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Abstract

A SURVEY OF GRAPHS OF MINIMUM ORDER WITH GIVEN AUTOMORPHISM

GROUP

Jessica Woodruff

Thesis chair: Stephen Graves, Ph.D.

The University of Texas at Tyler
July 2016

We survey vertex minimal graphs with prescribed automorphism group. Whenever
possible, we also investigate the construction of such minimal graphs, confirm minimality,
and prove a given graph has the correct automorphism group.
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Chapter 1

Introduction

In 1939, Roberto Frucht proved a highly significant graph theoretic conjecture: for

every finite group, there exists a graph whose automorphism group is isomorphic to that

finite group [3]. Numerous authors launched investigations into determining the possible

constructions for such graphs given a particular finite group, and, consequently, questions

arose concerning the extremal properties of these graphs, either in regard to vertices or

edges (or both simultaneously). Here, we restrict our survey to the consideration of graphs

with a given automorphism group and the least possible number of vertices.

An important result of this nature was established by Babai in 1974 [2]. Specifically, he

found an upper bound for the minimum number of vertices in a graph with automorphism

group isomorphic to a particular finite group. Excluding the cyclic groups order 3, 4, and 5,

this upper bound is less than or equal to twice the order of the given finite group. Based on

Babai’s conclusions, several authors have successfully narrowed this lower bound (or found

the exact least number of vertices) for various finite groups. For example, the minimum

number of vertices is known for the three aforementioned exceptions and is larger than this

upper bound in each case. See Chapter 2 for full details.

In Chapters 2 through 4, the finite groups which we discuss are the cyclic, dihedral, and

generalized quaternion groups, respectively. In Chapter 5, we include a brief analysis of the

known results for the hyperoctahedral, symmetric, and alternating groups.

1.1 Terminology

To begin, we introduce the definitions and notation which are used throughout: A graph

Γ is the ordered pair (V,E), where V is a finite set of vertices and E is a set of edges where

E ⊆ { {x, y} : x, y ∈ V }. We denote these sets by V (Γ) and E(Γ), respectively. In

addition, two vertices x, y ∈ V (Γ) are adjacent if and only if {x, y} ∈ E(Γ).

Equivalently, we also say x is a neighbor of y (and vice versa, y is a neighbor of x) if

and only if {x, y} ∈ E(Γ). For x ∈ V (Γ), the neighborhood of x is given by N(x) = {y ∈
V (Γ) : {x, y} ∈ E(Γ)}. Further, we say the degree of x is equal to |N(x)| and denote this

as ρ(x).

Graph automorphisms are the set of adjacency preserving bijections on V (Γ). This set

forms a group which we call the automorphism group of Γ and is denoted Aut(Γ). In particu-
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lar, suppose ϕ is a permutation of V (Γ). Then ϕ ∈ Aut(Γ) if and only if {ϕ(x), ϕ(y)} ∈ E(Γ)

precisely when {x, y} ∈ E(Γ).

Within each chapter, we designate the finite group under consideration by G. We

include all known values of α(G), the minimum number of vertices of a graph Γ having

Aut(Γ) ∼= G. Moreover, we call such graphs minimal, and, whenever possible, we discuss

the known constructions for such graphs. Notationally, we say G-graphs denote graphs with

Aut(Γ) ∼= G, where G is current group being discussed.
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Chapter 2

Finite Cyclic Groups

In each section of this chapter, the group G is considered to be an embedding of some

cyclic group Zn in a symmetric group Sk. For instance in Section 2.2.1, we show

Z4
∼= 〈(1 2)(1′ 2′ 3′ 4′)(1′′ 2′′ 3′′ 4′′)〉 = G

is the embedding of Z4 into the smallest set of symbols such that it is an automorphism

group of a graph. Notice that G is isomorphic to a subgroup of S10. We use the symbol Γ

to refer to a graph whose automorphism group Aut(Γ) is isomorphic to G. Likewise, the

group G of α(G) corresponds to the particular cyclic group embedding regarded in each

section.

In 1985, Arlinghaus completed a comprehensive treatise regarding minimal graphs with

finite abelian automorphism group. His memoir builds upon Meriwether’s unpublished 1963

investigation of minimal graphs with finite cyclic automorphism group. Arlinghaus extends

Meriwether’s results to all finite abelian groups and determines many of the constructions

for minimal graphs with these groups [1].

However, due to the presence of 2-, 3-, and/or 5-cycles in the elements of Aut(Γ), ex-

ceptional structures arise in certain Zn graphs, preventing a straightforward determination

of α(G) for most graphs with non-prime power order cyclic group; likewise, this forces even

more complex structures in graphs with finite abelian group. Due to its length and com-

plexity, we do not include Arlinghaus’s algorithm for determining α(G) for all finite abelian

groups and verification that the values obtained are minimal; further, we omit discussion

of most of his constructions. Full details of his results may be found in his memoir [1].

Herein, we consider Arlinghaus’s determination of α(G) for all cyclic groups and include

constructions of their corresponding minimal graphs when necessary. We also discuss some

examples of particular interest. In 1958, Sabidussi incorrectly addressed the cyclic cases

[14]. Based upon this work, Harary and Palmer published a short paper in 1965, the results

of which are dependent upon false conclusions [9]. Two of their graphs, however, are in fact

minimal. In addition, Sabidussi’s 1966 review partially corrects his results, and he quotes

Meriwether’s (unpublished) work on graphs with cyclic automorphism group. We discuss

these constructions and also include the correct minimal construction for Z4 as originally

constructed by Meriwether.
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2.1 Preliminaries

For the known minimal constructions of particular graphs, we show that the automor-

phism group for each graph is indeed isomorphic to the finite cyclic group in question. We

briefly overview this method in Section 2.1.3, specifically in Lemma 2.1.3.3.

We assume that a graph Γ has the desired automorphism group, i.e. Aut(Γ) ∼= Zn, and

prove that α(G) is indeed minimal. We rely upon the strategy employed by Arlinghaus: we

construct a graph Γ′ where V(Γ′) < V (Γ) and suppose Aut(Γ′) ∼= Zn. Then we show that

under these conditions, Aut(Γ′) is forced to contain noncentral elements, a contradiction.

That is, since Z(Aut(Γ′)) 6= Aut(Γ′), the group Aut(Γ′) is nonabelian. Hence, it cannot be

isomorphic to Zn [1].

The subsequent lemmas address commutativity and include several exceptional cases.

Their proofs are very similar in structure and detail. The techniques to deconstruct the

permutation structure of Aut(Γ) are nearly identical but necessary for the determination

of α(G). In order to streamline this process, Arlinghaus introduces some notation of his

own; e.g. he defines mappings which take a cycle contained in a permutation of Aut(Γ) and

decomposes it into a product of transpositions. He discards minor details and only provides

a few examples of his exact computations.

For the purpose of this chapter, we introduce and discuss a few of these commutativ-

ity lemmas in depth. Later lemmas and theorems involving α(G) and the corresponding

minimal graphs require these lemmas.

While Arlinghaus’ notation is not self-evident, the opacity of his method is made up

for in the efficiency of expressing his computational arguments [1]. We generally follow his

notation but deviate from it when additional clarity is desired.

2.1.1 Notation

Let Γ be a graph and ϕ ∈ Aut(Γ), where ϕ is a permutation. In keeping with Arlinghaus,

we write xϕ = y and read this operation as “replace x with y under the operation of ϕ.” In

effect, we are relabeling a vertex of Γ under right multiplication. The operations that we

define are either cyclic permutations or involutions of the described vertex set of Γ.

Now suppose ϕ ∈ Aut(Γ) and this permutation contains the cycle σ. We use O and a

subscript corresponding to a given cycle in order to denote the orbit made up of the labels

moved by the named orbit. For example, let φ = (1234)(5678)(9 10) and σ = (5678). Then

Oσ = {5, 6, 7, 8}.

2.1.2 Commutativity Lemmas

Lemma 2.1.2.1. Let σ be a cycle of length n and x the element in the first position of σ:
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a) Define χσ as the product of transpositions

χσ =

bn
2
c∏

i=0

(xσi, xσn−i−1),

where b·c is the floor function. If n is odd, the element in the bn2 c position of σ is fixed

by χσ.

b) Define λσ as the product of transpositions

λσ =

bn
2
c∏

i=0

(xσi, xσn−(i+1)−1),

where b·c is the floor function. If n is odd, the element in the last position σ is fixed.

Whereas if n is even, both the elements in the last position and bn2 c position of σ are

fixed by λσ.

Example. Let σ = (1 3 4 6 2 5).

a) Then χσ = (1 5)(3 2)(4 6). If a particular cycle is known for a given Aut(Γ), the process

for determining is relatively simple. However, since most of our operations will involve

arbitrary cycles (with fixed length) of permutations, it is illustrative to include a precise

computation of the above decomposition of σ.

xσi xσn−i−1 Transpositions of χσ

1σ0 = 1 1σ5 = 5 (1 5)

1σ1 = 3 1σ4 = 2 (3 2)

1σ2 = 4 1σ3 = 6 (4 6)

b) Then λσ = (1 2)(3 6). As with χσ, the computation to find λσ is straightforward for a

particular cycle σ. Once again, we include the computation:

xσi xσn−(i+1)−1 Transpositions of λσ

1σ0 = 1 1σ4 = 2 (1 2)

1σ1 = 3 1σ3 = 6 (3 6)

1σ2 = 4 1σ2 = 4 (4 4)

The defining characteristic of graph automorphisms is that they are adjacency preserving

bijections: {x, y} ∈ E(Γ) if and only if {xϕ, yϕ} ∈ E(Γ).

By extension, if ϕ ∈ Aut(Γ) and its the disjoint cycle decomposition contains cycles σ

and τ such that x ∈ Oσ and y ∈ Oτ , then the existence of an edge {x, y} ∈ E(Γ) implies

the existence of many other edges; namely, {xσk, yτk} ∈ E(Γ) for all integers 0 ≤ k < |στ |,
where | · | denotes the order of a permutation. As a consequence, the number of divisors

shared among the orders of the cycles within an automorphism directly affects the number
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of adjacencies which are present in a graph. We illustrate this fact through the following

lemma.

Lemma 2.1.2.2. Suppose ϕ ∈ Aut(Γ) and that σ and τ are distinct cycles in the disjoint

cycle decomposition of ϕ with |σ| = m and |τ | = n’ Let d = gcd(m,n). Further, suppose

x ∈ Oσ and y ∈ Oτ . Then {x, y} ∈ E(Γ) if and only if {xσid, yτ jd} ∈ E(Γ) for all i, j ∈ Z.

