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Abstract

MARKOV CHAINS AND THEIR APPLICATIONS

Fariha Mahfuz

Thesis chair: Kassie Archer, Ph.D.

The University of Texas at Tyler
April 2021

Markov chain is a stochastic model that is used to predict future events. Markov chain

is relatively simple since it only requires the information of the present state to predict the

future states. In this paper we will go over the basic concepts of Markov Chain and several

of its applications including Google PageRank algorithm, weather prediction and gamblers

ruin.

We examine on how the Google PageRank algorithm works efficiently to provide PageR-

ank for a Google search result. We also show how can we use Markov chain to predict

weather by creating a model from real life data.
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Chapter 1

Introduction

The concept of a Markov chain was developed by a Russian Mathematician Andrei A.
Markov (1856-1922). In 1907, A. A. Markov began the study of an important new type of
chance process. A Markov chain is a stochastic model that describes a sequence of possible
events or transitions from one state to another of a system. The probability of transitions
from state to state only depends on the current state of the system. A Markov Chain is
used to unravel predictions about future states of a stochastic process using only knowledge
of the present state. This property of “forgetting” past states is known as the memoryless
property.

To model a stochastic process with a Markov chain, we need a set of states, i.e. possible
outcomes and probabilities of moving from one state to another. The state space, or set
of all possible events, can be letters, numbers, weather conditions, baseball scores, or stock
performances. Moving from one state to another is called a transition. Transition proba-
bilities are the probabilities of transitioning from one state to another in a single step. We
use a transition matrix to list the transition probabilities. The transition matrix will be
an n × n matrix when the chain has n possible states. The (i, j) entry is the probability
of transitioning from state i to state j. We will also use a directed graph along with the
matrix to define the transitions of a Markov Chain. A directed graph consists of vertices
and edges connecting to each vertex. Each edge (m,n) of the graph has a weight which
denotes the probability to reach n from m in one step. A random walk on a directed graph
consists of sequence of vertices which starts at a vertex and traversing an edge to a new
vertex.

In Chapter 2, we will discuss ergodic and regular Markov Chain and define associated
theorems. We will also discuss at long term behavior or Markov chain.

In Chapter 3, we will explore a Markov Chain in which it is impossible to exit a specific
state once it is reached. This type of Markov Chain is known as absorbing Markov Chain.

In Chapter 4, we will discuss how Markov chain derived from random walk on a graph
was applied to Google PageRank algorithm.

Finally, in Chapter 5, we provide a few other applications of Markov chains, including
Gambler’s Ruin and predicting weather demonstrating methods from Chapter 2.
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Chapter 2

Markov Chain and Stationary distribution

In this Chapter, we provide necessary definitions and examples that we use throughout
this paper. Definitions and theorems are borrowed from Chapter 11 of the book Introduc-
tion to Probability by Charles Miller Grinstead and James Laurie Snell [3].

2.1 Definitions and examples

Let’s start with the definition of Markov chain.

Definition 2.1. A Markov chain is a stochastic model describing a sequence of possible
events in which the probability of each event depends only on the state attained in the
previous event.[1]

Suppose, we have a set of states, S = (j, in−1, in−2, ..., i0). Markov chains follow Markov
property which can be written as:

For any n ≥ 1,

P (Xn = j|X0 = i0, . . . , Xn−1 = in−1) = P (Xn = j|Xn−1 = in−1).

In other words, a Markov chain model is a model in which the likelihood of an event
depends on what happened last.

The transition matrix for a Markov chain is a stochastic matrix whose (i, j) entry
gives the probability that an element moves from the state si to the state sj during the
next step of the process. The probability is denoted by pij , and this probability does not
depend upon which states the chain was in before the current state. The probabilities pij
are called transition probabilities.

Definition 2.2. A probability vector with non-negative entries is a row vector whose
entries are nonnegative and sum to 1.

Let us demonstrate these definitions with an example.

