
University of Texas at Tyler University of Texas at Tyler 

Scholar Works at UT Tyler Scholar Works at UT Tyler 

Biology Faculty Publications and Presentations Biology 

Winter 12-19-2019 

Potential Distribution of Six North American Higher-Attine Fungus-Potential Distribution of Six North American Higher-Attine Fungus-

Farming Ant (Hymenoptera: Formicidae) Species Farming Ant (Hymenoptera: Formicidae) Species 

Sarah F. Senula 
University of Texas at Tyler 

Joseph T. Scavetta 

Joshua A. Banta 
University of Texas at Tyler 

Ulrich G. Mueller 

Jon N. Seal 
University of Texas at Tyler 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.uttyler.edu/biology_fac 

 Part of the Biology Commons, and the Other Life Sciences Commons 

Recommended Citation Recommended Citation 
Senula, Sarah F.; Scavetta, Joseph T.; Banta, Joshua A.; Mueller, Ulrich G.; Seal, Jon N.; and Kellner, Katrin, 
"Potential Distribution of Six North American Higher-Attine Fungus-Farming Ant (Hymenoptera: 
Formicidae) Species" (2019). Biology Faculty Publications and Presentations. Paper 6. 
http://hdl.handle.net/10950/2638 

This Article is brought to you for free and open access by the Biology at Scholar Works at UT Tyler. It has been 
accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of Scholar 
Works at UT Tyler. For more information, please contact tgullings@uttyler.edu. 

https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/biology_fac
https://scholarworks.uttyler.edu/biology
https://scholarworks.uttyler.edu/biology_fac?utm_source=scholarworks.uttyler.edu%2Fbiology_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.uttyler.edu%2Fbiology_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/113?utm_source=scholarworks.uttyler.edu%2Fbiology_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/2638?utm_source=scholarworks.uttyler.edu%2Fbiology_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu


Author Author 
Sarah F. Senula, Joseph T. Scavetta, Joshua A. Banta, Ulrich G. Mueller, Jon N. Seal, and Katrin Kellner 

This article is available at Scholar Works at UT Tyler: https://scholarworks.uttyler.edu/biology_fac/6 

https://scholarworks.uttyler.edu/biology_fac/6


1This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com 

© The Author(s) 2019. Published by Oxford University Press on behalf of Entomological Society of America. 

Potential Distribution of Six North American Higher-Attine 
Fungus-Farming Ant (Hymenoptera: Formicidae) Species
Sarah F. Senula,1,4,* Joseph T. Scavetta,3,* Joshua A. Banta,1,  Ulrich G. Mueller,2  
Jon N. Seal,1 and Katrin Kellner1

1Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA, 2Section of Integrative Biology, University of Texas at 
Austin, Austin, TX 78712, USA, 3Department of Computer Science, Rowan University, Glassboro, NJ 08028, USA, and  4Corresponding 
author, e-mail: sfsenula@gmail.com

*These authors contributed equally.

Subject Editor: Sunil Kumar

Received 3 December 2018; Editorial decision 18 November 2019

Abstract

Ants are among the most successful insects in Earth’s evolutionary history. However, there is a lack of knowledge 
regarding range-limiting factors that may influence their distribution. The goal of this study was to describe the 
environmental factors (climate and soil types) that likely impact the ranges of five out of the eight most abundant 
Trachymyrmex species and the most abundant Mycetomoellerius species in the United States. Important 
environmental factors may allow us to better understand each species’ evolutionary history. We generated habitat 
suitability maps using MaxEnt for each species and identified associated most important environmental variables. 
We quantified niche overlap between species and evaluated possible congruence in species distribution. In all but 
one model, climate variables were more important than soil variables. The distribution of M. turrifex (Wheeler, W.M., 
1903) was predicted by temperature, specifically annual mean temperature (BIO1), T. arizonensis (Wheeler, W.M., 
1907), T. carinatus, and T. smithi Buren, 1944 were predicted by precipitation seasonality (BIO15), T. septentrionalis 
(McCook, 1881)  were predicted by precipitation of coldest quarter (BIO19), and T.  desertorum (Wheeler, W.M., 
1911) was predicted by annual flood frequency. Out of 15 possible pair-wise comparisons between each species’ 
distributions, only one was statistically indistinguishable (T. desertorum vs T.  septentrionalis). All other species 
distribution comparisons show significant differences between species. These models support the hypothesis that 
climate is a limiting factor in each species distribution and that these species have adapted to temperatures and 
water availability differently.

Key words: MaxEnt, attine, Texas, ecological niche modeling, temperature

Insects are the most abundant and diverse group of terrestrial ani-
mals on the planet, with ants (Formicidae) being one of the most 
successful in Earth’s evolutionary history (Hölldobler and Wilson 
1990, Ward 2014). With over 16,000 ant species spread throughout 
diverse ecological niches (Bolton 2016), it has been suggested that 
their symbiotic relationships with microorganisms may have been 
a major cause of their radiation and success (Akman Gunduz and 
Douglas 2008, Russell et al. 2009, Douglas 2015, Hu et al. 2018). 
While ants are among the most abundant and diverse group of in-
sects, there is a lack of range-limiting data and readily available 
distribution surveys (Diniz-Filho 2010, Simões-Gomes et al. 2017), 
especially in the south-eastern United States (Tschinkel et al. 2012, 
King et al. 2013, Noss et al. 2015). To address this relative paucity 
of available data, there have been recent attempts to use distribu-
tion modeling to determine past, present, and future species distri-
butions (e.g., Lobo 2016). Species distribution models, or ecological 