Proof. Since any permutation from Aut(Γ) preserves edges, it suffices to show that {x, y}ϕ =

{x′y′} for some ϕ ∈ Aut(Γ). Suppose we have the conditions listed above. By Cayley’s

Theorem, we know that since Aut(Γ) is a subgroup of the symmetric group and likewise

closed under multiplication, if ϕ ∈ Aut(Γ), then ϕi ∈ Aut(Γ) for all i ∈ Z. Choose r, s ∈ Z
such that rm + sn = d. Then for i, j ∈ Z, ϕjrm+isn ∈ Aut(Γ). Now consider the following

computation:

{x, y}ϕjrm+isn = {x, y}ϕjrmϕisn = {xσjrm, yτ jrm}ϕisn

We apply right multiplication with ϕjrm to the vertices of edge {x, y}. Since x ∈ Oσ
and y ∈ Oτ , each vertex is only moved by σ and τ , respectively.

= {x(σm)jr, yτ j(d−sn)}ϕisn = {x(1), yτ jdτ−jsn}ϕisn

= {x, yτ jd(τn)−js}ϕisn = {x, yτ jd(1)}ϕisn = {x, yτ jd}ϕisn

Note that in the steps above we simply applied the fact that rm+ sn = d and the order

of the cycles. That is, |σ| = m and |τ | = n, so σm = 1 and τn = 1.

= {xσisn, yτ jdτ isn} = {xσi(d−rm), yτ jd}

= {xσidσ−rm, yτ jd} = {xσid, yτ jd} = {x′, y′}

Since we have formed this argument with a chain of equalities, we can easily see that

the reverse direction also holds. Therefore, {x, y} ∈ E(Γ) if and only if {x′, y′} ∈ E(Γ).

Corollary 2.1.2.1. Let ϕ ∈ Aut(Γ). Suppose σ and τ are distinct cycles in the disjoint

cycle decomposition of ϕ such that gcd(|σ|, |τ |) = 1. Define Eσ,τ = {{x, y} : x ∈ Oσ, y ∈
Oτ}. Then either Eσ,τ ⊆ E(Γ) or Eσ,τ ∩ E(Γ) = ∅.

Proof. Suppose x ∈ Oσ, y ∈ Oτ and {x, y} ∈ E(Γ). Then {xσi, yτ j} ∈ E(Γ) for all i, j ∈ Z
by the previous lemma. But notice that Eσ,τ = {{xσi, yτ j} : i, j ∈ Z}, and the result

holds.

We demonstrate the application of this corollary, as well as the fact that relatively prime

cycles have little to no effect on one another with a brief example. Further, we note that
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this corollary is usually used to show that a given graph does not have cyclic automorphism

group, as shown in the next example.

Example. Suppose ϕ ∈ Aut(Γ) containing cycles σ = (1 2 3) and τ = (4 5). Clearly the

lengths of σ and τ are relatively prime.

By the lemma, if x ∈ Oσ, y ∈ Oτ , then {x, y} ∈ E(Γ) if and only if {xσi, yτ j} ∈ E(Γ).

Then σ = (123) and τ = (45). The powers of σ are σ0 = (), σ1 = (123), σ2 = (132); the

powers of τ are τ0 = () and τ1 = (45). Thus, (σ, τ)0 = (), (σ, τ)1 = στ , (σ, τ)2 = σ2,

(σ, τ)3 = τ , (σ, τ)4 = σ, and (σ, τ)5 = σ2τ .

We have already assumed that ϕ is an automorphism. Suppose {1, 4} is an edge of Γ.

We consider this edge under the action of ϕ. Observe that 1 ∈ Oσ and 4 ∈ Oτ . Then the

following edges must be present:

Action of ϕ on {1, 4}
{1, 4}() = {1, 4} {1, 4}ϕ3 = {1, 4τ} = {1, 5}

{1, 4}ϕ1 = {1σ, 4τ} = {2, 5} {1, 4}ϕ4 = {1σ, 4} = {2, 4}
{1, 4}ϕ2 = {1σ2, 4} = {3, 4} {1, 4}ϕ5 = {1σ2, 4τ} = {3, 5}

Therefore, the edge orbit of {1, 4} under this graph automorphism is

O{1,4} = {{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}},

and so ϕ acting on {1, 4} forms the induced subgraph K312. Hence if {1, 4} ∈ and ϕ ∈
Aut(Γ), then Γ cannot have cyclic automorphism group.

The presence of one edge between the cycles σ and τ implied the presence of at least

five distinct edges in Γ. In fact, adjacencies occured between every possible pair of vertices

from each of the cycles.

2.1.3 Permutation Lemmas

The lemmas in the preceding section concern the permutation structure of a graph Γ

with a given Aut(Γ). We wish to apply these in the following manner: if we provide a Γ

such that a given permutation representation G ≤ Sk with G ∼= Zn has G ≤ Aut(Γ), then

there exists γ /∈ Z(Aut(Γ)). We use these lemmas to eliminate the possible permutation

structures of Γ which are not cyclic.

Once we construct Γ with the correct permutation structure, the desired Aut(Γ) is

found. The upper bound for α(G) is determined by the structure of Γ imposed by Aut(Γ).

Under the guidance of Arlinghaus, we use the permutation lemmas of this section to show

that particular automorphisms of Aut(Γ) must contain additional cycles, since more vertices

must be available to be permuted. By necessity, the vertex set of Γ is forced to be larger:

|V (Γ)| ≤ α(G).
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We confirm the reverse inequality by showing that there exists an automorphism φ ∈
Aut(Γ) such that 〈φ〉 = Aut(Γ) is required to have the permutation structure that meets

the conditions for which Aut(Γ) ∼= Zn; no automorphisms on fewer symbols suffice.

We provide a discussion of his arguments detailing both directions in establishing α(G)

and include the main lemmas (and corollaries) which are used to justify the theorems.

contained in the last two sections. Due to the involved nature these cyclic cases and Ar-

linghaus’s (necessarily) lengthy proofs, we omit complete descriptions when possible.

Notably, we only include the lemmas directly necessary to the calculation of α(Zn).

For full details, see Arlinghaus’s memoir which completely discusses the original nine-part

lemma [1].

Lemma 2.1.3.1. Let Γ be a graph and φ ∈ Aut(Γ). Suppose the cycle decomposition of φ

contains one and only one cycle σ such that one of the following conditions is true:

1. σ has cycle length n > 2 and the cycle decompositions of all other automorphisms in

Aut(Γ) only contain cycles of length two or coprime to n.

2. σ has cycle length 2n > 4 and the cycle decompositions of all other automorphisms

in Aut(Γ) only contain cycles of length two or coprime to n. .

3. σ has cycle length 3n for n ≥ 1, there exists a cycle τ in some automorphism of A of

length 3m such that gcd(m, 3) = 1 and m ≥ 1, and the cycle decompositions of all

other automorphisms in Aut(Γ) only contain cycles of length two or coprime to 3n.

4. σ has cycle length 5n for n ≥ 1, there exists a cycle τ in some automorphism of A of

length 5m such that gcd(m, 5) = 1 and m ≥ 1, and the cycle decompositions of all

other automorphisms in Aut(Γ) only contain cycles of length two or coprime to 5n.

Then there exists an automorphism ψ ∈ Aut(Γ) such that ψ and φ do not commute.

Further, |ψ| = 2 (note that this particular result does not hold in all cases of the original

lemma given by Arlinghaus).

Proof. Arlinghaus only includes a thorough proof for one case (listed third in the lemma

above) of the original lemma, omitting nearly all details for the remaining cases. He first

indicates the necessary permutation structure for ψ and then confirms ψ ∈ Aut(Γ).

Given the extent of the arguments involved, we only include the description of each

particular ψ which belongs to Aut(Γ) and does not commute with φ under the prescribed

conditions:

Let π denote the product of transpositions (possibly) contained in the given automor-

phism of Aut(Γ). Recall the functions χ and λ as defined in the previous section.

1. If n is odd, then ψ = χσ. Otherwise, ψ = χσπ

2. ψ = λσ

8



3. If n is odd, then ψ = χσχτ . Otherwise, ψ = χσχτπ

4. If every symbol of σ is adjacent to one or none of the first five symbols in τ , then

ψ = χσχτπ. If every symbol of σ is adjacent to two of the first five letters of τ , then

ψ = χσλτ

We can delineate the permutation structure of Aut(Γ) on the basis of even less restrictive

conditions. We present the following lemma:

Lemma 2.1.3.2. Let Γ be a graph and φ ∈ Aut(Γ). Suppose the cycle decomposition of φ

contains the cycle types as listed in one of the following:

1. A cycle of length 2n where n ≥ 1, a cycle of length 4m where such that gcd(m, 2) = 1

and m ≥ 1, and other cycles of length coprime to 2m.

2. A cycle of length 4n where n ≥ 1, a cycle of length 4m where such that gcd(m, 2n) = 1

and m ≥ 1, and other cycles of length coprime to 2mn.

Then there exists an automorphism ψ ∈ Aut(Γ) such that ψ and φ do not commute.

Further, |ψ| = 2.

In the next lemma, we consider three graph constructions. The first has Aut(Γ) ∼= Zpk
for p ≥ 7, the second has Aut(Γ) ∼= Zpk for p = 3 or p = 5, and the third has Aut(Γ) ∼= Z2k

for p = 2 when k > 1. As we prove later, the third construction has Aut(Γ) ∼= Z4 when

k = 2. The lower bound of α(G) for each such group is stated as a corollary.

Lemma 2.1.3.3. Let Γ be a graph. Suppose p is a prime and k ≥ 1.