Example 2.3. Suppose Toyota controls 40% of the car market. They decide to hire a
research team to see the effects after an ad campaign. Here each time step is a week. The
team finds that:

• Someone using Toyota will stay with Toyota with 85% probability,

• Someone not using Toyota will switch to Toyota with 60% probability.
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Let T be the state “use Toyota” and T ′ be the state “Does not use Toyota”. The Initial
Distribution matrix, A0 indicates the initial probabilities for each state. In this example A0

is given by

A0 =

T T ′[ ]
.40 .60

Recall that the transition matrix, P , is the matrix of transition probabilities. In this
example, since the probability of T → T is .85, we must have that T → T ′ is 1− .85 = .15.
Similarly T ′ → T is .60 . Thus T ′ → T ′ is 1− .60 = .40. Therefore, we get

P =

T T ′ .85 .15 T

.60 .40 T ′

.

There are several reasonable questions to ask.

• What is the market share after 1 week?

• After 2 weeks? After n weeks?

• Long term, how does the market share change?

Theorem 2.4 mentioned below will allow us to compute these.

Theorem 2.4. Let P be the transition matrix of a Markov chain. The (i, j) entry pnij of
the matrix Pn gives the probability that the Markov chain, starting in state si, will be in
state sj after n steps.

Example 2.5. Continuing Example 2.4, after 2 weeks we get P 2.

P 2 =

0.8125 0.1875

0.75 0.25



The probability that someone using Toyota will stay with Toyota in 2 weeks is 81.25%.
After 10 weeks,

P 10 ≈

0.80 0.20

0.80 0.20


After 100 weeks,

P 100 ≈

0.80 0.20

0.80 0.20


3



In fact Pn ≈

0.80 0.20

0.80 0.20

 for all n large enough.

Theorem 2.6. Let P be the transition matrix of a Markov chain, and let Ao be the
probability vector which represents the starting distribution. Then the probability that the
chain is in state si after n steps is the ith entry in the vector

An = An−1P

Example 2.7. To see what the market share is after one week, we compute A1 as

A1 = Ao × P =

[
.4 .6

].85 .15

.60 .40

 =

[
.7 .3

]
.

This means after one week, we expect to Toyota to have 70% of the market share.
Similarly the market share after two weeks, A2 can be calculated as follows:

A2 = Ao × P 2 =

[
.7 .3

].85 .15

.60 .40

 =

[
.775 .225

]
.

After two weeks, we expect to Toyota to have 77.5% of the market share. Now lets find the
the market share after 10 weeks:

A10 = Ao × P 10 =

[
.4 .6

].85 .15

.60 .40


10

=

[
.799999 .200001

]
.

After ten weeks, we expect Toyota to have almost 80% of the market share. Continuing
this, we would see that market share starts to stabilize as time passes.

We will see this is indeed the case in Section 2.3, where we demonstrate the existence
of the Stationary distribution.

4



2.2 Random Walk

Before we talk about long term behavior let us see another important example.

Definition 2.8. A finite Markov chain can be described as a random walk on a directed
graph. The directed graph has its edges labeled with transition probabilities, in a way so
that the law of total probability holds (i.e., for each vertex, the sums of its outgoing edge
labels is exactly 1). Each vertex in this graph is a state of the Markov chain.

Random walks in the Markov chain start from moving from vertex to neighboring vertex.
If it is in state x, the next state y is selected randomly with probability pxy. A random
walk moves right or left by at most one step on each move.

Example 2.9. The following is an example of a Markov Chain on directed graph with 4
vertices.

1 2

3 4

1
2

1
2

1
2

1
2

1
2

1
21

The corresponding transition matrix is, P =

1 2 3 4


1 0 1

2
1
2 0

2 0 1
2 0 1

2

3 1 0 0 0

4 0 1
2

1
2 0

.

2.3 Ergodic and Regular Markov Chain

Definition 2.10. A Markov chain is called an ergodic chain if it is possible to go from
every state to every state (not necessarily in one move).

For example, see the Markov chain below.

5



Example 2.11.

1 2 3

1 .5

1.5

The figure above is the Markov chain with the transition matrix ,

P =

1 2 3


1 0 1 0

2 0.5 0 0.5

3 0 1 0

We can see that it is possible to move from any state to any state, so the chain is ergodic.

Definition 2.12. A Markov chain is called a regular chain if some power of the transition
matrix has only positive elements (i.e. strictly greater than zero).

