
University of Texas at Tyler University of Texas at Tyler

Scholar Works at UT Tyler Scholar Works at UT Tyler

Electrical Engineering Faculty Publications and
Presentations Electrical Engineering

Fall 11-7-2013

FPGA fault tolerant arithmetic logic: A case study using parallel-FPGA fault tolerant arithmetic logic: A case study using parallel-

prefix adders prefix adders

David H.K. Hoe
The University of Texas at Tyler, dhoe@uttyler.edu

Deepthi Bollepalli
The University of Texas at Tyler

Chris D. Martinez
The University of Texas at Tyler

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_fac

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Hoe, David H.K.; Bollepalli, Deepthi; and Martinez, Chris D., "FPGA fault tolerant arithmetic logic: A case
study using parallel-prefix adders" (2013). Electrical Engineering Faculty Publications and Presentations.
Paper 6.
http://hdl.handle.net/10950/4448

This Article is brought to you for free and open access by the Electrical Engineering at Scholar Works at UT Tyler. It
has been accepted for inclusion in Electrical Engineering Faculty Publications and Presentations by an authorized
administrator of Scholar Works at UT Tyler. For more information, please contact tgullings@uttyler.edu.

https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/ee_fac
https://scholarworks.uttyler.edu/ee_fac
https://scholarworks.uttyler.edu/ee
https://scholarworks.uttyler.edu/ee_fac?utm_source=scholarworks.uttyler.edu%2Fee_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=scholarworks.uttyler.edu%2Fee_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/4448?utm_source=scholarworks.uttyler.edu%2Fee_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu

Hindawi Publishing Corporation
VLSI Design
Volume 2013, Article ID 382682, 10 pages
http://dx.doi.org/10.1155/2013/382682

Research Article
FPGA Fault Tolerant Arithmetic Logic: A Case Study Using
Parallel-Prefix Adders

David H. K. Hoe, L. P. Deepthi Bollepalli, and Chris D. Martinez

Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA

Correspondence should be addressed to David H. K. Hoe; dhoe@uttyler.edu

Received 5 August 2013; Accepted 19 September 2013

Academic Editor: Chien-Min Ou

Copyright © 2013 David H. K. Hoe et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper examines fault tolerant adder designs implemented on FPGAs which are inspired by the methods of modular
redundancy, roving, and gradual degradation. A parallel-prefix adder based upon the Kogge-Stone configuration is compared with
the simple ripple carry adder (RCA) design. The Kogge-Stone design utilizes a sparse carry tree complemented by several smaller
RCAs. Additional RCAs are inserted into the design to allow fault tolerance to be achieved using the established methods of roving
and gradual degradation. A triple modular redundant ripple carry adder (TMR-RCA) is used as a point of reference. Simulation
and experimental measurements on a Xilinx Spartan 3E FPGA platform are carried out. The TMR-RCA is found to have the best
delay performance and most efficient resource utilization for an FPGA fault-tolerant implementation due to the simplicity of the
approach and the use of the fast-carry chain. However, the superior performance of the carry-tree adder over an RCA in a VLSI
implementation makes this proposed approach attractive for ASIC designs.

1. Introduction

Field programmable gate arrays (FPGAs) are growing in
popularity with designers as their ability to be reconfigured
from a desktop computer allows ease of prototyping, rapid
time to market, and minimal nonrecurring engineering
(NRE) cost compared to custom integrated circuit (IC)
designs. As FPGAs can be configured precisely for a given
function, they often offer superior performance in terms of
speed and power compared with using a general purpose
microprocessor-based design. Hence, FPGA-based designs
can form an integral part of a high-performance computing
platform. FPGA manufacturers are using state-of-the-art IC
processes in order to improve performance. For example,
the Virtex 7 FPGA from Xilinx is implemented in a process
with 28 nm feature sizes. Currently, leading edge IC designs
are at the 22 nm technology node and by next year will be
at the 14 nm node. With these nanometric feature sizes, ICs
become more susceptible to faults from external sources like
electromagnetic interference and cosmic radiation, leading to
single-event upsets (SEUs) and multibit upsets (MBUs). As
such, fault tolerant design is important for mission-critical
applications, such as avionic and medical electronics, and for

the improved reliability for space-based systems operating
in harsh and remote environments. A fault tolerant system
has two main features: (1) the ability to detect faults, and (2)
the means to recover from the fault. An ideal fault tolerant
systemwill perform these functionswith aminimumamount
of temporal and area overhead while having the ability to
handle a variety of fault conditions.