niche models, are created using available species occurrence data, 
in conjunction with environmental characteristics, such as climate 
or soil datasets from public databases. Using these data, the target 
function, f:X→Y, can be approximated, where X is the set of envir-
onmental conditions at a given location and Y is the probability of 
occurrence at that location, by finding the best fit for the model. The 
approximate function can then be applied across the entire study 
area (which are mostly unsampled areas) to estimate how suitable 
all locations on the landscape are at a given grain or pixel size (reso-
lution) (Peterson et al. 2011). This allows one to make a forecast, 
across a wide area, of where the species is favored based on the en-
vironmental characteristics of the landscape, even if the entire land-
scape has not been sampled densely. In this way, putative range maps 
can be deduced from limited sampling, and these preliminary maps 
can then serve as a springboard to target certain areas for future 
sampling to corroborate and refine the range maps (Marcer et  al. 
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2013). Species distribution models can also give insight as to which 
environmental variables, used to create the model, are most influen-
tial in determining the range of a species, i.e., temperature, precipita-
tion, or soil properties. In this way, researchers may be able to gain 
a better understanding of the evolutionary history of a species and 
may be able to predict how said species may be impacted by chan-
ging climate or other anthropogenic affects.

Fungus-farming ‘attine’ ants present a unique study system to 
investigate range expansions and distributions. Higher-attine ants 
(genera Trachymyrmex, Mycetomoellerius, Paratrachymyrmex, 
Sericomyrmex, Acromyrmex, and Atta) cultivate gardens of 
fungal monocultures (leptiotaceous basidiomycetes in the family 
Agaricaceae) as their primary food source, while the fungal garden 
is protected, fed, and maintained in ideal environmental conditions 
by the ants (Weber 1972, Hölldobler and Wilson 1990, Ward et al. 
2015). While there are basal attine lineages that cultivate fungi that 
have been found to be free-living, higher-attine ants cultivate fungi 
that are only found to be grown by ants, thus forming an obligate 
symbiotic relationship. The presence of such obligate symbiotic 
microorganisms may allow ants to consume food sources not pre-
viously digestible, thus allowing the species to be able to take ad-
vantage of niches that were previously uninhabitable (Aylward et al. 
2012, Brune 2014, Oliver and Martinez 2014, DeMilto et al. 2017), 
which may have profound effects on the fitness, adaptation, and 
range distribution (Douglas 2010, Engel and Moran 2013, Russel 
et  al. 2016, Muhammad et  al. 2017). Attine ants are found only 
in the New World and are thought to have evolved about 55–65 
mya (Mueller et al. 2005, Schultz and Brady 2008, Ward et al. 2015, 
Branstetter et al. 2017) in South America, then expanded Northward 
across Central America to North America (Rabeling 2007, Mueller 
et al. 2017). The environmental factors that determine the distribu-
tions of attine ants may be unlike those in other ant species distribu-
tions, as attine distributions depend on the environmental needs of 
both the ant host and their fungal symbionts.

In the present study, our goal was to investigate the possible 
drivers of the ecological distributions of six North American higher-
attine nonleaf-cutting ant species from the genera Trachymyrmex and 
Mycetomoellerius: T. arizonensis (Wheeler, W.M., 1907), T. carinatus, 
T. desertorum (Wheeler, W.M., 1911), T. septentrionalis (McCook, 
1881), T.  smithi  Buren, 1944, and M.  turrifex  (Wheeler, W.M., 
1903). Trachymyrmex is the most species-rich genus of higher-attine 
ants in North America, with a total of seven species found in the 
conterminous United States. Mycetomoellerius is a newly classified 
genus consisting of former T. turrifex and T. jamaicensis, which are 
the only species found in the United States, as most species are found 
in the New World tropics (Solomon et  al. 2019). Trachymyrmex 
is also primarily a tropical genus, but in the United States most of 
the species are found in the arid southwestern states of Arizona, 
New Mexico, and Texas. It is hypothesized that North American 
Trachymyrmex species were originally adapted to survive in dry, arid 
environments (Seal and Tschinkel 2006, 2010, Rabeling et al. 2007, 
Branstetter et al. 2017). T. septentrionalis, however, has a distribu-
tion that extends northward into the temperate zone and thus lives 
in wetter, cooler climates such as central Illinois and Long Island, 
New York (approximately 40° N) (Rabeling et al. 2007, Seal et al. 
2015).

Soil and climate are known to be important environmental vari-
ables in determining the distribution of ant species (Diehl-Fleig and 
Rocha 1998, Cardoso and Cristiano 2010, Cardoso et  al. 2010, 
Meyer et al. 2011) with temperature, rainfall, and humidity affecting 
abundance and distribution the most (Seal and Tschinkel 2010, 
Savopolou-Soultani et al. 2012). We were interested in whether soil 

