
University of Texas at Tyler University of Texas at Tyler 

Scholar Works at UT Tyler Scholar Works at UT Tyler 

Biology Faculty Publications and Presentations Biology 

9-2018 

Random Genetic Drift and Selective Pressures Shaping the Random Genetic Drift and Selective Pressures Shaping the 

Blattabacterium Genome Blattabacterium Genome 

Austin Alleman 

Kate L. Hertweck 

Srini Kambhampati 
University of Texas at Tyler, skambhampati@uttyler.edu 

Follow this and additional works at: https://scholarworks.uttyler.edu/biology_fac 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Alleman, Austin; Hertweck, Kate L.; and Kambhampati, Srini, "Random Genetic Drift and Selective 
Pressures Shaping the Blattabacterium Genome" (2018). Biology Faculty Publications and Presentations. 
Paper 4. 
http://hdl.handle.net/10950/1206 

This Article is brought to you for free and open access by the Biology at Scholar Works at UT Tyler. It has been 
accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of Scholar 
Works at UT Tyler. For more information, please contact tgullings@uttyler.edu. 

https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/biology_fac
https://scholarworks.uttyler.edu/biology
https://scholarworks.uttyler.edu/biology_fac?utm_source=scholarworks.uttyler.edu%2Fbiology_fac%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.uttyler.edu%2Fbiology_fac%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/1206?utm_source=scholarworks.uttyler.edu%2Fbiology_fac%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu


1Scientific REPOrtS |  (2018) 8:13427  | DOI:10.1038/s41598-018-31796-6

www.nature.com/scientificreports

Random Genetic Drift and 
Selective Pressures Shaping the 
Blattabacterium Genome
Austin Alleman1,2, Kate L. Hertweck1 & Srini Kambhampati1

Estimates suggest that at least half of all extant insect genera harbor obligate bacterial mutualists. 
Whereas an endosymbiotic relationship imparts many benefits upon host and symbiont alike, the 
intracellular lifestyle has profound effects on the bacterial genome. The obligate endosymbiont 
genome is a product of opposing forces: genes important to host survival are maintained through 
physiological constraint, contrasted by the fixation of deleterious mutations and genome erosion 
through random genetic drift. The obligate cockroach endosymbiont, Blattabacterium – providing 
nutritional augmentation to its host in the form of amino acid synthesis – displays radical genome 
alterations when compared to its most recent free-living relative Flavobacterium. To date, eight 
Blattabacterium genomes have been published, affording an unparalleled opportunity to examine the 
direction and magnitude of selective forces acting upon this group of symbionts. Here, we find that the 
Blattabacterium genome is experiencing a 10-fold increase in selection rate compared to Flavobacteria. 
Additionally, the proportion of selection events is largely negative in direction, with only a handful of 
loci exhibiting signatures of positive selection. These findings suggest that the Blattabacterium genome 
will continue to erode, potentially resulting in an endosymbiont with an even further reduced genome, 
as seen in other insect groups such as Hemiptera.

Comprised of over one million species, Class Insecta is the most speciose group among animals; at least half of 
extant genera are estimated to harbor obligate bacterial mutualists1–3. While some intracellular bacteria can be 
harmful or even lethal to their insect host, many others play an important role in host survival and fecundity3–8. 
These primary bacterial symbionts exist obligately within the cells of the insect, and are often required for the 
survival and reproduction of their host organism1,7–9. An intercellular lifestyle affords endosymbiotic bacteria 
relative safety from competition and exploitation, in exchange for increased ecological flexibility imparted onto 
the host species. In many cases, these obligate bacterial mutualists function in the provisioning, recycling, or deg-
radation of essential nutrients, and are vital to those insect species that subsist on nutritionally narrow diets, such 
as those composed primarily of woody material, plant sap, mammalian blood, or decaying organic material8,10,11. 
However, within some insect species primary bacterial endosymbionts also function in non-nutritional roles such 
as parasitoid defense12.

With the exception of a single cave-dwelling genus, Noticola (Blattodea, Nocticolidae), all cockroach species 
contain endosymbiotic bacteria within their fat bodies1,5,13,14. These obligate endosymbionts belong to the genus 
Blattabacterium (Class Flavobacteria, Phylum Bacteriodetes)15,16. Phylogenetic reconstruction suggests that cock-
roaches acquired these endosymbionts in a single infection event, dating between 300 million years ago - the 
approximate age of the first fossil roaches from the Carboniferous - and 140 million years ago, when currently 
extant families last shared a common ancestor17,18. Initially, the function of these endosymbionts was subject 
to speculation, owing to their recalcitrance to culture outside their host. However, modern DNA-sequencing 
techniques have allowed for the study of a number of Blattabacterium genomes. From these genomes, it was 
discovered that the function of Blattabacterium is primarily the synthesis of amino acids and vitamins from the 
nitrogenous waste products of the cockroach host16,19. Cockroaches store excess nitrogen as uric acid within 
their fat body cells20. The decaying organic matter on which cockroaches typically feed is poor in nitrogen con-
tent. Thus, a mechanism for recycling nitrogenous waste would be beneficial to any organism whose diet is 
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nitrogen-deficient. Unlike most insects, which excrete waste nitrogen as uric acid, cockroaches excrete ammo-
nia21. Blattabacterium are capable of utilizing both urea and ammonia because they contain an active urease as 
well as a functioning urea cycle that converts host urea to ammonia22–24. In addition, increases in dietary nitrogen 
intake by host cockroaches correlates with increases in uric acid buildup within that host’s fat bodies20,21,23.