This paper focuses on methods for implementing fault-
tolerant arithmetic logic on FPGAs. The adder is often the
critical component in the datapath of an embedded processor
or in the multiply-accumulate unit (MAC) in a digital signal
processing block. As such, the methods discussed in this
paper illustrate techniques for implementing fault tolerance
on a critical component that could be applied to other systems
on an FPGA. This paper expands upon our work previously
reported in conference papers regarding the characterization
of arithmetic logic on FPGAs [2] and the implementation
of fault tolerant adder designs on FPGAs [3]. In particular,
this paper examines the implementation of fault tolerance
in adders that utilize a parallel-prefix scheme for rapid
computation of the carry signals. Prior work in this area
has attempted to exploit the inherent redundancy within the
carry tree of the Kogge-Stone adder [4, 5]. Our approach is

2 VLSI Design

Basic logic element

Switching block

FF

M
U

X

LU
T1/P’s

RST
CLK

0/P

CLB

Figure 1: Structure of the typical SRAM-based FPGA.

LUT

LUT

FF

FF

MUXCY

MUXCYO I

O I

cin

cout

Figure 2: Illustration of the fast carry chain for one slice consisting
of two BLEs in a Xilinx FPGA [1].

to implement a Kogge-Stone adder with a sparse carry tree
combined with several smaller ripple carry adders (RCAs).
This allows the fault tolerant methods of roving and gradual
degradation to be explored. The RCA implemented with the
standard method of Triple Mode Redundancy (TMR) is used
as a point of reference. This paper is outlined as follows. The
second section provides background information regarding
the structure of the modern FPGA, compares the implemen-
tation of RCAs on FPGAs with parallel-prefix designs, and
reviews relevant prior works on implementing fault tolerant
systems on FPGAs.This information is key for understanding
the fault tolerant designs based upon the Sparse Kogge-Stone
(SKS) adder presented in the third section.The fourth section

presents experimental results from this investigation. The
final section provides some conclusions and discussion of
future work in this area.

2. Background and Previous Work

This section provides an overview of fault tolerant techniques
that are relevant for our discussion on FPGA designs. We
begin by reviewing the structure of the FPGA and note the
use of circuits designed to accelerate arithmetic operations,
most notably the fast carry chain. The design of parallel-
prefix adders and their performance relative to the simple
RCA are reported. This is important for understanding our
fault tolerant approach for wide-bit adders discussed in the
next section. Some important fault tolerant techniques that
are relevant for our discussion are also overviewed in this
section.

2.1. SRAM-Based FPGA Architecture. The island-like struc-
ture that generally typifies themodern SRAM-based FPGA is
illustrated in Figure 1. Configurable Logic Blocks (CLBs) are
arranged in a matrix-like grid surrounded by programmable
interconnect. Most modern FPGAs use a hierarchical archi-
tecture where each CLB will consist of a cluster of basic logic
elements (BLEs). Each BLE is composed of a lookup-table
(LUT) capable of implementing arbitrary logic functions and
a flip-flop for storing the output of the LUT.This provides the
option of creating one element of a statemachine in each BLE.
A CLB will typically consist of several BLEs. A routing hier-
archy exists where more efficient routing at a local level can
occur between BLEs compared with routing between CLBs at
intermediate and global levels. This simplifies the complexity
of the programmable interconnect that exists between CLBs,
which includes a series of switching boxes. Not shown are the
specialized functional blocks, such as DSP blocks and block
RAM, that are often included to boost performance for many

VLSI Design 3

Generate and propagate logic

S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16

BC0BC1BC2

BC3

BC4

BC5

BC6

BC7

BC8

BC9

BC10

BC11

BC12

BC13

BC14

BC16

BC17BC20

BC18 BC15

BC19

BC21

BC22

BC23

BC25

BC26

BC27 BC24BC30

BC29

BC28

BC32

BC33BC36

BC35

BC31BC34 GC0

GC1GC2

GC3GC4GC5GC6

GC7GC8GC9GC10GC11GC12GC13GC14GC15

SumSum Sum Sum Sum Sum Sum Sum Sum Sum Sum Sum Sum Sum Sum Sum

B1

B3 B2

B7 B6 B5 B4

cin

cina(
16
),
b(
16
)

a(
15
),
b(
15
)

a(
14
),
b(
14
)

a(
13
),
b(
13
)

a(
12
),
b(
12
)

a(
11
),
b(
11
)

a(
10
),
b(
10
)

a(
9)
, b
(9
)

a(
8)
, b
(8
)

a(
7)
, b
(7
)

a(
6)
, b
(6
)

a(
5)
, b
(5
)

a(
4)
, b
(4
)

a(
3)
, b
(3
)

a(
2)
, b
(2
)

a(
1)
, b
(1
)

c15c16
c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 p1p16

p16g16 g1 p1

Figure 3: Illustration of a 16-bit Kogge-Stone adder.

