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Abstract

EQUIVALENT CONSTRUCTIONS OF CARTAN PAIRS

Phu.ng Tr`̂an

Thesis chair: Scott LaLonde, Ph.D.

The University of Texas at Tyler
August 2018

Feldman and Moore [4] introduce Cartan subalgebra of the von Neumann algebra M on

a separable Hilbert space H from the natural subalgebra of M(R, σ), the twisted algebra

of matrices over the relation R on a Borel space (X,B, µ). They show that if M has a

Cartan subalgebra A, then M ∼= M(R, σ) where A is the twisted algebra onto the diagonal

subalgebra L∞(X,µ). The relation R is unique to isomorphism and the orbit of the two-

cohomology class on R in the torus T, which is the automorphism group of R, is also

unique. Three decades later, based on Feldman-Moore work and utilizing étale groupoids

from C∗r (G,Σ), Renault [9] constructs equivalent Cartan pairs. Nearly another decade

later, using extensions of inverse semigroups from extensions of Cartan inverse monoids

and Feldman-Moore work, Donsig, Fuller, and Pitts [2] construct other equivalent Cartan

pairs. In this paper, we study all Cartan pairs of Feldman and Moore, Renault, and Donsig

et al. Our objective is to show that these Cartan pairs are equivalent.

iii



Chapter 1

Introduction

First we would like to provide a brief review of von Neumann algebras (known as

W*-algebras), the Gelfand-Naimark-Segal (GNS) construction and representation, Cartan

MASA, and Cartan subalgebra. Notice that we use Dixmier [1] for many basic concepts

and theorems of von Neumann algebras.

Definition 1.1. Let H denote a Hilbert space. A sequence {Ti} converges weakly (or

converges in the weak operator topology) to T in H if 〈Tix, y〉 → 〈Tx, y〉 for all y ∈ H. A

sequence {Ti} converges strongly (or converges in the strong operator topology) to T in H

if Tix→ Tx for all x ∈ H.

Definition 1.2. A von Neumann algebra M on H is a ∗-subalgebra M ⊆ B(H) that is

weakly closed. Then M is a norm closed. This implies that M is a C∗-algebra.

Exposition 1.3 (∗-algebra). A ∗-algebraA is a ∗-ring with involution which is an associative

algebra over a commutative ∗-ring with involution such that (ra)∗ = r′a∗ for all a ∈ A and

r ∈ R.

Exposition 1.4 (Norm). Let V be a R-vector space. A norm on V is a function ‖·‖ : V →

R satisfying the following conditions.

1. (Positive definite) ‖x‖ ≥ 0 for all x ∈ V , and ‖x‖ = 0 iff x = 0.

2. (Triangle inequality) ‖ x+ y ‖≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

3. (Homogeneity) ‖ αx ‖= |α|‖x‖ for all α ∈ R and x ∈ V .

Exposition 1.5 (C∗-algebra). A C∗-algebra is a Banach algebraB over C with the following

additional properties.
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1. There is a conjugate linear map ∗: B → B satisfying

(b∗)∗ = b (an involution) and (b1b2)
∗ = (b2)

∗(b1)
∗ for all b1, b2 ∈ B.

2. The C∗-identity holds or ‖ b∗b ‖= ‖b‖2 for all b ∈ B.

Definition 1.6 (Commutant and Double Commutant). Let S ⊆ B(H). The commutant of

S is

S′ = {T ∈ B(H) : ∀s ∈ S, Ts = sT}.

Denote S′′ as the double commutant so S′′ = (S′)′.

Remark 1.7. Note that S ⊆ S′′. If S is self-adjoint, then S′ and S′′ are von Neumann

algebras. Recall that a bounded linear operator L: H → H on a Hilbert space H is self-

adjoint if L∗ = L where the adjoint L∗ ∈ B(H) of an operator L ∈ B(H) is defined by

〈x, Ly〉 = 〈L∗x, y〉 for all x, y ∈ H. A set S ⊆ B(H) is self-adjoint if every operator in S

is self-adjoint. By the following theorem, if the identity operator IH ∈ S, then S′′ is the

smallest von Neumann algebra containing S.

Exposition 1.8 (Bounded Linear Operator). Let V and W be vector spaces over a field F .

A map T : V →W is linear if T (x+ y) = T (x) + T (y) and T (αx) = αT (x) for all x, y ∈ V

and all α ∈ F . A linear map T : V →W is a linear operator.

Let V and W be normed vector spaces. An operator T : V → W is bounded if there

exists a constant K ≥ 0 such that ‖ Tx ‖≤ K‖x‖ for all x ∈ V .

Theorem 1.9 (von Neumann Bicommutant Theorem). Let M ⊆ B(H) be a ∗-subalgebra

with IH ∈M . The following are equivalent:

1. M is WOT-closed.

2. M is SOT-closed.

3. M = M ′′.

If M is SOT-closed, then M is unital. Note that the unit of M and the identity operator

in B(H) may not be the same, but we can always cut down by a projection. Let I ∈M be

the identity element, then we can replace H by IH and M by IMI.
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Theorem 1.10 (Abelian von Neumann Algebras, Dixmier [1]). If M is a commutative

von Neumann algebra on B(H) where H is assumed to be separable, then there exists

a second countable compact Hausdorff space X and a Borel measure µ on X such that

M ∼= L∞(X,µ).