and/or climate influences the distribution of these fungal-gardening 
species. These species are found in rocky and hard soil (Arizona 
and western Texas), clay to sandy soils (central and east Texas) 
and pure sandy soils (east Texas and along the entire Southeastern 
Coastal Plain). For example, two southeastern species M.  turrifex 
and T.  septentrionalis are thought to prefer different soil types. 
M. turrifex occurs mainly in clay soils whereas T. septentrionalis is 
almost exclusively found in sandy soils (Seal and Tschinkel 2006, 
Rabeling et al. 2007). However, the location of sand, clay, and rocky 
soils is not evenly distributed in the southern United States; where 
these ants occur, sand occurs primarily along the coastal plains, clay 
further inland and rocky soils in arid mountains of southwestern 
North America (Noss et al. 2015). Southern North America is char-
acterized by a profound rainfall gradient that range from true de-
serts in the southeast to subtropical rainforest-like conditions in 
the southeast (Soltis et al. 2006, Noss et al. 2015, Seal et al. 2015, 
Chapman and Bolen 2018). Thus, climate and the distribution of 
soil types may confound each other. By modeling these two broad 
sets of possible drivers, it might be possible to determine which of 
these variable(s) might explain the differences in distribution of these 
species. Additionally, the subterranean nests of fungus-gardening 
ants are thought to exert ecological impacts because the ants move 
and displace soil nutrients (Tschinkel and Seal 2016, Swanson et al. 
2019). While these ants are likely important in building soil-based 
ecosystems, we lack good models that could determine where they 
are found. Thus, our understanding of ecosystem ecology could be 
hindered by not knowing which ants might be found in which eco-
systems. The goal of this study was to determine and describe the 
environmental factors that likely explain the range distributions of 
each species and compare the distributions among them.

Materials and Methods

Study Design and Modeling
MaxEnt modeling is a useful method for creating species distribution 
models, because it requires only the locations of known occurrences 
for a species (in the form of global positioning system coordinates) and 
environmental data, often available from public repositories (Phillips 
et al. 2006). The number of locations of known occurrence for a spe-
cies can be quite small and still be used to make species distribution 
models covering a very large area, though this method is not without 
potential statistical artifacts (van Proosdij et al. 2016). This allows 
one to make forecasts of the probable areas of occurrence of a species 
based on very limited information, as is the case when working with 
endangered species living in fractured landscapes, where obtaining 
landowner permissions for surveys is difficult (Marcer et al. 2013). 
MaxEnt is used to estimate a species’ probability of presence in a 
given area by creating a raster map, where each pixel contains an esti-
mation of the relative habitat suitability (ranging from 0, unsuitable, 
to 1, highly suitable) for the modeled species. A score will be higher 
when the environmental variables assigned to that pixel are more 
similar to those where the species is known to occur (Phillips and 
Dudik 2008). Species distribution models are typically used to model 
the distributions of one species at a time, though in the present study, 
each model represents two species simultaneously: the ant species and 
its obligate symbiont, their fungal garden.

We performed MaxEnt species distribution modeling on 
five out of the seven Trachymyrmex species and one out of the 
two Mycetomoellerius species that are found within the conter-
minous United States: T. arizonensis, T. carinatus, T. desertorum, 
T.  septentrionalis, T.  smithi, and M.  turrifex. Three species were 
not included in this study: M.  jamaicensis, T.  nogalensis, and 
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T.  pomonae Rabeling & Cover, 2007  were excluded because 
of sparse collection records and presumable limited distribu-
tions in the United States (Rabeling et  al. 2007). T.  arizonensis, 
T.  carinatus, T. desertorum, and T.  smithi are broadly sympatric 
with one another. M. turrifex and T. septentrionalis are sympatric 
in certain areas of their ranges, i.e., Texas and Oklahoma. Species 
occurrence records were obtained from published and unpublished 
data from collections on private and public land within the known 
ranges of each species (Fig. 1, See Supp Table 4 [online only] for 
data sources). The species varied greatly in the number of known 
locations of occurrence (see Table 1). This study investigated con-
terminous United States Trachymyrmex and Mycetomoellerius spe-
cies distributions using average climatic variables from the years 
1970–2000 (WorldClim) (Hijmans et al. 2005) and soil variables. 
We obtained soil data from the State Soil Geographic (STATSGO) 
Data Base (United States Department of Agriculture 1995a), and 
the data processing steps to create this dataset can be found from 
Wolock (1997). The STATSGO dataset was captured as 1:250,000 
scale USGS topographic quadrangle units by generalizing soil 
survey maps (United States Department of Agriculture 1995a,b, 
Mednick 2010); but since the soil survey maps were not always 
available at specific locations, the STATSGO dataset interpolates 
across these gaps based on broad physiographic characteristics 
(Mednick 2010). A single STATSGO map unit may contain up to 
21 different component soils (USDA NRCS 1994). Environmental 
and species occurrence data were processed using GRASS GIS 
Version 7.2 (GRASS Development Team 2017). All rasters were 
resampled to a common resolution of 1,000 m × 1,000 m and pro-
jected into the North American Datum of 1983 horizontal datum 
reference system in an Albers Equal Area projection.

If any two continuous variables were found to be highly correlated 
with each other, according to a Pearson’s moment correlation coeffi-
cient (Sokal and Rohlf 1995) of |0.75|, then one of the two variables 
was removed from the dataset until no two variables remaining in 

the dataset were highly correlated with each other. At each iteration, 
we removed the variable that correlated more with other variables, 
allowing us to retain the most unique predictors. This methodology 
allows for a quicker runtime when creating models without a loss 
of environmental information and can simplify interpretation of the 
results (Elith and Leathwick 2009). Eight out of nineteen climatic 
variables and nine out of seventeen soil variables were incorporated 
into the model for each species: annual mean temperature (BIO1), 
isothermality (BIO3), minimum temperature of the coldest month 
(BIO6), temperature annual range (BIO7), mean temperature of wet-
test quarter (BIO8), precipitation seasonality (BIO15), precipitation 
of warmest quarter (BIO18), precipitation of coldest quarter (BIO19), 
available water capacity (inches per inch), annual flood frequency, 
calcium carbonate in soil layer (%), cation exchange capacity, share 
of map unit with hydric soils, erodibility, average depth of bedrock 
(inches), slope of map unit (%), and depth of soil (inches).

