any other properties that can be used to indicate the occurrence of 

an organism (Franklin, 2009). Next there need to be maps of environmental variables 

representing those factors determining habitat quality, or that are correlated with those 

variables (Franklin, 2009). These types of data tend to be derived from remote sensing, 

spatial models of environmental processes, or other sources, and stored in a GIS 

software package. Then there needs to be a model linking habitat requirements or 

species occurrence data to the environmental variables. These models can be statistical, 

descriptive, logical or rule-based (Burgman et al., 2005). The model needs tools, such as 

thresholds, weights, coefficients and others, for applying values to the mapped 
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environmental variables to produce a map of the organism’s occurrence or suitable 

habitats. Finally, there needs to be data and criteria that validate the predictions and a 

way to interpret error or uncertainty in the analysis (Franklin, 2009). Models for SDMs 

can be broken into two major groups, regression models and machine learning models 

(Franklin, 2009). 

 Regression models use relatively simple mathematical equations to explain the 

relationships between habitat variables and organism locations, and to predict species 

distributions (Austin, 2002). The other major type of modeling SDMs is machine learning 

models. Machine learning methods use various kinds of algorithms that are used to 

identify the mapping function or classification rules inductively, based on training data, 

that the algorithm uses to build the model (Franklin, 2009). Machine learning methods 

are relatively new and are a rapidly growing area of eco-informatics that is concerned 

with identifying structure in complex, large, and typically nonlinear datasets. Machine 

learning techniques have been promoted in ecology and SDMs as powerful alternatives 

to traditional statistical modeling approaches (Olden et al., 2008; Elith, 2002; Elith et al., 

2006; Wisz et al., 2008). 

Maximum entropy modeling (Maxent) is a general purpose machine learning 

method that is one of the most commonly used methods for inferring species 

distributions and environmental tolerances from occurrence only data (Warren & Seifert, 

2011). Maxent has been used extensively with SDMs and outperforms other machine-

learning and statistical methods even with small sample sizes (Elith et al., 2006). It was 

originally created for use with SDMs and has several advantages over other modeling 

systems (Franklin, 2009). It can predict species distributions based upon only species 

presence data and environmental information of the study area. Maxent has been used 

in studies of species richness, invasive species, climate change, endemism hotspots, 

and almost every other type of ecological study possible. However, maps have only 
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been validated for areas that have already been sampled. We could find no studies that 

investigated new areas to validate the species distributions predicted by Maxent. Most 

studies simply made new maps, and accepted them as correct (Franklin, 2009). Only 

one other study was found that used some of its data to validate the model they created. 

However, their original sampling was not based on any habitat suitability maps 

(Rodriguez-Castaneda, et al., 2012). However, because it uses an exponential model for 

creating its species distribution probabilities, it can give very large predicted values for 

conditions that are outside the range of those found in the data used to develop the 

model (Franklin, 2009). 

As of 2009, six mussels, the Texas Pigtoe (Fusconaia askewi), the Triangle 

Pigtoe (Fusconaia lamanensis), the Sandbank Pocketbook (Lampsilis satura), the 

Southern Hickorynut (Obovaria jacksoniana), the Louisiana Pigtoe (Pleurobema riddelli), 

and the Texas Heelsplitter (Potamilus amphichaenus) were all listed as threatened for 

the state of Texas. Conservation of these species has therefore become more important 

leading to the creation of habitat suitability models for these species with Maxent. 

Maxent suitability score maps have been created for each of these species, giving 

scores for all of Eastern Texas (Walters, 2013). These maps were based upon mussel 

and habitat data from the Sabine and Neches Rivers and predicted occurrence sites for 

all of East Texas.  

My study had two objectives: 1) To determine if Maxent creates valid maps for 

threatened mussels in East Texas. Maps will be evaluated by the mussels found at the 

location and their suitability scores. The overall change in the maps will be looked at by 

their test AUCs and test gains. Comparisons will be done with each new set of data. As 

more data is added to the map the test AUCs and test gains should increase, indicating 

that the overall predictive power of the maps has increased. 2) To determine how much 

additional data affects the maps for mussels via their suitability scores. Suitability scores 
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will be compared to the presence or absence of a species at a particular location, and 

the suitability scores will be compared to the number of individuals of a species at a 

particular location. Sites with higher scores will have more of a species at that site, and 

higher scored sites will be more likely to have a threatened species of mussel than a 

lower scored site. 3) To create new suitability maps for the six threatened mussel 

species. Maps were created using 20% of the new data each time, added to the original 

data. As new data is added to the maps, they should become better at predicting 

locations at which the mussels could be found.  The scored areas in the maps are likely 

to shrink, as the scores will change as the maps become better at predicting. Many of 

the high areas will shrink and the lower scored areas will become more prominent, since 

many modeling systems over predict the high scores (Wisz et al., 2008).  
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Chapter Two: Methods 

 In 2012, mussels were collected in the Neches, Sabine, Angelina, and Trinity 

Rivers of East Texas between May and September of 2012 (Figure 2.1). Sampling 

locations were chosen based upon previously created habitat suitability maps for the six 

threatened species of mussels in East Texas (Walters, 2013). These maps were created 

using Maxent and were based upon previously collected mussel location and habitat 

data. Data for the original maps were from five sites on the Neches River and nine sites 

on the Sabine River (Walters, 2012). Suitability scores ranged from zero, which was a 

site which was predicted not to be suitable at all for the species, to one, which was a site 

that was predicted to be the best habitat for the species. Maps were divided into five 

different ranges of suitabilities based upon their suitability scores. Grids in the maps 

were scored as either high, low, mid high, or mid low. A uniform distribution of sampling 

sites were selected from the range of suitability scores for all six species. Sites were 

chosen via a stratified random sampling design to allow sites to be randomly chosen 

within the suitability scores found in the original maps created by Walters (Walters, 

2013). That allowed sites to still be within a certain suitability score set, but to be 

randomly chosen within that set. Sites were chosen to allow at least five sampling efforts 

for each of the five score sections and for all six species, and to provide adequate 

coverage of all the major rivers in East Texas (Figure 2.1). Sites were sampled in a 50m 

reach containing as many geomorphic units as possible (i.e., riffle, pool, run) to be 

representative of the actual conditions in the area. Additional mussel data from the 

Sabine River were obtained from Neil Ford (Ford et al., 2009).  
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Each site was reached via kayak as sites tended to be some distance from 

bridge crossings, which had previously been sampled. At each site an initial 

reconnaissance of the shore was carried out for mussel shells. Only complete mussel 

shells were counted as dead mussels. Mussels were sampled using tactile and visual 

searches throughout the entire site, which provides the most accurate results for mussel 

species diversity, evenness, and richness (Hornbach & Deneka, 1996). Sampling 

continued until it was felt that the entire area had been sampled completely. Sites were 

thought to have been sampled completely when no new mussels were found for at least 

five minutes. All live unionids were collected, identified to species, enumerated, and 

replaced except for voucher specimens. Vouchers were retained in the University of 

Texas at Tyler collection. Recently dead mussels, indicated by the presence of tissue, 

shiny nacre, or uneroded shells were also enumerated at each site. Long deceased 

mussels were not included in samples because other forces, such as stream flow, can 

transport them from upstream locations that are outside of the sampling area, providing 

inaccurate evidence that the mussel was in that area. 