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

Generate and propagate

12 8 4 2

BC

BC

BC

GC

BC

BC

BC

GC

BC

BC

GC

BCBC BC

13

14

15

16

9

10

11

12

5

6

7

8

1

2

3

4

S13

S14

S15

S16

S9

S10

S11

S12

S5

S6

S7

S8

S1

S2

S3

S4

cin

Figure 4: Illustration of a 16-bit sparse Kogge-Stone adder.

data and signal processing applications. Further details about
specific FPGA architectures are documented by the various
manufacturers [6, 7].

To optimize the implementation of arithmetic operations,
most modern FPGAs include what is known as a fast carry
chain. This improves the performance of RCAs by including
a specialized connection between CLBs. This is illustrated in
Figure 2 for a Xilinx FPGA.The implication is that the simple
linear RCA adder will often have faster operation than an

adder with a logarithmic depth, like the various tree adders
discussed below.

2.2. Basic Adder Design and Performance on FPGAs. This
section reviews the performance of various adder topologies
implemented on FPGAs [2].This information bears relevance
for understanding the fault tolerant architectures discussed
in the next section. On custom ASIC implementations, an
RCA generally has O(n) delay because in the worst case, the

4 VLSI Design

(RC)

(SK)
(KS)

(CS 4)

(CS 8)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1 2 4 8 16 32 64 128 256

Ad
de

r d
el

ay
 (n

s)

Bit width

Ripple carry (RC)

Sparse Kogge (SK)

Kogge Stone (KS)

Carry skip (CS 4)

Carry skip (CS 8)

Figure 5: Measured results for the RCA, carry-skip adders, and
Kogge-Stone adders.

Inputs

Functional block 3

Functional block 2

Functional block 1

Voter
Output

Figure 6: Implementation of triple mode redundancy.

carry signal must propagate through n-stages for an n-bit
wide adder. A parallel-prefix adder precomputes the delay in
a carry tree.The fundamental carry operator (fco), given by (1)
is implemented by the logic blocks in the carry-tree [8]:

(𝑔
𝐿
, 𝑝
𝐿
) ∘ (𝑔
𝑅
, 𝑝
𝑅
) = (𝑔

𝐿
+ 𝑝
𝐿
⋅ 𝑔
𝑅
, 𝑝
𝐿
⋅ 𝑝
𝑅
) . (1)

The signals 𝑔
𝑖
and 𝑝

𝑖
are the generate and propagate

signals, respectively, which are generated from the input
signals [9]. The associative property of the fco is the key to
implementing a minimum logic depth carry-tree, as it allows
these operators to be combined in different ways to enable the
carry signals to be precomputed in parallel. For example, the
carry-out signal for a four-bit adder can be implemented by
the following arrangement of the fco, yielding a logic depth of
two:

𝑐
4
= [(𝑔
4
, 𝑝
4
) ∘ (𝑔
3
, 𝑝
3
)] ∘ [(𝑔

2
, 𝑝
2
) ∘ (𝑔
1
, 𝑝
1
)] . (2)

In general, a parallel-prefix carry tree has a logic depth
log
2
𝑛 for an n-bit wide adder, and hence its delay will be

on the order O(logn). The Kogge-Stone adder is one such
example of a parallel-prefix adder. A further discussion on

parallel-prefix adders can be found in [9, 10]. The Kogge-
Stone adder is of interest for its minimal logic depth and
fanout and for the spatial redundancy in the carry tree which
can be exploited for fault tolerant purposes described below.
The Sparse Kogge-Stone combines portions of the parallel-
prefix carry-tree with a reduced set of RCAs. The two types
of adders for widths of 16 bits are illustrated in Figures 3 and
4. Here we designate BC as the black cell which generates the
ordered pair in (1); the gray cell (GC) generates the left signal
only, following [9].

The RCA and Kogge-Stone adders along with two forms
of a carry skip adder were implemented on a Xilinx Spartan
3E FPGA board and measured using a Tektronix TLA 7012
logic analyzer. The measurement methodology is described
in detail in [2]. Of note is the fact that the linear RCA adder
is faster than all the other adders at a bit width of 128 or
less, as summarized on the graph in Figure 5. Analysis and
simulation results for the Spartan 3E FPGA adders indicated
for 256 bitwidths that the parallel-prefix adders become faster
than the linear RCAs [2].

2.3. Fault Tolerant Techniques on FPGAs. There are essentially
three types of fault detection methods: (1) modular redun-
dancy, (2) offline test methods, and (3) roving fault detection
[11]. This paper will focus on the first and third methods.
The second method covers test methods that occur when the
FPGA is not operational, such as built-in-self-test (BIST) and
𝐼DDQ test methods [12, 13].