1. If p ≥ 7, then Aut(Γ) ∼= Zpk when Γ is defined as follows:

(a) V (Γ) is given by the union X(p) ∪X ′(p), where

i. X(pk) = {1, 2, . . . , pk}
ii. X ′(p) = {1′, 2′, . . . , p′}

(b) Let i ∈ X(pk) and j ∈ X ′(p). E(Γ) is designated as follows:
{i, i+ 1} for all i, addition mod (pk)

{j′, (j + 1)′} for all j, addition mod (p)

{i, (j +m)′} for m = −1, 0, 2 and i ≡ j mod gcd(pk, p)

2. If p ≥ 3, then Aut(Γ) ∼= Zpk when Γ is defined as follows:

(a) V (Γ) is given by the union X(pk) ∪X ′(p) ∪X ′′(p), where

9



i. X(pk) = {1, 2, . . . , pk}
ii. X ′(p) = {1′, 2′, . . . , p′}
iii. X ′′(p) = {1′′, 2′′, . . . , p′′}

(b) Let i ∈ X(pk), j ∈ X ′(p), and r ∈ X ′′(p). E(Γ) is designated as follows:

{i, i+ 1}∗ for all i, addition mod (pk)

{j′, (j + 1)′} for all j, addition mod (p)

{i, j′} for i ≡ j mod gcd(pk, p)

{i, r′′} for i ≡ r mod gcd(pk, p)

{j′, (r +m)′′} for m = 0, 1 and j ≡ r mod p

3. If p = 2 and k ≥ 2, then Aut(Γ) ∼= Z2k when Γ is defined as follows:

(a) V (Γ) is given by the union X(p) ∪X ′(pk) ∪X ′′(pk), where

i. X(2) = {1, 2}
ii. X ′(pk) = {1′, 2′, . . . , (pk)′}
iii. X ′′(4) = {1′′, 2′′, 3′′, 4′′}

(b) Let i ∈ X(2), j ∈ X ′(pk), and r ∈ X ′′(4). E(Γ) is designated as follows:

{j′, (j + 1)′} for all j, addition mod (pk)

{i, j′} for i ≡ j mod gcd(2, pk)

{i, r′′} for i ≡ r mod 2

{j′, (r +m)′′} for m = 0, 1 and j ≡ r mod gcd(4, pk)

∗ These edges need not be included when k = 1 and p = 3 or p = 5.

Proof. Sabidussi, Meriwether (unpublished), and Arlinghaus prove 1 [1, 14]. Arlinghaus

states that 2 is a generalization of the constructions given by Sabidussi as well as Harary

and Palmer [1, 9, 14]. We omit these arguments and prove 3 instead, observing that all

such proofs would be extremely similar. Assume we have the construction of Γ given in 3.

First, we show Z4 ≤ Aut(Γ).

Consider an embedding of Z4 into S10: Z4
∼= 〈(12)(1′2′3′4′)(1′′2′′3′′4′′)〉 ≤ S10(omitted

here, this fact is easily checked), and observe that this cyclic group is the set

{1, (12)(1′2′3′4′)(1′′2′′3′′4′′), (1′3′)(2′4′)(1′′3′′)(2′′4′′), (12)(1′4′3′2′)(1′′4′′3′′2′′)}.

Recall Lemma 2.1.2.2. If ϕ ∈ Aut(Γ), then {x, y} ∈ E(Γ) if and only if {xϕ, yϕ} ∈ E(Γ).

This adjacency preserving bijection holds even when the vertices x, y ∈ V (Γ) occur within
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separate cycles of the decomposition of ϕ. Notice that the graph Γ has four distinct sets of

edges.

Under any action of Z4 on V (Γ), E(Γ) is partitioned into four full edge orbits of Γ; edges

are mapped to edges and non-edges to non-edges. Furthermore, each of these edge orbits

corresponds to exactly one distinct set of edges of Γ.

The adjacencies of E(Γ) are necessarily preserved because the permutation structure of

the given embedding of Z4 respects the given construction of Γ. Hence,

Z4
∼= 〈(12)(1′2′3′4′)(1′′2′′3′′4′′)〉 ≤ Aut(Γ).

Now we show the reverse inequality. Recall that for a vertex v ∈ V (Γ), we define the

degree of v, denoted ρ(v), as the total number of its neighbors. If we pick v ∈ V (Γ), then

either ρ(v) = 3, ρ(v) = 4, or ρ(v) = 5. Notice that since Γ contains three different degree

types, the vertices of Γ are partitioned by degree; that is, each of these sets is invariant

under any automorphism of Aut(Γ).

We use right multiplication in keeping with Arlinghaus. Again, we apply Lemma 2.1.2.2.

Since Z4
∼= 〈(12)(1′2′3′4′)(1′′2′′3′′4′′)〉 ≤ Aut(Γ), there exists ϕ ∈ Aut(Γ) such that iϕ = j

for i, j ∈ X, i, j ∈ X ′, or i, j ∈ X ′′. Suppose there exists ψ ∈ Aut(Γ) such that ψ 6= ϕ and

iψ = j. Thus, iϕψ−1 = i. However, we assert (and it suffices to show) that only the trivial

automorphism of Aut(Γ) fixes a vertex of Γ. That is, we have ϕψ−1 = 1 so ϕ = ψ, implying

ψ ∈ Z4 and, certainly, Aut(Γ) ≤ Z4.

Let ψ ∈ Aut(Γ). Without loss of generality, we consider the action of ψ on 1′: 1′ψ ∈
{1′, 2′, 3′, 4′}. Then there is some k ∈ {0, 1, 2, 3} such that 1′ψϕk = 1′ with

ϕ = (12)(1′2′3′4′)(1′′2′′3′′4′′).

We know that ψϕk = (), and so ψ = ϕ−k ∈ 〈(12)(1′2′3′4′)(1′′2′′3′′4′′)〉, which implies

ψ ∈ 〈(12)(1′2′3′4′)(1′′2′′3′′4′′)〉 ∼= Z4. Hence, we must show that ψϕ−k = () is the trivial

automorphism for our reasoning to hold.

Consider the following neighbors of 1′: 1, 1′′, and 2′′. It follows that both 1 and 2 are

fixed as ρ(1) = ρ(2) = 4, and only this pair of vertices has this degree. Then 1′′, which

is adjacent to 1, and 2′′, which is adjacent to 2, are fixed. Consequently, 2′ and 4′, both

adjacent to 2, are fixed. The remaining three vertices, 3′, 3′′, and 4′′, are similarly fixed.

Thus, if an automorphism fixes a vertex, the entire graph Γ is fixed. That is, ψϕ−1 is

the trivial automorphism and we have the reverse inequality as desired, i.e. Aut(Γ) ≤ Z4.

Hence, Aut(Γ) ∼= Z4. Implicitly, we have also established an upper bound for minimality:

α(G) ≤ 10.

Corollary 2.1.3.1. Using the graphs constructed in the preceding lemma,

1. α(G) ≤ pk + p when p ≥ 7 for prime p and k ≥ 1
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2. α(G) ≤ pk + 2p when p =∈ 3, 5 and k ≥ 1

3. α(Z2k) ≤ 2k + 6 when k ≥ 2

In lieu of a formal proof, we remark that considering the constructions for Γ and ap-

propriately applying the conditions listed in Lemma 2.1.3.1 and Lemma 2.1.3.2 provide the

basis for the upper bound given above.

2.2 Cyclic Groups of Prime Power Order

As we stated in the introduction, the presence of certain cycle types in the automor-

phisms of Aut(Γ) prohibit the development of a concise theorem concerning α(G) for all

finite abelian groups. In particular, Z3, Z4, and Z5 are excluded from several theorems

regarding α(G) as well as minimal (vertex or edge) graphs. For example, Babai’s theorem

finding an upper bound for α(G) [2].

As we demonstrate later (and as we showed above), some generalizations can be made

regarding cyclic groups of prime power order n ≥ 7, where n = pk for prime p and k ≥ 1.

However, the exceptions forced by these problematic cycle types complicate such determi-

nations for groups not of prime order.

We discuss these exceptions stemming from the structure of a Zn graph when n has

prime power order divisible by 2, 3, or 5.

2.2.1 Minimal Graphs for Cyclic Groups of Order 2k, 3k, and 5k

First, we include a general theorem determining α(G) for Zn graphs of this type; then

we examine the specific minimal constructions of such graphs when pk = 3, 4, or 5.

Theorem 2.2.1.1. Let Γ be a graph with Aut(Γ) ∼= Zpk . Suppose p ∈ {2, 3, 5} and k ≥ 1

is an integer. Then

α(Zpk) =


2 if p = 1, k = 1

pk + 2p if p 6= 2, k ≥ 1

pk + 6 if p = 2, k > 1

Proof. The result for Z2 is clear. Considering the second case, assume we have the stated

conditions. The upper bound α(Zpk) ≤ pk + 2p holds from from Corollary 2.1.3.4. Let Γ

be a graph with Aut(Γ) ∼= Zpk such that ϕ ∈ Aut(Γ) and 〈ϕ〉 ∼= Zpk . Then the disjoint

cycle notation of ϕ must contain at least one cycle of length pk, and all remaining cycles

have length of some power of p. Further, applying condition 1 of Lemma 2.1.3.1, the

decomposition of ϕ must contain another nontrivial cycle. If this cycle is length either

p = 3 or p = 5, then conditions 3 and 4, respectively, of Lemma 2.1.3.1 forces a third

nontrivial cycle. As a result, |V (Γ)| ≥ pk + p + p = pk + 2p, and so α(G) ≥ pk + 2p.

On the other hand, if this second nontrivial cycle has length pm with m ≥ 2, then clearly

|V (Γ)| ≥ pk + pm > pk + 2p. Thus, α(G) ≥ pk + 2p, proving equality.
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For the third case, assume we have the stated conditions and n = 2k for k ≥ 2. The

upper bound α(Z2k) ≤ pk + 6 holds from from Corollary 2.1.3.4. Let Γ be a graph with

Aut(Γ) ∼= Zn such that ϕ ∈ Aut(Γ) and 〈ϕ〉 ∼= Zn. Then the disjoint cycle notation of ϕ

must contain at least one cycle of length n, and all remaining cycles have length of some

power of 2. Since Γ and ϕ meet condition 1 of Lemma 2.1.3.1, another cycle must exist in the

decomposition of ϕ, which is neither trivial nor a transposition. If the length of this cycle

greater than 4, |V (Γ)| ≥ 2k + 8 and the result holds from the second case of the theorem.

Otherwise, the length of this cycle is 4, in which case by Lemma 2.1.3.1 once again, a third

nontrivial is forced to exist, i.e. |V (Γ)| ≥ 2k + 4 + 2 = 2k + 6. Thus, α(Z2k) ≥ pk + 6,

proving equality.

Recall that F. Harary and E. Palmer published a paper regarding Zn graphs that are

both vertex and edge minimal, including graph constructions for the three special cases

given in this section’s first paragraph. While some of their results are actually specious

[13], the minimal constructions for Z3 and Z5 are not in dispute and are verified by these

authors, as well as Meriwether and Arlinghaus [1, 9].