Evaluation of the optimal sampling effort was done by breaking the sampling data 

into five sets with 0%, 20%, 40%, 60%, 80%, and 100% of the ground truthed data 

included (Appendix A). The sites in each set were randomly determined. The occurrence 

points from this first 20% were added to the original occurrence points used to create the 

first suitability maps. Occurrence points included both live and recently dead for a site. 

The new set of points was then run through Maxent to create new suitability maps with 

new values. These values were then assigned to the 80% of the data that remained. The 

process was repeated for each data set until all the data had been used and a final set 

of suitability maps had been created. Each time, the remaining data was considered to 

be the equivalent of sampling using these new maps since the suitability scores, AUC, 

and gain values were obtained from the new maps. Using the data in this way allowed 
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the data not used to create the suitability maps to be a “new” sampling effort without 

actually having to obtain fresh data from the field. By breaking the data up into five 

different sets we obtained five different sampling efforts from only one summer of field 

research. The maps created with a certain amount of occurrence points could be 

compared to determine, to at least some extent, the amount of data needed to generate 

useful maps. To my knowledge this is the first study to use one data set to generate 

multiple sampling efforts to compare a model. 

 The software package Maxent was used for species distribution modeling (Dudik 

et al., 2010). The principal of maximum entropy states that a probability distribution with 

maximum entropy, i.e., the most spread out and closest to uniform, subject to known 

constraints, is the best approximation of an unknown distribution because it agrees with 

everything that is known and avoids assuming anything that is not known (Phillips et al., 

2006). When this method is applied to presence-only SDMs, the pixels of the study area 

make up the space on which the Maxent probability distribution is defined. The 

information available about the target distribution of the species is presented as a set of 

real-valued variables, called features. These features are climatic variables, elevation, 

soil, and other environmental variables, and the model is constrained by these features. 

Species distribution is then directly modeled by estimating the density of environmental 

covariates conditional on species presence (Phillips et al., 2006). The output from 

Maxent assigns a probability to each site. These values are dependent on the number of 

background and occurrence sites used during the creation of the map. The values are 

not the probability of occurrence of a species in that particular site, but the suitability of 

that habitat for the species (Boyce et al., 2002).   

Analysis was limited to locations falling within East Texas, including the Trinity, 

Sabine, Neches, and Angelina Rivers. Habitat suitability models were built separately for 

each species, based upon the 11 environmental layers found to influence the species by 
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Walters (Walters, 2012). Maxent’s cross-validation option was used to assess the 

predictive ability and usefulness of the model (Pearson et al., 2007). The test gain and 

the test area under the operator receiving curve (AUC) that were produced by the 

software were used to determine model fit for each species. The test AUC measures the 

probability that a randomly chosen presence site will be scored above a randomly 

chosen pseudoabsence point (Fielding & Bell, 1997; Phillips & Dudik, 2008). AUCs > 

0.75 are typically thought of as useful, and considered to indicate a well fit model (Elith, 

2002). The test gain is the mean log probability of the occurrence samples after a 

constant has been removed that makes the uniform distribution have a zero gain. 

Suitability scores were obtained for each occurrence site based upon that species’ 

suitability map. 

 Comparison of the models was done by graphing the test AUCs and test gains 

from each suitability map for each species, and looking for a general trend in the maps. 

If the models are improving with new data, then the test AUC and test gain should get 

larger with each data set. Determination of the suitability scores’ overall ability to predict 

the number of individuals at a site was done via linear regression in Excel. Logistic 

regression was used to determine if sites with higher suitability scores were more likely 

to have a threatened mussel species than sites with lower scores. Percent contribution 

of each variable for each data set was examined to determine if there were any changes 

in the trends of the variables from the data found by Walters (Walters, 2012).  
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Chapter Three: Results 

 A total of 139 different sites were sampled throughout East Texas, from the 

Trinity, Sabine, Neches, and Angelina Rivers (Appendix A) (Figure 2.1). An additional 

1,474 F. askewi mussels were collected thoughout the sample area, at 65 new 

occurrence sites. Adding this to the original 80 occurrence sites used to create the first 

habitat suitability map (Walters et al., 2012), resulted in a total of 145 occurrence sites 

for this species. We also found an additional 164 F. lananensis at 18 new occurrence 

sites, 118 L. Satura at 36 new occurrence sites, 14 O. jacksoniana at 5 new occurrence 

sites, 32 P. amphichaenus at 23 new occurrence sites, and 401 P. riddelli at 31 new 

occurrence sites (Table 3.1). Adding these new occurrence sites to their respective 

number of occurrence sites from the data used to create the original maps resulted in a 

total of 45 sites for F. lananensis, 79 sites for L. Satura, 17 sites for O. jacksoniana, 46 

sites for P. amphichaenus, and 75 sites for P. riddelli. These totals were used to create 

the final suitability maps for each species (Walters et al., 2012) (Table 3.1).  

 The test gain was found to be significantly different with new data for only F. 

lananensis (p = 0.02) and the O. jacksoniana (p = 0.01) (Table 3.2) (Figure 3.1). The test 

gain increased from 1.21 to 1.95 for the O. jacksoniana, and decreased from 1.41 to 

1.13 for F. lananensis (Appendix B). The test gains did not significantly change for any of 

the other mussel species. Test gains for F. askewi ranged from 1.03 at the beginning to 

0.07 at the end (p = 0.07), test gains for L. Satura ranged from 1.25 to 1.81 (p = 0.10), 

test gains for P. amphichaenus ranged from 1.34 to 1.48 (p = 0.09), and test gains for P. 

riddelli ranged from 1.07 to 1.34 (p = 0.22) (Table 3.2). All of the test gains indicated that 
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the models were potentially useful, although the drop in test gain for F. lananensis 

indicates that the new map is not as useful as the original map (Appendix B).  

The test AUC values for both P. amphichaenus (p = 4.38 X 10-5) and O. 

jacksoniana (p = 0.01) were found to be significantly increased from the original test 

AUC values (Table 3.2) (Appendix B) (Figure 3.2). Test AUC values were 0.82 at the 

beginning for P. amphichaenus, and 0.90 at the end, and test AUC values for O. 

jacksoniana ranged from 0.78 to 0.83 (Table 3.2). All of the other species’ test AUC 

scores were found to not be significantly different from the original map’s test AUC 

scores. AUC scores for F. askewi ranged from 0.81 to 0.83 (p = 0.61), from 0.89 to 0.90 

(p = 0.83) for F. lananensis, from 0.88 to 0.92 (p = 0.13) for L. Satura, and from 0.91 to 

0.90 (p = 0.69) for P. riddelli (Appendix B) (Table 3.2). All of the test AUCs remained 

above 0.70 indicating that the maps were still accurately predicting habitat locations for 

the mussel species even though they did not become more accurate with additional 

data. The final maps for all of the species seemed to “tighten up”. High suitability scored 

areas shrank and lower scored areas become more prominent (Figures 3.3-3.38).   