Cockroaches represent an evolutionary lineage consisting of diverse and ancient taxa that have adapted to 
many habitats and exhibit broad nutritional ecology; their endosymbionts, therefore, represent an excellent sys-
tem in which to assess relationships between these traits. To date, eight Blattabacterium genomes have been 
sequenced from the following cockroach host species: Periplaneta americana19, Blatta germanica25, Cryptocercus 
punctulatus26, Blaberus giganteus27, Blatta orientalis28, Panesthia angustipennis29, Nauphoeta cinerea30 and the 
termite, Mastotermes darwiniensis31. While these genomes share similar gene composition and genome archi-
tecture, each also displays unique capacities for metabolic and physiological function. Thus, while the results of 
phylogenetic analysis support the hypothesis of co-cladogenesis between the endosymbionts and hosts17,18, gene 
composition of Blattabacterium is not directly congruent with host phylogeny; rather it varies likely as a function 
of host nutrition, its relative importance in the mutualism, and the interaction between phenotypic constraint, 
environmental natural selection, and genetic drift.

An intracellular lifestyle strongly influences the selective pressures and evolutionary trajectories of bacterial 
endosymbionts32. Evolution of the bacterial endosymbiont genome is characterized by elevated mutation rates 
and biases resulting from the combined effects of physiological constraint preserving symbiont-critical genes, 
random genetic drift – driven by frequent population bottlenecks, bacterial asexuality, and lack of genetic recom-
bination – and environmental selection acting to reduce genome size18,28,33–47. Endosymbionts have been shown to 
have higher substitution rates and values of non-synonymous to synonymous substitution rates a result attributed 
to small Ne.48,49. Acting through Muller’s Ratchet, asexual reproduction can prevent the recovery of wild-type gen-
otypes through recombination50. Loss of recombination is a result of lost DNA repair, uptake, and recombination 
genes; which is a common pattern of all sequenced bacterial endosymbionts [51–56 reviewed in ref.57].

However, selection in the form of physiological constraint acts to maintain genes important to the 
bacterial-insect symbiosis, although its role in the continued erosion of non-essential genes in the bacterial 
genome is largely unknown45,58,59. Described genomes from endosymbionts suggest that physiological constraint 
acts to maintain a gene set that retains its functionality for the host; though selection might also be driving the 
erosion of bacterial endosymbiont genomes. Certain metabolites ordinarily produced by the bacteria itself may 
now be obtained directly from the host; under such circumstances, these genes become superfluous and are nec-
essary for neither bacterial survival nor continued host fecundity. As such, a smaller genome results in a cell that 
is faster and more efficient to reproduce. Particularly at the beginning of endosymbiosis, rapid loss of unnecessary 
genes32 may be advantageous [Reviewed in ref.60]. Thus, while random genetic drift does act to reduce the bac-
terial endosymbiont genome through Muller’s Ratchet, physiological constraint acts to preserve genes crucial to 
symbiosis while environmental selection favors a reduced, more energy-efficient genome.

When compared to free-living bacteria, endosymbionts exhibit increased levels of mutation at synonymous 
and non-synonymous sites, as well as higher dN/dS ratios, indicating an increase in positive selective pressures 
and rapid protein evolution33,61–63. Thus, we may conclude that the endosymbiont genome is the result of interplay 
between random genetic drift and the reduction of genes through relaxed selection within large portions of the 
genome, and physiological constraint acting to preserve those genes vital to host survival and fecundity.

Genome evolution in insect endosymbionts has been the topic of a number of studies. Full genomes from 
several endosymbionts have been published, including Buchnera aphidicola64 from aphids, Wigglesworthia65,66 
from the tsetse fly, Blochmannia67 from carpenter ants, and Blattabacterium19, from cockroaches. However, 
comparatively few of these genomes have been examined for signals of positive selection. Eight fully sequenced 
Blattabacterium genomes, in addition to the five fully-annotated free-living Flavobacterium genomes for com-
parison, offers a unique opportunity to investigate the patterns and processes that drive endosymbiotic genome 
evolution.

We estimated the positive and negative selection events in the genomes of all sequenced Blattabacterium 
strains, and compared them to those present within the closely-related68 but free-living Flavobacterium spe-
cies (F. indicum, F. johnsoniae, and F. psychrophilim), to examine the similarities and differences between these 
two evolutionarily related, but divergent, groups. We hypothesized that patterns of selection acting upon the 
Blattabacterium genome will manifest as an elevation in both non-synonymous and synonymous mutation events, 
as well as a higher dN/dS ratio at sites under significant levels of selection than the free-living Flavobacterium - 
indicating increased positive selection pressures and an elevated rate of protein evolution63,69,70. Additionally, we 
sought to determine whether patterns of selection observed in previous studies across limited numbers of genes 
are effective at predicting patterns of selection across an entire endosymbiont genome.