In the first method, extra logic is added to allow
concurrent error detection. The simplest example is triple
mode redundancy (TMR), where a given functional block
is replicated twice and a voter circuit is used to choose the
majority signal, as illustrated in Figure 6. The advantage of
this approach is its straightforward implementation and its
relatively fast speed of detection and correction. CAD tools
such as Xilinx’s TMRTool exist to assist the designer in auto-
matically creating TMR implementations on an FPGA [14].
The disadvantage of this approach is the added overhead in
terms of area and power dissipation. It has been demonstrated
that using TMR alone is not effective in mitigating radiation-
induced single event upsets (SEUs), but utilization of the
proper placement of the redundant modules can improve
robustness [15]. Determining the optimal partitioning of the
logic functions can also be used to improve the fault tolerance
of FPGA-based systems [16]. Furthermore, combining TMR
with the appropriate fault recovery system involving reconfig-
uration can improve robustness for multi bit upsets (MBUs)
[17].

Roving fault detection involves a continuous selection
of functional blocks for systematic testing that progressively
scans the entire FPGA over time. A built-in-self test is
performed on the selected block, which is replaced with a
redundant block to allow the system to remain operational.
This method has less area overhead than modular redun-
dancy but is not quite as fast. Figure 7 illustrates the basic
approach. Important work in this area includes the creation
of a roving self-test area (STAR) on an FPGA, allowing the
effective testing of both logic and interconnect [18, 19].

VLSI Design 5

Test
block 1 2 3

Testing

4

(a)

Test
block 1 2 3

Testing

4

(b)

Figure 7: Illustration of the roving test method: (a) block 1 is under test, while remaining blocks remain operational, (b) block 1 returns to
operation, while block 2 now undergoes testing.

Odd tree

Even tree

Figure 8: The carry tree of an 8-bit Kogge-Stone adder illustrating
the mutually exclusive even and odd carry signals.

Generate and propagate

Carry Mux

C
ou

nt
er

Te
st

RC

Te
st

RCRC
0

RC
1

RC
2

RC
3

Sum Mux

Er
ro

r s
ig

na
l

Untested sum Tested sumT d
Comparator

Final sum

Counter

Clk

Sparse Kogge-Stone carry tree

Figure 9: Block diagram of the fault tolerant sparse Kogge-Stone
adder.

Fault recoverymethods can also be considered to occur at
three possible levels: (1) the hardware level, (2) configuration
level, and (3) systems level [11].There is some overlap between
fault detection and fault recovery methods. For example,
the modular redundancy approach of TMR will both detect
and correct a fault. The focus of this paper will be on the
hardware level for fault recovery. At this level, the FPGA
remains unchanged in terms of how it is configured. This

method takes advantage of the regular structure of the FPGA,
allowing a faulty logic block to be replaced by a spare logic
block.Themost common approach at this level is to add spare
columns and rows similar to what is used in large memories
to improve yield. In the context of the FPGA, a spare column
or row is shifted in to replace the faulty one [20].

Configuration level recovery also involves the replace-
ment of faulty blocks with spare ones, but in this case
run time reconfiguration is utilized to route in the spare
blocks. There are several strategies used to determine how
to reconfigure the FPGA depending on the overall goals.
For example, cluster reconfiguration aims to tolerate faults
which occur in clusters [21], while the goal of pebble shifting
is to minimize the area and timing overhead [22]. At the
system level, a spare functional module is inserted into the
block. Alternatively, the faulty module is no longer used,
but the modular design allows the FPGA design to continue
operating, albeit at a degraded level of performance [23].The
above brief outline of fault tolerant methods for FPGAs is not
meant to be exhaustive but rather to provide some context
and to highlight some past approaches which are relevant for
our proposed approach to fault tolerance on arithmetic logic
circuits implemented on FPGAs. For comprehensive surveys
on FPGA fault tolerance, see [11, 24].

3. Fault-Tolerant Adder Designs

Using modular redundancy, a fault tolerant adder on an
FPGA can be efficiently constructed using three RCAs and
a voter circuit. The advantage of this approach is its ease of
implementation and speed. As noted in the previous section,
the RCA adder is the fastest type of adder on an FPGA for
bit widths at 128 or below and can be efficiently implemented
due to the fast carry chain. The disadvantage of TMR is the
added area and power overhead. This design will form our
base implementation to compare with other designs and will
be referred to as the TMR-RCA design.