 Habitat variable importance remained almost identical to that reported by Walters 

(Walters et al., 2012). Soil remained the most important variable for all of the species, 

followed by vegetation and landcover usage. The other variables played very little role in 

the species modeling (Appendix B).  

 The suitability scores given by the model became better at predicting occurrence 

at a site of a mussel with the addition of new data in all species except for O. 

jacksoniana (p=0.04 at 0% of new data, p = 0.55 at 80% of new data). In this species the 

addition of data did not change how well the model predicted species occurrence at a 

site (Table 3.3). In all of the other species the addition of data significantly improved the 

model’s ability to predict species occurrence. Model improvement eventually leveled out 

and stopped being significantly improved by the addition of new data in L. Satura (p = 
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4.89 X 10-5 at 0% of new data, p =0.06 at 80% of new data), P. amphichaenus (p = 0.08 

at 0% of new data, p = 0.25 at 60% of new data), and F. askewi (p = 0.01 at 0% of new 

data, p = 0.31 at 80% of new data) (Table 3.3). Additional data continued to significantly 

improve the model for the Louisiana (p = 2.41 X 10-9 at 0% of new data, p = 9.28 X 10-3 

at 80% of new data) and F. lananensis (p = 2.36 X 10-6 at 0% of data, p = 0.03 at 80% of 

data) though the significance of the new data became less with each new data set 

(Table 3.3). 

 In all species except P. amphichaenus (p = 0.14 at 0% of new data, p= 0.68), the 

addition of new data was found to significantly improve the model’s prediction of high 

numbers of a species at sites with high suitability scores (Table 3.3). F. askewi improved 

with new data until an additional 84 sites had been added (p = 0.01 at 60% of new data), 

after those 84 sites new data no longer improved the model’s predictive ability for (p = 

0.32 at 80% of new data). L. Satura (p = 0.02 at 60% of new data, p = 0.12 at 80% of 

new data) and the P. riddelli (p = 0.001 at 60% of new data, p = 0.06 at 80% of new 

data) followed this same trend, and stopped improving after 84 sites had been reached 

(Table 3.3). New data continued to significantly improve the model’s scores for F. 

lananensis (p = 0.39 at 0% of new data, p = 0.02 at 80% of new data) (Table 3.3).  
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Chapter Four: Discussion 

 A species can occur at a site that satisfies three sets of considerations. First, the 

physical characteristics of the environment must be suitable. Second, the correct suite of 

positive and negative interactor species must be present. Finally a site must be 

accessible for dispersal and colonization by the species in question (Owens, et al., 

2011). Species distribution modeling systems typically use the first set of considerations 

in their predictions by using the abiotic variables for a species to predict new locations in 

which the species will be found based upon these variables. These results indicate that 

Maxent can accurately make these predictions.   

The results from the field sampling indicate that my Maxent models accurately 

predict areas with similar habitats to known occurrence points for mussels in East Texas, 

which indicates that the models successfully predicted locations at which threatened 

mussels could be found. All models also improved in their predictive ability with 

additional data, either via an improvement in their total maps seen through an increase 

in their test gains, test AUCs, or the predictive ability of their suitability scores. Higher 

scored sites are more likely to have a threatened species than lower scored sites. More 

individuals of a species were also found at the higher scored sites. However no species 

was found to improve in all of my metrics (Table 3.2) (Table 3.3). 

The test AUC only changed for O. jacksoniana, and the test gain only changed 

for O. jacksoniana and F. lananensis. O. jacksoniana had the least amount of data used 

to create the original map, almost 1/3 of the next lowest number of occurrence sites. Any 

new data will have an impact on this small sample size. F. lananensis, which had the 

second smallest number of occurrence sites in the original maps, had a decreasing test 
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gain. F. lananensis are thought to occur only in the Angelina and lower Neches Rivers, 

and all new occurrence points for the species support that distribution. These new points 

would lead to a lowering of suitability scores in areas that are not in these two rivers, 

such as the Trinity River, and these changes result in the lowering of the test gain seen 

in this species (Appendix B). No overall change is seen in the test AUCs or test gains for 

the other species, but when you look at the maps, changes can be identified. In all six 

species the higher scored areas shrank in the amount of area they occupied. The lowest 

scored sites also shrank in the amount of area that it occupied. The middle scored areas 

increased in size (Figures 3.1-3.36).  Shrinkage of the high and low scored areas 

indicates that Maxent over and underscores many areas. New data improves its ability to 

accurately predict new habitat locations.  

In all species, more individuals were found at sites with higher suitability scores, 

and this trend continued as more data were added to the species, and scores become 

better at predicting the numbers of organisms of a particular species found at a site as 

they increase. However, there is a data plateau for each species, where new data no 

longer have an effect. The more data that were already used to create the original maps, 

the better those maps were at predicting new locations, and the less of an effect any 

new data will have, and the sooner the plateau appears. These plateaus are different for 

each species and depend on the number of occurrence sites that were used to create 

the original maps, the number of new occurrence points added with the new data, and 

the total number of new mussels that were found of that species.  

No plateau in the effect of sampling effort on musseling maps was found for O. 

jacksoniana or F. lananensis which were the two species with the lowest original number 

of occurrence points, and the lowest number of new occurrence points. Suitability scores 

continued to improve in predictive power with new data for these species, and likely 

would have continued to improve if even more data had been available. F. askewi, L. 
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Satura, and P. riddelli all had suitability scores which increased in predictive ability with 

new data, until another 80 data points were added. These three species had fairly high 

numbers of occurrence sites constituting their original maps, and had the largest number 

of new occurrence points from the new data. Their maps were already better at 

predicting suitability scores than O. jacksoniana or F. lananensis, and so new data have 

less of a positive impact. P. amphichaenus had one of the lowest sets of starting 

occurrence points, and had very few new occurrence points found. Almost all of the 

original points were from the Sabine River, and this species is thought to be a possible 

endemic to that river body. After an additional 56 points were added, new data no longer 

affected the suitability scores. The original map was already a good predictor for the 

suitability scores for this species, and there were not enough new sites added to 

increase the effectiveness of the suitability scores. Additionally, the majority of the new 

sampling efforts were conducted outside of the Sabine River, and mostly included areas 

that did not have Heelsplitters (Figure 2.1). Had more sites been sampled in the Sabine 

River, or more Heelsplitters found in other areas, the suitability scores may have 

continued to increase in their predictive ability with more data for this species.   