Selecting Background Points and Correcting for 
Sampling Bias
To find the best function to predict a species occurrence, we require 
a set of features that occurs where the species is present, and a base-
line set of features that occurs in the landscape of interest. Using this 
data, MaxEnt can find the feature distribution for the species that 
is closest to the baseline landscape distribution, while constraining 
the species distribution such that it closely resembles the feature 
averages found amongst the occurrence points (Elith et  al. 2010). 
To create a feature distribution for the landscape we can randomly 
sample the background environment. The simplest approach is to 
randomly sample background points uniformly across a study ex-
tent; however, this approach may yield statistically flawed results if 
occurrence point sampling was not truly random (Kramer‐Schadt 
et  al. 2013). To combat bias in sampling, occurrence data can be 
filtered spatially allowing fewer points to be used within an area of 

Fig. 1.  Species occurrence points used to create MaxEnt models.
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high sampling to better balance the overall sampling distribution. 
Though, when lacking a sufficient sample size, removing the points 
may not be possible. Instead, background sampling can be altered to 
better represent the sampling bias found in the occurrence dataset. 
While this approach is often better than leaving unaccounted spatial 
biasing, it may introduce weaker predictions (Kramer‐Schadt et al. 
2013). Because of this, we present models both with and without 
spatial bias accounted for (see supplemental figures for models with 
spatial bias).

To obtain background points in models that do not account for 
spatial biasing, we simply select points across the United States ex-
tent uniformly (Supp Fig. 1 [online only]). In models that account for 
spatial biasing, we adjust our background point sampling so that it 
better represents the biasing in the occurrence sampling efforts (Fig. 2).  
Because it is unlikely that one fungal-gardening species would be 
missed while surveying for the other species, we assume that the spa-
tial biases are the same for all species. Combining all species occur-
rence data, we generate a probability density using an axis-aligned 
bivariate normal kernel and scale the density values from 1 to 20, 
similar to previous studies (Elith et al. 2010, Fourcade et al. 2014). 
A set of 10,000 background points was obtained once for models 
created with uniformly sampled background points, and once for 
models created with background points sampled from the biased 
probability distribution (Fig. 2 and see Supp Fig. 1 [online only] for 
uniformly sampled background points).

Model Hyperparameter Optimization
The MaxEnt algorithm relies on settings, or hyperparameters, that 
must be set before models are trained, and the values for these set-
tings may affect a model’s performance greatly depending on the 
dataset; however, the right values are for a given task is unknown 
and often hard to estimate (Muscarella et al. 2014). Specifically, 
the permitted feature types and the beta regularization multiplier 
(βM) are important settings to adjust. Permitted features refer to 
the transformations MaxEnt can employ in the model function, 
for example, whether to use quadratic terms. Regularization adds 
a cost to overly complex models, as they tend to fail in general-
izing to new data; the use of βM controls how much of a cost is 
employed. To achieve models with the greatest predictive power, 
we specifically tuned those hyperparameters. In addition, we set 
add samples to background as false; all other parameters were left 
as default.

To find the optimal values for both the permitted features and 
βM, we ran many models for each species separately for both back-
ground sets. We chose to test five sets of permitted features: {linear}, 
{linear, quadratic}, {linear, quadratic, hinge}, {linear, quadratic, 
hinge, product}, and {linear, quadratic, hinge, product, threshold}. 
For each permitted feature set, we combined 10 selected βM values 
within the domain of [0, 2.5]; therefore, each final model came 
from a set of 50 models with varying settings. We selected βM values 

using the adaptive LIPO algorithm, which performs an informed 
random search across an unknown function, for more details on 
the algorithm, see Malherbe and Vayatis (2017). The adaptive LIPO 
approach is based on uniform sampling across the function domain, 
however, a Lipschitz constant is estimated such that the function 
value maximums can be determined before evaluation. This know-
ledge can be used to avoid running models at poor βM inputs, such 
that a high performing setting can be found in less time. For spe-
cific implementation details, see the open-source R implementation 
(Scavetta 2019).

Metrics for Model Performance
To determine how well a model performs, both for selecting the best 
models and for providing tuning information for hyperparameters 
optimization, mathematical metrics must be calculated. The results 
of a presence-background model can be summarized as the number 
of occurrence points accurately predicted as occurrence points (true 
positive, TP), the number of background points wrongly predicted 
as occurrence points (false positive, FP), the number of background 
points accurately predicted as such (true negative, TN), and the 
number of occurrence points wrongly predicted as background 
points (false negative, FN). As the output of the MaxEnt algorithm 
is a probability, these values will depend on the threshold that is 
set to separate occurrence from background. Using these results, 
various metrics can be calculated, giving an impression of how well 
the model performed.