A fault tolerant adder can be more compactly imple-
mented by taking advantage of the inherent redundancy in a
Kogge-Stone adder. As noted in [4], the carry tree of a Kogge-
Stone adder contains mutually exclusive logic for generating

6 VLSI Design

A inputs

B inputs

Carry input

Clk

Counter 00 01 10 11 00 01 10

Tested sum

Tested RC RC0 RC1 RC2 RC3 RC0 RC1 RC2

S1 : 4 S5 : 8 S9 : 12 S13 : 16 S1 : 4 S5 : 8 S9 : 12S13 : 16

B1 : 4 B5 : 8 B9 : 12 B13 : 16 B1 : 4 B5 : 8 B9 : 12

A1 : 4 A5 : 8 A9 : 12 A13 : 16 A1 : 4 A5 : 8 A9 : 12

c12 c8c8c4 c4cin cin

Figure 10: Timing diagram of the fault tolerant sparse Kogge-Stone adder.

Correction delay 𝜏

Figure 11: Simulation of a fault-injection into the fault tolerant sparse Kogge-Stone adder.

the even and odd carries, as illustrated in Figure 8. This
spatial redundancy can be exploited to add a measure of
fault tolerance to the Kogge-Stone adder as follows. If a fault
occurs in one half of the tree, the other half can be utilized
to compute the signals for both the even and odd carries.
Essentially, there is a tradeoff in time versus area. The adder
in this case will now produce a correct output once every
two clock cycles instead of one. As explained in [4], with
the proper scheduling and microarchitectural changes, this
tradeoff can be tolerated. A drawback of this approach is that
no means of fault detection was given.

This paper proposes the use of a sparse Kogge-Stone
(SKS) adder to make a fault tolerant design capable of both
detecting and correcting faults in the carry tree. As noted
in the previous section, the SKS adder has essentially the
same delay as a regular Kogge-Stone (RKS) adder when
implemented on an FPGA.The carry tree is greatly simplified,
although several small RCAs must be included in the design.
As the RCA adder is relatively fast on an FPGA, there is no
loss in speed as the simplification in the carry tree makes up
for the increase in the adder’s critical path. The basic idea

for making the RCA section fully fault tolerant is shown in
Figure 9.

The blocks labeled RC0 to RC3 are equally sized RCAs,
and they can be made fault tolerant by inserting two addi-
tional RCAs, identified as TestRC in Figure 9. Both the RC0
to RC3 and TestRC blocks are identical in bit width. With
the addition of some multiplexers, control circuits, and a
comparator, the RCAs can bemade fault tolerant in amanner
similar to the TMR-RCA. During each clock cycle one of
the four adders RC0 to RC3 will be selected for testing by
sending its input to both of the TestRC blocks. By comparing
the output of the RCA under test with the two outputs
of the TestRC, a fault can both be detected and corrected.
The control circuit basically consists of a counter driven by
the clock. The counter drives a set of multiplexers which
determine which inputs to route to the TestRC blocks. At the
same time, the output of the selected RCA (one of RC0 to
RC3) is connected to the voter circuit to compare its output
with those of the two TestRC blocks. On the falling clock
edge, the validated sum is latched and concatenated with
the remaining sum bits. The timing diagram in Figure 10

VLSI Design 7

Generate and propagate

12 8 4

BC

BC

BC

GC

BC

BC

BC

GC

BC

BC

GC

BCBC BC

C4-CC8-C

C4-RC8-RC12-R

C12-C

(3) (2) (1)

RC0RC1RC2RC3

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

13

14

15

16

9

10

11

12

5

6

7

8

1

2

3

4

S13

S14

S15

S16

S9

S10

S11

S12

S5

S6

S7

S8

S1

S2

S3

S4

cin

cin

cout

Figure 12: Fault detection scheme for the carry tree of a 16-bit sparse Kogge-Stone.

Generate and propagate

C
ou

nt
er

RC
0

RC
1

RC
2

RC
3

Comparator

Clk

Sparse Kogge-Stone carry tree

Sum Mux

Input Mux

1111 0000RC
Sp

ar
e

Sum (15 down to 0)

Smux5 Smux4 Smux3 Smux2 Smux1

Stest

C
ou

nt
er

Inputs chosen

Res Mux

X = 1111 or 0000

c = 1
A, B = 1111

c = 0
A, B = 0000A, B (16–13) A, B (12–9) A, B (8–5) A, B (4–1)

c12 c8 c4 c0

Figure 13: Implementation of graceful degradation on a sparse
Kogge-Stone adder.

summarizes the operation. If an error is detected, the clock
operating the bit counter is halted at the RCAwhere the error
was detected and will continue correcting the faulty RCA
until the error no longer persists.

