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COMPRESSIVE SENSING FOR SPEECH SIGNALS IN MOBILE 
SYSTEMS 

 
Sabir Ahmed 

Thesis Chair: Hector A. Ochoa, Ph.D. 

 

The University of Texas at Tyler 
August 2011 

 
Compressive sensing is an emerging and revolutionary technology that strongly 

relies on the sparsity of the signal. In compressive sensing the signal is sparsely 

compressively sampled by taking a small number of random projections of the signal, 

which contain most of the salient information. Compressive sensing has been previously 

applied in areas like: image processing, radar systems and sonar systems. This research 

work will discuss the potential implementation of compressive sensing in mobile 

communication systems and how it will influence their data rates. 

In a typical mobile communication system, the signal of interest is sampled at 

least at the Nyquist rate. The Nyquist sampling theorem states that the frequency used to 

sample a signal should be at least twice the maximum frequency contained within the 

signal. However, this is not the most efficient way to compress the signal, as it places a 

lot of burden in sampling the entire signal while only a small percentage of the transform 

coefficients are needed to represent it. The recent results in compressive sampling (also 

known as compressive sensing) provide a new way to reconstruct the original signal with 

a minimal number of observations. In compressive sensing the significant information 

about the signal/image is directly acquired, rather than acquiring the significant 

information that will be eventually thrown away. 

The goal of this research is to propose a new mobile communication system 

which employs compressive sampling to compress the speech signal at the transmitter 

and decompress it at the receiver. The expected results from the proposed system will be 

an increment in the data rates of these systems. In order to simulate how compressive 
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sensing could be applied, a small speech signal was recorded in MATLAB. The signal at 

the transmitter is then multiplied by the measurement matrix which in this case is 

composed of randomly generated numbers. The measurement matrix is chosen in such a 

way that the sparse signal can be exactly recovered at the receiver using one of the 

different optimization techniques available. Once the signal has gone through the process 

of compressive sampling, it is ready to be transmitted through the mobile system. The 

transmitted signal is then reconstructed by the receiver from a significantly small number 

of samples by using any of the multiple optimization techniques available. The algorithm 

is simulated in MATLAB. The results show that if a threshold window is applied to the 

transmitted speech signal and the length of the signal is kept constant, the compression 

rate of the speech signal is increased. 
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Chapter One 

Introduction 

Mobile communications is one of the most important research areas in the field of 

telecommunications. It is predicted that within a few decades a considerable number of 

data and voice connections will become partially or completely wireless. One of the main 

challenges in wireless systems is to provide higher data rates in mobile environments. In 

order to achieve this goal a new sampling technique called compressive sampling can be 

used instead of the traditional sampling technique. Compressive sensing (CS) can be 

implemented in a mobile system because most of the signals in the real world have a 

sparse representation under certain domain transformations. In a typical communication 

system, the signal is sampled at least at twice the highest frequency contained in the 

signal. However, this limits efficient ways to compress the signal, as it places a huge 

burden on sampling the entire signal while only a small number of the transform 

coefficients are needed to represent the signal [1].  

On the other hand, compressive sampling provides a new way to reconstruct the 

original signal from a minimal number of observations. CS is a sampling paradigm that 

allows us to go beyond the Shannon limit by exploiting the sparsity structure of the 

signal. It allows us to capture and represent the compressible signals at a rate 

significantly below the Nyquist rate. The sampling step is very fast because it employs 

non adaptive linear projections that preserve the structure of the signal. The signal is then 

reconstructed from these projections by using different optimization techniques. During 

compressive sampling only the important information about a signal is acquired, rather 

than acquiring the important information plus the information of a signal which will be 

eventually discarded at the receiver. By implementing this theory, a new mobile 

communication system has been proposed, in which compressive sampling or 

compressive sensing is used to compress and decompress the speech signal at the 

transmitter and at the receiver to increase the data rates.  

In recent years, various signal sampling schemes have been developed in the 

market place. Vetterli et al [2] presented a method to uniformly sample continuous-time 
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signals, such as non-uniform splines and stream of Dirac. However, such sampling 

methods are difficult to implement because of the need to have sufficient information 

about the reconstruction kernel before sampling the signal. In the meantime, the emerging 

compressive sensing theory [1, 3] shows that an unevenly sampled discrete signal can be 

perfectly reconstructed with high probability of success by using different optimization 

techniques and by considering fewer random projections or measurements compared to 

the Nyquist standard. The key elements that need to be addressed before using 

compressive sensing are the following: how to find the transform domain in which the 

signal has a sparse representation, how to effectively sample the sparsely signal in the 

time domain and finally, how to recover the original signal from the samples by using 

optimization techniques. 

In summary, the large amount of data needed to sample at the Nyquist rate, 

especially for speech, image and video signals, motivates the study of compressive 

sensing as a feasible solution for future mobile communication systems. Sparse signals 

are defined as signals that can be represented by a limited number of data points in the 

transform domain. Many real-world signals can be classified into this category using an 

appropriate transform domain. For instance, if signal x is a sine, it is clearly not sparse, 

but its Fourier transform is extremely sparse. Another example is a piecewise constant 

image away from edges of finite length that has a sparse gradient. The consequences of 

acquiring large amounts of data, added to the overhead of compression can be improved 

by using compressive sensing. As a result, there are potential savings in terms of energy, 

memory and processing.   