Materials and Methods
Sequence data.  Homologous genes for eight Blattabacterium and five Flavobacterium species were man-
ually compiled from genomes available in GenBank (Table 1). With Blattabacterium sp. Cryptocercus punctu-
latus as the model genome (as it is the smallest Blattabacterium genome and thus frames the “core” gene set of 
Blattabacterium and Flavobacterium) we manually BLASTed each loci against all other Blattabacterium genomes, 
as well as against existing Flavobacterium genomes. Resulting BLAST hits were then manually compiled into 
single homologue files in nucleotide fasta format. We applied Clusters of Orthologous Groups (COGs) to cat-
egorize the function of genes in our dataset. Given that genome-wide COG composition is very similar among 
Blattabacterium30, we assessed composition genome-wide as well as in the subset of homologous genes found in 
all taxa using the Bacterial Annotation System (BASys71).
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Trimming, Alignment of Homologs, and Phylogeny Building.  All scripts developed for this analysis 
(pre-processing, alignment, phylogenetics, and tests for selection) can be found at https://github.com/k8her-
tweck/Blattabacteria. Phylogenetic reconstruction of the evolutionary relationships of the eight Blattabacterium 
and five Flavobacterium species (with eight Escherichia coli strains as outgroup) was carried out using 
PhyloPhlan72 under default parameters and whole genomes obtained from GenBank (Table 1). For each set of 
homologous genes, the last three base pairs (e.g., the stop codon) of each sequence were removed using Prinseq73 
and each homolog group was then aligned using TranslatorX71. Gaps present in more than 10% of an alignment 
were removed using trimAl and alignments summarized using readAl74. The best fitting model of molecular 
evolution for gene alignments, as assessed by both AIC and BIC in jModelTest275 under default parameters, was 
GTR + G. A maximum likelihood tree for each homologous gene was calculated using this model in PhyML 
(www.atgc-montpellier.fr/phyml)76 and assessed using 100 bootstrap replicates (alternative models of evolution 
did not significantly affect tree topology, data not shown). The maximum likelihood tree for each gene (except 
mia, which possessed two gene copies for some taxa) was used to create a reconciled species tree using ASTRAL 
v4.7.8 (github.com/smirarab/ASTRAL/)77 and 100 bootstrap replicates.

Selection Analysis.  Selection analysis was performed using the HyPhy v2.2.1 (github.com/veg/hyphy)78 
suite of programs. For this analysis, three different selection tests were used: HyPhy’s BUSTED79, Quick Selection 
Detection (implementing MEME [Mixed Effects Model of Evolution])80, and Branch Site REL81. Each of these 
programs used the same sets of input data; namely the HyPhy alignment combined with the PhyML tree for each 
gene. Parameters used for these tests may be found here: github.com/k8hertweck/Blattabacteria/blob/master/
blattabacteriaBUSTED.bf, github.com/k8hertweck/Blattabacteria/blob/master/blattabacteriaQSD.bf, github.
com/k8hertweck/Blattabacteria/blob/master/blattabacteriaBranchSiteREL.bf.

Summary statistics for all selection analyses performed were produced using an in-house script that may be 
found here: github.com/k8hertweck/Blattabacteria/blob/master/blattabacteriaSelectionSummary.sh. Summary 
statistics and input and output files for selection analysis may be found at: github.com/k8hertweck/Blattabacteria/
tree/master/analysis. Statistics of particular import are those referencing branches under positive selection. This 
information was drawn from the BUSTED and Branch Sire REL output. Additional statistics were obtained from 
the output of blattabacteriaGeneSummary.sh (see Methods section ‘Trimming, Alignment of Homologs, and 
Phylogeny Building).

Statistical Analyses.  For analyzing the number of positive and negative sites of selection per gene length, 
a Linear Model was implemented using R version 3.4.482. Within these models, number of positive and nega-
tive selection sites were log transformed. A handful of outliers were noted but retained, as their inclusion had a 
non-significant impact upon the resulting models.

Blattabacterium From host species: Host Family

Accession Number

NC_017924.1 Blaberus giganteus Blaberidae

NC_020195.1 Blatta orientalis Blattidae

NC_013454.1 Blatella germanica Ectobiidae

NC_016146.1 Mastotermes darwiniensis Mastotermitidae

NC_022550.1 Nauphoeta cinerea Blaberidae

NC_020510.1 Panesthia angustipennis spadica Blaberidae

NC_013418.2 Periplaneta americana Blattidae

NC_016621.1 Cryptocercus punctulatus Cryptoceridae

Flavobacterium Species

NC_017025.1 Flavobacterium indicum

NC_009441.1 Flavobacterium johnsoniae

NC_009613.3 Flavobacterium psychrophilum

NC_016510.2 Flavobacterium columnare

NC_016001.1 Flavobacterium branchiophilum

Escherichia coli Strain

CP002797.2 Escherichia coli NA114

CP006784.1 Escherichia coli JJ1886

CP002212.1 Escherichia coli str. Clone D i14

CP002211.1 Escherichia coli str. Clone D i2

AP009240.1 Escherichia coli SE11

AE014075.1 Escherichia coli CFT073

CP002729.1 Escherichia coli UMNK88

CP002167.1 Escherichia coli UM146

Table 1.  GenBank accession numbers for bacterial genomes used within this study.