After coding the design using VHDL, it was simulated
with ISIM. Figure 11 illustrates the successful detection and
correction of an error in one of the RCAs. This simulation
shows a worst-case error detection and correction time delay,
which occurs when the fault is introduced into an RCA
immediately after it has been tested. The input signal labeled
fault is used to inject a fault into one of the RCAs, and the
output signal error goes high when a fault is detected. The

delay 𝜏 is the time required for the error to be corrected. In the
this case, three clock cycles elapse before this error is detected,
which allows three incorrect results to pass through (“fffa”
twice and “5550”). When the error is detected on the third
clock cycle, the signal driving the counter (controlout) is held
low and the correct answers are produced on the falling edge
of the clock (“fffe”).

Fault detection can also be implemented into the carry-
tree portion of the SKS adder although a more sophisti-
cated tradeoff using temporal redundancy is required. One
approachwould be to compare the carries from the carry-tree
with the outputs of the RCAs, as illustrated in Figure 12. The
temporal tradeoff is that the carries generated by the carry-
tree (C12-C, C8-C and C4-C) will occur first as expected,
followed by the carries from the RCAs (C12-R, C8-R and C4-
R). By comparing the two sets of carries when they are all
available, a scheme can be developed for isolating a potential
fault to one of the regions labeled (1), (2), or (3) as in
Figure 12. For further details on this scheme, the interested
reader is referred to our discussion in [3].

Another fault tolerant scheme that can be implemented
with the SKS adder is a form of graceful degradation. An
RCA block, labeled RCSpare, is inserted into the design as
illustrated in Figure 13. Similar to the roving method, in
each clock cycle the RCSpare block is swapped with one
of the RCA adders (RC0 to RC3). The swapped block then
undergoes a self-test. If the swapped block is found faulty,
the RCSpare block can remain permanently connected in
the adder. In our particular implementation, the self-test
uses one set of inputs to test the swapped RCA module,
although more sophisticated tests can be applied at the
cost of additional testing time. Once the RCSpare block is
permanently swapped with the faulty RCA block, no further
fault checking is possible and fault tolerant capability is lost.

8 VLSI Design

Figure 14: Simulation results for a 64-bit graceful degradation sparse Kogge-Stone adder.: (a) normal operation and (b) injection of a fault
when 𝑐in = 0, a = b = “ffffffffffffffff”. The correct sum is obtained at cycle 7 (“fffffffffffffffe”).

0

500

1000

1500

2000

2500

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits

N
um

be
r o

f
LU

Ts

Adder bit width

TMR-RCA
Sparse Kogge-Stone
Graceful degradation

Figure 15: Amount of LUT resources used from FPGA synthesis of
the adders.

However, this can be remedied by adding more replacement
blocks.This is a tradeoff between fault tolerant capability and
area.

The graceful degradation design for various bit widths
was coded in VHDL and simulated using ISIM. A signal
named fault is used to inject a fault into one of the RCAs, and
the signal error goes high when a fault is detected. Figure 14
illustrates the simulation results when a fault is injected into
one of the RCA chains for a 64-bit sparse Kogge-Stone adder
using graceful degradation.

4. Experimental Results and Discussion

This section details the results from the synthesis and imple-
mentation of the three fault tolerant adder designs: the TMR-
RCA, the fault tolerant sparse Kogge-Stone (SKS) adder, and
the SKS adder with graceful degradation. The results are
obtained for a Spartan 3E FPGA. First, a summary of the
resources used on the FPGA for each adder is presented in
order to give an idea of the implementation complexity. The

0

5

10

15

20

25

16 bits 32 bits 64 bits 128 bits 256 bits

D
el

ay
 (n

s)

Adder bit width

Graceful degradation
TMR-RCA
Sparse Kogge-Stone

Figure 16: Delay of fault tolerant adders on a Spartan 3E FPGA from
the synthesis reports.

delay characteristics for the adders of various bit widths are
reported both from the synthesis reports and experimental
measurements. A discussion of the results concludes this
section.

Implementation statistics for the three adder were
obtained by synthesizing the adders using the Xilinx ISE
software. The number of resources in terms of look-up tables
(LUTs) is reported in the graph shown in Figure 15. It can
be observed that the TMR-RCA uses the lowest number of
resources due to its simplicity and compact implementation
made possible by the fast carry chain.

Figure 16 depicts the delay versus bit widths for the three
adders as estimated from the synthesis reports from the
Xilinx ISE tool. The TMR-RCA exhibits the best delay for bit
widths of 128 and less, again due to its simple design and its
ability to take advantage of the fast carry chain.