Exposition 1.11 (Borel Measure). Let X be a locally compact Hausdorff space and let

B(X) be the smallest σ-algebra which contains open sets of X. A Borel measure µ on X is

any measure µ defined on the σ-algebra of Borel sets.

Exposition 1.12 (L∞(X,µ)). L∞(X,µ) is the set of all (equivalence classes of µ-a.e. equal)

measurable functions having a finite essential supremum:

L∞(X,µ) = {f : X → C | esssupx∈X | f(x) |<∞}

.

Definition 1.13 (Gelfand-Naimark-Segal (GNS) Construction). Let S(M) be the state

space of a von Neumann algebra M . Recall that a state of M is a positive linear functional

on M of norm one. Each ϕ ∈ S(M) gives us a representation of M . Define a pre-inner

product on M by 〈a, b〉 = ϕ(b∗a). Let

Nϕ = {a ∈M : ϕ(a∗a) = 0}.

Notice that ϕ induces an inner product on M/Nϕ. Then let Hϕ be the Hibert space

completion of M/Nϕ. Define the map πϕ : M → B(Hϕ) by πϕ(a)(b+Nϕ) = ab+Nϕ.

We refer this as the GNS construction and πϕ as the GNS representation. Notice that

if

H =
⊕

ϕ∈S(M)Hϕ and π =
⊕

ϕ∈S(M) πϕ, then π is a universal representation of M which

is faithful and non-degenerate representation of M on H.

Exposition 1.14 (Pre-inner product). LetX be a vector space over a field F . A pre-inner product

is a positive Hermitian sesquilinear form (· | ·).

Exposition 1.15 (Faithful Representation). A state ϕ on a C∗-algebra A is faithful if

3



ϕ(a∗a) = 0 iff a = 0 for a ∈ A. The GNS representation, πϕ, of the faithful state ϕ is

faithful.

Exposition 1.16 (Nondegenerate Representation). Let A be a C∗-algebra and H be a

Hilbert space. Define a non-degenerate representation as {π(a)v : a ∈ A, v ∈ H} which is

dense in H. By Zorn’s lemma, a non-degenerate representation is equivalent to an orthog-

onal direct sum of cyclic representations.

Definition 1.17 (Normal Expectation). Let A be a von Neumann algebra. Let B be a von

Neumann subalgebra of A. Define an expectation from A on B as a positive map ϕ : A→ B

which preserves identity and for all S ∈ B and for all Y ∈ A, ϕ(SY ) = Sϕ(Y ). Let {Yβ}

be a set of uniformly bounded self-adjoint operators of A. If ϕ(sup Yβ) = sup ϕ(Yβ), then

ϕ is a normal expectation.

Definition 1.18 (Conditional Expectation). A conditional expectation is a completely pos-

itive contraction E : A → B such that for all b ∈ B, E(b) = b and for all x ∈ A,

E(bx) = bE(x) and E(xb) = E(x)b. By Tomiyama [10], E is a conditional expectation

iff E : A→ A is an idempotent with norm one.

Definition 1.19 (Cartan MASA). Let M be a von Neumann algebra. Define a maximal

abelian subalgebra (MASA) D in M as a Cartan MASA if

1. There exists a normal, faithful conditional expectation E from M onto D.

2. The set of groupoid normalizers N(M,D) spans a weak-∗dense subset of M . That

is, the set of unitaries U ∈ M such that UDU∗ = U∗DU = D spans a weak-∗dense

subset in M . If we use partial isometries V ∈M such that V DV ∗, V ∗DV ⊆ D spans

a weak-∗ dense subset in M .

If D is a Cartan MASA in M , the pair (M,D) is a Cartan pair.

The definition of a Cartan pair from von Neumann algebra perspective is slightly dif-

ferent from C∗-algebra perspective. Below we describe how a Cartan pair is defined for

C∗-algebras.
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Definition 1.20 (Groupoid). A groupoid is a set G together with a distinguished G(2) ⊆

G×G, a multiplication map (α, β)→ αβ from G(2) to G and an inverser map γ → γ−1 from

G to G such that

1. For all γ ∈ G, (γ−1)−1 = γ;

2. If (α, β) and (β, γ) ∈ G(2), then (αβ, γ) and (α, βγ) ∈ G(2), and (αβ)γ = α(βγ); and

3. (γ, γ−1) ∈ G(2) for all γ ∈ G, and ∀(γ, η) ∈ G(2), we have γ−1(γη) = η and (γη)η−1 = γ.

Definition 1.21 (Cartan Subalgebra from C∗-Algebras). Let A be a C∗-algebra and B be

a C∗-subalgebra of A. Then B ⊆ A is a Cartan subalgebra if

1. B is a MASA.

2. B contains an approximate unit of A.

3. Let the set of normalizers of B, N(B), generate A as a C∗-algebra where

N(B) = {a ∈ A : aBa∗ ⊆ B and a∗Ba ⊆ B}.

Then B is regular in A.

4. There exists a faithful conditional expectation E : A� B.

Then (A,B) is a Cartan pair.