In fact, Harary and Palmer successfully reduced the total number edges within Sabidussi’s

1959 construction of a graph with Aut(Γ) ∼= Z3. As Arlinghaus remarks in his memoir, their

construction is a specific example of a graph with automorphism group Zpn and pn + 2p

vertices for prime p ≥ 3 and n ≥ 1 [1]. We note, however, and subsequently show that such

a construction is only minimal for p = 3 or p = 5.

Harary and Palmer’s paper was reviewed by Sabidussi, who did not correct the main

error in their construction of Z4. That is, α(G) = 10, not 12, which Meriwether proved in

1963. Arlinghaus reaffirms this fact and we prove it here. His review only addresses the

results based on two (false) theorems from his own paper, indicating that their conclusions

based on his assumptions are questionable [13].

We now discuss the minimal constructions for the special cases Z3, Z4, and Z5, specif-

ically proving minimality for Z4. While the proof provided in Theorem 2.2.1.1 suffices

to verify minimality, few authors have provided explicit details regarding these particular

cases.

Theorem 2.2.1.2. Let Γ be a graph with Aut(Γ) ∼= Zn corresponding to one of the

constructions given in Lemma 2.1.3.3, then

1. α(Z3) = 9.

2. α(Z4) = 10.

3. α(Z5) = 15.

Proof. We verify the second statement; the other cases are proven in a similar manner.

In Lemma 2.1.3.3 part 3, we confirm that the construction given has Aut(Γ) ∼= Z4 and
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α(G) ≤ 10; only the reverse inequality for minimality remains to be shown. We consider

the other possible embeddings of Z4 into a subgroup of the symmetric group Sk for which

k ≤ 10: 〈(1234)〉 ≤ S4, 〈(1234)(56)〉 ≤ S6, 〈(1234)(56)(78)〉 ≤ S8, 〈(1234)(5678)〉 ≤ S8, and

〈(1234)(56)(78)(9 10)〉 ≤ S10. The remaining subgroup of S10 isomorphic to Z4 is what we

show to be the correct embedding.

First, let Γ be a graph such that ϕ ∈ Aut(Γ) and 〈ϕ〉 = 〈(1234)〉. If Γ is a square,

then Aut(Γ) ∼= D8, and, as its complement, Γ′ must have the same automorphism group,

Aut(Γ′) ∼= D8. If Γ is complete, Aut(Γ) ∼= S4; likewise, Aut(Γ′) ∼= S4. We have exhausted

all possible graphs on four symbols, none of which have the correct automorphism group,

demonstrating α(G) > 4.

When Γ is a graph on the stated number of symbols, we observe that the rest of the

cyclic representations of Z4 meet the first condition of Lemma 2.1.3.1. Notice that Lemma

2.1.3.2 may also be similarly applied in some of these cases. As a result, an automorphism

group which contains a permutation of the type given above must also contain another

permutation which does not commute with the first, forcing Aut(Γ) to be non-abelian and

α(G) ≥ 10.

Hence, for a graph Γ with Aut(Γ) ∼= Z4, the smallest possible embedding of Z4 into a

subgroup of Sk is S10. That is, Z4
∼= 〈(12)(1′2′3′4′)(1′′2′′3′′4′′)〉 ≤ S10 and, thus, α(G) =

10.

2.2.2 Minimal Graphs for Cyclic Groups of Order pk

Finally, we exhibit the case which resolves all cyclic groups of prime power order.

Theorem 2.2.2.1. Let p ≥ 7 be prime and k ≥ 1 an integer. Then

α(Zpk) = pk + p

We omit the proof; for similar arguments justifying the upper bound for α(G) in this

case, see the proof provided for Theorem 2.2.1.1.

2.3 Cyclic Groups not of Prime Power Order

We provide the main theorem for determining α(G) in cyclic groups of nonprime power

order, omitting Arlinghaus’s extensive proof. Further, we note that the minimal Zn-graphs

for composite n are often unions of graphs corresponding to the prime factors of n. For

instance, Z24 = Z8 × Z3, so the minimal graph with Z24 automorphism group is the union

of the graphs Z23 and Z3.

2.3.1 Minimal Graphs for Cyclic Groups not Prime Power Order

As we previously observed, powers of 2, 3 and 5 are the exceptions which prevent the

formulation of general theorem to calculate α(Zn) for each n. The conditional structure of
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the theorem addresses all possible such decompositions of nonprime power orders and the

resulting computational effects on α(G).

For the purposes of this theorem, we employ the following notation:

1. Let n = 2a3b5cpk11 p
k2
2 . . . pkss with 5 < pi < pj if i < j, pi is a prime power for each i,

and 1 ≤ ki for each i.

2. Let T =
s∑
i=1

α(Z
p
ki
i

) such that α(Z
p
ki
i

) is α(G) for each cyclic group order pkii where

1 ≤ i ≤ s.

Theorem 2.3.1.1. Let Γ be a graph with Aut(Γ) ∼= Zn, keeping all notation as defined

above. Then

α(G) =



T − 4 if a = 2, b ≥ 1, c = 1

T − 3 if a 6= 2, b ≥ 1, c = 1

T − 1 if a = 2, b ≥ 1, c 6= 1

T − 1 if a ≥ 2, b = 1, c 6= 1

T otherwise

Briefly, we remark that Arlinghaus devotes Chapter 6 of his memoir to the statement

and proof of this theorem. His extension of the cyclic results to all finite abelian groups

constitutes the remainder of his memoir [1].
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Chapter 3

Dihedral Groups

In each section of this chapter, the group G is considered to be an embedding of some

dihedral group D2n in a symmetric group Sk. Note that the dihedral groups under consid-

eration have order 2n. The symbol Γ refers to a graph whose automorphism group Aut(Γ)

is isomorphic to G. Likewise, the group G of α(G) corresponds to the particular dihedral

group embedding regarded in each section.

The problem of finding the fewest number of vertices of a graph with Aut(Γ) ∼= D2n

was thought to have been solved by G. Haggard in 1973 [5]. However, a 1979 paper by

D. McCarthy asserts that Haggard’s results are valid for α(G) only when n < 7, n ≥ 5 is

a prime power, and possibly for n = 12, 15, 20, 24, 30. When his paper was published, the

precise determination of these five cases was unknown [11]. A manuscript including these

is soon to be published; see second paragraph below.

For n ≥ 5, α(G) = n was erroneously assumed to hold for all values of n, based upon

Haggard’s claim that a set of n vertices exists within a corresponding graph of dihedral

automorphism group whereby the set is cyclically permuted by any such ϕ ∈ Aut(Γ) with

|ϕ| = n. Observe that 〈ϕ〉 generates the rotational subgroup of D2n. Nonetheless, this

“special set of generators” only exists when n is a prime power or twice an odd prime

power[6, 11]. Other values of n do not force the inclusion of an n-vertex set in a dihedral

graph, allowing α(G) ≤ n. Examples include these values of n: if n = 77, then α(D154) = 36;

if n = 1001, then α(D2002) = 62.

Therefore, we present Haggard’s determination of α(G) when n = 3, 4, or 6; n ≥ 5 is a

prime power; and n ≥ 8 is twice an odd prime power. Secondly, we describe McCarthy’s

results for n not a prime power and not divisible by 2, 3, or 5. We also note that because

of the importance of McCarthy’s findings, the bulk of this chapter will be devoted to this

case of n.

The remaining cases, however, have yet to be considered. We remark that authors C.

Graves, S. Graves, and L.-K. Lauderdale have submitted a paper solving the case for D2n

when 4 - n. In addition, they are preparing for submission a manuscript that solves the case

when 4|n. Hence, all possible values of n for D2n and the corresponding values of α(G) are

investigated.

The authors of each of these works construct minimal graphs for their found values of

α(G) (if correct), including proof of the graphs having the desired automorphism group.
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While edge minimality (and maximality) is the main topic of Haggard’s and McCarthy’s

papers [5, 11], we will only focus on the least number of vertices possible for a graph having

Aut(Γ) ∼= D2n. This is due in part to the difficulty of determining edge minimal graphs for

a given α(G), especially when α(G) < n for D2n. Thus, exhibiting separate cases for the

possible values of n, we discuss α(G) for the dihedral group and the corresponding minimal

graphs with Aut(Γ) ∼= D2n. Moreover, we note that graphs discussed within these sections

are not necessarily edge minimal.

3.1 Minimal Graphs for D2n when n ≤ 6

Theorem 3.1.0.1. For D2n, let n equal 3, 4, and 6, respectively. Then α(D6) = 3, α(D8) =

4, and α(D12) = 5.

As stated by Haggard, the result for D6, which is isomorphic to S3, follows from the

1968 work of L. Quintas on graphs with symmetric automorphism group. We note that

the construction of a minimal graph having Aut(Γ) ∼= D6 is either totally disconnected or

complete [12] (see Chapter 6 for details on graphs with Aut(Γ) ∼= Sn).

Haggard shows that for D2n where 4 ≤ n ≤ 10, a graph with Aut(Γ) ∼= D8 can be

constructed by the union of two graphs, say ∆ and ∆′ (observe that 〈(1234), (13)〉 ∼= D8.

Assuming Aut(∆) ∼= D8, then ∆′ will be null, totally disconnected, or a 6-vertex asymmetric

graph. Varying certain properties of ∆, e.g. connectedness, as well as its union with one

of the three possible ∆′ determines the number of edges for the construction of the desired

D8-graph. However, the least number of vertices for any such possible graph is 4, as listed

in the theorem above.

Assuming a graph has D12 automorphism group, Haggard notes that it must be con-

structed on at least 5 vertices; otherwise, a D12 does not exist. More specifically, D12
∼=

S2 × S3. Having established α(D12) = 5, we further acknowledge that a 5-vertex totally

disconnected graph has S5 automorphism group, a conclusion again based on Quintas [12].

Thus, the construction of a minimal D12-graph must have at least 1 edge, which Haggard

shows is, in fact, exactly 1.

3.2 Minimal Graphs for D2n when n ≥ 5 is Prime Power

Recall that we have defined Γ to be a graph with dihedral automorphism group and

that the the number of vertices for a minimal graph Γ is α(G).

Theorem 3.2.0.1. If n = pk for p ≥ 5 is prime and k ∈ N. Then α(D2n) = n.

For these values of n, D2n is “directly indecomposable”: a group which cannot be de-

composed into the direct product of proper subgroups [5]. Under these conditions, Haggard

shows that a Γ with Aut(Γ) ∼= D2n must contain a unique set of n vertices. Moreover, this

set is cyclically permuted by any automorphism which can generate the rotational subgroup
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of D2n, as we discussed in the introduction of this chapter. Since any construction of such

a Γ must contain an n-vertex set, α(G) is at least n. Assuming the correct automorphism

group, a minimal graph has α(G) = n.