Many metrics were calculated for our models to give an overview 
of performance. A common metric used is the area under the receiver 

Fig. 2.  Background point selection (blue) with occurrence points (orange) for 
all species. In total, 10,000 background points was sampled. (A) Background 
points were randomly selected from a generated probability density (see 
B) across the United States. (B) Probability density distribution generated 
from all species occurrence points using a normal kernel; probability density 
values were scaled from 1 to 20.

Table 1.  Number of species occurrence points used to create dis-
tribution models

Species No. of localities Unique localities

T. arizonensis 88 40
T. carinatus 40 17
T. desertorum 21 12
T. septentrionalis 389 330
T. smithi 29 26
M. turrifex 174 147
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operating characteristic curve (area under curve; AUC), which meas-
ures the ratio between the true-positive rate (TPR) (TP/(TP + FN)) 
and the false-positive rate (FPR) (FP/(FP + TN)) at all thresholds 
(Peterson et al. 2011). While AUC can be representative of perform-
ance when true absences are present, in general it is a poor metric 
for presence-background studies as well as when modeling the po-
tential distribution of a species (Jiménez‐Valverde 2012). Another 
popular metric, the kappa statistic, compares the model’s output to 
what would be expected by chance. Though kappa has been shown 
to be less likely to score a model overoptimistically (Fernandes et al. 
2018), it has also been criticized for its sensitivity to prevalence, i.e., 
the amount of true occurrence points present in the model (TP + FN) 
(Allouche et al. 2006). The kappa value selected for a model is the 
maximum across all thresholds.

To provide a metric with the advantages that kappa has, without 
the dependence on prevalence, the true skill statistic (TSS) can be 
used (Allouche et  al. 2006). TSS measures the difference between 
the TPR and the FPR at a given threshold. While TSS can generally 
give a good representation of model performance, it may be sus-
ceptible to large study extents as a large value for any of the results 
(TP, FP, FN, and TN) can cause the statistic to prefer overpredictions 
(Wunderlich et  al. 2019). Two additional metrics, the odds ratio 
skill score (ORSS) and the symmetric extremal dependence index 
(SEDI) can be used in place of TSS as they do not converge toward 
overpredictions; ORSS tends to predict performance better with true 
absences while SEDI tends to predict performance better when using 
background points as in this study (Wunderlich et al. 2019). To cal-
culate SEDI, we must calculate the FPR as FP/(FP + TN) and the TPR 
as TP/(TP + FN).

We then calculate SEDI as (ln(FPR) − ln(TPR) − ln(1 − FPR) + 
ln(1 − TPR))/(ln(FPR) + ln(TPR) + ln(1 − FPR) + ln(1 − TPR)). In 
the case that any of the confusion matrix elements (TP, FP, TN, and 
FN) were 0, this metric would become undefined. To account for 
this, we consider SEDI equal to 1 if FP + FN = 0 as there are no false 
predictions. We consider SEDI equal to −1 if TP + TN = 0 as there 
are no true predictions. We consider SEDI equal to 0 if TP + FP = 0 
or if TN + FN = 0, though this case could not happen if the test set 
has both presence and background samples. In all other cases, we set 
the element with 0 predictions as 1e−05 so that we can get a close 
approximation to the true SEDI score. We report AUC, TSS, and 
SEDI for comparison purposes, however, we applied SEDI as the 
main metric for model selection.

Metrics for Model Validation and Evaluation
To avoid overinflation of evaluation metrics in our models resulting 
from learning the training data, we split our total data into two sets, 
training data and testing data. A model is trained (fitted) with the 
training data, while the metrics are calculated using the results of 
the testing data. To achieve a test–train split, we subdivided our data 
equally across four (k = 4) spatially independent bins using the block 
method (Muscarella et al. 2014). We chose to use the block method 
as it performs the best in distinguishing between poor and good fits 
and it implicitly tests a model’s ability to transfer to another region 
(Fourcade et al. 2018). Each bin can in turn act as test data, omitted 
from the data used to fit the model, while the other three bins act as 
training data used to fit the model. This can be repeated for each bin 
such that a total of four tests are performed over the entire dataset. All 
metrics reported are an average of all data partition evaluations, i.e., 
all bins are treated as test data and evaluated once for a given model.

While the metrics selected give an impression of model perform-
ance on the test data, it may also be worth knowing how well the 

model is generalizing (to the test data) compared to how it performed 
on the training data. Rather than computing all metrics twice, once 
for training and once for test, we can use the omission rate at the 
minimum training presence (ORMTP). A value above zero shows that 
there was an occurrence point in the test set with lower suitability 
than the minimally suitable training occurrence point (Muscarella 
et al. 2014).

Quantifying Importance of Environmental Variables
In addition to creating distribution models, we examined which vari-
ables were the most important in determining each species’ distribu-
tion model. To determine the relative importance of each individual 
environmental variable to the models, the fit of each model was com-
pared to reduced univariate models (Phillips 2006). If an environ-
mental variable made up a substantial portion of the model fit when 
it was the only variable used, compared to when all environmental 
variables were used, then that particular variable was considered im-
portant in creating the model for that species (Phillips 2006). This 
was done for each species (Table 3). Response curves of the most 
important variable to each species in each model were also created.

Model fit was measured with the gain statistic. Gain is a likeli-
hood (deviance) statistic that measures the model performance com-
pared to a model that assigns equal habitat suitability to all areas of 
the landscape (Walters et al. 2017). Taking the exponent of the final 
gain gives the (mean) probability of the presence sample(s) com-
pared to the pseudoabsences. For instance, a gain of 3 means that an 
average presence location has a habitat suitability of e3 = 20.1 times 
higher than an average pseudoabsence site (Walters et al. 2017).