Renault [9] proves that in the reduced C∗-algebra of a topologically principal Hausdorff

étale groupoid with a twist, the subalgebra, C0(G
(0)), which corresponds to the unit space

G(0), is a Cartan subalgebra. Conversely, every Cartan pair arises from a twisted groupoid.

Furthermore, Renault shows that the Cartan pair completely determines the groupoid and

vice versa.

Instead of utilizing a 2-cocycle on an equivalence relation R as in the Feldman- Moore

work, Donsig et al. [2] use an extension of the Cartan inverse monoid by the abelian inverse

semigroup of partial isometries in the C∗-algebra generated by its idempotents. Donsig et

al. [2] consider their work conceptually simpler compared to Feldman-Moore work. The

authors build a Cartan MASA in the extension’s von Neumann algebra.
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We consider our work as a contribution to the future study of von Neumann algebras,

and C*-algebras, Cartan subalgebras, especially on the equivalent constructions between

étale groupoids and extensions (exact sequence) of inverse semigroups. We organize our

paper in the following order: assuming that our readers are familiar with Feldmann-Moore

work, throughout Chapter 2, we provide necessary background of Renault [9] and Donsig et

al. [2]’s work. During Chapter 3, we prove the equivalence of the constructions of Feldman-

Moore and Renault Cartan pairs. Note that if the authors provide the proof(s) for one

direction or both, we summarize their proofs. In Chapter 4, we analyze proofs from Donsig

et al. to show that Feldman-Moore and Donsig et al. Cartan pairs are equivalent. During

Chapter 5, we leave our readers the main message of our work and possible extensions.

6



Chapter 2

Preliminaries

In this section we would like to provide necessary background of how Donsig et al.

[2] and Renault [9] construct their Cartan pairs which include important topics such as

Munn congruence, Cartan inverse monoids, extensions of inverse semigroups, topologically

principal, étale groupoid, and so on.

2.1 Necessary Background of Donsig et al. Cartan Pair

Definition 2.1 (Inverse Semigroups). A semigroup S is an inverse semigroup if for all

s ∈ S, there exists a unique inverse element s∗ such that ss∗s = s and s∗ss∗ = s∗. Denote

E(S) as the idempotents in an inverse semigroup S. Note that idempotents form an abelian

semigroup. For each s ∈ S, we have ss∗ ∈ E(S). An inverse semigroup S has a natural

partial order s 6 t iff s = te for some idempotent e ∈ E(S).

Definition 2.2 (Extensions of Inverse Semigroups). Suppose S and P are inverse semi-

groups. Let π : P → S be a surjective homomorphism such that π|E(P) is an isomorphism

from E(P) to E(S). Define an idempotent separating extension of S by P as an inverse

semigroup G with P i
↪→ G

q
� S. Note that i denotes an injective homomorphism; q repre-

sents a surjective homomorphism, and π = q ◦ i. Also note that E(P) ∼= E(G) ∼= E(S) and

q(g) ∈ E(S) iff g = i(p) for p ∈ P.

Definition 2.3 (Fundamental and Clifford). An inverse semigroup S is fundamental if for

s1, s2 ∈ S, s1es
∗
1 = s2es

∗
2 for all e ∈ E(S) only when s1 = s2.

An inverse semigroup is Clifford if s∗s = ss∗ for all s ∈ S.

Definition 2.4 (Congruence). Let G be an inverse semigroup. An equivalence relation R

on G is a congruence if (v1, v2), (w1, w2) ∈ R implies (v1w1, v2w2) ∈ R.

7



Definition 2.5 (Munn Congruence). Let G be an inverse semigroup and R be a congruence.

The quotient of G by R gives an inverse semigroup S. Let q : G → S denote the quotient

map and P = {v ∈ G : q(v) ∈ E(S)}. Then P is an inverse semigroup and G is an extension

of S by P.

Define the Munn congruence RM by s is related to t iff ses∗ = tet∗ for all e ∈ E(S) and

for all s, t ∈ S. Note that RM is the maximal idempotent separating congruence on G and

an inverse semigroup is fundamental if its Munn congruence is the equality relation where

RM = {(v1, v2) ∈ G × G : ∀e ∈ E(G), v1ev
∗
1 = v2ev

∗
2}.

Let G be an idempotent separating extension of S by P as above. Then P is a Clifford

inverse semigroup.

Definition 2.6 (Groupoid Normalizer). Donsig et al. [2] later use the Munn congruence

on a groupoid normalizer. Let us first define the normalizer of D as

N (D) = {v ∈M a partial isometry: v∗Dv ⊆ D and vDv∗ ⊆ D}.

Then denote GN (M,D) as the collection of all groupoid normalizers of a MASA D in a von

Neumann algebraM . Since GN (M,D) is an inverse semigroup, define the Munn congruence

RM on GN as

RM = {(v1, v2) ∈ GN × GN : ∀e ∈ E(GN ), v1ev
∗
1 = v2ev

∗
2}.

Thus RM , in this case, is the maximal idempotent separating congruence on GN and

the quotient of GN by RM is a fundamental inverse semigroup S.

Definition 2.7. Donsig, Fuller, and Pitts [2] define a Cartan inverse monoid as an inverse

semigroup S which satisfies the properties below:

1. S is a meet lattice under the natural partial order on S.

2. S contains 0 and 1.

8



P1 G1

P2

S1

G2 S2

ι1 q1

γ̃

ι2 q2

γγ

Figure 2.1: Donsig et al. [2]’s Diagram Commutes.