Example 2.13. From our last example we know that the chain described by the transition
matrix P is ergodic. However if n is even, then it is not possible to move from state 1 to
state 2 in n steps and if n is odd it is not possible to move from state 1 to state 3 in n steps.
So the chain is not regular.

Example 2.14.

T =

0 1

.3 .7


In this example the transition matrix T does not have all positive entries. But it is a regular
Markov chain because

T 2 =

 .3 .7

.21 .79


has only positive entries.

6



Example 2.15. Looking back at the Example 2.4 the transition matrix

P =

T T ′ .85 .15 T

.60 .40 T ′

is clearly regular. Some powers of P are

P 2 =

0.8125 0.1875

0.75 0.25



P 4 =

0.8007 0.199

0.796 0.203



P 10 ≈

0.80 0.20

0.80 0.20


from which it appears that Pn approaches a positive matrix with identical rows. This is
true for all regular Markov chains and we can see it from the theorem below.

Theorem 2.16. Let P be the transition matrix for a regular chain. Then, as n→∞ , the
powers Pn approach a limiting matrix W with all rows the same vector w. The vector w is
a strictly positive probability vector (i.e., the components are all positive and they sum to
one).

Theorem 2.17. Let P be a regular transition matrix, let

W = lim
n→∞

Pn,

let w be the common row of W, and let c be the column vector all of whose components
are 1. Then

• wP = w, and any row vector v such that vP = v is a constant multiple of w.

• Pc = c,and any column vector x such that Px = x is a multiple of c.

Here is another important theorem related to the topic.

Theorem 2.18. Let P be the transition matrix for a regular chain and v an arbitrary
probability vector. Then

w = lim
n→∞

vPn,

where w is the unique fixed probability vector for P.

7



We also obtain a new interpretation for w. After sufficiently long time or for large enough
n probability of being in the various states is given by wPn = w, remains unchanged. This
process is called “stationary.”

Definition 2.19. A stationary distribution w is a (row) vector, whose entries are non-
negative and sum to 1, is unchanged by the operation of transition matrix P on it and so
it satisfies,

wP = w.

Here w is a normalized (
∑

iwi = 1) left eigenvector of the transition matrix P with an
eigenvalue of 1. [1]

We can find the stationary distribution of the following transition matrix using this
theorem.

Example 2.20.

P =

.85 .15

.60 .40


Since we know that wP = w, we can write this as a series of equations:

.85w1 + .6w2 = w1

.15w1 + .4w2 = w2

w1 + w2 = 1

Solving this system of equation we can see that, w1 = .8 and w2 = .2. Thus w=

[
.8 .2

]
.

From Example 2.8 we can see that A10 is really close to w and as n→∞, An → w.
Long term, 80% of people using Toyota will stay with Toyota with 85% probability and

20% of people not using Toyota will switch to Toyota.

8



Chapter 3

Absorbing Markov Chain

In this Chapter, we will discuss a special type of Markov chain called an absorbing
Markov chain. We start off with the definition.

3.1 Definitions and Examples

Definition 3.1. A state si of a Markov chain is called absorbing if it is impossible to leave
it (i.e., pii = 1). A Markov chain is absorbing if it has at least one absorbing state, and if
from every state it is possible to go to an absorbing state (not necessarily in one step).

Example 3.2.

P =

A1 A2 A3


.2 .3 .5 A1

0 1 0 A2

.4 .2 .4 A3

.

The state A2 is an absorbing state since the probability of moving from state A2 to A2

is 1.

Definition 3.3. In an absorbing Markov chain, a state which is not absorbing is called
transient.

In Example 3.2, A1 and A3 are transient states.

Example 3.4. Here is an example of a variation of Drunkard’s walk which explains ab-
sorbing Markov chains. A man walks along a path with a loop through a park. If he is at
corner 1, 3 or 4 then he walks to the left or right with equal probability. If he is in corner 2
he can either walk back to corner 1 or 3 or 4 . He continues until he reaches corner 5 which
is a bar, or corner 0, which is his home. If he reaches either home or the bar, he stays there.
We form a Markov chain with states 0, 1, 2, 3, 4 and 5. States 0 and 5 are absorbing states.