In the proposed approach, a speech signal was recorded and compressively 

sampled using a measurement matrix. The output of the compressive sensing algorithm is 

the observation vector which is transmitted to the receiver. At the receiver section signal 

is reconstructed from a significant small numbers of samples by using different 

optimization techniques such as l1-norm or convex optimization. MATLAB simulations 

were performed to compress the speech signal below the Nyquist and reconstruct it using 

one of the multiple optimization techniques available without losing any important 

information.
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Chapter Two 

Background 

2.1        Basic Theory of Compressive Sensing 

The theory of compressive sensing was developed by Candes et al [3] and 

Donoho [1] in 2004. It involves taking random projections of the signal and recovering it 

from a small number of measurements using optimization techniques. In a traditional 

sampling theorem, the signal is sampled using Nyquist rate, whereas with the help of 

compressive sensing the signal is sampled below the Nyquist rate. This is possible 

because the signal is transformed into a domain in which it has a sparse representation. 

Then the signal is reconstructed from the samples using one of the different optimization 

techniques available. The basic block diagram of a compressive sensing system is shown 

in Figure 1. 

 

 

Figure 1. Basic compressive sensing block diagram [4] 

2.1.1 Signal Representation and Sparsity 

Signal representation and sparsity play a vital role in compressive sensing. Let 
LR∈x represent a real signal, assuming that the signal x is sparse in the orthogonal basis

1 2 3{ , , ......... }Nψ ψ ψ ψ=ψ where N is the length of the signal, then x can be represented by 

a linear combination of K (K<<N) basis functions as 
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1
i i

K

n n
i=

=∑x θ ψ
     

(2.1) 

where
in ∈ψ ψ , {1,2,3......, }in N∈ .  Let 1 2 3[ , , ........ ]T

Nθ θ θ θ=θ be the vector of 

coefficients for the signal x inψ . The random measurement of the signal x can be 

represented as  

 

,=y θφ  : M N×φ ,     K M N< <<      (2.2) 

 

where φ is the uniform random measurement matrix, y is the measurement vector of the 

signal x, θ is the vector of coefficients for the signal x and ( 1)M cK c= <  represents the 

number of measurements required for perfect reconstruction. If all the entries of φ are 

drawn from a Gaussian distribution, the signal can be exactly reconstructed with high 

probability of success when the constant ‘c’ is between three and five [5]. The procedure 

used to ensure the sparsity of the signal is called transform coding, which is performed by 

the following four steps [6] 

i. Obtain the full N-points signal x using the Nyquist rate  

ii. Compute the complete set of transform coefficients (e.g. DFT) 

iii. Locate the K largest coefficients and throw away the smallest coefficients 

iv. Multiply signal by the measurement matrix to obtain the observation vector of 

length M.  

Figure 2 shows an example of how compressive sensing can be used to compress a signal 

below Nyquist rate [7]. In this example, the original sampled signal is composed of 300 

samples. The intent is to reconstruct the signal using only 30 samples. Figure 2(a) shows 

the time domain representation of the sampled signal. From this figure, it is evident that 

by selecting only 30 samples (red dots) from the 300 samples it will be impossible to 

reconstruct the original signal perfectly. On the other hand, by applying compressive 

sensing to the frequency representation of the signal it is possible to perfectly reconstruct 

it from a significant small number of samples. In order to achieve this goal it is necessary 

to implement an optimization techniques. However, not every optimization technique 

can be used for this purpose. For example, Figure 2(c) represents the reconstructed 
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spectrum using the l2  minimization. Clearly, there are significant differences between the 

signal in Figure 2(b) and the signal from Figure 2(c). 

                                

(a)  (b) 

                             
                            (c)  (d) 

Figure 2. Sampling using compressive sensing (a) time domain representation of the 

signal composed of 300 samples, (b) Fourier spectrum of the signal to be encoded, (c) 

reconstruction of the Fourier spectrum via l2 minimization, (d) reconstruction of the 

Fourier spectrum via l1 minimization 

 

In contrast, the reconstruction using the l1 minimization gives as a result a perfect 

reconstruction. This can be clearly seen by comparing Figure 2(b) and Figure 2(d). In 

summary, optimization techniques based on l1 minimization are desired when 

compressive sensing is used.  

2.1.2 Measurement Matrix  

In this section, special emphasis is given to represent the signal with an incoherent 

basis. Let us consider the linear measurement process depicted in Figure 3 that computes 

M < N inner products between x and the collection of vectors 1{ }M
j j=φ  via ,j j= 〈 〉y x φ , 
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where j=1,…, M, T
jφ denotes the transpose of jφ and ,〈⋅ ⋅〉 denotes the inner products. Let a 

M×1 vector y be the measurements array yj. In matrix notation the vector y is obtained 

using the following expression 

y = Φx = ΦΨα       (2.3) 

where Φ is a M N×  measurement matrix with each row been a measurement vector T
jφ

and α is the coefficient vector with K non zeroes element. It has been seen that some of 

the measurement matrices can be used in any scenario, in the sense that they are 

incoherent with any fixed basis Ψ such as Gabor, spikes, sinusoidal and wavelets. The 

compressive sensing measurement process with K-sparse coefficient vector x is depicted 

in Figure 3. 

                     

Figure 3. Compressive sensing measurement process [4] 

The measurement matrix plays a vital role in the process of recovering the 

original signal. This poses an interesting problem: “How should one design a 

measurement matrix Φ that is basically a collection of N vectors in K dimensions?” 

There are two types of measurements matrices that can be used in compressive sensing: 

The Random measurement matrix and the predefined measurement matrix. The 

fundamental revelation is that, if a signal x composed of N samples is sparse then the 

actual signal can be reconstructed using ( log( / ))M O K N K N≥  linear projection of x 

onto another basis. Furthermore, x can be perfectly reconstructed using different 

optimization techniques. If Φ is a structurally random matrix, its rows are not 

stochastically independent because they are randomized from the same random seed 

vector. The random matrix is transposed and then orthogonalized. This will have the 

effect of creating a matrix that represents an orthonormal basis. In a predefined 

measurement matrix, the matrix is created by using function like the Dirac functions and 
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Sine functions. In this case, the signal is multiplied by several Dirac functions centered at 

different locations to obtain the observation vector. Then the speech signal can be 

reconstructed using the l1 normalization method by using the observation vector and the 

predefined measurement matrix.  