3. E(S) is maximal abelian in S.

4. E(S) is a hyperstonean boolean algebra. That is, the idempotents are the projection

lattice of an abelian von Neumann algebra.

5. For every pairwise orthogonal family F ⊆ S,
∨
F exists in S.

Let S1 and S2 be isomorphic Cartan inverse monoids from a von Neumann algebra. Let

Pj be the partial isometries in Dj for j = 1, 2. Extensions Gj of Sj by Pj are equivalent

if there is an isomorphism γ : G1 → G2 such that the diagram in figure 2.1 commutes. A

surjective homomorphism q : G → S, is an idempotent which separates the extension of S

by P if an embedding ι of P into G satisfies the following:

1. For some p ∈ P, q(g) ∈ E(S) iff g = ι(p)

2. q ◦ ι = π.

To construct a Cartan pair from an extension of a Cartan inverse monoid, Donsig et al.

[2] build a corresponding representation for extensions of Boolean inverse monoids. Note

that D is a MASA of the von Neumann algebra M. Given P → G q→ S, an extension

of a Boolean inverse monoid S, the authors represent G by partial isometries which acts

on a Hilbert space by several important steps. One of these is to construct a D-valued

reproducing kernel and a right Hilbert D-module to use the interior tensor product U ⊗πH

in order to obtain a class of representations of G on H.

Definition 2.8 (D-valued Reproducing Kernel Hilbert Space D-module). Let f : S → G

such that f ◦ q = id. Donsig et al. [2] show that the order-preserving section, f(s) ≤ f(t)

when s ≤ t exists and f : E(S) → E(G) is an isomorphism. Define K : S × S → D by

K(s, t) = f(s∗t ∧ 1).

9



The idempotent s∗t ∧ 1 is the minimal idempotent e such that se = te = s ∧ t. Thus

K(s, t) is the idempotent in G which defines f(s)∧f(t). For c1, · · · , ck ∈ C and s1, · · · , sk ∈

S, the map K is positive. In notation,
∑

i,j c̄icjK(si, sj) ≥ 0.

For each s ∈ S, Donsig et al. [2] define a kernel ks : S → D by ks(t) = K(t, s). Let

U0 = span{ks : s ∈ S}. Note that K > 0 implies that

〈∑
ciksi ,

∑
djktj

〉
=

∑
i,j

c̄idjK(si, tj)

known as the D-valued inner product on U0 where U is a completion of U0. Thus U is a

reproducing kernel Hilbert D-module of functions from S onto D.

Definition 2.9 (Left Representation of G). Choose g ∈ G and let λ(g) be an adjointable

operator on U such that λ(g)ks = kq(g)sσ(g.s) where σ : G×S → P is a cocycle-like function

determined by gf(s) = f(q(g)s)σ(g, s).

We can factor elements of the form gf(s) into the product of an element in f(S) by an

element in P. We call λ : G → L(U) the left representation of G by partial isometries.

Let π be a faithful representation of D on a Hilbert space H. Obtain a Hilbert space

U ⊗π H by completing U ⊗ H with respect to the inner product 〈u1 ⊗ h1, u2 ⊗ h2〉 =

〈h1, π (〈u1, u2〉)h2〉. Therefore π determines a faithful representation π̂ of L(U) on the

Hilbert space U ⊗π H by

π̂(T )(a⊗ h) = (Ta)⊗ h.

Define a faithful representation of G on the Hilbert space U ⊗π H by λπ : g → π̂(λ(g)).

Definition 2.10 (Cartan Pair). Let Mq = λ(G)′′ and Dq = λ(E(S))′′. Donsig et al. [2]

define (Mq,Dq) as a Cartan pair with the following properties:

1. Dq ∼= C(Ê(S)).

2. The pair (Mq,Dq) is independent of π and j.

3. The conditional expectation Mq → Dq is induced from the map S → E(S). That is,

s 7→ s ∧ 1.

4. The extension associated to (Mq,Dq) is equivalent to P ↪→ G q→ S.

10



Theorem 2.11 (Donsig et al. [2]). The extension P ↪→ G q→ S determines a Cartan pair

(M,D) which is unique up to isomorphism if S is a Cartan inverse monoid and the extension

is given by P = C(Ê(S)). Moreover, equivalent extensions determine isomorphic Cartan

pairs.

Every Cartan pair (M,D) determines uniquely an extension of a Cartan inverse semi-

group S by P with P ↪→ G q→ S.

2.2 Necessary Background of Renault’s Cartan Pair

For the rest of this chapter, we want to review important definitions of Renault [9]’s

paper.

Definition 2.12 (Topologically Principal Groupoids). Let G be a groupoid defined in

chapter 1. Denote G(0) as the unit space. Let r be the range and s be the source G→ G(0).

The fiber of the range are Gx = r−1(x) and the source maps are Gy = s−1(y). Define the

isotropy bundle as G′ = {γ ∈ G : r(γ) = s(γ)}.

Suppose that the groupoid G is a topological space and the structure maps are contin-

uous where G(2), the set of composable pairs, has the topology induced by G×G and G(0)

has the topology induced by G.