9



0 1 2

4

3

5

The transition matrix is then, P=

0 1 2 3 4 5



0 1 0 0 0 0 0

1 1
2 0 1

2 0 0 0

2 0 1
3 0 1

3
1
3 0

3 0 0 1
2 0 1

2 0

4 0 0 0 1
2 0 1

2

5 0 0 0 0 0 1

The states 1, 2, 3 and 4 are transient states, and from any of these it is possible to
reach the absorbing states 0 and 5. Hence the chain is an absorbing chain. When a process
reaches an absorbing state, we shall say that it is absorbed.

Definition 3.5. If the chain has t transient states and r absorbing states, then the transition
matrix P for an absorbing Markov chain in the canonical form can be written as

P =

Q R

0 I


where Q is a t × t matrix, R is t × s, 0 is the s × t zero matrix and I is the s × s identity
matrix.

Theorem 3.6. In an absorbing Markov chain, the probability that the process will be
absorbed is 1 (i.e., Qn → 0 as n→∞).

Theorem 3.7. For an absorbing Markov chain the matrix I − Q has an inverse N and
N = I + Q + Q2 + . . . . The (i, j)-entry nij of the matrix N is the expected number of
times the chain is in state sj , given that it starts in state si. The initial state is counted if
i = j.

(Proof) First we want to calculate the expected number of times the chain spends in the
the state sj starting si.

Let X
(k)
i,j be a random variable which equals 1 if the chain, with initial state si, is in

state sj on k-th transition, and equals 0 otherwise. Then,

10



P (X
(k)
i,j = 1) = Q

(k)
i,j

and
P (X

(k)
i,j = 0) = 1−Q

(k)
i,j

where Q
(k)
i,j is the ij-th entry of Q(k), with the notation Q0 = I.

Let
Xi,j = X

(0)
i,j + X

(1)
i,j + X

(2)
i,j + X

(3)
i,j + X

(4)
i,j + . . . .

Here Xi,j gives the total number of times the chain is in state j before absorption.
Then the expected number of times the chain is in state sj in the first n steps given that

we start in state si,

nij = E[Xi,j ] = E[X
(0)
i,j + X

(1)
i,j + X

(2)
i,j + X

(3)
i,j + X

(4)
i,j + . . . X

(n)
i,j ]

= E[X
(0)
i,j ] + E[X

(1)
i,j ] + E[X

(3)
i,j + · · ·+ E[X

(n)
i,j ]

= P (X
(0)
i,j = 1) + P (X

(1)
i,j = 1) + · · ·+ P (X

(n)
i,j = 1)

= Q
(0)
i,j + Q

(1)
i,j + · · ·+ Q

(n)
i,j .

In matrix form,

N = I + Q + Q2 + Q3 + · · ·+ Qn.

where the identity matrix I has the same dimension as the matrix Q. Letting n tend to
infinity we have,

N = I + Q + Q2 + Q3 + . . .

since Qn → 0 as n→∞, Multiplying by (I −Q) on both sides, we get

(I −Q) ·N = (I −Q)(I + Q + Q2 + Q3 + . . . )

= I.

we see that both N and I −Q are nonsingular thus invertible. Thus multiplying both sides
of the equation with (I −Q)−1 yeilds,

N = (I −Q)−1

�

Definition 3.8. For an absorbing Markov chain P , the matrix N = (I −Q)−1 is called the
fundamental matrix for P . The entry nij of N gives the expected number of times that
the process is in the transient state sj if it is started in the transient state si.

11



Example 3.9. The transition matrix in example 3.3 in canonical form is

P=

1 2 3 4 0 5



1 0 1
2 0 0 1

2 0

2 1
3 0 1

3
1
3 0 0

3 0 1
2 0 1

2 0 0

4 0 0 1
2 0 0 1

2

0 0 0 0 0 1 0

5 0 0 0 0 0 1

Here Q =



0 1
2 0 0

1
3 0 1

3
1
3

0 1
2 0 1

2

0 0 1
2 0



and I −Q =



1 −1
2 0 0

−1
3 1 −1

3 −1
3

0 −1
2 1 1

2

0 0 −1
2 1



Finally, N = (I −Q)−1=



1.34 1 0.67 0.67

0.67 2 1.34 1.34

0.45 1.34 2.23 1.56

0.23 .67 1.12 1.78


According to the matrix N , the entry 1 in the row 2, column 4 position means if the

drunkard starts from state 2 the expected number of steps in state 4 before being absorbed
is 1.