https://github.com/k8hertweck/Blattabacteria
https://github.com/k8hertweck/Blattabacteria
http://www.atgc-montpellier.fr/phyml
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Number of positive and negative selection events vs. individual COG size were carried out using Generalized 
Linear Models with Poisson distribution with number of selection sites as the response variable and total num-
ber of nucleotides in the genome associated with a specific COG as the explanatory variable. As COG and gene 
length analyses used different datasets - number of selection events per total number of nucleotides of all genes 
associated with a given COG and number of selection events by gene length, respectively - we found that differing 
models better fit each type of analysis.

Results and Discussion
Selection by Gene Length and COG Groups.  COG analysis indicates an uneven distribution of func-
tional groups within the 304 genes selected for this analysis (Fig. 1). This figure illustrates the functional ‘core’ 
genes shared by all thirteen genomes analyzed. The majority of these genes are ribosomal in function. Perhaps 
unsurprisingly, the number of positive selection events (F-value: 40.872, Df: 1, p-value: 6.16e-10, adjusted 
R-squared: 0.12) as well as negative selection events (F-value: 189.15, Df: 1, p-value: 2.2e-16, adjusted R-squared: 
0.38) both showed strong positive correlation with gene length (Fig. 2a,c, respectively). This finding is consistent 
with the conclusions of previous studies, where natural selection is also correlated with gene length83. Building 
upon this on a functional level, however, we also noted that signatures of both positive and negative selection 
(response variable) correlated strongly with the total number of nucleotides assigned to a specific COG (explana-
tory variable) across the Blattabacterium genome (Positive selection events: Chi-square p-value: 2.2e-16; Negative 
selection events: Chi-square p-value: 2.2e-16; Fig. 2b,d, respectively).

Blattabacterium Selection Analysis.  Initial analysis of Blattabacterium homolog sets was carried out 
across all eight of the fully sequenced strains, using a significance level of p ≤ 0.05 for homology. At this signifi-
cance level, Blattabacterium displays a strong negative mutational bias, with a ratio of sites under negative selec-
tion to sites under positive selection of 11:1 across 304 genes. While most loci within Blattabacterium displayed a 
bias towards negative selection, a few did exhibit signatures of positive selection (Table 2a). That the vast majority 
of genes within the Blattabacterium genome are experiencing neutral (Table 2b) or negative (not shown in table) 
selection suggests conserved selective pressures and genome architectures within established endosymbiont line-
ages28,69. Accordingly, only a small number of loci were found to show no signs of selection at all (Table 2c).

In recent years, a growing body of work seeks to place an increased emphasis on the role of selection in 
molecular evolution84–86. While no predominant explanatory theory for molecular evolution has yet emerged to 
replace the largely disproven neutral theory, a re-evaluation of the classic, primarily neutral/drift-centric hypoth-
eses for genome evolution in Blattabacterium is necessitated. With the data presented here - and in the light 
of previous studies into the genome evolution of Blattabacteria - we suggest that the Blattabacterium genome 
is shaped by a combination of random genetic drift, environmental selection, and physiological constraint on 
genetic variation. The Blattabacterium lifestyle is characterized by significant and repeated population bottlenecks 
with each host generation as bacterial cells are transmitted vertically from mother to offspring17,18, a drastically 
reduced genome25–30,39, and elevated rates of mutation. Previous studies into obligate bacterial endosymbiont 
evolution suggest that the reduction in effective population size through generational bottlenecks and lack of 

Figure 1.  Distribution of functional COGs (Clusters of Orthologous Groups) for the 304 ‘core’ genes analyzed 
here. Letters refer to COG functional categories as follows. C - Energy production and conversion; D - Cell 
division and chromosome partitioning; E - Amino acid transport and metabolism; F - Nucleotide transport and 
metabolism; G - Carbohydrate transport and metabolism; H - Coenzyme metabolism; I - Lipid metabolism; 
J - Translation, ribosomal structure and biogenesis; K - Transcription; L - DNA replication, recombination and 
repair; M - Cell envelope biogenesis, outer membrane; N – Cell motility; O - Posttranslational modification, 
protein turnover, chaperones; P - Inorganic ion transport and metabolism; Q - Secondary metabolites 
biosynthesis, transport, and catabolism; R - General function prediction only; S - COG of unknown function; 
T - Signal transduction mechanisms.
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genetic recombination resulting from Muller’s Ratchet elevates the rate of fixation of slightly deleterious muta-
tions through random genetic drift33–35,41–44. However, populations that experience a population bottleneck 
recover much of the lost genetic variation through rapid population growth45. While it seems likely that this 
is the case for free-living and endosymbiotic bacteria as well, the strength of the bottleneck affects the loss of 
genetic variability much more so than subsequent rates of population growth45. Within Blattabacterium and many 
other bacterial endosymbionts, these bottlenecks are not trivial, and are frequently recurring throughout the 
insect host’s lifespan1–3,7,8,16; an environment that is completely atypical for most free-living populations. Thus, 
examined alone, population bottlenecks strongly reduce the genetic variation of Blattabacterium. Additionally, 
Blattabacterium – like other intracellular bacterial endosymbionts - reproduces asexually and lacks genetic 
recombination [51–56 reviewed in ref.57]; two mechanisms otherwise crucial for the recovery of genetic variation. 
This combination of factors – lack of genetic recombination and repeated population bottlenecks – does seem to 
suggest that Blattabacterium and other obligate symbionts are less capable of recovering lost genetic variance after 
population bottlenecks than free-living bacteria.