By Renault [9], a topological groupoid G is étale when its range and source maps are

local homeomorphisms G→ G(0). Then the range and source maps are open.

An étale groupoid G is principal if the isotropy bundle G′ = G(0) the unit space. An

étale groupoid G is topologically principal if the set of points of the unit space G(0) with

trivial isotropy is dense in G.

Definition 2.13 (Pseudogroup and Groupoid of Germs). Let X be a topological space. A

pseudogroup on X is a family G of partial homeomorphisms of X stable under composition

and inverse. Given a pseudogroup G on X, define the groupoid of germs as

G = {[x, ϕ, y] , ϕ ∈ G, y ∈ dom(ϕ), x = ϕ(y)}

where [x, ϕ, y] = [x, ψ, y] iff there exists a neighborhood U of y in X such that ϕ |U= ψ |U .
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Let X = G(0). An étale groupoid G defines a pseudogroup G on X in the sense that

G has a cover of open bisections. Rcall that a bisection is a subset S ⊂ G which is both

an r-section and an s-section. (A subset of a groupoid is an r-section or an s-section if the

restriction of r or s to the subset is injective.) The open bisections of an étale groupoid G

form an inverse semigroup S(G) with ST = {γγ′ : (γ, γ′) ∈ (S × T )
⋂
G(2)} and the image

of S by the inverse map is S−1.

Definition 2.14 (Effective Groupoid). Let G be an étale groupoid over X and let S be

the inverse semigroup of its open bisections. Then G is an effective groupoid if the interior

of G′ is reduced to G(0).

Proposition 2.15 (Topologically Principal and Effective Groupoid, Renault [9], 3.6). Let

G be an étale groupoid.

1. If G is Hausdorff and topologically principal, then it is effective.

2. If G is a second countable effective groupoid and its unit space G(0) has the Baire

property, then it is topologically principal.

Definition 2.16 (Twisted Groupoid C∗-algebra). Let G and Σ be topological groupoids.

Given T is the circle group. Define a twisted groupoid as a central groupoid extension

T×G(0) ↪→ Σ� G. Note by assumption, Σ is a principal T- space and Σ/T = G.

Let (G,λ) be a Hausdorff locally compact second countable groupoid with Haar system

and suppose Σ is a twist over G. Denote the space of continuous sections with compact

support of the line bundle associated with Σ as Cc(G,Σ). Define a ∗-algebra by the opera-

tions:

f ∗ g(σ) =

∫
f(στ−1)g(τ)dλs(σ)(τ̇)

where τ̇ ∈ G, the image of τ ∈ Σ, and f∗(σ) = f(σ−1).

For x ∈ G(0), define the Hilbert space Hx = L2(Gx, Lx, λx) of square-integrable sections

of the line bundle Lx = L|Gx . For f ∈ Cc(G,Σ), define the operator πx(f) on Hx as

πx(f)E(σ) =

∫
f(στ−1)E(τ)dλx(τ̇)

12



The space of sections C0(G
(0),H) is the right C∗-module over C0(G

(0)) and π is a rep-

resentation of Cc(G,Σ) on this C∗-module. The reduced C∗-algebra, denoted as C∗r (G,Σ),

is the completion of Cc(G,Σ) with respect to the norm ‖f‖ = supx ‖πx(f)‖.

Let (G,Σ) be a twisted étale Hausdorff locally compact second countable groupoid. Let

A = C∗r (G,Σ) and B = C0(G
(0)). Choose a ∈ A. By Renault [9], a commutes with

every element of B iff its open support, supp′(a) ⊆ G′. Note that B is a MASA iff G is

topologically principal.

With the same assumption that (G,Σ) is a twisted étale Hausdorff locally compact

second countable groupoid, let P : C∗r (G,Σ) → C0(G
(0)) be the restriction map obtained

by restricting elements of the dense subalgebra Cc(G,Σ) and extend the map by the con-

tinuity property to the entire C∗-algebra. Then P is a faithful conditional expectation

onto C0(G
(0)). Moreover, if G is topologically principal, then P is the unique conditional

expectation onto C0(G
(0)).

Exposition 2.17 (Haar Measure). If a groupoid G is locally compact, a left (right)

Haar measure on G is a nonzero left-invariant (right-invariant) Radon measure µ on G.

Recall that a Radon measure on a topological space is a Borel measure which is finite on

compact sets, inner regular on open sets, and outer regular on Borel sets.

Definition 2.18. Let B be a sub C∗-algebra of a C∗-algebra A. Then B is regular if its

normalizer

N(B) = {n ∈ A : nBn∗ ⊂ B and n∗Bn ⊂ B} generates A as a C∗-algebra.

Let (G,Σ) be a twisted étale Hausdorff locally compact second countable groupoid and

A = C∗r (G,Σ). Then B = C0(G
(0)) is regular sub C∗-algebra of A. Furthermore, if (G,Σ)

is also a topologically principal groupoid, then B is a Cartan subalgebra of A.