3.2 Time to Absorption

Theorem 3.10. Let ti be the expected number of steps before the chain is absorbed, given
that the chain starts in state si, and let t be the column vector whose ith entry is ti. Then

t = Nc,

where c is a column vector all of whose entries are 1.

(Proof) Here, c is a column vector where all the entries are 1. Thus multiplying c with the

12



ith row of matrix N will give us the sum of the entries of that row, which is the total expected
number of times in the other states starting from the state si before being absorbed.

But, ti be the expected number of steps before the chain is absorbed. So multiplying
the ith row of matrix N with c gives us ti, which completes the proof. �

Example 3.11. We can find the time for absorption using the theorem above.

t = Nc

=



1.34 1 0.67 0.67

0.67 2 1.34 1.34

0.45 1.34 2.23 1.56

0.23 .67 1.12 1.78





1

1

1

1



=



3.67

5.34

5.56

3.78



(3.1)

Thus, starting in states 1, 2, 3 and 4 the expected times or number of steps to absorption
are 3.67,5.34, 5.56 3.78 respectively.

3.3 Absorption Probability

Theorem 3.12. Let bij be the probability that an absorbing chain will be absorbed in the
absorbing state sj if it starts in the transient state si. Let B be the matrix with entries bij .
Then B is an t-by-r matrix, and

B = NR,

where N is the fundamental matrix and R is as in the canonical form.

Example 3.13. From the canonical form, we have,

R =



.5 0

0 0

0 0

0 .5


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Thus,

B = NR

=



1.34 1 0.67 0.67

0.67 2 1.34 1.34

0.45 1.34 2.23 1.56

0.23 .67 1.12 1.78





.5 0

0 0

0 0

0 .5



=

0 5


1 .66 .34

2 .34 .67

3 .23 .78

4 .12 .89

The first row interprets the drunkard has probability .66 of making it home and proba-
bility .34 of ending up in the bar from intersection 1.
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Chapter 4

Google PageRank

Google had been using the algorithm called PageRank to rank the webpages of a search
result until September 24, 2019. The algorithm was developed by Page and Brin and
“PageRank” was named after Larry Page. PageRank is one of the methods Google uses to
determine a page’s relevance or importance. To apply the PageRank algorithm, we consider
the web as directed graph, where web pages are nodes and hyperlinks are edges. PageRank
ranks pages based on the number of backlinks pointing to that webpage. A page that is
linked to many pages receives a high rank itself

To find out the page score one must consider that the surfer can select any page. However
it is not always the case that they select the pages sequentially. Most of the time, a surfer
will follow links from a page sequentially, i.e. from a page i the surfer will follow the
outgoing links and move on to one of the neighbors of i. But this may not happen always.
A smaller but positive percentage of the time, the surfer will dump the current page and
choose arbitrarily a different page from the web and “teleport” there. To account for such
a situation Page and Brin introduced a factor called as the damping factor d, that reflects
the probability that the surfer drops the current page and “teleports” to a new one. Since
he/she can teleport to any web page, each page has 1/n probability to be chosen.[2] We
develop the corrected algorithm later in this chapter.

First, the simplified version of the PageRank algorithm is defined below,

Definition 4.1. Suppose that page Pj has L(j) links. If one of those links is to page Pi,
then Pj will pass on 1

L(j) of its importance to Pi. The importance ranking of Pi is then the
sum of all the contributions made by pages linking to it. That is, if we denote the set of
pages linking to Pi by Bu, then then the PageRank of Pi, PR(i), is given by the formula,

PR(i) =
∑
v∈Bu

PR(v)

L(v)

.

To demonstrate this algorithm let’s look at the example below.