However, bacterial endosymbionts also experience much higher mutation rates than their free-living rel-
atives63,69,70. Indeed, mutations are synonymous with increased genetic variation, and we show here that 
Blattabacterium experiences highly elevated rates of mutation compared to free-living bacterial populations. It 
is highly unlikely that the elevated mutation rates seen in Blattabacterium are adaptive or somehow function in 
recovering lost genetic variation, as mutations in Blattabacterium show a strong bias towards deletions rather than 
insertions; a pattern that is in agreement with previous studies as well as with Muller’s Ratchet44,50. Additionally, 
it is suggested that reduced strength of selection on many genes in the endosymbiont genome increases the num-
ber of nucleotide sites that may be altered without consequences in fitness, strengthening the impact of deletion 
biases44. Bacterial genomes are primarily functional DNA, and the drastic genome reduction observed within 
Blattabacterium and has come at the cost of physiological functionality. Intriguingly however, this drastic loss 
in functionality does not yet appear to have strong negative impacts on Blattabacterium survival or host fitness. 

Figure 2.  Plots outlining the relationships between number of selection events and gene length or COG size. (a) 
Relationship between gene length and number of nucleotides under positive selection within Blattabacterium 
(F-value: 40.872, Df: 1, p-value: 6.16e-10, adjusted R-squared: 0.12). (b) Relationship between total COG size 
and number of nucleotides under positive selection within Blattabacterium (Chi-square p-value: 2.2e-16). (c) 
Relationship between gene length and number of nucleotides under negative selection within Blattabacterium 
(F-value: 189.15, Df: 1, p-value: 2.2e-16, adjusted R-squared: 0.38). (d) Relationship between total COG size and 
number of nucleotides under negative selection within Blattabacterium (Chi-square p-value: 2.2e-16).
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Position Locus Avg. Length (n) COG No. of Pos. sites No. of Neg. sites

a

61 gyrB 2513 L 18 11

96 tatC 1045 U 2 0

171 purB 1843 F 5 4

191 marC 742 U 2 1

239 folE 861 H 2 1

265 gmk 751 F 1 0

266 rpiB 606 G 1 0

308 rplX 324 J 2 1

312 rplP 541 J 5 4

319 rplC 821 J 3 2

359 entC 1374 Q 3 1

365 recQ 2201 LKJ 3 0

387 accA 1232 I 5 3

388 sdhB 985 C 7 0

392 phospho 1985 R 5 3

405 hinT 536 FGR 3 2

457 pdxA 1362 H 2 1

b

38 trmE 1821 R 4 4

161 accD 1098 I 1 1

167 purF 1997 F 1 1

196 accB 626 I 1 1

208 evoX 1009 L 2 2

241 m22 843 O 1 1

304 rplF 712 J 1 1

318 rplD 821 J 2 2

430 rpoD 1127 K 7 7

438 integral 995 P 1 1

478 glyS 1910 J 3 3

483 pth 772 J 1 1

c

12 truA 1001 J 0 0

103 rpsT 317 J 0 0

117 aroK 674 E 0 0

148 rpmI 249 N/A 0 0

149 rplT 456 J 0 0

204 rpmG 239 J 0 0

240 nadE 1028 H 0 0

301 rplO 601 J 0 0

329 rplM 587 J 0 0

332 cdsA 1035 R 0 0

372 rplL 487 J 0 0

422 sufE 567 R 0 0

428 rpsO 347 J 0 0

491 nfsA 442 N/A 0 0

d

93 dapF 1043 E

112 gcvH 523 E

148 rpmI 249 N/A

323 rpsL 499 J

398 rpsU 267 N/A

Table 2.  (a) Loci within Blattabacterium displaying a positive selection bias. Positive selection is defined as 
those loci that display a greater number of sites under positive selection than under negative selection. (b) 
Loci within Blattabacterium displaying a neutral selection bias. Neutral selection is defined as those loci which 
display an equal number of sites under positive selection as negative selection. (c) Loci within Blattabacterium 
displaying no selection. These genes experience neither positive nor negative selection events. (d) Loci within 
Blattabacterium and Flavobacterium that display identical selection profiles. These genes display no selection 
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Indeed, many physiological tasks are now taken over by the cockroach host, rendering many Blattabacterium 
genes superfluous within the relatively safe and predictable symbiotic environment25–30,36. As in other obligate 
endosymbionts, many if not most of these genes come under relaxed selection, as their function is critical to nei-
ther Blattabacterium’s survival nor the symbiotic physiological requirements of its cockroach host32,35.