Definition 2.19 (Weyl Groupoid, Renault [9], 4.10). Let B be a sub-C∗-algebra of a C∗-

algebra A. Define dom(b) = {x ∈ X : b∗b(x) > 0} and ran(b) = {x ∈ X : bb∗ > 0}. They

are open subsets of X. Then αb : dom(b) → ran(b) is a unique homomorphism given b ∈

normalizer N(B). Suppose that B is abelian and B contains an approximate unit of A.

Then

13



1. If b ∈ B, then αb = iddom(b).

2. If m,n ∈ N(B), then αmn = αm ◦ αn and αn∗ = α−1n .

Then G(B) = {αa, a ∈ N(B)} is a Weyl pseudogroup of (A,B). Define Weyl groupoid

of (A,B) as the groupoid of germs of G(B). Let B be a sub C∗-algebra of a C∗-algebra A.

Suppose B is abelian and B contains an approximate unit of A. The kernel of the canonical

action α : N(B)→ G(B) is the commutant N(B) ∩B′ of B in N(B). Additionally, if B is

maximal abelian, then Ker α = B.

Let (G,Σ) be a twisted étale Hausdorff locally compact second countable groupoid. Let

A = C∗r (G,Σ) and B = C0(G
(0)). Then the Weyl groupoid G(B) of (A,B) is canonically

isomorphic to G if G is topologically principal. The Weyl pseudogroup G(B) of (A,B) con-

tains partial homeomorphism αs where S is an open bisection of G such that the associated

line bundle L restricted to S is trivial.

Let D = {(x, n, y) ∈ X ×N(B)×X : n∗n(y) > 0 and x = αn(y)}. Then Σ(B) = D/∼

by the equivalent relation: (x, n, y) ∼ (x′, n′, y′) iff y = y′ and there exist b and b′ ∈ B with

b(y), b′(y) > 0 such that nb = n′b′. Then Σ(B) has a groupoid structure over X. Given

that B is MASA in A which contains an approximate unit of A, then B → Σ(B) → G(B)

is algebraically an extension where B = {[x, b, x] : b ∈ B, b(x) 6= 0} ⊂ Σ(B) which is the

Weyl twist of Cartan pair (A,B).

Remark 2.20. Let B be a Cartan subalgebra of a separable C∗-algebra A. Then there

exists a twist (G,Σ) where G is a second countable locally compact Hausdorff, topologically

principal étale groupoid and an isomorphism of C∗r (G,Σ) onto A which carries C0(G
(0))

onto B. The twist is unique and it is isomorphic to the Weyl twist (G(B),Σ(B)).

Let (G,Σ) be a twisted étale Hausdorff locally compact second countable topologically

principal groupoid. Let A = C∗r (G,Σ) and B = C0(G
(0)). Then Renault [9] obtains a

canonical isomorphism of extensions displayed in figure 2.2.

14



B Σ(B)

T×G(0)

G(B)

Σ G

Figure 2.2: Canonical Isomorphism of Extensions.
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Chapter 3

Equivalent Cartan Pairs of Renault and Feldman-Moore

In this chapter, we aim to compare the constructions of Renault and Feldman-Moore

Cartan pairs. For one direction, we base our proof on the work of Li and Renault. We

follow the same necessary background and assumptions as in Li and Renault [6]’s. Let G

be an étale second countable locally compact Hausdorff groupoid. Let T×G(0) i
� Σ

j
� G

be a twist. Recall from Renault [9], every Cartan pair is of the form (C∗r (G,Σ), C0(G
(0))),

where G is assumed to be principal.

Let c : G→ Σ be a Borel map such that c is a section for j so j ◦c = idG. Let X = G(0).

Let S ⊆ G be an open bisection so the source and range maps restrict to homeomorphisms

r |S : S → r(S) and s |S : S → s(S). Let αS be the homeomorphic map s(S) → r(S),

x→ r((s |S)−1(x)). Note that the existence of such Borel section was previously proven by

Muhly and Williams [8]. Thus c |X= idX and for all g ∈ G, c(g−1) = c(g)−1.

Then for every ζ ∈ Σ : j(ζc(j(ζ))−1 = r(j(ζ)) so there is a Borel map t : Σ → T such

that ∀ζ ∈ Σ, we have ζ = t(ζ)c(j(ζ)). Set σ : G(2) → T, (g, h) → t(c(gh)−1c(g)c(h)) where

σ is a normalized cocycle. Now let µ be a S(G)-invariant Borel probability measure on X.

Set A = C∗r (G,Σ) and B = C(X). Then let E : A � B be the unique faithful conditional

expectation. Set τ = µ ◦ E. Then τ is a trace on A. Let πτ be the GNS representation of

A attached to τ and denote Hπ as the underlying Hilbert space. Let R be the equivalence

relation on X corresponding to G so that R = {(r(g), s(g)) ∈ X ×X : g ∈ G}.

Recall that Renault [9] proves two theorems below:

Theorem 3.1. Let (G,Σ) be a twisted étale Hausdorff locally compact second countable

topologically principal groupoid. Then C0(G
(0)) is a Cartan subalgebra of C∗r (G,Σ).

Theorem 3.2. Let B be a Cartan subalgebra of a separable C∗-algebra A. Then
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1. there exists a twist (G,Σ) where G is a second countable locally compact Hausdorff,

topologically principal étale groupoid and an isomorphism of C∗r (G,Σ) onto A carrying

C0(G
(0)) onto B;

2. the above twist is unique up to isomorphism; it is isomorphic to the Weyl twist

(G(B),Σ(B)).