The suitability score was also a good predictor for whether or not a species 

would be present or absent at a site. Higher scored sites were more likely to have a 

threatened mussel species than lower scored sites. The predictive ability of the suitability 

scores tended to increase with more data, though eventually a plateau was reached, just 

as when the suitability score was used to predict the number of mussels at a site. The 

cap for a species depends on the number of occurrence sites used to make the original 

map and the number of new occurrence sites, compared to the total number of new 

sites. Maps that were made with larger numbers of occurrence sites have lower 

plateaus, and new data will not have as much of an effect on it. The suitability scores for 

F. lananensis and P. riddelli continued to improve in predictive ability as more data were 
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added. The suitability scores for this species would have likely continued to increase had 

more data been available and plateaued eventually. Both of these species had large 

numbers of new location points discovered during this work, with the number of new P. 

riddelli occurrence sites almost twice the original amounts. The addition of new data 

continued to improve the suitability scores predictive ability for these two species. F. 

askewi and L. Satura both stopped improving in their scores after about 80 new sites 

had been added. The new data did not improve their scores very much because both 

species started with fairly large sample sizes, and so the new data had a smaller effect 

on their maps. P. amphichaenus score stopped improving after an additional 56 sites, 

likely because most of the sampling was done outside of the Sabine River. The small 

amount of sampling that was done in the Sabine River is likely what improved the 

model’s scores (Table 3.1) O. jacksoniana suitability scores with regards towards 

presence and absence did not increase with new data, and no pattern was found for the 

species. Most of the sites that were sampled did not contain this species, including sites 

that had high suitability scores, and some of the sites that did have O. jacksoniana had 

low suitability scores. All locations that this species was found were in the Neches River, 

although it was random where it was found.  

Many of the places that were sampled in this study are those that are thought to 

not contain mussels, such as tributaries or small channels of a river. Typically it is 

thought that mussels only occur in the main channels of a river (Ford et al., 2009). 

However, this study shows that mussels can be found in these smaller locations, and in 

deeper areas than was originally thought to contain mussels. Future mussel researchers 

may want to look in these smaller locations along with the more typical areas when 

sampling.  

Finally it should be remembered that although species distribution modeling 

represents a scientifically important area in species conservation, it is still only a model 
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of possible locations in which a species could live. Owing to the small sample sizes used 

to generate species distribution models, it would be unreasonable to expect these 

models to describe the complete realized niche of a mussel species (Owens et al., 

2011), let alone the fundamental niche. Fish are important biotic components of mussel 

distributions. Unionids experience an obligate parasitic larval stage where they attach to 

a fish or salamander host after release from the adult mussel. Some species are able to 

parasitize a wide variety of fish species while others can use only a few closely related 

species (Trdan & Hoeh, 1982; Zale & Neves, 1982; Yeager & Saylor, 1995).  Integrating 

information regarding fish host data through the identification of potential glochidia host 

relationships into my ecological niche models may provide a better understanding of the 

geographic distribution of these six East Texas mussels and improve the models. Future 

research should incorporate other abiotic and biotic factors that influence the fish hosts 

for these mussels into the ecological niche models.  

In this study, I showed that Maxent creates accurate predictive maps for the six 

threatened species of mussels in East Texas and that the suitability scores from Maxent 

became more accurate at predicting with more data. Given the high degree of 

imperilment of freshwater mussel species and their ecosystems worldwide, Maxent 

species distribution maps could play a significant role in future conservation efforts. 

Protected areas have been noted as a critical strategy for conservation of organisms, 

and should be an important strategy to protect biodiversity (Groom, et al., 2006). The 

information provided from species distribution maps may aid in field surveys and 

allocation of conservation resources by providing valuable biogeographical information 

that will help in planning land use management around existing populations, locating 

new populations, identifying top-priority survey sites, or setting priorities to areas to 

restore to natural habitats (Kumar and Stohlgran, 2009; Raxworthy et al., 2003; Bourg et 

al., 2005). 
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Figure 2.1. Map of the rivers of East Texas. Points indicate locations of sampling effort in 
the Sabine, Neches, Angelina, or Trinity Rivers.  
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Figure 3.1. Test gain values for all six mussel species.  
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Figure 3.2. Test AUC values for all six mussel species.  
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Figure 3.3. The predicted potential suitable habitat for Fusconaia askewi in East Texas 

with no new occurrence points added.  
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Figure 3.4. The predicted potential suitable habitat for Fusconaia askewi in East Texas 

with 20% of the new occurrence points added.   
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Figure 3.5. The predicted potential suitable habitat for Fusconaia askewi in East Texas 

with 40% of the new occurrence points added.   
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Figure 3.6. The predicted potential suitable habitat for Fusconaia askewi in East Texas 

with 60% of the new occurrence points added. 
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Figure 3.7. The predicted potential suitable habitat for Fusconaia askewi in East Texas 

with 80% of the new occurrence points added. 
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Figure 3.8. The predicted potential suitable habitat for Fusconaia askewi in East Texas 

with 100% of the new occurrence points added.    
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Figure 3.9. The predicted potential suitable habitat for Fusconaia lananensis in East 
Texas with no new occurrence points added.  
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Figure 3.10. The predicted potential suitable habitat for Fusconaia lananensis in East 
Texas with 20% of the new occurrence points added. 
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Figure 3.11. The predicted potential suitable habitat for Fusconaia lananensis in East 
Texas with 40% of the new occurrence points added. 
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Figure 3.12. The predicted potential suitable habitat for Fusconaia lananensis in East 
Texas with 60% of the new occurrence points added. 
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Figure 3.13. The predicted potential suitable habitat for Fusconaia lananensis in East 
Texas with 80% of the new occurrence points added. 
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Figure 3.14. The predicted potential suitable habitat for Fusconaia lananensis in East 
Texas with 100% of the new occurrence points added.    
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Figure 3.15. The predicted potential suitable habitat for Lampsilis satura in East Texas 
with no new data added.  
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Figure 3.16. The predicted potential suitable habitat for Lampsilis satura in East Texas 
with 20% of the new occurrence points added. 
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Figure 3.17. The predicted potential suitable habitat for Lampsilis satura in East Texas 
with 40% of the new occurrence points added. 
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Figure 3.18. The predicted potential suitable habitat for Lampsilis satura in East Texas 
with 60% of the new occurrence points added. 
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Figure 3.19. The predicted potential suitable habitat for Lampsilis satura in East Texas 
with 80% of the new occurrence points added. 
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Figure 3.20. The predicted potential suitable habitat for Lampsilis satura in East Texas 
with all 100% of the new occurrence points added.   
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Figure 3.21. The predicted potential suitable habitat for Obovaria jacksoniana in East 

Texas with no new occurrence points added.  
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Figure 3.22. The predicted potential suitable habitat for Obovaria jacksoniana in East 

Texas with 20% of the new occurrence points added. 
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Figure 3.23. The predicted potential suitable habitat for Obovaria jacksoniana in East 

Texas with 40% of the new occurrence points added. 
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Figure 3.24. The predicted potential suitable habitat for Obovaria jacksoniana in East 

Texas with 60% of the new occurrence points added. 
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Figure 3.25. The predicted potential suitable habitat for Obovaria jacksoniana in East 

Texas with 80% of the new occurrence points added. 
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Figure 3.26. The predicted potential suitable habitat for Obovaria jacksoniana in East 

Texas with 100% of the new occurrence points added.  