Example 4.2. We first consider an example of the internet with only 4 webpages A,B,C
and D. In this example webpage A has links to pages C and B, page C had a link to page
A,B,and D, page B had link to page D, and page D had link to page B.
The figure below is the graph of these 4 webpages.
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A B

C D

The matrix representation of the above graph is

P =

A B C D


A 0 1/2 1/2 0

B 0 0 0 1

C 1/3 1/3 0 1/3

D 0 1 0 0

We are going to assign each node or webpage an initial PageRank 1
4 . Then using the

simplified PageRank algorithm, PR(u) =
∑

v∈Bu

PR(v)
L(v) , we calculate the PageRank of each

node.
For example, if we want to calculate the PageRank for page B,

PR(B) =
PR(A)

2
+

PR(C)

3
+

PR(D)

1

=
1/4

2
+

1/4

3
+

1/4

1
= 0.45

Then the new pageranks are,
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PR(A) = .083

PR(B) = .45

PR(C) = .125

PR(D) = .333

The associated matrix representation is,



0 0 1/3 0

1/2 0 1/3 1

1/2 0 0 0

0 1 1/3 0





1/4

1/4

1/4

1/4


=



.083

.45

.125

.333


We can see that after one iteretaion PageRank for page A,B,C and D is .083,.45,.125

and .333. Page B has the highest PageRank,which means it will appear earlier in a Google
search.

Definition 4.3. A node is called a dangling node if it does not contain any out-going
link.

Example 4.4. For instance, node B in this example is a dangling node.

Shown below is the matrix representation of the graph.

T =



0 0 1/3 0

1/2 0 1/3 1

1/2 0 0 0

0 0 1/3 0


We can see the second column of the matrix is zero which causes the PageRank og page

B to converge to zero. To fix this problem we replace the zero column with 1
4 , then our new

matrix representation,
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A B

C D

T =



0 1/4 1/3 0

1/2 1/4 1/3 1

1/2 1/4 0 0

0 1/4 1/3 0


.

The 1
4 corresponds to jumping randomly to any website with equal probability.

Definition 4.5. The following web graph belongs to the category of reducible graph. In
general, a graph is called irreducible if for any pair of distinct nodes, we can start from
one of them, follow the links in the web graph and arrive at the other node, and vice versa.
A graph which is not irreducible is called reducible.

Example 4.6. In the following example there is no path from p4 to p1, and no path from
p5 to p3. The graph is therefore reducible.

p1 p2 p3

p5p4

p6

We can also find stationary distribution for PageRank using the following condition:
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I = IT

.
Here vector I is an eigenvector of the matrix T with eigenvalue 1
In this case, the matrix is T is,

T =



0 1
2 0 1

2 0 0

1
3 0 1

3
1
3 0 0

0 1
2 0 0 1

2 0

0 0 0 0 1 0

0 0 0 1
2 0 1

2

0 0 0 1
2

1
2 0


with the stationary distribution I =



0

0

0

.33

.44

.22



We can see that from the stationary distribution that the PageRanks of the first three
webpages are zero even though they all have links connecting from other webpages. This
occurs because the graph is reducible.

Definition 4.7. In order to calculate PageRanks properly for a reducible web graph, Page
and Brin developed the following formula, for webpage A

PR(pi) =
1− d

N
+ d

∑
pj∈M(pi)

PR(pj)

L(pj)
,

where p1, p2, ..., pN are the pages under consideration, M(pi) is the set of pages that link to
pi, L(pj) is the number of outbound links on page pj , and N is the total number of pages.
Here d is a number between 0 and 1. The constant d is usually called the damping factor
or the damping constant. The default value of d is 0.85 in Google. [4]

Example 4.8. For example 4.6, calculating the PageRank using the corrected formula for
p2 we get,

PR(p2) =
1− .85

6
+ .85

{
PR(p1)

2
+

PR(p3)

2

}
=

0.15

6
+ .85

{
1

6 · 2
+

1

6 · 2

}
= 0.16.
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Calculating the new PageRanks we get:

PR(p1) = .072

PR(p2) = .16

PR(p3) = .072

PR(p4) = .284

PR(p5) = .308

PR(p6) = .095

We can see that page p5 has the highest rank. Page p5 has 3 incoming links. It satisfies
with the reasoning of the PageRank algorithm that a page with larger incoming links has
higher importance. In this case the page p5 will appear early in the Google search and page
then p4 and so on.
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Chapter 5

Other applications

In this Chapter, we will see two other uses of Markov chain. We won’t go too deep in
these sections. We will construct a smaller example to see the process.