Theorem 3.3. π(A)′′ ∼= M(R, σ) and π(B)′′ ∼= L∞(X,µ) where the cocycle σ is a normal-

ized cocycle.

( Proof) To begin our proof, first notice that M(R, σ) is the von Neumann algebra con-

structed in Feldman-Moore II [4] and π(A)′′ is the von Neumann algebra generated by π(A)

in L(H).

Additionally there is an isomorphism of Borel groupoids T ×σ G → Σ, (z, g) → zc (g)

with an inverse defined by ζ → (t(ζ), j(ζ)). Then we can define the multiplication of the

groupoid T×σ G as (z1, γ1)(z2, γ2) = (z1z2σ(γ1, γ2), γ1γ2).

Let ν be the right counting measure of µ as in Fedman-Moore I [3]. Since we have a

Borel isomorphism G ∼= R, g → (r(g), s(g)), then L2(R, ν) ∼= L2(G, ν).

Define Xi × Xj = {xi × xj ∈ Xi × Xjs.t. | Rxi×xj |= i × j}. Since all Ri’s are Borel

subsets of R, then Xi ×Xj are Borel subsets of R. Choose f ∈ C∗r (G,Σ) and consider ν as

the measure on R given by∫
R fdν =

∫
Xi×Xj

∑
γ∈Rxi×xj f(γ)dµ(xi × xj). The map Cc(G,Σ) → L2(R, ν) with f →

f ◦ c extends to a unitary U : Hπ ∼= L2(R, ν). Since 〈π(f)ξ〉(γ) = f(γ, γ)ξ(γ), then

(Uπ(f)U∗ξ)(γ) = f(r(γ), s(γ))ξ(γ).

Let R =
⋃∞
i=1Ri which are countably many open bisections. Observe that ν |Ri is the

pushforward of µ |(r(Ri),s(Ri)) with an inverse given by (r(Ri), s(Ri)) ← Ri. Let Ii×j =

{1, · · · , i × j} for i, j ∈ N. When i = j = ∞, Ii×j = N. We obtain a canonical unitary

V : L2(R, ν)→
⊕

i L
2(Ri, ν). Thus

L2(R, ν) ∼=
⊕
i

L2((r(Ri), s(Ri)), µ |(r(Ri),s(Ri)))which implies
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L2(R, ν) ∼=
⊕
i,j

L2(Xi ×Xj , µ |Xi×Xj )⊗ l2(Ii×j)

.

LetMi×j be the canonical representation of L∞(Xi×Xj , µ |Xi×Xj ) on L2(Xi×Xj , µ |Xi×Xi

). Notice that for each f ∈ C∗r (G,Σ), we have V π(f)V ∗ = (Mi×j(f) ⊗ idl2(Ii×Ij))i,j .

Therefore π(C∗r (G,Σ))′′ =
∏
i,j L

∞(Xi × Xj , µ |Xi×Xj ) which implies π(C∗r (G,Σ))′′ ∼=

L∞(X ×X,µ). Thus π(A)′′ ∼= M(R, σ).

Similar to our proof above and following Li-Renault work, we obtain π(B)′′ ∼= L∞(X,µ).

�

For the other direction, notice that Feldman Moore [4] show the following:

Theorem 3.4. Let A be a Cartan subalgebra of a von Neumann algebra M on a separable

Hilbert space H. Then there exist a countable standard measure equivalence relation R

on (X,µ), a σ ∈ Z2(R,T) and an isomorphism of M onto W ∗(R, σ) carrying A onto the

diagonal subalgebra L∞(X,µ). The twisted relation (R, σ) is unique up to isomorphism.

Since von Neumann algebras and C∗-algebras are different, perhaps it is very technical

and tedious to directly show that Felman-Moore Cartan pair is equivalent to Renault Cartan

pair. Renault [9] uses étale second countable locally compact Hausdorff groupoid to build

his Cartan pairs from C∗-algebras and Fell bundles. Our proof above suffices to imply that

Feldman-Moore Cartan pair is isomorphic to the double commutant of Renault Cartan

pair’s representations.
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Chapter 4

Equivalent Cartan Pairs of Donsig et al. and Feldman-Moore

During this chapter, we want to discuss equivalent constructions of Feldman-Moore and

Donsig et al. Cartan pairs. We first summarize Donsig et al. theorems, corollary, and

proposition as follows.

Theorem 4.1 (Donsig et al. [2], 3.8). For i = 1, 2, suppose (Mi,Di) are Cartan pairs with

associated extensions

Pi ↪→ Gi
qi→ Si.

Then (M1,D1) and (M2,D2) are isomorphic Cartan pairs iff their associated extensions are

equivalent. Furthermore, when the extensions are equivalent and (Mi,Di) are in standard

form, the isomorphism is implemented by a unitary operator.

Corollary 4.2 (Donsig et al. [2], 4.18). Let π : D → B(H) be a ∗-representation of D on

the Hilbert space H. Then λπ = π∗ ◦ λ is a representation of G by partial isometries on

U ⊗π H. If π is faithful, then λπ is one-to-one.