3.3 Minimal Graphs for D2n when n ≥ 8 and n = 2pk for Odd Prime p

As previously mentioned, any notational differences between our values for α(G) and

McCarthy’s arise from denoting the dihedral group as D2n rather than Dn.

Theorem 3.3.0.1. Let n = 2pk where p is an odd prime and n ≥ 8. Then α(G) =
n

2
+ 2.

For these values of n, Haggard notes that D2n = D2·2pk = D2pk × Z2. Of course, as we

discussed in the former section, D2pk is directly indecomposable and Γ, again, must contain

an n-vertex set. We also remark that α(Z2) = 2 [1] (see Chapter 1 for details about graphs

with cyclic automorphism group). As before, Haggard makes similar arguments for the

construction of Γ but with an additional two points to account for Z2. If we asssume Γ has

the given automorphism group, then a minimal graph must have α(G) = pk + 2 =
n

2
+ 2.

3.4 Minimal Graphs for D2n when n is not Prime Power and 2, 3, 5 - n

For the remainder of this section we assume n is not a prime power and its prime divisors

are greater than 5. McCarthy determines α(G) for such n and further constructs a graph

on α(G) vertices which indeed has Aut(Γ) ∼= D2n. To aid in his proofs, many of which

are combinatorial in nature, he defines an arithmetic function that we include here, ω(n),

deviating slightly from his original notation:

ω(rs) = ω(r) + ω(s),where r, s are relatively prime

ω(p) = 2p

ω(pk) = pk + 2p, for a prime p and k > 1.

McCarthy then conducts the following procedure to find α(G): constructs a graph Γ on

ω(n) vertices, whilst verifying Aut(Γ) ∼= D2n; establishes α(G) ≤ ω(n); and finally confirms

the reverse inequality to prove α(G) = ω(n).

We summarize his results. Note that notational differences are intended for clarity.

To build the graph Γ, McCarthy first constructs what he deems as “building blocks”: i.e.

several smaller graphs, denoted by ∆, and defined below.

Definition. Let d,m > 5 and neither d nor m are divisible by 2, 3, or 5. Let d|m and

suppose ∆ a graph. Then

1. ∆(m, d) is a graph on m+ 2d vertices and 7m edges.

(a) The vertex set of ∆(m, d) is given by the union X(m) ∪X ′(d) ∪X ′′(d), where
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i. X(m) = {1, 2, . . . ,m}
ii. X ′(d) = {1′, 2′, . . . , d′}
iii. X ′′(d) = {1′′, 2′′, . . . , d′′}

(b) Let i ∈ Zm and j ∈ Zd. The edge set of ∆(m, d) is designated as follows:
{i, i+ 1} for all i, j

{i, j′} when i ≡ j, j + 1 or j − 2 mod d

{i, j′′} when i ≡ j, j − 1, or j + 2 mod d

Under the stated conditions, the edges between the elements of X(m) form a

simple cycle of length m. We also note that the vertices of X ′(d) ∪ X ′′(d) are

only adjacent to vertices from X(m). Moreover, each vertex v ∈ X(m) has degree

ρ(v) = 8 (i.e. 2 neighbors per vertex within the simple cycle and 3 additional

neighbors each from X ′(d) and X ′′(d)). Each vertex v of either X ′(d) or X ′′(d)

has ρ(v) = 3
m

d
(since d|m and we are considering three equivalences for each i).

2. ∆(d) is a graph on 2d vertices and 5d edges.

(a) The vertices of ∆(d) belong to the union X ′(d) ∪X ′′(d) (as the two sets defined

above).

(b) Let i, j ∈ Zd. The edges between vertices i and j of ∆(d) are then
{j′, (j + 1)′} for all j

{j′′, (j + 1)′′} for all j

{i′, j′′} when i ≡ j, j − 1, or j + 2 mod d

Here, the conditions yield that X ′(d) and X ′′(d) both form respective simple

cycles of length d, and, given this construction, all vertices v of ∆(d) have degree

ρ(v) = 5.

Consider an automorphism of ∆. If γ ∈ Aut(∆(m, d)) exists such that γ(x) ∈ X ′′(d)

for all x ∈ X ′(d) and γ(y) ∈ X ′(d) for all y ∈ X ′′(d), X(m) must remain invariant. If

neither X ′ nor X ′′ are interchanged under an automorphism, then both sets are invariant

within themselves (regardless to type of ∆-graph). Of course, this invariance must respect

the degree of each type of neighbor. For example, suppose v is a vertex of ∆ under such

an automorphism. If ∆ = ∆(m, d), v is either degree ρ(v) = 8 or ρ(v) = 3
m

d
. If the

former case, the neighbors of v consist of two vertices of degree 8 and six vertices of degree

3
m

d
, three each from X ′ and X ′′; the pair may be exchanged under the automorphism and

likewise each set of three permuted among themselves. If the latter case, every neighbor

of v is degree 8 (i.e. belongs to X(m)) and may be mapped to any other neighbor of v.
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Similarly, every vertex v of ∆(d) are has ρ(v) = 5 and invariance holds in an identical

manner (respecting X ′ and X ′′).

Concerning the second type of automorphsim, we state a lemma which will aid in showing

Aut(Γ) ∼= D2n once Γ is constructed by a carefully selected set of ∆ graphs.

Lemma 3.4.0.1. Let d > 5. If ϕ ∈ Aut(∆(m, d)) and ϕ(1) = 1, then ϕ = () ∈
Aut(∆(m, d)). If ϕ ∈ Aut(∆(d)) and ϕ(1′) = 1′, then ϕ = () ∈ Aut(∆(d)).

Proof. Let u be a vertex in ∆ and suppose N(v) denotes the set of neighbors of u. Recall the

definition of N(v) from the introduction: N(v) = {u ∈ V : {u, v} ∈ E}. Since ϕ ∈ Aut(Γ)

must preserve adjacencies, N(v) is invariant under ϕ; that is, {ϕ(v) : u ∈ N(v)} = N(v).

Now we observe the effects of ϕ on a specific vertex. If three consecutive vertices of a

circuit in ∆(m, d) or ∆(d) are fixed, all vertices of a circuit are fixed. In order to show this,

we exploit the fact that the intersection or union of an invariant set is itself invariant.

Suppose ϕ fixes 1 ∈ X(m) for 1 ∈ X(m) in ∆(m, d). We know from the previous

paragraph that N(1) is invariant under ϕ; the set X(m) is invariant because all of its

vertices are degree 8. Moreover, 2 and m are also invariant since N(1) ∩X(m) = {2,m}.
Now we consider the neighbors of 1, 2, and m which belong to X ′′(d). Call each of these

sets N ′′(1), N ′′(2), and N ′′(m), respectively. Then
N ′′(1) = N(1) ∩X ′′(d) = {1′′, 2′′, (d− 1)′′}

N ′′(2) = N(2) ∩X ′′(d) = {2′′, 3′′, (d+ 2)′′}

N ′′(m) = N(m) ∩X ′′(d) = {d′′, 1′′, (d− 2)′′}

Again, we know N ′′(1) is invariant under ϕ since both N(1) and X ′′(d) are invariant. If ϕ

also fixes 2 and m, N ′′(2) and N ′′(m) are invariant. Otherwise, ϕ interchanges 2 and m,

interchanging the sets N ′′(2) and N ′′(m) as well.

Further, we can apply this line of reasoning to N ′′(1)∩N ′′(2) and N ′′(1)∩N ′′(m). When

these intersections are distinct, the sets are either invariant (if ϕ(2) = 2 and ϕ(m) = m)

or interchanged (if ϕ(2) = m and ϕ(m) = 2). However, interchanging 2 and m also forces

their neighbors 3 and m− 1 to be interchanged under ϕ. Therefore the sets N ′′(1)∩N ′′(3)

and N ′′(1) ∩N ′′(m− 1) must be interchanged.

Recall that based upon our choice of n for D2n, we must have d > 5. Hence, the above

intersections each contain a single point:

N ′′(1) ∩N ′′(2) = {2′′}

N ′′(1) ∩N ′′(m) = {1′′}

N ′′(1) ∩N ′′(3) = {1′′}

N ′′(1) ∩N ′′(m− 1) = {(d− 1)′′}

Consequently, ϕ cannot simultaneously exchange 1′′ with both 2′′ and (d− 1)′′, forcing
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ϕ to fix 2 and m. As another result, 1′′ and 2′′ are also fixed since N ′′(1) ∩N ′′(2) = {2′′}
and N ′′(1) ∩N ′′(m) = {1′′}.

The argument continues in this fashion: having examined the effects of fixing 1 under

ϕ, one consequence of which was ϕ(2) = 2, we examine the neighbors of the fixed neighbors

of 1. For example, we can recognize that because 2 is fixed, 3 and 3′′ are forced to be fixed

and so on. Therefore, all vertices of X(m) and X ′′(d) are fixed by ϕ. McCarthy remarks

that the reasoning for X ′(d) is extremely similar to what is given above and likewise for

∆(d); thus we omit the second argument and the nearly identical proof for ∆(d).

With confidence, we can conclude that if ϕ fixes either 1 ∈ X(m) when ∆ = ∆(m, d) or

1′ ∈ X ′(d) when ∆ = ∆(d), then ϕ fixes all vertices of ∆.

Haggard claims that one immediate consequence follows as a result of the preceding

lemma. We state his assertion in the next theorem:

Theorem 3.4.0.1. Let d > 5. Then Aut(∆(m, d)) ∼= D2m and Aut(∆(d)) ∼= D2d.

We omit the proof of this theorem. However, we prove similar such examples in Chapters

2 and 4. We now have the ability to construct Γ with Aut(Γ) ∼= D2n. McCarthy contends

that arguments analogous to those required for the theorem above justify his given con-

struction. For α(D2n), recall the arithmetic function ω(n) as defined by McCarthy. In a

simplification McCarthy’s notation, these are the definitions for the ∆ graphs that form Γ:

Definition. Let p be a prime.

1. When k > 1, ∆′(pk) = ∆(pk, p)

2. When k = 1, ∆′(p) = ∆(p). Note ∆′(p) has w(p) vertices and Aut(∆′(p)) ∼= D2p

when p > 5.