Whether or not elevated mutation rates in physiologically-important genes functions to actively reduce 
genome size and thus streamline bacterial reproduction, or are the result of random genetic drift is unknown; 
though that many genes lost by Blattabacterium since transitioning to an intracellular lifestyle coded for other-
wise critical functionality - including the loss of many genes involved in DNA maintenance and repair [19,28,30,59, 
reviewed in ref.57] – suggests that many losses are either only mildly non-adaptive or compensated for by the host 
and thus do not result in immediate impairment of symbiont or host. However, genome reduction is accompanied 
by a reduction and cell size and a substantial reduction in energy and nutrients requirements, providing an adap-
tive payoff for the active removal of non-essential genes. Indeed, a number of prokaryotic Prochlorococcus species 
display adaptive and rapid genome shrinkage, with genomic patterns similar to those observed in obligate symbi-
onts including reduced G + C content, elevated rates of mutation, and the loss of DNA-repair genes87. However, 
despite these similarities, genome reduction in Prochlorococcus is characterized by largely neutral selection, as 
large population sizes impose low genetic drift and strong purifying selection87. Naturally, if genome reduction in 
Blattabacterium and other bacterial endosymbionts was being driven by adaptive forces and not random genetic 
drift, then we might expect patterns of selection similar to those in the free-living Prochlorococcus. Instead, we 
find here that the overwhelming majority of mutations in the Blattabacterium genome are negative in direction, 
strongly suggesting that genome reduction is not driven by selective processes, but rather by random genetic drift; 
as has been suggested for numerous other obligate bacterial endosymbionts32,35.

Specific genes within the endosymbiont genome are expected to vary among endosymbiont lineages as a func-
tion of the metabolic and physiological requirements of the host species. As such, these species-specific genes vital 
to bacterial survival and/or host fecundity experienced elevated selective pressures for their persistence within 
the Blattabacterium genome. We suspect that many genes in Blattabacterium involved in functions critical to 
this bacterial-host symbiosis display neutral or positive signatures of selection. Thus, while random genetic drift 
appears to play a strong role in shaping the Blattabacterium genome, physiological constraint acts to maintain 
Blattabacterium’s functionality as a primary nutritional endosymbiont across the cockroach lineage. Accordingly, 
the Blattabacterium genome architecture and composition is the result of the interplay between random genetic 
drift and the fixation of slightly deleterious mutations on one hand and physiological constraint promoting main-
tenance of cockroach-required metabolic functionality on the other.

When compared to the signatures of selection and patterns of evolution noted within other obligate bacterial 
symbionts, Blattabacterium shows striking similarity. While the ratio of negative to positive selection sites of 11:1 
is specific to Blattabacterium-Flavobacterium comparisons, similar patterns of strong negative selection have been 
observed in other insect endosymbiont genomes69. Unsurprisingly then, our results conform to the findings of 
Brynnel et al.33, who also measured that the tuf gene of Buchnera is evolving more than 10 times as quickly than 
the same gene in the free living E. coli and S. typhimurium. Additionally, Blattabacterium - like Wigglesworthia 
and Buchnera – does show some evidence for maintaining those functions that are highly important to its insect 
host33,63,66,70. Indeed, the combined effects of Muller’s Ratchet appears to be ubiquitous within obligate insect 
bacterial symbionts: the Buchnera chaperonin groEL displays a 5-fold increase in non-synonymous mutations, 
and a 10-fold increase in synonymous mutations, when compared to E. coli63. Mutational pressure alone likely 
does not account for the magnitude of these dN/dS rate elevations. Within Buchnera, it has been suggested that 
this elevation of fixation occurs through random genetic drift resulting from the continual reduction of effective 
endosymbiont population size with each transmission from host parent to host offspring33,34,88. Given that this 
same elevation of polymorphisms is observed within Blattabacterium - and that Blattabacterium also undergoes 
similar population bottlenecks with each host generation - it is likely that similar mechanisms are shaping these 
two independent lineages. This also parallels the findings of Brynnel et al.33, whom suggested that the rate of 
synonymous codon substitution within Buchnera can be as much as 40 times higher than its free-living relatives.

Blattabacterium - Flavobacterium Selection Comparison.  Blattabacterium displays elevated levels 
of both positive and negative selection events at a significance level of p ≤ 0.05 when compared to free-living 
Flavobacterium, indicating a genome-wide increase in mutation rates across the examined genes. In order to 
ensure that these patterns are not the result of sequences displaying radically different divergence times, we 
performed a phylogenetic analysis (Fig. 3) to elucidate the sequence similarity within each examined group. 
Phylogenetic analysis of both the Blattabacterium group (Table 3) and Flavobacterium group (Table 4) indicate 
similar levels of phylogenetic divergence between the individuals of each22,89,90.