60 
 

 

Figure 3.27. The predicted potential suitable habitat for Pleuroblema riddellii in East 

Texas with no new occurrence points added.    
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Figure 3.28. The predicted potential suitable habitat for Pleuroblema riddellii in East 

Texas with 20% of the new occurrence points added.   
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Figure 3.29. The predicted potential suitable habitat for Pleuroblema riddellii in East 

Texas with 40% of the new occurrence points added. 
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Figure 3.30. The predicted potential suitable habitat for Pleuroblema riddellii in East 

Texas with 60% of the new occurrence points added. 
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Figure 3.31. The predicted potential suitable habitat for Pleuroblema riddellii in East 

Texas with 80% of the new occurrence points added. 
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Figure 3.32. The predicted potential suitable habitat for Pleuroblema riddellii in East 

Texas with 100% of the new occurrence points added. 
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Figure 3.33. The predicted potential suitable habitat for Potamilus amphichaenus in East 

Texas with no new occurrence points added. 



67 
 

 

Figure 3.34. The predicted potential suitable habitat for Potamilus amphichaenus in East 

Texas with 20% of the new occurrence points added. 
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Figure 3.35. The predicted potential suitable habitat for Potamilus amphichaenus in East 

Texas with 40% of the new occurrence points added. 
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Figure 3.36. The predicted potential suitable habitat for Potamilus amphichaenus in East 

Texas with 60% of the new occurrence points added. 
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Figure 3.37. The predicted potential suitable habitat for Potamilus amphichaenus in East 

Texas with 80% of the new occurrence points added.  
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Figure 3.38. The predicted potential suitable habitat for Potamilus amphichaenus in East 

Texas with 100% of the new occurrence points added. 
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Table 3.1. Summary information for the number of sites a mussel species was found at 
before and after the new data was added.  
 

 
 
 
 
 
 
 
 
  

Species 

# of Original 

Occurrence Sites 

# of New 

Occurrence Sites 

Total 

Mussels 

Total # of 

Occurrence Sites 

Fusconaia askewi 80 65 1474 145 

Fusconaia lananensis 27 18 164 45 

Lampsilis satura 43 36 118 79 

Obovaria jacksoniana 12 5 14 17 

Potamilus amphichaenus 52 23 32 75 

Pleuroblema riddelli  15 31 401 46 
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Table 3.2. The P values for the test AUC and test gain, and the r2 values and equations 
for all six of the threatened species.  
 

Fusconaia askewi 

 
p r

2
 y= 

Test AUC 0.61 0.07 y=0.0001x + 0.83 

Test gain 0.07 0.60 y= 0.0028x + 1.02 

Fusconaia lananensis 

 
p r

2
 y= 

Test AUC 0.83 0.01 y=2E-05x + 0.90 

Test gain 0.02 0.79 y=0.0034x + 1.42 

Lampsilis satura 

 
p r

2
 y= 

Test AUC 0.13 0.47 y=0.0004x + 0.87 

Test gain 0.10 0.52 y=0.0048x + 1.22 

Obovaria jacksoniana 

 
p r

2
 y= 

Test AUC 0.01 0.83 y=0.0005x + 0.79 

Test gain 0.01 0.85 y=0.0075x + 1.32 

Potamilus amphichaenus 

 
p r

2
 y= 

Test AUC 4.38E-05 0.99 y=0.0009x + 0.81 

Test gain 0.09 0.55 y= 0.002x + 1.26 

Pleuroblema riddelli 

 
p r

2
 y= 

Test AUC 0.69 0.05 y=-4E-05x + 0.91 

Test gain 0.22 0.34 y= 0.0022x + 1.23 
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Table 3.3. The linear regression and logistic regression P values for each point at which 

new occurrence points are added to the original data.  

Fusconaia askewi 

Test 

0% 20% 40% 60% 80% 100% 

p p p p p p 

Linear Regression 0.65 0.00 0.00 0.01 0.32 8.49E-04 

Logistic Regression 0.01 0.08 0.00 0.06 0.31 7.35E-07 

Fusconaia lananensis 

Test 

0% 20% 40% 60% 80% 100% 

p p p p p p 

Linear Regression 0.39 0.05 0.36 0.02 0.02 0.02 

Logistic Regression 2.36E-06 5.36E-06 2.10E-04 1.33E-03 0.03 1.10E-07 

Lampsilis satura 

Test 

0% 20% 40% 60% 80% 100% 

p p p p p p 

Linear Regression 2.17E-03 3.28E-03 3.12E-04 0.02 0.12 1.71E-06 

Logistic Regression 4.89E-05 3.60E-04 2.11E-04 0.02 0.06 3.68E-07 

Obovaria jacksoniana 

Test 

0% 20% 40% 60% 80% 100% 

p p p p p p 

Linear Regression 1.62E-05 1.47E-04 4.12E-04 1.06E-03 4.73E-03 1.13E-05 

Logistic Regression 0.04 0.10 0.29 0.34 0.55 0.11 

Potamilus amphichaenus 

Test 

0% 20% 40% 60% 80% 100% 

p p p p p p 

Linear Regression 0.14 0.21 0.04 0.55 0.68 1.08E-07 

Logistic Regression 0.08 0.05 0.02 0.25 0.29 7.35E-07 

Pleuroblema riddellii 

Test 

0% 20% 40% 60% 80% 100% 

p p p p p p 

Linear Regression 4.05E-08 6.62E-08 1.99E-06 1.48E-03 6.90E-02 1.52E-07 

Logistic Regression 2.41E-09 1.92E-08 3.22E-07 7.84E-05 9.28E-03 8.77E-10 
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Appendix A: Site descriptions for the occurrence points for all species. 

 