Linear programming is another procedure that plays a vital role in reconstructing 

the original signal. It is a mathematical approach designed to get the best outcome in a 

given mathematical model, which is a special case of mathematical programming. Linear 

programming can be expressed in the following canonical from: 

maximize Tc x  

subject to A b≤x         (2.4) 

where x represents the variable that is to be determined, c and b are vectors of 

coefficients and A is a matrix of coefficients. The above expression which has to be 

maximized or minimized is called the objective function and the equation A b≤x  defines 

the constraints over which the objective function has to be optimized. At the end the 

reconstruction of the speech signal depends upon the observation vector and the 

measurement matrix.  

2.1.3 Signal Reconstruction in Compressive Sensing 

Recent developments in signal theory have shown that a sparse signal is a useful 

model in areas such as: communications, radar and image processing. Therefore the 

assumption that every signal can be represented in a sparse form has helped in the 

compression of the signal of interest. The perfect reconstruction of a signal x depends on 

the measurement matrix Φ and the measurement vector y. The compressive sensing 

theory tells us that when the matrix ΦΨ has the Restricted Isometric Property (RIP) 

which are nearly orthonormal then it is possible to recover the K largest significant 

coefficients from a similar size set of ( log( / ))M O K N K=  measurements of y. As a 

result, the sparse signal can be reconstructed by different optimization techniques such as 

l1 norm and convex optimization. The first minimization technique which has been used 

to reconstruct the signal is the l1 minimization 
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1( 1) min || ||lP x  Subject to Φx = y           (2.5) 

which is also known as basis pursuit (P1). The goal of this technique is to find the vectors 

with the smallest l1-norm 

1
1

|| || | |
n

i
i=

=∑x x       (2.6) 

It is also known as Taxicab norm Manhattan norm. The name relates to the distance a taxi 

has to drive in rectangular street grid to get from the origin to the point x. The distance 

obtained from this norm is called the Manhattan distance or l1 distance. The results 

obtained in [8, 9] shows that, if a signal x is sufficiently sparse, the signal can be 

reconstructed by using basis pursuit (P1). The other optimization technique known as 

convex optimization (cvx) will solve many medium and small scale problems. By using 

cvx the signal is minimized in order to reconstruct the original signal [10] 

2.2       Compressive Classification 

This section will discuss the classification of compressive sensing based on its 

application. It deals with the effect of compressive sensing and its performance. The 

compressive sensing framework is useful in a wide range of statistical inference tasks e.g. 

in finding the solution to detection and estimation problems in which it is able to 

reconstruct the original signal from the measurements. 

2.2.1 Classical Detector 

The classical detector is one of the classifications in compressive sensing. Let us 

say that there are two hypotheses concerning the signal; that it is present in the 

measurement or it is not. The classical Neymon-Pearson (NP) detector uses a likelihood 

ratio test where the sufficient statistic ,≡ 〈 〉t y x  is compared against a thresholdγ . Here y 

represents the measurements, x is the original signal and γ  is set to achieve a certain 

probability of false alarm FP α≤  for 0 1α≥ ≤ . It is shown that (for example, see [11]): 

1( ) ( ( ) )DP Q Q SNRα α−= −     (2.7) 

 where Q(.) is the flipped version of standard Gaussian cumulative distribution function. 
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2.2.2 Compressed Detector 

The theory described in [12] can be easily extended when the measurements are 

made using a compressed sampler. For this section, the following hypotheses are 

considered: 

0 :H n=y φ
       (2.8) 

1 : ( )H n= +y xφ       (2.9) 

where 2(0, )n N σ  is white Gaussian noise with mean zero with a standard variance. It 

is easy to show that the sufficient value is given by𝐭̃ ,≡ 〈 〉y xφ . The probability of false 

alarm is approximately given by the following equation [12]: 

1( ) ( ( ) / )DP Q Q M N SNRα α−≈ −      (2.10) 

where M is the number of random projections and N is the sparsity of the signal. By 

comparing equation (2.7) and (2.10) it can be seen that the performance of the detector 

will be deteriorated with the decrease of M and the performance also depends upon the 

rate of degradation of the SNR.  

2.2.3 Compressive Classifier  

Let us consider a set { }iX = x of signals for a multi-class classifier for which the 

result has been generalized. The detection rule is given by 
2

ˆ min
i i∈= −x Xx y xφ . In this 

classification the distances are not preserved, rather they are uniformly shrunken when 

compared to the matrix φ  where the distance is preserved. For any signal x, and typical 

value ofε , with probability of at least1 δ− , the following expression holds for all ix , [12] 

2

2

|| ( ) ||(1 ) / (1 ) /
|| ( ) ||

i

i

M N M Nφε ε−
− ≤ ≤ +

−
x x

x x
   (2.11) 

It can been seen that the effect of noise can be amplified with the transformation as it is 

dependent on the signal to noise ratio (SNR). 
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2.3 Optimization Techniques 

Signal reconstruction plays an important role in compressive sensing theory where 

the signal is reconstructed or recovered from a minimum number of measurements. By 

using optimization techniques it is possible to recover the signal without losing the 

information at the receiver. There has been a series of papers related to the theory of 

signal recovery from highly incomplete information. 

2.3.1 l1 Minimization  

A recent series of papers have developed a theory of signal recovery from highly 

incomplete information. The results states that a sparse vector x ∈RN can be recovered 

from a small number of linear measurement b A= x ∈RK, K<< N by solving a convex 

program. l1 minimization is used to solve the under determined linear equations or 

sparsely corrupted solution to an over determined equations. Recently, l1 minimization 

has been proposed as a convex alternative to the combinatorial norm l1, which simply 

counts the number of nonzero entries in a vector, for synthesizing the signal as a sparse 

superposition of waveforms. 