Comparisons of Distributions Between Species
We tested whether the ant species differed significantly in their 
habitat associations, which presumably reflects ecological differ-
entiation among the ants. The habitat associations of a species 
are quantified in the species distribution models by the habitat 
suitability scores of each individual pixel (i.e., spatial grain), be-
cause the habitat suitability scores are functions of the environ-
ment across the landscape. The observed levels of differentiation in 
habitat suitability scores across the landscape for pairs of species 
were calculated using the I statistic (Warren et  al. 2008), as this 
value has been shown to be highly correlated with other meas-
ures of niche similarity (Warren et  al. 2008). To test significance 
of the I statistic, we 1) pooled the occurrence data of the two spe-
cies and obtained random subsamples to create two new samples 
with the same amount of observations used to create the original 
distribution maps, 2) modeled the distributions of the subsampled 
datasets in MaxEnt using the best hyperparameters obtained from 
each species, 3)  calculated the amount of overlap in the habitat 
suitability scores of the two subsampled datasets, and 4) repeated 
the above steps 100 times to generate a nonparametric distribution 
of the I statistics (Warren et al. 2010). Two species were considered 
to have significantly different habitat associations if the observed 
(nonpermuted) I statistic for those species was below the empiric-
ally derived 5% permuted distribution of I statistics, corresponding 
to a 5% likelihood that the observed differentiation in habitat as-
sociations among the two species was merely artifactual (Walters 
et al. 2017).

Software
All models were created in the java implementation of MaxEnt 
version 3.4.1 (Phillips 2006). To perform hyperparameter tuning, 
calculate metrics, and calculate niche overlap, an R package was 
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created that is publicly available (Scavetta 2019). The created R 
package makes use of functions from the dismo (Hijmans et  al. 
2017), raster (Hijmans 2019), and ENMeval (Muscarella et  al. 
2014) packages.

Results

Model Validation
All final species models had a SEDI greater than 0.87 ± 0.01 when 
evaluated using the block spatial partitioning method. In addition, 
all selected models have an AUC greater than 0.86 ± 0.02, except the 
T. septentrionalis model with an AUC of 0.74 ± 0.04. In comparison, 
the T. arizonensis, T. carinatus, T. desertorum, and T. smithi models 
had a TSS greater than 0.81 ± 0.05, while the T. septentrionalis and 
M. turrifex models had a TSS of 0.48 ± 0.05 and 0.67 ± 0.04, re-
spectively. The T. septentrionalis and T. carinatus models had ORMTP 
scores close to 0, while the other models had scores ranging from 
0.11 ± 0.04 to 0.16 ± 0.07 (Table 2).

Areas of High Habitat Suitability
The models show areas of low to high habitat suitability in areas 
of the United States. The models of T.  arizonensis, T.  carinatus, 
T.  desertorum, and T.  smithi show high habitat suitability in the 
United States southwest: Arizona, New Mexico, and West Texas 
(Fig. 3). These areas include parts of the North American deserts, 
Southern semiarid highlands, and the temperate sierras (Omernik 
and Griffith 2014).

T.  septentrionalis has high habitat suitability that extends 
from East Texas along the east coast into Long Island, NY (Fig. 
3) throughout Eastern temperate forests, more specifically, the 
southeastern plains, Texas–Louisiana coastal plain, and the 
Mississippi alluvial and southeast coastal plains (Omernik and 
Griffith 2014). The area of high habitat suitability of M.  turrifex 
ranges from Texas and slightly north into Oklahoma (Fig. 3) in 
south central semiarid prairies, Tamaulipas-Texas semiarid plains, 
and southeastern plains (Omernik and Griffith 2014). This distribu-
tion model has areas of high habitat suitability in Western Arizona 
and Southeastern California, but to our knowledge, this species is 
not known to occur in these areas.

Quantifying Importance of Environmental Variables
In all but one model, climate variables have the most predictive 
value, mean annual temperature (BIO1) had the largest test gain for 
M.  turrifex, precipitation seasonality (BIO15) had the largest test 
gain for T. arizonensis, T. carinatus, and T. smithi, and precipitation 
of warmest quarter (BIO19) for T.  septentrionalis. T.  desertorum 
was the only species where soil contributed the most to the per-
formance of the model (annual flood frequency). This soil variable 

though, arguably, has climatic implications. In most other cases, soil 
test gains were relatively low in comparison to climatic test gains.

Response curves for the variable with the highest test gain for 
each species are presented (Figs. 4 and S2 [online only]). Response 
curves show the relationship between species habitat suitability and 
a climate or soil variable.

Comparison of the Individual United States 
Species Models
Out of 15 possible pair-wise comparisons between each species’ dis-
tributions, only one was statistically indistinguishable (T. desertorum 
vs T.  septentrionalis). All other species distribution comparisons 
show significant differences between species (see Table 4).