To construct Γ, we let n = pk11 p
k2
2 . . . pktt and each pkss be a distinct prime for ks > 0 and

1 ≤ s ≤ t; we assume every ps > 5 and t > 1. For 1 ≤ s ≤ t, we consider
t⋃

s=1
∆′(pkss ). The

vertex sets contained in the union of these copies of ∆′(pkss ) are disjoint between graphs.

Now we create additional edges between the following sets: X ′(ps) and X ′(pr); X
′′(ps) and

X ′′(pr), for s 6= r, 1 ≤ s, and r ≤ t. An edge is added so that every element of the first

set is now adjacent to every element in the second set. Together with the union above and

additional edges between vertex sets, we establish the graph Γ.

Based on this construction, we can detail several important features of Γ, leading up to

the proof that Aut(Γ) ∼= D2n. Let R denote the set of all subscripts such that kr > 1 and

1 ≤ r ≤ t. Then each vertex v of X ′(ps) ∪X ′′(ps) has degree

ρ(v) =


5− ps +

∑
ps, s /∈ R

3
pkss
ps
− ps

∑
ps s ∈ R
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and every vertex in X(pkss ) has degree 8 whenever s ∈ R. Additionally, the vertices of Γ

total w(n) =
∑
w(pkss ) =

∑
pkss + 2ps.

Thus, for each r ∈ {1, . . . , t} such that kr > 1, the vertex set of Γ comprises X =⋃
r∈R

X(pkss ) and X ′ ∪X ′′ = X ′(ps) ∪X ′′(ps) for 1 ≤ s ≤ t. Notice that X contains vertices

of exactly degree 8 because ps > 5 and all elements not contained in X must have a

larger degree. As a direct result, X and its complement X ′ ∪X ′′ are invariant under every

automorphism of Γ. We now present McCarthy’s second lemma which will enable us to

show Aut(Γ) ∼= D2n.

Lemma 3.4.0.2. Suppose ϕ ∈ Aut(Γ). Then the subset of the vertices of Γ X is invariant

under ϕ, and, if r ∈ R, X(pkrr ) is also invariant. Additionally, one of the following is true:

1. X ′ and X ′′ are interchanged.

2. X ′ and X ′′ are invariant, and, if r ∈ R, X ′(ps) and X ′′(ps) are invariant for all s.

While omitted here, full details of this lemma’s proof may be found in McCarthy’s

paper [11]. Briefly, we remark that the effect of ϕ acting Γ is readily apparent, given the

construction of such a graph. That is, the vertex set X of Γ comprises various disjoint

unions of simple circuits, each of which remains invariant under ϕ. Moreover, the action of

ϕ on the sets X ′ and X ′′, which are either interchanged or invariant, translates directly to

the action of ϕ on the disjoint unions which make up each of these vertex sets.

We now define two particular permutations, ϕ and χ, as given by McCarthy. Notice that

the mappings describe the behavior of ϕ and χ on the vertices of each ∆′(pkss ) contained in

Γ under the respective permutation:

ϕ(i′) = (i+ 1)′, ϕ(i′′) = (i+ 1)′′

χ(i′) = (ps − i)′′, χ(i′′) = (ps − i)′ for all i ∈ Zps
ϕ(j) = j + 1, χ(j) = (pkss − j) for all j ∈ Z

pkss
when s ∈ R

As defined the powers of ϕ and χ act as rotations and reflections, respectively, of the given

circuits of vertices. We note that |ϕ| = n, |χ| = 2, and χ−1ϕχ = (χ−1χ)ϕ−1 = ϕ−1.

Furthermore, each vertex set contained in Γ (i.e. X, X ′, and X ′′) remains invariant under

ϕ, whereas under χ, X is invariant and either X ′ and X ′′ are interchanged or invariant.

Consider the subgroup of Aut(Γ) generated by ϕ and χ, which McCarthy denotes as A.

We assert that A ∼= D2n because of the relations given above and since every element of A

is written as ϕk or ϕkχ with k ∈ {0, 1, 2, . . . , n− 1} [8].

Applying the two previous lemmas, we can show that A is actually the entire automor-

phism group, i.e. A = Aut(Γ), thereby completing the proof that Γ has Aut(Γ) ∼= D2n.

Theorem 3.4.0.2. Let Γ have the construction as given above. Then Γ has dihedral

automorphism group.
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Proof. Let ϕ and χ be defined as the automorphisms listed above. Then 〈ϕ, χ〉 = A,

A ∼= D2n, and A ≤ Aut(Γ). It remains to be shown that for any γ ∈ Aut(Γ), γ ∈ A.

Following the argument given by McCarthy, we consider χ−kγ. If X ′ and X ′′ are invari-

ant under γ, let k = 0. Otherwise, γ interchanges X ′ and X ′′ and we let k = 0 (observing

that χ also interchanges these two sets). Thus, by the second lemma, X ′ and X ′′ are invari-

ant under χ−kγ. Similarly, χ−kγ leaves X ′(ps) and X ′′(ps) invariant. By the properties of

ϕ (see definition above), this invariance also holds for ϕ−iχ−kγ for all i ∈ {0, 1, . . . , n− 1}.
Now, McCarthy states that if there exists an i of ϕ−iχ−kγ such that the vertices 1 ∈

X(pkss ) and 1′ ∈ X ′(ps) are fixed for each s ∈ R and s /∈ R, respectively, then ϕ−iχ−kγ fixes

Γ by the first lemma. In other words, if ϕ−iχ−kγ = 1 then (ϕiχkϕ−iχ−k)γ = ϕiχk.

Hence, γ = ϕiχk where i ∈ {0, 1, . . . , n − 1} and k ∈ {0, 1}. Thus, γ ∈ A, implying

Aut(Γ) ≤ A.

To find such an integer, we examine the necessary requirements. Under χ−kγ, X(pkss )

is invariant, so χ−kγ(1) = vs ∈ X(pkss ). Now let vs correspond to the smallest positive

integer such that χ−kγ(1′) = vs ∈ X ′(ps) when s /∈ R. Then let i correspond to i ∼= vs

mod pkss . This integer i, McCarthy explains, exists according to the Chinese Remainder

Theorem, since pk11 , p
k2
2 , . . . , p

kt
t are mutually coprime. Therefore, ϕi(1) = vs ∈ X(pkss ) and

ϕi(1′) = vs ∈ X ′(ps) whenever s ∈ R and s /∈ R, respectively, and, moreover, ϕ−iχ−kγ acts

on the vertex sets of Γ in the desired way.

Hence, γ ∈ A so Aut(Γ) = A ∼= D2n.

Altogether, we have shown that Γ has the desired automorphism group, and, further-

more, we have that α(G) ≤ ω(n) since Γ has ω(n) vertices. The reverse inequality must hold

true to establish α(G) = ω(n). Because of the length and technical nature of McCarthy’s

proofs (most of which are not graph-theoretic), we summarize his results on this matter.

First, we state a general result: For any graph Γ with A ≤ Aut(Γ), if ϕ ∈ Aut(Γ) such

that each nontrivial orbit of A is left invariant, then there exists a ϕ′ ∈ Aut(Γ) such that

each nontrivial orbit of A is fixed but agrees everywhere else with ϕ.

Recall the definition of a directly indecomposable group; the dihedral group is directly

indecomposable for all n not twice an odd prime power. Suppose Γ is a graph with Aut(Γ) ∼=
D2n. McCarthy verifies that if the rotational subgroup of D2n is decomposable on the vertex

set of Γ (say, into a direct sum of permutational subgroups A1 and A2 where |A1|, |A2| > 2),

then there exists a nontrivial orbit of A1 not invariant under ϕ. Hence, the number of

vertices of Γ must be of the form given by ω(n).

Finally, McCarthy establishes the desired inequality, i.e. α(G) ≥ ω(n). Suppose A is

a cyclic group of permutations acting on a set of n elements. Suppose |A| = n′ where

n′ = pk11 p
k2
2 . . . pkrr for r > 1 and each pi is a distinct prime for all i ∈ {1, 2, . . . , r}. If A does

not have any direct summands of permuational subgroups of order pkss , then n > ω(n′).

Therefore, McCarthy’s construction of Γ has Aut(Γ) ∼= D2n with α(G) = ω(n) when n

is not a prime power and 2, 3, 5 - n.
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Chapter 4

Quaternion Groups

In each section of this chapter, the group G is considered to be an embedding of the

generalized quaternion group Q2n in a symmetric group Sk. The symbol Γ refers to a graph

whose automorphism group Aut(Γ) is isomorphic to G. Likewise, the group G of α(G)

corresponds to the embedding of the generalized quaternion group regarded in each section.

Additionally we say that σ and τ are the generators of Q2n , whereas each had previously

represented an individual cycle of a permutation belonging to Aut(Γ).

The authors Christina Graves, Stephen Graves, L.-K. Lauderdale have a manuscript in

which they determine that 2n+1 is the minimum number of vertices for Γ when n > 3 [4].

Although beyond the scope of this survey, the authors also constructed a “smallest graph,”

a minimal graph which is constructed on the fewest number of edges. We note that a special

case of smallest graph arises when n = 3 and is treated independently from all n > 3. Full

details will be available upon publication.

4.1 Finding α(G)

In order to provide a proof of the main results, we must first detail a few lemmas

concerning the properties of Q2n .

Lemma 4.1.0.1. Suppose σ and τ are generators of Q2n as given in the following presen-

tation: Q2n = 〈σ, τ : σ2
n−1

= 1 = τ4, τστ−1 = σ−1, σ2
n−2

= τ2〉. Then the only element of

order two is σ2
n−2

= τ2, and each element in the set Q2n\〈σ〉 has order four.

Proof. Let k ∈ {0, 1, . . . , 2n−2−1}. Now every element in the set Q2n\〈σ〉 has the form σkτ .

We observe that because (σkτ)2 6= 1 and (σkτ)2 = σkτσkτ = σkσkττ−1τ = σkσ−kττ = τ2,

this element has neither order one nor two. Moreover, σkτ must have order four since

(σkτ)4 = ((σkτ)2)2 = (τ2)2 = τ4 = 1.

To continue, we note that |σ| = 2n−1, and, as the order of a cyclic group is equal to the

order of its generator, we have |〈σ〉| = 2n−1. Thus, the subgroup 〈σ〉 of Q2n has order 2n−1.

Each element of 〈σ〉 is distinct, which indicates that the only element of order two within

this subgroup must be σ2
n−2

, since σ2
n−2

= τ2.