 

(a) Min-l1 with Equality Constraints 

The program 11min || ||P x subject to A b=x  , is also known as basis pursuit. The goal of 

this program is to find the smallest 1l norm, using the following equation (2.6) 

1|| || : | |i
i

=∑x x  

 This algorithm search is for a vector x, that will explain the observation b. If the signal x   

is sufficiently sparse then (P1) will find the norm of x by using the values of A and b [8, 

9]. When x, A, and b have real valued entries, (P1) can be recast as a linear program. 

(b) Minimum l1 Error Approximation 

   Let A be a full rank M N×  matrix. Given that MR∈y then where PA is the basis 

1( ) min || ||AP A−
x

y x      (2.12) 
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 pursuit which will find the vector NR∈x  in such a way that the error ( )A−y x  has the 

minimum l1 norm [8, 9]. As an example, let us apply this algorithm to the field of channel 

coding. Channel coding produces a code word c A= x that represents the message x. The 

message is transmitted over a channel from the transmitter to the receiver. During this 

process the signal is corrupted by external sources. The decoders detect the signal as

c e= +y , where e  is the corruption. If this error is sparse enough then this program can 

be used to reconstruct the signal x perfectly and eliminate the interference introduced by 

the external source. 

2.3.2 l2 Minimization 

 It defines the lp norm of the vector s as (||s||p) p =
1
| |N p

ii=∑ s . The classical 

approach to inverse problems of this type is to find the vector in the translated null space 

with the smallest l2 norm (energy) by solving 

 

s*=argmin ||s`||2 such that θs`= y                               (2.13) 

 

This optimization technique has the closed form solution s* = θT(θ θT)-1  y. 

Unfortunately, l2 minimization will almost never find a K-sparse solution, returning 

instead a nonsparse s* with many nonzero elements. 

 

2.3.3 Convex Program 

cvx is a disciplined convex programming (DCP) algorithm. Disciplined convex 

programming is a set of conventions used for constructing convex optimization proposed 

by Michael Grant, Stephen Boyd, and Yinyu Ye [10]. There are convex optimization 

problems that are used to analyze and solve problems such as Linear programs (LPs), 

Second Order Cone Programs (SOCPs) and Semi-Definite Program (SDPs). They can 

also be used to solve other problems which involve non-differentiable functions, such as 

the 1l norm [10]. These set of rules are called the DCP rule set and problems which 

disobey these set of rules are rejected even if the problem is convex. The problem which 

cannot be solved using DCP has to be rewritten in such a way that it follows the DCP rule 
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set. First, let us consider the most basic convex optimization problem, “least squares”. In 

a least-squares problem, nR∈x  is the vector that minimizes 2|| ||A b−x , where m nA R ×∈  

is skinny and full rank (i.e. m n≥ and Rank (A) = n). Let us create a test problem data for 

m, n, A and b in MATLAB.  

m=16; n=8;  
A=randn (m, n); 
 b=randn (m, 1); 
 

Then the least square solution for x is given by 1( )T Tx A A A b−= . The easiest way to 

calculate the least square is by using the back slash operator which is given by x= A\b. 

The same result is obtained in MATLAB using cvx. 

cvx_begin  
       variable x (n); 
       minimize (norm (A*x-b)); 

               cvx_end                                                                                                            (2.13) 
 

The first line of code creates a place holder for the new cvx specification and prepares 

MATLAB to accept the declaration of variables, constraints and objective functions. The 

variable x(n) declares x as a optimization variable. The variable must be declared before 

it is been used as a constraint or as an objective function. The next line of code specifies 

that the objective function is to be minimized; in this case it is l1 norm of A b−x . The 

cvx_end specifies the end of the cvx specification and cause the problem to be solved. 

2.3.4 Matching Pursuit 

  Orthogonal matching pursuit (OMP) is a canonical greedy algorithm for a sparse 

approximation. Let φ represent a matrix of size M N×  (where typically M N< ) and y

denotes a vector in RM, the goal of OMP is to recover a coefficient vector x`∈  RN with 

roughly K < M non-zero terms so that φ 𝐱� equals y exactly or approximately. OMP is 

frequently used to find a sparse representations of the signal y ∈  RM in settings where φ

represents a dictionary for the signal space. It is also commonly used in compressive 

sensing, where =y xφ represents compressive measurements of a sparse signal x ∈  RN to 

be recovered. One of the attractive features of OMP is its simplicity. OMP is empirically 

competitive in terms of approximation performance. 
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2.4 Applications of Compressive Sensing 

 

2.4.1 Compressive Imaging 

The common approach in digital image system is to capture as many pixels as 

possible and later compress the captured image by digital means [13]. Compression is 

desired to increase the storage capacity and enhance the communication process. 

Compression techniques exploit the visual redundancy typical to human intelligible 

images. After capturing the optical image and applying data compression, the image is 

represented by a smaller number of pixels than the original image. The decompressed 

image should satisfy some desired visual quality. This type of imaging evokes a question: 

is it necessary to capture all the image samples and then compress them? The answer to 

the question is the recent development in compressive sensing theory. The basic idea for 

implementing compressive sensing is that the reconstruction of an image is possible even 

with fewer measurements than the nominal number of pixels. 

 

2.4.2 Medical Imaging 

One of the most promising applications for compressive sensing is in medical 

imaging. MRI scanners sample the lines within the “k-space”. Sampling each line take 

time and inject energy into the patient [14]. As MRI technology has advanced, there has 

been an increasing desire to use higher field strengths to analyze larger sets of data, such 

as 3D imaging and dynamic imaging. A number of reduced sampling techniques have 

been used such as K-t BLAST, K-t SENSE and K-t vDUST which exploits the linear 

spatiotemporal correlation within the image sequences. In contrast, Lusting et al [14]. 

have produced preliminary results showing that a compressive sensing strategy that 

exploits the sparsity of the spatiotemporal data is also possible. 