events within either Blattabacterium or Flavobacterium genomes. ‘Position’ indicates that genes starting 
position within the Mastotermes darwineinsis genome, the model Blattabacterium genome used here. Letters 
refer to COG functional categories as follows. C - Energy production and conversion; D - Cell division and 
chromosome partitioning; E - Amino acid transport and metabolism; F - Nucleotide transport and metabolism; 
G - Carbohydrate transport and metabolism; H - Coenzyme metabolism; I - Lipid metabolism; J - Translation, 
ribosomal structure and biogenesis; K - Transcription; L - DNA replication, recombination and repair; M - Cell 
envelope biogenesis, outer membrane; N – Cell motility; O - Posttranslational modification, protein turnover, 
chaperones; P - Inorganic ion transport and metabolism; Q - Secondary metabolites biosynthesis, transport, 
and catabolism; R - General function prediction only; S - COG of unknown function; T - Signal transduction 
mechanisms.
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In addition, each group displays comparable percentages of identical sites (Blattabacterium: 89.4%, 
Flavobacterium: 87.8%) as well as similar pairwise percent identities (Blattabacterium: 95.7%, Flavobacterium: 
93.3%) when aligning the ribosomal 16S rRNA gene. Thus, extant Blattabacterium display signs of elevated rates 
of genome evolution in the form of increased levels of selection events. The increase in the number of sites expe-
riencing negative or positive selection when compared to the free-living Flavobacterium suggests elevated levels 
of functional protein evolution in the endosymbionts. Only a limited number of loci display similar selection 
profiles between Blattabacterium and Flavobacterium (Table 2d).

Results of MEME selection analysis indicate that all genes analyzed show at least some evidence of negative 
selection. Sites under negative selection comprise approximately 86 percent of examined loci. However, four 

Figure 3.  Phylogenetic reconstruction of the evolutionary relationship between all bacteria sampled for this 
project. (A) Maximum likelihood phylogram based on whole genomes from Flavobacteria and Blattabacterium 
lineages, with E. coli strains as outgroup. Numbers below nodes represent percentage bootstrap support. (B) 
ASTRAL cladogram representing the species tree inferred from 200 nuclear gene trees. Numbers below nodes 
represent multi-locus bootstrapping support (100 replicates).

BPLAN BCpu BBge BGIGA MADAR BNCIN BBor BPane

BPLAN 0.048 0.037 0.044 0.056 0.04 0.015 0.04

BCpu 0.048 0.038 0.043 0.048 0.043 0.043 0.045

BBge 0.037 0.038 0.024 0.045 0.026 0.038 0.021

BGIGA 0.044 0.043 0.024 0.059 0.026 0.044 0.021

MADAR 0.056 0.048 0.045 0.059 0.049 0.051 0.056

BNCIN 0.04 0.043 0.026 0.026 0.049 0.039 0.021

BBor 0.015 0.043 0.038 0.044 0.051 0.039 0.036

BPane 0.04 0.045 0.021 0.021 0.056 0.021 0.036

Table 3.  Absolute sequence divergence in the 16S rRNA gene of Blattabacterium. A phylogenetic tree was 
created using the 16S rRNA gene from each sequenced Blattabacterium species. From this tree, phylogenetic 
distances were calculated in order to estimate sequence similarity and divergence. Host species abbreviations 
are as follows: BNCIN, N. cinerea; BGIGA, B. giganteus; BBge, B. germanica; BPLAN, P. americana; BCpu, C. 
punctulatus; MADAR, M. darwiniensis, BBor, B. orientalis; BPane, P. angustipennis spadica.



www.nature.com/scientificreports/

9Scientific REPOrtS |  (2018) 8:13427  | DOI:10.1038/s41598-018-31796-6

loci, at one site each, show evidence for positive selection (Table 5). Three of the four loci showing evidence for 
positive selection are involved in DNA or RNA modification: 2-methylthioadenine synthetase, Holliday Junction 
resolvase, and 50S ribosomal protein L25 subunit. Within E. coli and Salmonella typhimurium, variations of the 
protein 2-methylthioadenosine have been shown to stabilize codon-anticodon interactions through the restric-
tion of first codon position wobble during tRNA aminoacylation91,92. This functionality prevents the misread-
ing of the genetic code, thus reducing the likelihood of mutation. Additionally, Holliday Junction resolvase-like 
proteins have been shown to play key roles in DNA recombination and repair93–95. Finally, genes responsible 
for the production of ribosomes within a cell are crucial for the proper translation of proteins from mRNA96,97. 
Modifications to genes responsible for the production of ribosomal proteins will likely impact the efficiency and/
or accuracy of protein translation and assembly. Given the broad reduction in functionality of the Blattabacterium 
genome, and the loss of many ancestral DNA and RNA maintenance and repair genes (Fig. 1)8,98,99, it is in some 
ways not surprising that all currently-described Blattabacterium strains display similar selection pressures on 
those remaining genes responsible for the maintenance of genetic material. However, of notable absence from our 
list of genes showing signatures of positive selection is the molecular chaperone and maintenance gene GroEL. 
These sequences are part of the larger GroL locus in modern Blattabacterium genomes, regions of which were 
found previously in Blattabacterium to be under positive selection99. This inconsistency likely arises from the 
outgroups used in each study. We utilized Blattabacteria’s closest free-living relative, Flavobacterium16,17, as an 
outgroup while Fares et al. utilized relatively distantly-related free-living Gammaproteobacteria100. Based on this 
methodological distinction, we can conclude that the selective pressure noted by Fares et al. was exerted prior to 
the split between Blattabacterium and Flavobacterium.