As we have shown above, every element in Q2n\〈σ〉 must have order four, and since

there is only one element in 〈σ〉 of order two, namely σ2
n−2

, we can conclude that the only

element of order two in Q2n is σ2
n−2

.
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Babai’s result states α(G) ≤ 2|G| for a finite group G other than cyclic groups of order

3, 4, or 5 [2]. In general, a vertex minimal graph with Aut(Γ) ∼= Q2n will have at most 2n+1

vertices. In their manuscript, Graves et al. confirm that this bound is sharp.

For every automorphism group, there is some k so that the group can be written as a

subgroup of Sk. The following lemma establishes a lower bound for such a k when the given

automorphism group is isomorphic to Q2n ; the result is due to Graves et al.

Lemma 4.1.0.2. If k < 2n, then Q2n is not isomorphic to a subgroup of Sk.

Proof. Suppose for sake of contradiction that the statement above is false. Then there exists

a faithful homomorphism φ : Q2n → Sk, where k < 2n. In other words, the kernel of φ,

kerφ, must be trivial by the first isomorphism theorem:

Q2n

kerφ
=
Q2n

1
= Q2n

∼= φ(Q2n) = Sk.

By this homomorphism φ, Q2n acts on a set of symbols, say A, where |A| = k.

Now for each a ∈ A, consider the set

stabQ2n
(a) = {g ∈ Q2n : g · a = a},

and note that stabQ2n
≤ Q2n . When we apply the Orbit-Stabilizer Theorem, we find

[Q2n : stabQ2n
(a)] =

|Q2n |
| stabQ2n

(a)|
= | orbQ2n

(a)|.

However, since | orbQ2n
| < 2n, it is not a trivial subgroup, which implies that

|Q2n |
| stabQ2n

(a)|
6= 2n.

Moreover, | stabQ2n
(a)| 6= 1. Thus, stabQ2n

(a) is also not a trivial subgroup of Q2n .

Furthermore, we state an important fact of the generalized quaternion group: every

subgroup of Q2n is either cyclic or generalized quaternion. We have already shown that

every generalized quaternion group contains a unique element of order two. Thus, according

to Lagrange’s Theorem, we know that every cyclic subgroup of Q2n must have even order.

Moreover, as a general fact of cyclic groups, all cyclic groups of even order contain a unique

element of order two.

Hence, the involution σ2
n−2

= τ2 is contained in every subgroup of Q2n , and so σ2
n−2 ∈

stabQ2n
(a) for each a ∈ A. Therefore, 〈σ2n−2〉 ∈ kerφ, meaning the kernel is not trivial. By

definition, φ cannot not be faithful, which contradicts our original assumption.

Combining this result with Babai’s, we have 2n ≤ α(Q2n) ≤ 2n+1. However, Graves et

al. show that if we represent Q2n as a subgroup G of Sk for 2n ≤ k < 2n+1, and assume that
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Γ is a graph with G ≤ Aut(Γ). Then there is some γ ∈ Aut(Γ)\G. Hence, α(Q2n) = 2n+1.

The graph constructed by the quaternion authors has the same vertex order as a graph

produced by Babai’s construction, but is in fact shown to also be edge minimal.

4.2 Constructing Γ with Aut(Γ) ∼= Q2n

Having established α(G), we reproduce here the construction of an edge minimal graph

Γ with Aut(Γ) ∼= Q2n . Following Graves et al., we prove Γ it has the desired automorphism

group. In order to discuss this proof, however, we first include the authors’ construction.

Letting n ≥ 4, suppose the graph Γ1 has the vertex set

V(Γ1) = Q2n = {1, x, . . . , x2n−1−1, y, xy, . . . , x2
n−1−1y}

and edge set

E(Γ1) = {{g, gy} : g ∈ Q2n}.

The map φ : Q2n → Q2n defined by φ(x) = a and φ(y) = b is an isomorphism. Thus,

φ(Q2n) is an isomorphic copy of Q2n under φ. Letting 1 = a0, suppose the graph Γ2 has

the vertex set

V(Γ2) = φ(Q2n) = {1, a, . . . , a2n−1−1, b, ab, . . . , a2
n−1−1b}

and an empty edge set. Finally, let Γ be the graph with the vertex set

V (Γ) = V(Γ1) ∪V(Γ2)

and edge set

E(Γ) = E(Γ1) ∪ {{g, hc} : g ∈ 〈x, y〉, φ(g) = h, c ∈ {1, a, b}}.

having 2n+1 vertices and 4 · 2n, i.e. 2n+2, edges [4].

As before, they embed Q2n into a symmetric group, now of 2n+1 symbols, and define

its generators σ and τ , which will permute the vertices of Γ. The authors then prove Γ has

Aut(Γ) ∼= Q2n , showing that Γ is vertex minimal.

We include this theorem and its proof, with added detail, here.

Theorem 4.2.0.1. The graph Γ as defined in the construction above has Aut(Γ) ∼= Q2n .

Proof. Suppose Γ is a graph with V (Γ) and E(Γ) as listed above. We have previously stated

that σ and τ are generators of Q2n as defined by the quaternion authors. It suffices to show

that Q2n is a subgroup of Aut(Γ) and, likewise, that any element of Aut(Γ) can be written

as an element of a set isomorphic to Q2n .
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First, let ω ∈ Q2n and the map πω : V (Γ) → V (Γ) be given by πω(v) = ω(v) for all

v ∈ V (Γ). Because of this equivalence, each πω must have the same permutation structure

as the elements of the embedded quaternion group Q2n = 〈σ, τ〉. Observe, then, that the

set

{π, πσ, . . . , πσ2n−1−1 , πτ , πστ , . . . , πσ2n−1−1τ
} = {πω : ω ∈ Q2n}

is clearly an an isomorphic copy of Q2n .

We also claim πω preserves the adjacency relations of E(Γ). That is, πω(v) is an auto-

morphism for all v ∈ V (Γ). To demonstrate this fact, we include a table of the vertex types

and their neighbors within Γ based on the given construction, letting k ∈ {0, 1, . . . 2n−1−1}
and d represent integers modulo 2n−1:

Vertex Type Neighbors

xk xky, x(k−2
n−2)dy, ak, a(k+1)d, akb

xky xk, x(k−2
n−2)d, a(k−2

n−2)d, akb, a(k−1)db

ak xk, x(k−1)d, x(k−2
n−2)dy

akb xk, xky, x(k+1)dy

Recall that according to the construction of Γ, xk, xky ∈ V(Γ1) and ak, akb ∈ V(Γ2).

For all v ∈ V(Γ1), ρ(v) = 5 (i.e. each v is degree 5), and every v ∈ V(Γ2) has ρ(v) = 3.

Thus, if πω is an automorphism of Γ, then V(Γ1) and V(Γ2) must be invariant under any

ω ∈ Q2n . We demonstrate this property by now including the full definition of σ and τ as

given by the quaternion authors [4]. Note that all exponents of the symbols contained in

the cycles of τ are taken modulo 2n−1:

σ = (1, x, . . . , x2
n−1−1)(y, xy, . . . , x2

n−1−1y)(1, a, . . . , a2
n−1−1)(b, ab, . . . , a2

n−1−1b)

and

τ =

2n−2−1∏
i=0

(xi, x−iy, x2
n−2+i, x2

n−2−iy)(ai, a−ib, a2
n−2+i, a2

n−2−ib).

Since all of the cycles within σ and τ are disjoint with respect to each alphabet, vertices

of degree 5 will only be permuted with vertices of degree 5 and, likewise, for degree 3

vertices. Thus, V(Γ1) and V(Γ2) are invariant under πω.

Lastly, πω must preserve the adjacency relations of Γ when permuting vertices within

these invariant sets. We demonstrate this property by briefly describing how a vertex, say

xk, and its neighbors are mapped under σ and τ . Again, k ∈ {0, 1, . . . 2n−1 − 1} and all

powers are taken mod 2n−1.

The table above lists the neighbors of xk. Under σ, xk is sent to xk+1. Of course, then,

we also have σ(xky) = xk+1y; σ(xk−2
n−2

y) = x(k+1)−2n−2
y; σ(ak) = ak+1; σ(ak+1) = ak+2;

and σ(akb) = ak+1b, which were precisely the neighbors of xk+1 before the permutation.

Thus, all of the adjacencies of xk have been preserved. Similarly, any power of σ will
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preserve adjacencies in this manner; a fact which is easily checked since each vertex will be

moved in increasing order of exponent modulo 2n−1.

Under τ , xk is sent to x−ky, so τ(xky) = x−(k+2n−2); τ(xk−2
n−2

y) = x−k; τ(ak) = a−kb;

τ(ak+1) = a−(k+1)b; and τ(akb) = a−(k+2n−2). From the table, we can see that x−k is a

vertex of the form xky, and plugging in −k yields the same neighbors of xk which have just

been found under τ .

Finally, similar arguments can be made for all σkτ where k ∈ {1, 2, . . . , 2n−1 − 1}, as

τ permutes the vertices of Γ in the way shown above and then σ shifts the vertices again

according to their exponents. Both permutations, therefore, move a vertex and all of its

corresponding neighbors so that the adjacency relations of E(Γ) are maintained.

To summarize, for any ω ∈ Q2n , πω acts as an automorphism of Γ for all v ∈ V (Γ).

Thus, we have that {πω : ω ∈ Q2n} ∼= Q2n is a subgroup of Aut(Γ).

For the second half of this proof, we show that an element of Aut(Γ) can be written as

πω for some ω ∈ Q2n , thereby confirming Q2n
∼= Aut(Γ). We have already confirmed that

V(Γ1) and V(Γ2) are invariant under any chosen automorphism of Aut(Γ). Moreover, since

Q2n is transitive, a property of the generalized quaternion group, and Q2n ≤ Aut(Γ), there

must exist an automorphism between any two vertices of either V(Γ1) or V(Γ2). Simply

put, for any v, v′ ∈ V(Γ1), or V(Γ2), there exists φ ∈ Aut(Γ) where φ(v) = v′.

Suppose without loss of generality, we have φ ∈ Aut(Γ) as given above and acting on

v, v′ ∈ V (Γ) as stated. Further, suppose there exists ψ ∈ Aut(Γ) such that ψ 6= φ and

ψ(v) = v′. Thus, ψ−1φ(v) = v. As with the quaternion authors, however, we assert that

only the trivial automorphism of Aut(Γ) fixes a vertex of Γ, which forces ψ = φ, implying

ψ ∈ Q2n and, certainly, Aut(Γ) ≤ Q2n .