2.4.3 Analog to Information Conversion 

Analog to-digital converters (ADC) have been used in sensing and 

communications due to the advancement in digital signal processing. The process of 

ADC is based on the Nyquist sampling theorem which uniformly samples the signal with 

a rate of at least twice its bandwidth in order to reconstruct the signal perfectly. Emerging 

applications like radar detection and ultra-wideband communication are pushing the limit 



 
 

14 
 

of ADC. The recent developments in the field of compressive sensing  (CS), has helped 

in the design of Analog to-Information converters (AIC) that are able to acquire samples 

at a lower sampling rate. 

2.4.4 Compressive Radar 

The new theory of compressive sensing can be used in radar imaging systems 

which are designed to determine the range, altitude, direction and speed of moving and 

fixed objects [6]. The received radar signal can be reconstructed with fewer 

measurements by solving an inverse problem through a linear program or a Greedy 

Algorithm. With the implementation of compressive sensing  in radar systems, the need 

for a pulse compression matched filter at the receiver side and  the  analog to-digital 

conversion operating at high Nyquist rates can be eliminated. As a result, the complexity 

and the cost of the receiver hardware is going to be greatly reduced. 

2.5 Compressive Sensing in Mobile Communication System 

The purpose of this research effort is to implement compressive sensing  in a mobile 

system. By using compressive sensing techniques, the speech signal is precoded at the 

transmitter side which is being sent to the receiver through a wireless channel. As a 

result, a small number of samples are being transmitted, and this will increase the 

transmission data rates when compared to the current communication systems. In the 

proposed communication system, first the speech signal is modeled in such a way that the 

input signal is sparse enough before applying compressive sensing. The sparse signal is 

multiplied by the predefined measurement matrix. The output of the compressive sensing 

module  is then transmitted to the receiver. At the receiver, the signal  is perfectly 

reconstructed from a significant small number of measurements by using different 

optimization techniques such as l1-norm or convex optimization. The basic block diagram 

of the proposed  systems is shown in Figure 4. 
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Figure 4. Compressive sensing in a mobile communication system 
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Chapter Three 

Analysis and Design 

In this chapter, the use of compressive sensing in a mobile communication 

system is proposed in order to increase the data rates. The objective is to increase the data 

rates of current and possibly future generation mobile systems. In the proposed system 

the speech signal is sampled below the Nyquist rate by using compressive sensing.  The 

compressed spectrum is then transmitted over the wireless system and successfully 

reconstructed at the receiver without losing any significant information. In the first stage 

of the project, a speech signal was modeled using a Laplace random number generator 

shown in Figure 5. It was decided to use a Laplace number generator to model the speech 

signal, because these types of signals typically have a Laplacian distribution [15]. The 

modeled speech signal was mapped into the discrete frequency domain using the FFT. 

The results obtained from this transformation are shown in Figure 6. In the second stage, 

before compressive sensing was applied to the signal, a threshold window was used to 

eliminate the coefficients that are significant to the signal. In other words, all the 

coefficients with small amplitude were multiplied by zero. In Figure 7 it can be seen how 

the FFT spectrum looks after the threshold has been applied. The purpose of the threshold 

is to ensure that the FFT spectrum is sparse.  

In the third stage, the threshold spectrum was multiplied by the measurement 

matrix, which is a matrix composed of random numbers. The output of the compressive 

sensing algorithm is converted into a digital signal using an Analog- to-Digital converter 

in order to be transmitted by the mobile system. At the receiver section, an initial guess 

was made using the measurement matrix and the observation vector (vector signal), 

which is close to the input speech signal. Finally, the speech signal was reconstructed 

from a significant small number of observations by using one of the optimization 

techniques available. The reconstructed signal at the output of the optimization module is 

shown in Figure 8. The difference between the actual signal and the reconstructed signal 

was calculated in order to observe the error between both signals. This error is shown in 

Figure 9. 
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Figure 5. Input speech signal 

 

Figure 6. Power spectrum of the input speech signal 
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  Figure 7. Threshold spectrum of FFT spectrum 

 

Figure 8. Reconstructed FFT spectrum using l1-minimization 
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Figure 9. Error between the reconstructed and the actual spectrum 

The FFT was a revolutionary algorithm that made Fourier analysis and processing 

of digital signals fairly easy. The FFT algorithm employs a few tricks and can compute 

the Fourier transform of a discrete signal in 2log ( )N N operations [16]. There are two 

factors that need to be considered when the FFT is implemented in MATLAB  

(i) FFT uses complexes numbers and  

(ii)  It computes both positive and negative frequencies.  

This is where it becomes difficult to implement FFT in compressive sensing. The main 

problem is that applying compressive sensing to a complex number is a tedious and 

complex process, and is being researched at Michigan State University using a hybrid 

compressive sensing model (Complex and Real) [17]. 

In order to overcome caused by the FFT, instead a Discrete Cosine Transform 

(DCT) is implemented. The DCT is conceptually the same as DFT except that it does a 
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better job in concentrating the energy into lower order coefficients than the DFT. Another 

important property of the DCT is that all the spectral coefficients are purely real. 

Assuming that the input signal is periodic, the magnitude of the DFT is spatially invariant 

(phase of the input does not matter) which is not true for DCT. The DCT does not 

introduce discontinuities while imposing periodicity into the time signal, whereas in the 

DFT, the time signal is truncated and assumed to be periodic. As a result, discontinuities 

are introduced in the time domain and corresponding artifacts are introduced into the 

frequency domain. However, as an even symmetry is assumed while truncating the time 

signal, no discontinuities or related artifacts are introduced in the DCT. The comparison 

between the FFT and the DCT is shown in Figure 10 [18]. 