Discussion

Distributions of Trachymyrmex in North America
In this study, we sought to create conterminous United States spe-
cies distribution models for six North American higher-attine 
nonleaf-cutting ant species from the genera Trachymyrmex and 
Mycetomoellerius. By modeling each species’ distribution, our main 
goal was to determine which environmental variable(s) used in cre-
ating the model would contribute most to the overall test gain of 
the model, thus identifying variables that may explain each spe-
cies’ distribution. We also wanted to document whether each spe-
cies distribution was significantly different from the other species’ 
distribution. This study provides the first predictive species distri-
bution maps for six North American fungus-farming species and 
a more detailed look at what environmental factors are ecologic-
ally impactful to each species and their predicted range distribu-
tions. In all but one of the models (T. desertorum), climate variables 
were the most important to the model’s performance. Annual 
mean temperature (BIO1) had the highest test gain for M. turrifex. 
T.  arizonensis, T.  carinatus, and T.  smithi have precipitation sea-
sonality (BIO15) as the most important variable in their models. 
These three species are western, desert species, so it seems reason-
able that they would share similar climatic variables impacting their 
distributions. Nevertheless, these species appear to prefer slightly 
varying levels of precipitation seasonality within their habitat 
range (Fig. 4). T. septentrionalis has precipitation of coldest quarter 
(BIO19) as being the most important variable in its model’s per-
formance. Highlighted in Table 4 are the variables with the highest 
test gains for each model, however, multiple variables may be im-
portant to each species distribution. For example, T. arizonensis and 
T. carinatus have four variables that have test gains that are greater 
than 1: annual mean temperature (BIO1), isothermality (BIO3), pre-
cipitation seasonality (BIO15), and precipitation of coldest quarter 
(BIO19). On the contrary, soil variables contribute relatively little 
to these two species distributions.

Table 2.  Selected model validation metrics for each species

Species Allowed features Regularization multiplier AUC TSS SEDI ORMTP

T. arizonensis LQHPT 1.28 0.95 ± 0.00 0.89 ± 0.01 0.96 ± 0.00 0.16 ± 0.07
T. carinatus LQHP 2.21 0.97 ± 0.00 0.94 ± 0.00 0.98 ± 0.00 0.05 ± 0.01
T. desertorum L 2.43 0.89 ± 0.02 0.81 ± 0.05 0.93 ± 0.01 0.14 ± 0.04
T. septentrionalis LQH 2.46 0.74 ± 0.04 0.48 ± 0.05 0.87 ± 0.01 0.02 ± 0.00
T. smithi LQH 2.30 0.95 ± 0.00 0.89 ± 0.00 0.99 ± 0.00 0.14 ± 0.04
M. turrifex LQHP 2.17 0.86 ± 0.02 0.67 ± 0.04 0.90 ± 0.01 0.11 ± 0.04

All metrics are calculated from the test set.
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In most studies utilizing distribution modeling techniques, spe-
cies distribution models are used to create distributions of one 
species at a time. In this study, however, we created models that 
represent two species simultaneously: each ant species and its obli-
gate symbiont, their fungal garden. Because the fungal gardens are 
found completely underground, it was hypothesized that the soil 
data may be important contributors to the ant species distributions. 
Surprisingly, however, compared to climate variables, soil variables 
tended to have lower test gain, thus contributing less to the overall 
models, except in the case of T. desertorum. This result was unex-
pected, as some species are found in habitats with very particular 
soil qualities; i.e., T. septentrionalis is generally found in very sandy 
soils and M. turrifex is found mostly in clay soil but can occur also 
in sandy soils (J.S., U.M., unpublished data; Rabeling et al. 2007). 
These findings may be the result of climate variables remaining rela-
tively consistent from pixel to pixel in a given area and having a finer 
resolution compared to the coarsely grained soil variables used in 
these analyses. Additionally, soil variables tend to differ drastically 
in a given area, where climatic variables remain relatively similar in 
the same size area. Therefore, in order to find very specific soil re-
quirements of each species, localized, smaller scale studies may need 
to be conducted. Future modeling efforts could focus on another, 
higher-resolution soil database, SSURGO (USGS 1995b), to focus in 
on smaller areas, such as a county or state.

The fact that climate was generally more important than soils 
to the ant distributions suggests that, at the coarse scale of the en-
tire ranges of these species across the United States, broader climatic 

factors are more important in determining habitat suitability than 
fine-scale factors like soil properties, at least at the relatively coarse 
resolution (i.e., the pixel or grain size) used in this study. This makes 
sense when considering that, across the entire United States, the most 
important determinant of whether an ant will be found in a par-
ticular region is the favorability of the climate in that region. Climate 
provides the coarse outline of the species’ ranges; soils provide more 
definition or shading to these outlines. Scale dependency of eco-
logical phenomena like habitat associations are a long-established 
concept in landscape ecology (Allen and Starr 1982).

Species Distribution Model Differences Among 
Species
Out of 15 possible comparisons between each species’ distribu-
tions, only one was statistically indistinguishable (T.  desertorum 
vs T. septentrionalis) (P = 0.07) (Table 4). This result is somewhat 
unexpected, as we thought that T.  arizonensis, T.  carinatus, and 
T.  desertorum would have greater niche overlap and distribution 
similarity. Though three out of the six species may occur in Texas, 
they are found in very different ecoregions (Rabeling et al. 2007). 
T.  smithi is found primarily in the Chihuahua Desert of western 
Texas, New Mexico, and Northern Mexico (Rabeling et al. 2007). 
M. turrifex is spread throughout most of Texas, southern Oklahoma, 
Arkansas, and Louisiana. In Fig. 3, however, there is moderate to 
high suitability found in many states, with high suitability in Texas 
and in Western Arizona and Southeastern California, though this 
species is unknown to occur in these localities.