It is only at very large widths around 256 bits that the
other designs become comparable in terms of delay, with the

VLSI Design 9

Figure 17: Screen shot of the measured delay for the 64-bit TMR-RCA using a Tektronix TLA 7012 logic analyzer. The delay obtained at a
particular transition is highlighted by the red arrows.

graceful degradation approach that uses a sparseKogge-Stone
adder having the best delay at this point.

The synthesized designs were implemented on a Spartan
3E FPGA up to a width of 128 bits, and the functional
verification and critical delay of the adders were determined
by using a high-speed Tektronix logic analyzer (TLA 7012).
TheMagniVu acquisition option on our logic analyzer is able
to resolve signals with a resolution down to 20 ps, allowing
direct measurement of the delays. Additional test circuitry
was synthesized on the FPGA to allow generation of the
appropriate test signals. Our test methodology for removing
delays due to cabling and the added test logic was previously
reported in [2]. An example of the resulting waveforms
obtained from our logic analyzer for measuring the delay is
given in Figure 17.

Figure 18 summarizes the measured critical delay of the
three fault tolerant adder delays as a function of adder width.
While the measured delays are lower than what is predicted
by the synthesis reports, the overall trend is similar: the
TMR-RCA exhibits the smallest delay up to around 128 bits,
followed by the graceful degradation and SKS adders.

The simple structure of the TMR-RCA and the use of
the fast-carry chain give it the best delay characteristics up
to very large bit widths. In addition, the entire adder chain
is monitored for faults, and recovery takes place within one
clock cycle. With the sparse Kogge-Stone designs, only the
RCA chains are monitored for faults and several clock cycles
may be needed to recover from a fault. Additional tradeoffs in
terms of time and area are necessary to make the sparse carry
trees also fault tolerant [3].

The results reported here indicate that the straightforward
implementation of the TMR-RCA shouldmake it the primary
choice for implementing fault tolerant arithmetic logic on
FPGAs unless very wide adders are being designed. However,
it is worth exploring the Kogge-Stone adder further for
fault tolerant implementation on ASIC designs. On a custom
integrated circuit, the RCA will not have the advantage of the
fast carry chain, and hence, parallel-prefix adders will have
superior delay characteristics.

0

2

4

6

8

10

12

14

16

16 bits 32 bits 64 bits 128 bits

D
el

ay
 (n

s)

Adder bit width

TMR-RCA
Graceful degradation
Sparse Kogge-Stone

Figure 18: Measured delay of FT adders on a Spartan 3E FPGA.

5. Conclusions and Future Work

This paper has studied the implementation of fault tolerant
adder designs on FPGAs using some well-known techniques,
including modular redundancy, roving, and graceful degra-
dation. Our results indicate the importance of knowing the
FPGA structures and characteristics of the various adder
topologies when implemented on FPGAs. For VLSI designs,
parallel-prefix adders with delays on the order O(log n)
have superior delay performance compared to the linear
performance of the RCAs; the same does not hold for FPGA
designs.The fast carry chain enables RCAs to exhibit superior
delay performance on an FPGA, making the TMR-RCA the

10 VLSI Design

most efficient fault tolerant design in terms of resources used
and delay for FPGA implementations. But the RCA does
not have this advantage on a custom IC design. Hence, it
will be worthwhile to further explore the benefits of the
Kogge-Stone architecture in a VLSI design. In particular,
studying the tradeoffs between the length of the RCA adders
and the degree of sparseness in the carry tree used in a
sparseKogge-Stone adderwould be an important study for an
ASIC implementation. This would allow fault detection and
recovery to be accomplishedwith varying levels of granularity
when using the roving and gradual degradation methods
with the SKS adder designs. Furthermore, efficient methods
for making the carry-tree fault tolerant should be studied.
Our work to date indicates that a degree of fault detection
and recovery can be implemented in the carry tree when
additional delay and logic overhead can be tolerated.AnASIC
design might have further flexibility in making this tradeoff
more efficient.

References

[1] Spartan 3 Generation User Guide, http://www.xilinx.com/
support/documentation/user guides/ug331.pdf.

[2] D. H. K. Hoe, C. Martinez, and S. J. Vundavalli, “Design and
characterization of parallel prefix adders using FPGAs,” in
Proceedings of the 43rd IEEE Southeastern Symposium on System
Theory (SSST ’11), pp. 168–172, Auburn, Ala, USA, March 2011.

[3] C. D. Martinez, L. P. D. Bollepalli, and D. H. K. Hoe, “A fault
tolerant parallel-prefix adder for VLSI and FPGA design,” in
Proceedings of the 44th IEEE Southeastern Symposium on System
Theory (SSST ’12), pp. 121–125, Jacksonville, Fla, USA, March
2012.