Let π be the representation of D(R, c) on H = L2(X,µ) as multiplication operators: for

f ∈ D(R, c), ξ ∈ L2(X,µ) and x ∈ X, 〈π(f)ξ〉 (x) = f(x, x)ξ(x). Then π is a faithful and

normal representation of D(R, c). The authors show that the representation λπ of G on

B(U ⊗π H) is unitarily equivalent to the identity representation of G on L2(R, ν).

Proposition 4.3 (Donsig et al. [2], 5.10). The subalgebra Dq is a MASA in Mq.

Theorem 4.4 (Donsig et al. [2], 5.11). The pair (Mq,Dq) is a Cartan pair.

Theorem 4.5 (Donsig et al. [2], 5.12). The extension associated to the Cartan pair

(Mq,Dq) is equivalent to the extension

P ↪→ G q→ S
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from which (Mq,Dq) was constructed. Furthermore, the isomorphism class of (Mq,Dq)

depends only upon the equivalence class of the extension (not on the choice of representation

π or section j).

To obtain a Cartan pair from an extension, Donsig et al. [2] construct a representation

of the Cartan inverse monoid where E :M→ D is the conditional expectation and π is a

representation of D on H. The authors use an operator-valued reproducing kernel Hilbert

space because the inverse semigroup has no linear structure compared to the von Neumann

algebra M. Donsig et al. use the order structure of S which arises from the action of

the idempotents of S to build the corresponding reproducing kernel. The authors charac-

terize the D-bimodule of von Neumann algebra M instead of using appropriate subsets of

Feldman-Moore 2-cohomology equivalence relation R.

Let D be a MASA in the von Neumann algebraM. Starting from an inverse semigroup

G, Donsig et al. [2] construct G as an extension of S by P by letting G = GN (M,D),

P = G ∩ D be the set of all partial isometries in C(Ê(Si)) where Ê(Si) is the character

space, and S be a Cartan (Boolean) inverse monoid obtained from the Munn congruence.

Recall that the fundamental inverse semigroup S is the quotient of G by RM . Note that

the extension below

P ι
↪→ G q→ S

is trivial if there exists a semigroup homomorphism j : S → G such that q ◦ j = id|S .

Donsig et al. [2] first construct an extension from a given Cartan pair. Then the authors

construct another Cartan pair from their extension and build another extension based on

their new Cartan pair. By Theorem 4.1, Donsig et al. show their two Cartan pairs are

unique by proving that these two Cartan pairs are isomorphic to each other. By theorems

4.4, the authors show that their Cartan pair exists with the assumption thatMq = (λπ(G))′′

and Dq = (λπ(E(G)))′′ given that λπ : G → B(U ⊗π H) is the representation of G by

partial isometries. Note that Lausch [5] shows that elements of a 2-cohomology group can

parametrize equivalence classes of extensions of inverse semigroups. By the method Donsig

et al. [2] construct their Cartan pair, it suffices to conclude that Feldman-Moore Cartan

pair is equivalent to their Cartan pair.
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Chapter 5

Conclusion and Extensions

Feldman and Moore [4] derive their Cartan pair from two-cohomology class which is

very technical to prove. They have to go through fifteen propositions to complete their

proof from their construction of the von Neumann algebra M(R, σ) This motivates Donsig

et al. to construct their Cartan pairs which are conceptually simpler by using the extension

of inverse semigroup. Similarly, Renault constructs his Cartan pairs from C∗-algebras and

étale groupoids. Our proof and discussions from chapters 3 to 5 suffice to conclude that the

constructions of Feldman-Moore, Renault, and Donsig et al. Cartan pairs are equivalent.

For future work, we think of applying some of Matsnev and Resende’s main proofs

to conclude that Cartan pairs derived by using the extension of inverse semigroups are

equivalent to those derived by using étale groupoid. First we provide theorems that Matsnev

and Resende [7] show below.

Theorem 5.1 (Matsnev and Resende [7], 2.9). Let G be an étale groupoid and let ρG :

I(G)→ I(G0) be its full representation. Then Germs (I(G), ρG) ∼= G.

Theorem 5.2 (Matsnev and Resende [7], 5.3). Let G be an étale groupoid with unit

space X. Then (I(G), ρG) is a complete inverse semigroup over X. Any complete inverse

semigroup over X arises in a similar way from an étale groupoid with unit space X.

Remark 5.3. A complete inverse semigroup over a unit space X is a complete inverse

semigroup S equipped with a full representation S → I(X).

By Matsnev and Resende’s proofs, we want to show the diagram in figure 5.1 commutes.

After going through Thomsen’s work on semi-étale groupoids, we think that it is possible

to construct another equivalent construction of Cartan pairs by relaxing the assumption of
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T×G(0) Σ

Germs (I(T×G(0)))

G

Germs (I(Σ)) Germs (I(G))

α̂ α̈α

Figure 5.1: Canonical Isomorphisms of Equivalent Extensions.

étale groupoid (local homeomorphism) to semi-étale groupoid (locally injective).

Many researchers are concerned with the existence and uniqueness of Cartan pairs.

Renault and Li [6] extend Renault’s work to show the existence of Cartan pairs but they

fail to show the uniqueness. Thus proving the uniqueness of Renault’s Cartan pairs can be

considered as an extension.
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