5.1 Gamblers Ruin

Consider this gambling game where the probability of winning $1 is .58 and probability
of losing $1 is .42.

• The gambler must have at least $1 up to $5 to continue playing.

• The game stops which in one of two states: you have $6, or you have $0.

• You bet $1 in each round, and earn $1 if you win, and lose your dollar if you lose the
round.

Using Markov Chain the Gambler’s Ruin problem can be modeled as a random walk on
a finite Markov chain. We can find the probability of winning $6 or going broke.

$0 $1 $2 $3 $4 $5 $6
.42

.42

.58 .58

.42 .42

.58

.42

.58
.58

Figure 5.1: The state diagram of the Gambler’s Ruin Markov chain
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The associated transition matrix for the game:

P =

0 1 2 3 4 5 6



0 1 .42 0 0 0 0 0

1 0 0 .42 0 0 0 0

2 0 .58 0 0.42 0 0 0

3 0 0 .58 0 .42 0 0

4 0 0 0 .58 0 .42 0

5 0 0 0 0 .58 0 0

6 0 0 0 0 0 0.58 1

If the gambler starts with $1, the initial distribution matrix is given by,

A0 =

[
0 1 0 0 0 0 0

]T
After 5 rounds,

A5 = A0P
5 =

[
.57 0 0.17 0 0.19 0 .065

]T
After 50 rounds,

A50 ≈ A0P
50 =

[
.68 0 0 0 0 0 .32

]T
Similarly the probability can be calculated if the gambler starts with $5 , the initial

distribution matrix in this case is,

A0 =

[
0 0 0 0 0 1 0

]T
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After 5 rounds,

A5 = A0P
5 =



0.013

0

0.072

0

0.125

0

0.79


After 55 rounds,

A55 = A0P
55 ≈



0.064

0

0

0

0

0

0.936


This interprets that after 55 rounds of game, the chance of being ruined is .064% and

chance of winning is .936%. Comparing the results we can see that chance of winning is
significantly higher with a higher bid of $5 compared to $1. Thus one should play this game
only if the bid is high.

Also the outcome differs when the game is fair, i.e. the probability of winning and losing
is 50%.
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5.2 Weather prediction

Markov chains have been researched heavily for predicting weather. In the paper,
“Weather Forecasting Using Hidden Markov Model”, Khaitani, Diksha and Ghose, Udayan,
2017 [5] trained a Markov model with weather data from past 21 years. The authors used
Viterbi Algorithm and MATLAB software to calculate predicted data. The study found
Markov model performed well predicting weather for the next 5 days based on current day’s
weather.

Jordan and Talkner in their paper [6] investigated daily weather types of the Alpine
region using seasonal Markov chain models. The study compared a 1st and 2nd order
Markov chain model and found the two yield similar results. The predictions by Markov
models were found to coincide with actual observations for different types of time periods.
However, the predictive power of the models were not found to be very high, which was due
to high randomness of the data and not due to weakness of the model.

Here in our next example we have observed the weather of Bemidji, Minnesota and
calculated the probabilities using Markov model. For simplification assuming the weather
can only be in one of 3 possible states, “sunny”,“snowy” or “cloudy”. In the context of
Markov chains the probability of the weather being sunny, snowy or cloudy tomorrow, only
depends on whether it is sunny, snowy or cloudy today.

Cloudy Sunny

Snow

.57 .44

.33

.22

.5

.21

.21

.33
.1

Figure 5.2: The state diagram using a directed graph
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The following transition matrix was constructed by taking data from the website https://www.timeanddate.com/weather/usa/bemidji/historic
at 12 p.m. time for every day in November, 2019, totalling 30 observations.

P =

cloudy sunny snowy


cloudy .57 .22 .5

sunny .21 .44 .1

snowy .21 .33 .33

By observation, today’s (12 November, 2020) weather at noon is cloudy. This is repre-
sented by the vector,

x0 =




cloudy 1

sunny 0

snowy 0

To predict the weather of 15 November, can be predicted the following way,

x3 = P 3.x0 =


.57 .22 .5

.21 .44 .1

.21 .33 .33


3

.


1

0

0



=




0.44 cloudy

0.30 sunny

0.23 snowy

We followed up and checked that it was cloudy on November 15th.
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