[4] S. Ghosh, P. Ndai, and K. Roy, “A novel low overhead fault toler-
ant Kogge-Stone adder using adaptive clocking,” in Proceedings
of the Design, Automation and Test in Europe (DATE ’08), pp.
366–371, Munich, Germany, March 2008.

[5] P. M. Kogge and H. S. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations,”
IEEE Transactions on Computers, vol. 22, no. 8, pp. 786–793,
1973.

[6] Xilinx Inc, http://www.xilinx.com.
[7] Altera Corporation, http://www.altera.com/.
[8] R. P. Brent andH. T. Kung, “A regular layout for parallel adders,”

IEEE Transactions on Computers, vol. 31, no. 3, pp. 260–264,
1982.

[9] N. H. E. Weste and D. M. Harris, CMOS VLSI Design, Pearson,
Addison-Wesley, 4th edition, 2011.

[10] D. Harris, “A taxonomy of parallel prefix networks,” in Proceed-
ings of the 37th Asilomar Conference on Signals, Systems and
Computers, pp. 2213–2217, Pacific Grove, Calif, USA, November
2003.

[11] E. Stott, P. Sedcole, and P. Y. K. Cheung, “Fault tolerantmethods
for reliability in FPGAs,” in Proceedings of the International
Conference on Field Programmable Logic and Applications, pp.
415–420, Heidelberg, Germany, September 2008.

[12] M. Abramovici and C. Stroud, “BIST-based detection and
diagnosis of multiple faults in FPGAs,” in Proceedings of the
International Test Conference, pp. 785–794, Atlantic City, NJ,
USA, October 2000.

[13] L. Zhao, D. M. H. Walker, and F. Lombardi, “IDDQ testing
of bridging faults in logic resources of reconfigurable field
programmable gate arrays,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1136–1152, 1998.

[14] Xilinx TMR Tool, http://www.xilinx.com/ise/optional prod/
tmrtool.htm.

[15] L. Sterpone and M. Violante, “Analysis of the robustness of the
TMR architecture in SRAM-based FPGAs,” IEEE Transactions
on Nuclear Science, vol. 52, no. 5, pp. 1545–1549, 2005.

[16] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda,
“On the optimal design of triple modular redundancy logic for
SRAM-based FPGAs,” in Proceedings of the Design, Automation
and Test in Europe (DATE ’05), pp. 1290–1295, Munich, Ger-
many, March 2005.

[17] M. G. Gericota, L. F. Lemos, G. R. Alves, and J. M. Ferreira,
“On-line self-healing of circuits implemented on reconfigurable
FPGAs,” in Proceedings of the 13th IEEE International On-Line
Testing Symposium (IOLTS ’07), pp. 217–222, Crete, Greece, July
2007.

[18] M. Abramovici, J. M. Emmert, and C. E. Stroud, “Roving
STARs: an integrated approach to on-line testing, diagnosis,
and fault tolerance for FPGAs in adaptive computing systems,”
in Proceedings of the 3rd NASA/DoD Workshop on Evolvable
Hardware, pp. 73–92, Long Beach, Calif, USA, July 2001.

[19] J. M. Emmert, C. E. Stroud, and M. Abramovici, “Online fault
tolerance for FPGA logic blocks,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 15, no. 2, pp. 216–226, 2007.

[20] F. Hatori, T. Sakurai, K. Nogami et al., “Introducing redundancy
in field programmable gate arrays,” in Proceedings of the IEEE
Custom Integrated Circuits Conference (CICC ’93), pp. 7.1.1–7.1.4,
San Diego, Calif, USA, May 1993.

[21] V. Lakamraju and R. Tessier, “Tolerating operational faults
in cluster-based FPGAs,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA ’00), pp. 187–194, Monterey, Calif, USA, February 2000.

[22] J. M. Emmert and D. Bhatia, “Partial reconfiguration of FPGA
mapped designs with applications for fault tolerance and yield
enhancement,” in Proceedings of the 7th International Workshop
on Field Programmable Logic and Applications, vol. 1304, pp.
141–150, Lecture Notes in Computer Science, London, UK,
September 1997.

[23] Y. Nakamura and K. Hiraki, “Highly fault-tolerant FPGA
processor by degrading strategy,” in Proceedings of the 2002
Pacific Rim International SymposiumonDependable Computing,
pp. 75–78, Tsukuba, Japan, December 2002.

[24] J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A survey of
fault tolerant methodologies for FPGAs,” ACM Transactions on
Design Automation of Electronic Systems, vol. 11, no. 2, pp. 501–
533, 2006.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

	FPGA fault tolerant arithmetic logic: A case study using parallel-prefix adders
	Recommended Citation

	tmp.1701791643.pdf.WK_SC