 

Figure 10. Periodicity comparison of DFT and DCT [18] 
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Chapter Four 

Results 

In order to test the algorithm on a real speech signal, a wave recorder was used to 

record a short piece of speech. The MATLAB function “wavrecord” allows the user to 

record n samples of an audio signal at a specific sample rate. For instance, Figure 11 

shows a speech signal recorded using the “wavrecord” function composed of 2000 

samples. The recorded speech signal then goes through the DCT which transforms a 

sequence of real data points into its real spectrum. The transformed speech signal is 

shown in Figure 12. Before compressive sensing is applied to the DCT spectrum a 

threshold window is used to eliminate the small coefficients. The rationale under this 

process is that the small coefficient does not contribute to the overall signal compared to 

the large coefficient. This is used to ensure that the DCT spectrum is sparse before 

applying compressive sensing. The result from this process is shown in Figure 13.The 

threshold spectrum is then multiplied by the measurement matrix which in this case is 

composed of randomly generated numbers which is shown in Figure 14.  

The output of compressive sensing is the observation vector which is sent to the 

mobile communication module in order to be transmitted which is shown in Figure 15. At 

the receiver the compressed DCT coefficient is decompressed and reconstructed from a 

significant small numbers of observations using one of the different optimization 

techniques such as the l1 normalization shown in Figure 16. The error is calculated by 

taking the difference between the received and the transmitted threshold spectrum, which 

is shown in Figure 17. Finally, the received reconstructed spectrum is passed through the 

IDCT in order to recover the speech signal. The recovered speech signal can be observed 

in Figure 18.  

During the design of the proposed system multiple tests were performed in order 

to analyze the efficiency of this system. Table 1 shows how the length of the signal, the 

threshold value and the sparsity of the signal affect the compression rates. It is also 

observed that by keeping the length of the signal (L) constant and by varying the 
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Threshold window (Th) it is plausible to achieve a desired compression. This is because 

by modifying the threshold window the compressed sample (K) is also modified. 

Table 1. Amount of compression by varying signal parameter. 

Length of Signal (L) 
Threshold window (Th) 

 
     UL                    LL 

Compressed 
samples (K) Error (err) Compression 

(%) (K/L) 

2000 
0.04                -0.06 

1000 1.5 ×10-5   50 

2000 0.04                -0.06 900 1.8×10-5 55 

2000 0.04                -0.06 800 7×10-5 60 

2000 0.04                -0.06 700 0.7 65 

2000 0.04                -0.06 600 0.18 70 

2000 0.04                -0.06 500 0. 3 75 
 
 

 

 

Figure 11. Recorded input speech signal 
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Figure 12. DCT of recorded speech signal 

 

Figure 13. Threshold spectrum 
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Figure 14. Random measurement matrix 

 

Figure 15. Observation vector 
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                               Figure 16. Reconstructed spectrum using l1 minimization 

 

Figure 17. Absolute error between the received reconstructed spectrum and original 

spectrum 
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Figure 18. Reconstructed speech signal at the receiver 

 

Figure 19. Pre-defined measurement matrix 
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4.1 Comparison with Wavelet Transform 

The Wavelet transform is a powerful mathematical tool in many areas of science 

and engineering, in particular in the fields of audio and data compression. A wavelet is 

defined as a small wave that has its energy concentrated in time to provide a tool for the 

analysis of transient, non-stationary, or time-varying phenomena. A signal or function  

f(t) often can be better analyzed, described, or processed if it is expressed as a linear 

decomposition 

( ) ( )l l
l

f t a tψ=∑                                                             (4.1) 

where l is an integer index for the sum, al is the expansion coefficients and Ψl is the set of 

real-valued functions of t called the expansion set. If the expansion is unique, the set is 

called a basis for the functions that could be represented. If the basis is orthogonal, then 

the coefficients can be calculated by the inner product. 

( ), ( ) ( ) ( )k k ka f t t f t t dtψ ψ= = ∫                                               (4.2) 

A single coefficient ak is obtained by substituting equation (4.1) into equation (4.2) and 

therefore for the wavelet expansion, a two-parameter system is constructed such that 

equation (4.1) becomes 

, ,( ) ( )j k j k
k j

f t a tψ=∑∑                                                       (4.3) 

Where both j and k are integer indices and Ψj,k (t) is the wavelet expansion that usually 

forms an orthogonal basis. The set of expansion coefficients a j, k are called the discrete 

wavelet transform of f (t) and equation 4.3 is its inverse. All wavelet systems are 

generated from a single scaling function or wavelet by simple scaling and translation. 

This two-dimensional representation is achieved from the function Ψ (t), also called the 

mother wavelet 
/2

, ( ) 2 (2 )j j
j k t t kψ ψ= −          ,j k Z∈                                      (4.4) 

Wavelet systems also satisfy multi-resolution conditions. In effect, this means that 

a set of scaling functions can be determined in terms of integer translates of the basic 

scaling function by 

( ) ( )k t t kϕ ϕ= −     k Z∈    2Lϕ∈                                            (4.5) 
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It can be seen that if a set of signals can be represented by φ(t-k); a larger set can 

represented by φ(2t-k), giving a better approximation of any signal. Hence, due to the 

spanning of the space of φ(2t) by φ(t), φ(t) can be expressed in terms of the weighted sum 

of the shifted φ(2t) as 

( ) ( ) 2 (2 ),
n

t h n t nϕ ϕ= −∑     n Z∈                                         (4.6) 

Where the coefficients h(n) may be real or complex numbers called the scaling function 

coefficients. However, the important features of a signal can better be described, not by 

φj,k(t), but by defining a slightly different set of functions Ψj,k(t) that span the differences 

between the spaces spanned by the various scales of the scaling function. These functions 

are the wavelets and, they can be represented by a weighted sum of shifted scaling φ(2t) 

function defined in equation 4.6 by 

1( ) ( ) 2 (2 ),
n

t h n t nψ ϕ= −∑    n Z∈                                        (4.7) 

The function generated by equation 4.7 gives the prototype or mother wavelet Ψ(t) for a 

class of expansion functions of the form given by equation 4.4 

,
0

( ) ( ) ( ) ( , ) ( )k j k
k j k

f t c k t d j k tϕ ψ
∞ ∞ ∞

=−∞ = =−∞

= +∑ ∑ ∑                                  (4.8) 

The coefficients in this wavelet expansion are called the discrete wavelet transform 

(DWT), of the signal f(t). For a large class of signals, the wavelet expansion coefficients 

drop off rapidly as j and k increase. As a result, the DWT is efficient for image and audio 

compression. 