Continued on next page 

Site Date Lat Long Drainage Set # 
Fusconaia 

askewi 
Fusconaia 
lananensis 

Lampsilis 
satura 

Obovaria 
jacksoniana 

Potamilus 
amphichaenus 

Pleuroblema 
riddellii 

118 8/3/2006 32.806317 -95.906267 Sabine 1 0 0 0 0 3 0 

135 9/27/2007 32.20129 -94.21 Sabine 1 47 0 9 0 4 0 

68 7/28/2012 30.17874000 -94.21937000 Neches 1 0 2 0 0 0 0 

66 7/26/2012 31.38270000 -94.09953000 Angelina 1 0 0 0 0 0 0 

87 9/2/2012 32.61332000 -95.48736000 Sabine 1 0 0 0 0 0 0 

20 6/4/2012 31.62297000 -95.26615000 Neches 1 25 0 4 0 0 0 

31 6/15/2012 32.09328000 -94.19669000 Sabine 1 0 0 0 0 0 0 

61 7/22/2012 31.68671000 -94.38370000 Angelina 1 0 1 0 0 0 0 

13 6/1/2012 31.82275000 -94.94548000 Angelina 1 8 0 0 0 0 0 

75 10/22/2011 32.66388611 -95.36239444 Neches 1 3 0 0 0 0 0 

104 8/12/2005 32.5819 -95.35675 Sabine 1 0 0 0 0 0 0 

94 9/11/2012 31.84060000 -95.42436000 Neches 1 101 0 5 3 0 48 

77 8/3/2012 31.38442000 -94.95354000 Neches 1 13 0 2 0 0 8 

22 6/7/2012 32.50129000 -94.94272000 Sabine 1 91 0 4 0 0 0 

47 6/27/2012 31.50051000 -94.30700000 Angelina 1 0 0 0 0 0 0 

136 7/27/2010 32.390183 -94.484717 Sabine 1 42 0 1 0 1 0 

64 7/25/2012 31.00434000 -94.17068000 Angelina 1 0 0 0 0 0 0 

78 8/3/2012 31.38765000 -94.96000000 Neches 1 56 0 5 0 0 40 

101 9/17/2012 32.96588300 -96.94449500 Trinity 1 0 0 0 0 0 0 

89 9/4/2012 31.70381000 -95.31088000 Neches 1 13 0 5 0 1 8 

125 8/31/2006 32.371667 -94.449767 Sabine 1 19 0 0 0 0 0 

124 9/1/2007 32.3469 -94.3835 Sabine 1 5 0 0 0 1 0 

40 6/20/2012 31.46381000 -94.73476000 Angelina 1 0 0 0 0 0 0 

41 6/20/2012 31.45617000 -94.72162000 Angelina 1 2 7 0 0 0 1 
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Site Date Lat Long Drainage Set # 
Fusconaia 

askewi 
Fusconaia 
lananensis 

Lampsilis 
satura 

Obovaria 
jacksoniana 

Potamilus 
amphichaenus 

Pleuroblema 
riddellii 

17 6/3/2012 31.58006700 -95.16773300 Neches 1 9 0 3 0 0 23 

7 5/28/2012 32.32073000 -94.33807000 Sabine 1 21 0 1 0 0 0 

99 9/24/2012 31.33876000 -94.99613000 Neches 1 0 0 0 0 0 0 

133 10/6/2006 32.5443 -95.181483 Sabine 1 3 0 0 0 0 0 

60 7/22/2012 31.68895000 -94.38317000 Angelina 2 0 1 0 0 0 0 

12 6/1/2012 31.81929000 -94.94239000 Angelina 2 0 0 0 0 0 0 

38 6/18/2012 32.27457000 -94.31361000 Sabine 2 0 0 0 0 1 0 

14 6/1/2012 31.67040000 -94.95161000 Angelina 2 18 0 5 0 0 4 

116 8/31/2006 32.542033 -95.189217 Sabine 2 1 0 0 0 0 0 

23 6/7/2012 32.50691000 -94.94538000 Sabine 2 10 0 2 0 0 0 

50 7/9/2012 32.87861100 -96.92944400 Trinity 2 0 0 0 0 0 0 

10 5/28/2012 32.32699000 -94.34992000 Sabine 2 0 0 0 0 0 0 

25 6/13/2012 32.41441 -94.6722 Sabine 2 0 0 0 0 0 0 

35 6/18/2012 32.26912 -94.3068 Sabine 2 0 0 0 0 1 0 

130 5/29/2006 32.37188 -94.4491 Sabine 2 42 0 3 0 0 0 

132 9/26/2006 32.55857 -95.152 Sabine 2 2 0 0 0 0 0 

112 9/1/2005 32.60058 -95.3859 Sabine 2 0 0 0 0 0 0 

29 6/13/2012 32.42265 -94.7023 Sabine 2 0 0 0 0 0 0 

134 9/27/2007 32.34125 -94.3639 Sabine 2 6 0 0 0 2 0 

42 6/22/2012 31.49722 -94.8372 Angelina 2 5 2 0 0 0 0 

105 8/12/2005 32.58563 -95.3467 Sabine 2 0 0 0 0 0 0 

70 7/28/2012 30.17862 -94.2117 Neches 2 16 36 0 0 0 0 

63 7/25/2012 31.00439 -94.1779 Angelina 2 0 0 0 0 0 0 

103 10/23/2012 33.31903 -96.8922 Trinity 2 0 0 0 0 0 0 
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Site Date Lat Long Drainage Set # 
Fusconaia 

askewi 
Fusconaia 
lananensis 

Lampsilis 
satura 

Obovaria 
jacksoniana 

Potamilus 
amphichaenus 

Pleuroblema 
riddellii 

120 9/1/2007 32.36997 -94.4581 Sabine 2 149 0 8 0 0 0 

58 7/20/2012 32.61879 -95.4799 Sabine 2 0 0 0 0 0 0 

54 7/18/2012 31.64815 -94.4062 Angelina 2 5 0 0 0 0 0 

131 9/26/2006 32.54395 -95.1663 Sabine 2 0 0 0 0 0 0 

73 7/31/2012 31.48438 -94.82 Angelina 2 2 1 0 0 0 0 

108 9/8/2005 32.57158 -95.2782 Sabine 2 0 0 0 0 0 0 

83 8/28/2012 31.58583 -95.1076 Neches 2 0 0 0 0 0 0 

86 9/2/2012 32.61444 -95.49 Sabine 2 0 0 0 0 0 0 

106 8/12/2005 32.58518 -95.3467 Sabine 3 0 0 0 0 0 0 

79 8/26/2012 31.62425 -95.2749 Neches 3 9 0 6 0 0 11 

90 9/9/2012 31.71365 -95.3321 Neches 3 47 0 3 0 2 57 

32 6/15/2012 32.10169 -94.1866 Sabine 3 0 0 0 0 0 0 

36 6/18/2012 32.27501 -94.3101 Sabine 3 0 0 0 0 0 0 

93 9/11/2012 31.83665 -95.4206 Neches 3 0 0 1 2 3 16 

114 8/25/2005 32.60567 -95.416 Sabine 3 0 0 0 0 0 0 

5 5/25/2012 31.7548 -94.9654 Angelina 3 51 12 0 0 0 1 

8 5/28/2012 32.32148 -94.3429 Sabine 3 1 0 0 0 4 0 

122 9/1/2007 32.34162 -94.3655 Sabine 3 13 0 0 0 1 0 

115 8/25/2005 32.60658 -95.4143 Sabine 3 0 0 0 0 0 0 

74 7/31/2012 31.48406 -94.8217 Angelina 3 0 0 0 0 0 0 

126 8/1/2006 32.55542 -95.1753 Sabine 3 39 0 0 0 0 0 

44 6/22/2012 31.49086 -94.8271 Angelina 3 0 0 0 0 0 0 

82 8/26/2012 31.62829 -95.2839 Neches 3 9 0 1 0 0 2 

107 9/1/2005 32.602 -95.3828 Sabine 3 0 0 0 0 0 0 
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Site Date Lat Long Drainage Set # 
Fusconaia 