Fig. 3.  MaxEnt species distribution models for six higher-attine nonleaf cutter ant species in the continental United States: (A) T. arizonensis, (B) T. carinatus, (C) 
T. desertorum, (D) T. septentrionalis, (E) T. smithi, and (F) M. turrifex. USDA soil data and WorldClim climate data were used to create models. Background points 
were selected using a biased probability density for random sampling across the United States. Areas of dark blue indicate areas of high habitat suitability and 
light yellow indicate areas of extreme low habitat suitability.
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Fig. 4.  Response curves for the most important layer for each species.

Table 3.  Summary information for each individual species’ distribution models for the United States using biased random background 
point selection

Test gain

T. arizonensis T. carinatus T. desertorum T. septentrionalis T. smithi M. turrifex

Full model 5.82 1.49 × 106 4.04 1.18 −1.79 1.13
Annual mean temp. (BIO1) 1.09 1.17 0.27 −1.65 × 107 0.68 0.38
Isothermality (BIO3) 1.50 1.72 0.39 1.15 1.67 0.00
Min. temp. of coldest month (BIO6) 0.97 0.96 0.05 −1.91 × 104 1.12 0.25
Temp. annual range (BIO7) 0.67 0.94 0.12 0.48 0.53 0.07
Mean temp. of wettest quarter (BIO8) 0.80 0.41 −0.01 0.30 0.97 0.18
Precipitation seasonality (BIO15) 1.82 1.72 0.30 −0.94 2.10 0.03
Precipitation of warmest quarter (BIO18) 0.78 0.02 0.65 −2.05 × 109 1.59 0.13
Precipitation of coldest quarter (BIO19) 1.37 1.54 0.18 0.49 1.17 0.16
Annual flood frequency 0.24 0.15 1.34 0.24 0.18 0.21
Available water capacity 0.10 0.10 0.09 −0.01 −0.11 0.02
Calcium carbonate in soil layer 0.33 1.11 0.00 −0.62 1.08 0.16
Cation exchange capacity 0.26 0.51 −0.02 −0.54 1.36 0.10
Share of map unit with hydric soils 0.11 0.11 0.09 −0.02 −0.10 0.02
Erodibility 0.23 0.08 0.02 0.14 0.90 0.16
Average depth of bedrock 0.27 0.29 0.00 −9.64 1.10 0.01
Slope of map unit 0.24 0.46 0.59 0.14 1.18 0.00
Depth of soil 0.35 0.90 0.07 0.16 0.14 0.14

The test gains for the full models are presented, as well as test gains for model fit with only one single variable. The importance of a variable to the full model 
can be estimated by how much of the gain of the full model is accounted for by the gain of the model built with only that single variable. Bold values indicate the 
environmental variable with the highest test gain.
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The distributions of T.  smithi and M.  turrifex may have some 
overlap in far-west Texas, but otherwise have different distribu-
tions, which is documented in collection records and is supported 
by the distribution models in this study. In west Texas, the north-
to-south mountain chain of the Guadalupe mountains, Delaware 
mountains, Apache mountains, and Davis mountains form a higher-
elevation barrier where Trachymyrmex do not seem to occur, and 
where T.  smithi occurs in sandy areas mostly west of that bar-
rier and M. turrifex mostly east of that barrier, but both T. smithi 
and M. turrifex cooccur in the Big Bend area of south-west Texas 
(Rabeling et  al. 2007; U.M., unpublished data). The distributions 
of T. smithi and M. turrifex both differ from the remaining fungus-
farming species found in Texas, T. septentrionalis. T. septentrionalis 
is found primarily in the Post Oak Savannahs and Piney Woods 
of central and east Texas. This species shares some overlap with 
M. turrifex in these areas, but because their soil requirements may 
differ, this overlap tends to be locally patchy (J.S., U.M., unpub-
lished data). The distributions of the three most commonly occurring 
species found in Texas were significantly different than the desert 
occurring species, which is not extraordinary, as their habitat re-
quirements are, in general, drastically different.

An additional two species of higher-attine nonleaf-cutting spe-
cies that are found in the conterminous United States, T. nogalensis 
and T. pomonae, did not have habitat suitability maps created, as 
there are not enough known locations of these species to create 
dependable models. A  ninth higher-attine nonleaf-cutting species, 
Mycetomoellerius jamaicensis, was also not included in this study 
because its distribution is limited to a few locations in coastal 
southeast Florida, the Florida Keys, and the Caribbean (Rabeling 
et al. 2007). Future work could readily model M. jamaicensis using 
the same approach and the same soil and climate layers described 
here, but at a smaller spatial extent more appropriate to forecasting 
the distribution of a localized species. More occurrence data is 
needed to create models for T. nogalensis and T. pomonae.

Conclusion
The methodology used in this study yielded predictive models that 
performed well on a range of metrics. However, these findings do 
not guarantee a realized niche prediction, or where the species is 

found, but instead areas of high habitat suitability for each species, 
or the fundamental niche. The relative high predictive ability, based 
on model validation metrics, of these models may help focus sur-
veying efforts to pinpoint areas of high habitat suitability resulting 
in the discovery of more populations of these ecologically important 
species. In this way, the species distribution models presented here 
serve as a first rough draft of the range maps for these species. This 
study supports the hypothesis that temperature and precipitation, 
rather than soil in most cases, is a range-limiting factor in most mod-
eled species distributions.

Supplementary Data

Supplementary data are available at Journal of Insect Science online.
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