The demand for compression technology increases every year in parallel with the 

increase in aggregate bandwidth for the transmission of audio and video signals. As a 

result, the wavelet-based approach plays an important role in the scheme of things as 

Perceptual coding of audio signals found its way to a growing number of consumer 

applications. The foremost criterion for audio compression technology is to achieve a 

certain signal quality at a given bit-rate as this directly translates to cost savings by 

getting a higher compression ratio at the same quality of service. Wavelet-based 

compression is claimed to be more efficient at low bit rates but are actually less 

successful than discrete cosine transform (DCT) -based systems in achieving good 

efficiency at near-transparent compression ratios. Computational complexity also limits 
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the algorithmic implementation of a codec. As a result, algorithmic delay becomes an 

important constraint especially for two-way communications applications. In that respect, 

it is notable that Wavelet compression does require more computational power than 

DCT-based compression. 

Let us consider a test signal which has to compress using compressive sensing 

and wavelets transformation in order to evaluate the performance. Figure 20 is the test 

signal which has to be compressed using wavelet transform. 

 
Figure 20. Input test signal 

Figure 22 depicts the 1-level decomposition of the test signal using a wavelet transform. 

This process involves two aspects: breaking up a signal to obtain the wavelet coefficients, 

and reassembling the signal from the coefficients. In wavelet analysis, a signal is split 

into an approximation and a detail. The approximation is then itself split into a second-

level approximation and detail, and the process is repeated. For an n-level decomposition, 

there are n+1 possible ways to decompose or encode the signal. 
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Figure 21. Approximations and details of original signal 

 

 

 
Figure 22. 1-Level decomposition of the test signal 
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Figure 23. Reconstructed signal using wavelets 

 

 
Figure 24. Test signal with 1-level decomposition using wavelets GUI toolbox 
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Figure 25. Test signal with 1-level of coefficients 

 
Figure 26. Original and compressed signal using wavelets GUI toolbox 
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Table 2. shows the comparison of compression of speech signal using wavelets and 

compressive sensing using different parameters. 

 

Table 2. Comparison of compressive sensing and wavelet compression 

Parameters 
Length of 

signal 

Threshold 

window 

Number of 

zeroes 

Non-zeroes 

coefficient 

Maximum 

absolute 

Error 

Compression 

(%) 

Compressive 

sensing 
2000 

0.0074 to 

-0.0045 
1000 1000 0.0160 50% 

Wavelet 2000 0.1188 1000 1000 0.1840 50% 
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Chapter Five 

Conclusion and Future Work 

In this research the design of a new mobile communication system using 

compressive sensing has been studied. The proposed system should fulfill the following 

specifications:  

• Low power consumption  

• Accurate reconstruction of the speech signal   

• Increased data rates 

During the design process, this module went through different tests and analysis in order 

to find the most adequate optimization technique to reconstruct the speech signal with 

few random measurements without losing the information. For simulation purposes, code 

was created in order to compress and transmit the speech signal below the Nyquist rate 

by taking only a few measurements of the signal. The result shows that by keeping the 

length of the signal (L) and threshold window (Th) constant one can achieve the desired 

compression of the signal by making the signal sparse (K)  to a certain amount which in 

turn increases the data rates. Two different types of measurement matrices: predefined 

and random measurement matrices were studied and tested using MATLAB. The speech 

signal was reconstructed without losing important information in order to achieve an 

increase in the data rates. After multiple simulations, it was found that the system worked 

as expected and the speech signal was reconstructed efficiently with a minimum error. 

However, the system is still not perfect and more research still required. Performance of 

compressive sensing is better when compared to wavelet compression as there is a 

minimum error with same compression rate using different parameters. 

 The following list points out some of the future work that needs to be done which will 

improve the advancement of mobile communication systems. 

• Implementing compressive sensing in 3G and LTE mobile communication 

systems 

• Parameters like noise, multipath effects and shadowing needed to be 

considered while measuring the output 
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• Different transformations need to be tested in order to find the most efficient 

one for this application 

• Design a measurement matrix that will be optimum for speech signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

36 
 

References 

 

[1] D.L. Donoho, "Compressed Sensing," IEEE Transactions on Information Theory,   
vol. 52, pp.1289-1306, 2006. 

 
[2] M. Vetterli, P. Marziliano, and T. Blu, “Sampling Signals with Finite Rate of 

Innovation,” IEEE Transaction on Signal Process, vol. 50, no. 6, pp.1417–1428, 
2002. 
 

[3] E. Candes, J. Romberg, and T. Tao, “Robust Uncertainty Principles: Exact Signal 
Reconstruction from Highly Incomplete Frequency Information,” IEEE Transaction 
on Information Theory, vol. 52, pp. 489–509, 2006. 

 
[4] “Compressive Sensing, a New Frame for Imaging”, http://www.cs.jhu.edu/~misha/ 

Reading Seminar/Papers/Baraniuk06.pdf. 
 