askewi 
Fusconaia 
lananensis 

Lampsilis 
satura 

Obovaria 
jacksoniana 

Potamilus 
amphichaenus 

Pleuroblema 
riddellii 

65 7/26/2012 31.38222 -94.1001 Angelina 3 0 0 0 0 0 0 

37 6/18/2012 32.27261 -94.31 Sabine 3 0 0 0 0 0 0 

3 5/23/2012 31.77177 -95.3986 Neches 3 0 0 1 7 0 11 

128 5/22/2006 32.55733 -95.2056 Sabine 3 32 0 0 0 0 0 

137 7/27/2010 32.39068 -94.4856 Sabine 3 4 0 0 0 1 0 

69 7/28/2012 30.18119 -94.2122 Neches 3 27 57 0 0 0 0 

56 7/20/2012 32.61311 -95.4733 Sabine 3 0 0 0 0 0 0 

46 6/27/2012 31.50051 -94.3061 Angelina 3 0 0 0 0 0 0 

127 8/25/2006 32.54957 -95.1785 Sabine 3 17 0 0 0 0 0 

76 8/3/2012 31.3805 -94.9473 Neches 3 20 0 3 0 0 7 

19 6/4/2012 31.61998 -95.2626 Neches 3 6 0 0 0 0 0 

91 9/9/2012 31.71217 -95.3339 Neches 3 17 0 6 0 1 25 

24 6/7/2012 32.5215 -94.9534 Sabine 4 23 0 6 0 0 0 

26 6/13/2012 32.4189 -94.6748 Sabine 4 0 0 1 0 0 0 

95 9/11/2012 31.8419 -95.4269 Neches 4 48 0 0 0 0 20 

92 9/9/2012 31.71444 -95.3363 Neches 4 7 0 0 0 0 5 

43 6/22/2012 31.49334 -94.8334 Angelina 4 0 0 0 0 0 0 

39 6/20/2012 31.46426 -94.7379 Angelina 4 1 0 0 0 0 5 

30 6/15/2012 32.09131 -94.1985 Sabine 4 0 0 0 0 1 0 

80 8/26/2012 31.6204 -95.2765 Neches 4 41 0 1 0 0 9 

45 6/22/2012 31.49156 -94.8247 Angelina 4 34 10 4 0 0 7 

109 9/8/2005 32.5802 -95.2886 Sabine 4 0 0 0 0 0 0 

62 7/22/2012 31.68446 -94.3826 Angelina 4 0 1 0 0 0 0 

18 6/3/2012 31.58007 -95.1677 Neches 4 12 0 7 0 0 12 
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Site Date Lat Long Drainage Set # 
Fusconaia 

askewi 
Fusconaia 
lananensis 

Lampsilis 
satura 

Obovaria 
jacksoniana 

Potamilus 
amphichaenus 

Pleuroblema 
riddellii 

100 9/24/2012 31.33863 -94.9992 Neches 4 0 0 0 0 0 0 

51 7/9/2012 32.87722 -96.9294 Trinity 4 3 0 0 0 0 0 

117 8/3/2006 32.80207 -95.8862 Sabine 4 0 0 0 0 1 0 

85 9/2/2012 32.61512 -95.4913 Sabine 4 0 0 0 0 0 0 

28 6/13/2012 32.42639 -94.6917 Sabine 4 0 0 0 0 0 0 

123 9/1/2007 32.57333 -94.6321 Sabine 4 1 0 0 0 0 0 

57 7/20/2012 32.61311 -95.4773 Sabine 4 0 0 0 0 0 0 

111 8/25/2005 32.60603 -95.4124 Sabine 4 0 0 0 0 0 0 

84 8/28/2012 31.58493 -95.1097 Neches 4 0 0 0 0 0 0 

49 7/9/2012 32.88056 -96.9297 Trinity 4 0 0 1 0 0 0 

21 6/4/2012 31.62597 -95.2749 Neches 4 28 0 2 0 0 2 

59 7/22/2012 31.6903 -94.3842 Angelina 4 0 2 0 0 0 0 

98 9/24/2012 31.33981 -94.9948 Neches 4 0 0 0 0 0 0 

48 6/27/2012 31.508 -94.3061 Angelina 4 11 13 0 0 0 0 

34 6/18/2012 32.252 -94.3075 Sabine 4 0 0 1 0 1 0 

138 7/27/2010 32.3917 -94.4874 Sabine 5 0 0 0 0 1 0 

52 7/10/2012 32.86683 -96.927 Trinity 5 24 0 0 0 0 7 

88 9/4/2012 31.70523 -95.3111 Neches 5 19 0 3 0 0 12 

81 8/26/2012 31.62514 -95.2807 Neches 5 2 0 0 0 0 1 

96 9/23/2012 31.3409 -94.9943 Neches 5 0 0 0 0 0 0 

67 7/28/2012 30.18405 -94.215 Neches 5 0 5 0 0 0 0 

72 7/31/2012 31.48559 -94.8205 Angelina 5 2 2 0 0 0 0 

11 5/28/2012 32.33353 -94.3558 Sabine 5 0 0 0 0 0 0 

27 6/13/2012 32.42115 -94.6722 Sabine 5 0 0 0 0 0 0 
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Site Date Lat Long Drainage Set # 
Fusconaia 

askewi 
Fusconaia 
lananensis 

Lampsilis 
satura 

Obovaria 
jacksoniana 

Potamilus 
amphichaenus 

Pleuroblema 
riddellii 

71 7/31/2012 31.48633 -94.8192 Angelina 5 6 5 0 0 0 0 

121 9/1/2007 32.54902 -95.1605 Sabine 5 39 0 0 0 0 0 

110 8/25/2005 32.60478 -95.4113 Sabine 5 0 0 0 0 0 0 

97 9/23/2012 31.34054 -94.9954 Neches 5 0 0 0 0 0 0 

4 5/23/2012 31.77208 -95.3987 Neches 5 0 0 1 1 0 1 

102 9/20/2012 32.84152 -96.8897 Trinity 5 4 0 0 0 0 0 

16 6/3/2012 31.57078 -95.1562 Neches 5 60 0 6 0 0 46 

2 5/23/2012 31.7641 -95.3997 Neches 5 0 0 3 0 0 9 

129 5/22/2006 32.55308 -95.1997 Sabine 5 69 0 0 0 0 0 

119 8/3/2006 32.79882 -95.891 Sabine 5 0 0 0 0 0 0 

53 7/18/2012 31.65601 -94.3969 Angelina 5 1 0 0 0 0 0 

15 6/1/2012 31.67668 -94.9512 Angelina 5 19 2 1 0 0 1 

113 9/1/2005 32.59908 -95.3797 Sabine 5 0 0 0 0 0 0 

1 5/23/2012 31.76901 -95.3989 Neches 5 0 0 2 1 0 1 

33 6/15/2012 32.1036 -94.1899 Sabine 5 0 0 0 0 0 0 

9 5/28/2012 32.33175 -94.3473 Sabine 5 11 0 0 0 2 0 

55 7/20/2012 32.60967 -95.4681 Sabine 5 0 0 1 0 0 0 

6 5/25/2012 31.7383 -94.9465 Angelina 5 3 5 0 0 0 1 

98 9/24/2012 31.33981 -94.9948 Neches 4 0 0 0 0 0 0 

48 6/27/2012 31.508 -94.3061 Angelina 4 11 13 0 0 0 0 

34 6/18/2012 32.252 -94.3075 Sabine 4 0 0 1 0 1 0 

138 7/27/2010 32.3917 -94.4874 Sabine 5 0 0 0 0 1 0 

52 7/10/2012 32.86683 -96.927 Trinity 5 24 0 0 0 0 7 

88 9/4/2012 31.70523 -95.3111 Neches 5 19 0 3 0 0 12 
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Appendix B. The test gain, test AUC, and habitat variables for all mussel species. 