In contrast to the previous genes, however, which are involved in the maintenance of genetic material, the 
remaining locus found to show signatures of positive selection, atpG, codes for ATP synthase F1 subunit gamma. 
ATP synthase-family subunit proteins typically combine to form an ATP synthase complex, which is responsible 
for energy production in the form of ATP within the cell101,102. One of the primary functions of Blattabacterium 
within its host is amino acid synthesis. Amino acid production is a very endergonic process, requiring large 
amounts of energy in the form of ATP in order to effectively carry out biosynthesis103. Therefore, beneficial mod-
ifications to genes coding for an ATP synthase subunit that result in the more efficient functioning of ATP syn-
thase as a complete complex are more likely to be favored within the Blattabacterium genome. In keeping with the 
previous findings that all Blattabacterium strains examined to date are alike in their function to provide essential 
and nonessential amino acids to their cockroach hosts, here we demonstrate that Blattabacterium also share sig-
natures of positive selection within genes responsible for the production of the ATP synthase F1 subunit.

Conclusions
Our findings indicate that the Blattabacterium genome is experiencing elevated rates of both positive and negative 
selection when compared to its free-living relative Flavobacterium, approaching a 10-fold increase in selection 
rate at the significance level p ≤ 0.05 across 304 individual genes. In combination with previous studies elucidating 
the evolutionary patterns in other insect endosymbionts, we conclude that the Blattabacterium genome is shaped 
by similar evolutionary mechanisms. Previous studies have outlined the current state of the Blattabacterium 

Fpsych Fbranch Fjohn Findic Fcolum

Fpsych 0.041 0.053 0.081 0.064

Fbranch 0.041 0.056 0.084 0.068

Fjohn 0.053 0.056 0.086 0.069

Findic 0.081 0.084 0.086 0.063

Fcolum 0.064 0.068 0.069 0.063

Table 4.  Absolute sequence divergence in the 16S rRNA gene of Flavobacterium. A phylogenetic tree was 
created using the 16S rRNA gene from each Flavobacterium species used in this study. From this tree, 
phylogenetic distances was estimated. Species abbreviations: Findic, Flavobacterium indicum; Fjohn, 
Flavobacterium johnsoniae; Fpsych, Flavobacterium psychrophilim; Fbranch, Flavobacterium branchiophilum; 
Fcolum, Flavobacterium columnare.

Loci Protein Name Putative Function

miaB 2-methylthioadenine synthetase B family 
tRNA modification enzyme RNA modification

Holliday Junction Holliday junction resolvase-like protein hydrolase, nucleic acid binding, DNA recombination, transcription 
antitermination

rplY 50S ribosomal protein L25 rRNA binding, negative regulation of translation, translation

atpG ATP synthase F1 subunit gamma ATP binding, plasma membrane ATP synthesis coupled proton transport

Table 5.  Loci containing sites that display evidence for positive selection, according to MEME episodic 
selection analysis. First column denotes the locus of interest. Second column contains the names of the proteins 
coded by these loci; and the third column contains proposed functional information about these proteins, 
gathered from the UniProt gene database.
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genome, which is drastically reduced from its ancestral state and possesses a very strong bias towards A + T 
nucleotide base pairs. Analysis of these trends indicate that Blattabacterium are experiencing an accumulation of 
slightly deleterious mutations through the continued effects of random genetic drift resulting from consecutive 
population bottlenecks throughout Blattabacterium’s evolutionary history, with physiological constraint acting to 
maintain genes important to bacterial survival and host fecundity. Additionally, Blattabacterium has lost many 
of the genes involved in DNA repair, likely through similar mechanisms discussed here, thus exacerbating this 
evolutionary bias towards slightly deleterious mutations. That these mutations cannot be repaired increases func-
tional protein evolution rates within this endosymbiont. The patterns discussed here are highly similar to those 
evolutionary and genomic trends observed in other intracellular insect endosymbionts34,45,61,90. Additionally, our 
analyses also provide insight into the direction of selection of loci within the genome. A vast majority of loci in 
all Blattabacterium genomes analyzed here show signs of negative selection. Only a small fraction of loci (miaB, 
Holliday Junction, rplY, atpG) show signs of positive selection. These observations are in accordance with our 
previous understanding of the evolutionary history of Blattabacterium, as well as its function within its cockroach 
host as a nutritional endosymbiont aiding in the recycling of nitrogenous waste and the production of both essen-
tial and nonessential amino acids.

The analysis presented here could be augmented through a robust analysis of genome reduction within 
Blattabacterium. Using a parsimony approach, the ancestral genome of another primary insect endosymbiont, 
Buchnera-Ap, was reconstructed by Moran and Mira32. The results of Moran and Mira’s analysis indicated that 
much of the ancestral Bucnhera genome was lost during a relatively small number of large deletion events shortly 
after this bacteria’s transition to an intracellular lifestyle. While it is likely that that the Blattabacterium genome 
was reduced through similar mechanisms, a similar reconstruction within this group would offer us a more com-
plete picture of the evolutionary origins of this unique cockroach endosymbiont.

Data Accessibility
All data used herein was procured from public NCBI databases; see Table 1.
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