The rest of the proof follows exactly from C. Graves, S. Graves, and L.-K. Lauderdale.

In short the authors show that if an automorphism, say χ, fixes any vertex of Γ, then all

vertices of Γ are fixed, i.e. χ must be the trivial automorphism. This consequence arises

from the properties of vertices of the induced subgraphs of Γ. Examples of such subgraphs

are also featured in the quaternion authors’ proof.

Consider the subgraphs located sequentially outward from a given fixed vertex. Within

each of these subgraphs, the vertices are either forced to be fixed or lie in an invariant set.

Proceeding outward in this fashion from the original fixed vertex, more and more vertices of

the invariant sets become necessarily fixed, until, ultimately, the entire graph of Γ is fixed.

Therefore, ψ−1φ(v) = χ(v) = v, implying ψ = φ, and finally, Aut(Γ) ∼= Q2n .

For n ≥ 4, minimal graphs will have the construction given above on 2n+1 vertices.

We note, however, that the construction differs slightly for the case n = 3: a minimal

graph with Aut(Γ) ∼= Q2n where n = 3 has 16 vertices and greater than 2n+2 edges. In

particular, 44 edges, rather than 32 [4]. The full construction is featured in the last section

of the quaternion paper, along with a full proof utilizing the method of exhaustion.
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Chapter 5

Hyperoctahedral, Symmetric, and Alternating Groups

We devote this chapter to the remaining groups which have not yet been discussed and

for whom the values of α(G) are known.

Hence for each section of this chapter, the group G is considered to be an embedding

of the given group. in a symmetric group Sk. The symbol Γ refers to a graph whose

automorphism group Aut(Γ) is isomorphic to G. Likewise, the group G of α(G) corresponds

to the particular group embedding regarded in each section.

We denote each group as follows: the hyperoctahedral group, Z2 o Sn, of order 2nn! is

Hn; the symmetric group of order n! is Sn; and the alternating group of order
n!

2
is An.

For the first section, we consider α(G) for graphs having hyperoctahedral automorphism

group, which follows as a consequence of G. Haggard, D. McCarthy, and A. Wohlgemuth’s

results concerning “extremal edge problems” for graphs of this type.

Next, we summarize L. Quintas’s findings as they relate to α(G) for Γ with Aut(Γ) ∼= Sn

and include a brief proof concerning the construction of such a graph. While the focus of

his paper centers on determining edge minimality for graphs with symmetric automorphism

group, vertex minimality, though not directly mentioned, can be construed from his work.

In the last section of the chapter, we condense a paper by M. Liebeck. He provides a full

examination of graphs having either alternating or a particular finite classical automorphism

group. However, we remark that Liebeck, in the cases of the set of finite classical groups,

only establishes a lower bound for α(G) and does not attempt the construction of a graph,

citing the difficulty of the problem. For this reason, we only include his results for An.

5.1 Minimal Graphs with Aut(Γ) ∼= Hn

As a result of Frucht, we know a graph with hyperoctahedral automorphism group

exists [3]. Haggard et al. do not construct such a graph; rather, they assume a graph Γ has

Aut(Γ) ∼= Sn o Zp, for a prime p, and examine the structure imposed on Γ by Aut(Γ) [7].

The framework of Γ is necessitated by the properties of the automorphism group acting on

its vertex set.

Restricting p = 2, we extrapolate α(G) from their results, noting Hn = Sn o Z2.

Lemma 5.1.0.1. Let Γ be a graph with Aut(Γ) ∼= Sn o Zp, where n > 1 and p is prime.

Then |V (Γ)| ≥ np.
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Proof. A lemma stated and proved by Haggard et al. affirms that if Sn o Zp acts faithfully

on a set, then the set must contain at least np elements [7].

Each action of Aut(Γ) on V (Γ) induces a permutation representation of Aut(Γ) on

V (Γ). If the permutation representation associated with an action is injective, the action is

faithful.

Since only the trivial automorphism can fix the graph Γ, the kernel of an action of Sn oZp
on V (Γ) is trivial, i.e. faithful. Thus, given Aut(Γ) ∼= Sn o Zp, we have |V (Γ)| ≥ np.

Full graph theoretic details and an alternate arithmetic argument are provided in the

Haggard et al. paper [7].

Haggard et al. state that as an “immediate consequence” of the above lemma, a graph

with Sn o Zp automorphism group cannot exist on fewer than np vertices, and, likewise, an

Hn-graph cannot have less than 2n vertices [7].

Theorem 5.1.0.1. Let Γ be a graph with Aut(Γ) ∼= Hn. Then α(G) = 2n.

Proof. By the previous lemma, |V (Γ)| ≥ 2p and no graph with hyperoctahedral group exists

for V (Γ) < 2n. Hence, α(G) = 2n, the minimum value for which an Hn-graph can exist.

Thus, α(G) = 2n for a graph Γ with Aut(Γ) ∼= Hn.

Interestingly, we remark that the results for n = 2 and n = 3, which comply with

the value given above, also represent unique cases of the hyperoctahedral group, since

H2
∼= D8 and H3

∼= S2 × S4. Observe that α(H2) = α(D8) = 4 (see chapter 3) and

α(H3) = α(S2) + α(S4) = 6 (see succeeding section).

5.2 Minimal Graphs with Aut(Γ) ∼= Sn

As we remarked in the introduction of this chapter, L. Quintas indirectly determines

α(G) for a graph with symmetric automorphism group. Within the proof of his main

theorem on edge minimal graphs of symmetric automorphism group, he explains that no

Sn graph exists on fewer than n vertices and mentions that the only Sn graphs possible on

n vertices are totally disconnected or complete.

We present his results here as formal statement and proof, including α(G) as a corollary.

Theorem 5.2.0.1. A graph Γ on n vertices has Aut(Γ) ∼= Sn if and only if Γ is either

totally disconnected or complete.

Proof. For n ≤ 3, the assertion above clearly holds. Let Γ be a graph on n > 3 vertices

with symmetric automorphism group. Of course, every element of Sn is a permutation of

V (Γ) which must preserve the adjacencies of E(Γ). Suppose for sake of contradiction that

Γ is neither totally disconnected nor complete.

Then there exist vertices v, v′, v′′ ∈ V (Γ) for which {v, v′} ∈ E(Γ) but {v, v′′} /∈ E(Γ).

However, Sn is transitive, containing
(
n
2

)
transpositions which fix all but two elements. That
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is, there exists a unique φ ∈ Sn such that φ(v′′) = v′ and all other vertices of V (Γ) are

fixed. Since we assumed {v, v′′} /∈ E(Γ), we have a contradiction. Thus, Γ is either totally

disconnected or complete.

Now we proceed with the second half of the proof. Let Γ be a graph on n > 3 vertices.

Case 1: Suppose Γ is totally disconnected. Since E(Γ) = ∅, no adjacencies occur, so

adjacencies are preserved under all permutations of V (Γ). Thus, all possible permutations

of Aut(Γ) may be written in the form of an element of Sn. Further, |Aut(Γ)| = n! = |Sn|.
We conclude Aut(Γ) ∼= Sn.

Case 2: Suppose Γ is complete. The argument follows nearly identically to one given

above, with proper modifications to the edge set of Γ.

Therefore, an totally disconnected or complete graph on n vertices has Sn automorphism

group.

Corollary 5.2.0.1. A minimal graph with symmetric automorphism group has α(G) = n.

Proof. First, an Sn graph cannot exist on fewer than n vertices 1: too few vertices are present

in order to attain the required amount of permutations [12]. We can thereby establish

α(G) ≥ n.

Moreover by the theorem above, a graph with symmetric group exists on exactly n

vertices.

Hence, the minimal number of vertices possible for an Sn graph is n.

5.3 Minimal Graphs with Aut(Γ) ∼= An

For n ≥ 13, Liebeck constructs minimal graphs having alternating automorphism group

[10]. We summarize his findings and refer the reader to Liebeck’s paper for full details of

the construction of these graphs and proof of their minimality [10].

We note that Liebeck first corroborates (for n ≥ 23) a conclusion from Babai: An graphs

have α(G) ≥ cn for some constant c > 1. In particular, Liebeck concludes

α(G) ≥ 1

2

(
n

bn/2c

)
,

where b·c is the floor function. He indicates that his lower bound for α(G) follows easily

from Babai’s assertion, since an application of Stirling’s approximation yields

1

2

(
n

bn/2c

)
∼ 2n√

2πn
,

and, clearly, 2n/
√

2πn ≥ cn where c > 1.

Although he constructs Γ with Aut(Γ) ∼= An for all n larger than 7, Liebeck only proves

minimality for n ≥ 13. As such, we only include these values of n in the following theorem:

1Note that |Sn| = n!.
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Theorem 5.3.0.1. Let Γ be a graph with alternating automorphism group. Then for

n ≥ 13, we have

α(G) =


2n − n− 2 when n ≡ 0, 2 mod 4

2n +
(
n
n/2

)
− n− 2 when n ≡ 1 mod 4

2n + 2
(

n
(n−1)/2

)
− n− 2 when n ≡ 3 mod 4

,

taking all values of n modulo 4 [10].
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Chapter 6

Conclusion

Many finite groups have yet to be thoroughly investigated (or considered at all). For

example, the author M. Liebeck only establishes a lower bound of α(G) for several finite

classical groups. However, as the main goal of our survey, we have explored all known values

of α(G) for the six finite groups found in the preceeding chapters. Again, when possible,

we included the construction of the minimal graph Γ having Aut(Γ) ∼= G.

Given the extent of the lemmas and theorems required, we cannot provide a concise

synopsis for these results. However, as an aid to those readers only concerned with the

conclusions (i.e. α(G) and minimal graphs) for a particular finite group (or groups), we

include a table. For this table, we use commas between pages to denote separate results.

Let G be the given finite group of the respective chapter and Γ be a graph with Aut(Γ) ∼= G:

G page(s) with α(G) values page(s) with construction of minimal Γ

Zn pgs. 13, 15, 16 pgs. 10-12, 14

D2n pgs. 18-19, 25 pgs. 20-21, 22-23, 24-25

Q2n pg. 29 pgs. 29-32, 32

Hn pg. 34 N/A

Sn pg. 35 pg. 35

An pg. 36 see [10]

As mentioned in previous chapters, some authors have also considered smallest graphs,

a combined notion of vertex and edge minimality within a graph of given automorphism

group. With the knowledge of α(G) (typically a prerequisite) now known for a number of

finite groups, research regarding smallest graphs may progress further.
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