Species 
% of 
Data 

# of  
Sites 

Test 
gain 

Test 
AUC Aquifers 

Kernel 
reservoirs 

Kernel 
roads 

Kernel 
springs 

Land 
form N 

Re 
charge Soil 

Sun 
light 

Top 
model 

Vege- 
tation 

Fusconaia 
askewi 0 80 1.0289 0.8088 1.65 X X 0.18 0.39 0.00 0.08 67.04 0.00 0.00 30.66 

Fusconaia 
askewi 20 96 1.0534 0.8576 4.3793 X X 2.2026 0.0398 0.087 0.0687 66.12 0 0 27.1036 

Fusconaia 
askewi 40 107 0.7515 0.8281 6.9061 X X 2.8007 0.7006 0.2882 0.2181 67.39 0.0016 0.1391 21.5551 

Fusconaia 
askewi 60 121 0.8361 0.8424 7.8613 X X 2.9237 0.9275 0.3936 0.2489 64.99 0.0081 0.1527 22.4992 

Fusconaia 
askewi 80 132 0.8581 0.8491 8.6335 X X 1.3214 0.3209 2.6406 0.1325 63.04 0.0291 0.1802 23.7053 

Fusconaia 
askewi 100 145 0.7441 0.8284 9.0759 X X 0.747 1.241 0.6117 0.2074 68.81 0 0.6701 18.6337 

Fusconaia 
lananensis 0 27 1.4092 0.8948 3.6124 0.7817 X X 18.2124 0 0 62.84 0.1348 0 14.4146 

Fusconaia 
lananensis 20 30 1.3362 0.9031 3.3354 0.5836 X X 15.8121 2.7838 0.3723 55.48 0.1744 0.0409 21.4141 

Fusconaia 
lananensis 

40 34 1.3899 0.9104 2.558 0.9027 X X 14.9314 4.2096 0.4071 55.11 0.1297 0 21.7522 

Fusconaia 
lananensis 60 36 1.1415 0.8952 2.2337 0.478 X X 17.5409 2.4424 0.2649 59.6 0.1696 0.1248 17.148 

Fusconaia 
lananensis 80 40 1.0978 0.9007 1.5648 0.3198 X X 19.1465 4.1717 0.2557 60.33 0.1876 0 14.0243 

Fusconaia  
lananensis 100 45 1.1268 0.9017 1.5031 0.4963 X X 19.1202 3.6936 0.2945 56.08 0.0873 0.0666 18.6625 

Lampsilis  
satura 0 43 1.2527 0.8766 5.7377 X X X 1.1982 0 0 70.89 0 0 22.1702 

Lampsilis  
satura 20 53 1.5227 0.8808 6.7588 X X X 2.7475 0 0 65.22 0.0156 0.0069 25.2536 

Lampsilis  
satura 40 57 1.1964 0.8652 8.3897 X X X 1.0964 0.0148 0.4077 68.11 0.0056 0 21.9775 

Lampsilis  
satura 60 64 1.3124 0.8649 8.8575 X X X 2.2333 0.0633 0 66.34 0.0103 0.0019 22.4958 

Lampsilis  
satura 80 72 1.664 0.9032 9.5476 X X X 1.8619 0.0619 0.0348 65.33 0.2072 0.0194 22.9342 

 

Continued on next page 
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Appendix B continued 

Species 
% of 
Data 

# of  
Sites 

Test 
gain 

Test 
AUC Aquifers 

Kernel 
reservoirs 

Kernel 
roads 

Kernel 
springs 

Land 
form N 

Re 
charge Soil 

Sun 
light 

Top 
model 

Vege- 
tation 

Lampsilis  
satura 100 79 1.8137 0.9186 10.2092 X X X 1.9882 0.0709 0.1338 69.24 0.6178 0.0105 17.7287 

Obovaria 
jacksoniana 0 12 1.2142 0.7779 X X X X X X X 100.00 X X X 

Obovaria 
jacksoniana 20 13 1.5419 0.8037 X X X X X X X 100.00 X X X 

Obovaria 
jacksoniana 40 13 1.5709 0.8043 X X X X X X X 100.00 X X X 

Obovaria 
jacksoniana 60 15 1.9518 0.8255 X X X X X X X 100.00 X X X 

Obovaria 
jacksoniana 80 15 1.9388 0.827 X X X X X X X 100.00 X X X 

Obovaria 
jacksoniana 100 17 1.9473 0.8254 X X X X X X X 100.00 X X X 

Pleuroblema 
riddelli 0 44 1.0733 0.9078 1.7108 0.9718 X X 7.1414 2.4725 0 67.01 0.0107 1.1651 19.5209 

Pleuroblema 
riddelli 20 50 1.3605 0.913 1.3523 1.3553 X X 9.7609 0.1266 0.2579 66.11 0.0118 2.4226 18.601 

Pleuroblema 
riddelli 40 51 1.4154 0.9118 1.6542 1.4959 X X 9.264 0 0.2282 65.47 0.006 2.3701 19.51 

Pleuroblema 
riddelli 60 59 1.4689 0.9181 1.7678 2.0674 X X 13.0017 0 0.2095 61.77 0.0004 2.4451 18.7373 

Pleuroblema 
riddelli 80 66 1.4066 0.9166 1.6773 2.016 X X 15.8401 0 2.3164 59.4 0.0179 0.8833 17.848 

Pleuroblema 
riddelli 100 75 1.3419 0.8988 1.4823 1.7704 X X 14.8559 0 0.1757 60.74 0.0001 0 20.9764 

Potamilus 
amphichaenus 0 23 1.358 0.8153 0.7208 5.2384 X 4.6128 0.0707 0 X 51.61 X 0 37.747 

Potamilus 
amphichaenus 20 28 1.2165 0.8331 0.6075 5.2932 X 6.1561 0.1586 0 X 48.95 X 0 38.8297 

Potamilus 
amphichaenus 40 33 1.2656 0.8443 1.1257 7.1016 X 8.486 2.6909 0.0224 X 34.54 X 0 46.0338 

Potamilus 
amphichaenus 60 40 1.3899 0.8664 0.3001 7.2979 X 9.1131 1.1376 0.0112 X 40.86 X 0.0059 41.274 

Potamilus 
amphichaenus 80 43 1.4322 0.8904 0.6601 7.1347 X 9.7372 6.6756 0.436 X 41.02 X 0.0135 34.3227 

Potamilus 
amphichaenus 100 46 1.4815 0.9017 0.7873 7.4604 X 9.2075 5.4075 0.3444 X 40.94 X 0.1879 35.6672 
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