[5] E. Candes and J. Romberg , “Practical Signal Recovery from Random Projections,” 

Processing SPIE International Symposium Electronic Imaging, pp. 76–86, 
vol. 5674, 2005. 

[6] R. Baraniuk and P. Steeghs, "Compressive Radar Imaging," Radar Conference, 
2007 IEEE, doi:10.1109/RADAR.2007, pp.128-133, 2007. 
 

[7] Compressive Sensing, http://www.ricam.oeaw.ac.at/people/page/fornasier 
/CSFornasier Rauhut.pdf. 
 

[8] E. Candes and T. Tao. “Near-optimal Signal Recovery from Random Projections 
and universal encoding strategies,” IEEE, vol. 52, pp. 5406 – 5425, 2004. 
 

[9] Disciplined convex programming, http://cvxr.com/cvx/cvx_usrguide.pdf, 2010. 
 

[10] S.M. Kay. Fundamentals of statistical signal processing. Prentice Hall, 1998. 
 

[11] M.A. Davenport, M.B.Wakin, and R.G. Baraniuk. Detection and Estimation with  
Compressive Measurements. Technical report, Department of Electrical and 
Computer Engineering, Rice University, 2006. 
 

[12] Compressive Imaging, http://citeseerx.ist.psu.edu/. 
 

[13] Compressive Sensing, http://www.see.ed.ac.uk/~mdavies4/Research/CS/. 
 

[14] MATLAB CENTRAL, http://www.mathworks.com/matlabcentral/ 
fileexchange/7309. 

 

http://www.ricam.oeaw.ac.at/people/page/fornasier
http://cvxr.com/cvx/cvx_usrguide.pdf
http://citeseerx.ist.psu.edu/
http://www.see.ed.ac.uk/~mdavies4/Research/CS/
http://www.mathworks.com/matlabcentral/%20fileexchange/7309
http://www.mathworks.com/matlabcentral/%20fileexchange/7309


 
 

37 
 

[15] FFT Tutorial, http://www.phys.nsu.ru/cherk/fft.pdf. 
 

[16] A. A. Moghadam, H, Radha, "Hybrid Compressed Sensing of Images,"  
Multimedia Signal Processing (MMSP), 2010 IEEE International Workshop on, 
vol. 99, pp. 99-104, 4-6, 2010. 
 

[17] DCT, http://fourier.eng.hmc.edu/e161/lectures/dct/node1.html. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.phys.nsu.ru/cherk/fft.pdf
http://fourier.eng.hmc.edu/e161/lectures/dct/node1.html


 
 

38 
 

Appendices 

Appendix A: MATLAB Code 

MATLAB code for sampling the speech signal in mobile system using compressive 
sensing (Random measurement matrix) 

 
clc; 
clear all; 
 
%Fs Hz (samples per second) is the rate at the speech signal is sampled 
Fs=2000; 
x=wavread('test.wav'); 
figure(1) 
stem(x) 
title('Recorded input speech signal'); 
xlabel('Length of the input speech signal'); 
ylabel('Amplitude of the input speech signal'); 
  
%Discrete cosine transform of the recorded signal 
a0=dct(x) 
figure(2) 
stem(a0) 
axis([0 2000 -1 1]); 
title('Discrete cosine transform of the recorded signal'); 
xlabel('Length of the DCT spectrum'); 
ylabel('Amplitude of the DCT spectrum'); 
  
% Thresholding the spectrum to make it sparse 
for i=1:1:2000; 
if  a0(i,1)<=0.04 && a0(i,1)>=-0.06 
        a0(i,1)=0; 
else 
        a0(i,1)=a0(i,1); 
end  
end 
  
a0; 
figure(3) 
stem(a0) 
axis([0 2000 -1 1]); 
title('The Threshold spectrum'); 
xlabel('The length of the threshold spectrum'); 
ylabel('Amplitude of the threshold spectrum');  
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Appendix A (Continued) 
 

% Sparsity of the spectrum(K)and Length of the signal (N) 
K=800 
N=2000 
  
% Random measurement matrix 
disp('Creating measurment matrix...'); 
A = randn(K,N); 
A = orth(A')'; 
figure(4) 
imagesc(A) 
colorbar; 
colormap('lines'); 
title('Random Measurement matrix'); 
disp('Done.'); 
     
%  observations vector 
y = A*a0;  
figure(5) 
plot(y) 
title('Observation Vector'); 
  
%initial guess = min energy 
x0 = A'*y; 
  
%solve the LP 
tic 
xp = l1eq_pd(x0, A, [], y, 1e-2); 
toc 
figure(6) 
plot(xp) 
axis([0 2000 -0.6 0.6]); 
title(' Reconstructed Spectrum using l1-minimization'); 
  
% Inverse dicrete cosine transform of reconstructed signal (IDCT) 
Xrec=idct(xp) 
wavplay(Xrec,Fs) 
figure(7) 
stem(Xrec) 
title('Reconstructed signal at the receiver'); 
xlabel('Length of the reconstructed signal using IDCT'); 
ylabel('Amplitude of the reconstructed signal using IDCT'); 
  
% Calculating Absolute error between the reconstructed and actual signal 
err=(max(abs(Xrec-x))) 
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Appendix A (Continued) 

 
stem(err); 
title(' Absolute Error of Reconstructed spectrum and Threshold spectrum '); 
xlabel('Length of the Maximum Absolute Error'); 
ylabel('Maximum Absolute error') 
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Appendix B 

 
MATLAB code for sampling the speech signal in mobile system using compressive 

sensing (Pre-defined measurement matrix) 
 
clc; 
clear all; 
 
% Fs Hz (samples per second) is the rate at the speech signal is sampled 
Fs = 2000; 
  
% Recording the speech signal  
rec = wavrecord(2000,Fs); 
  
  
% Playing the recorded signal 
wavplay(rec,Fs); 
figure(1) 
stem(rec) 
title('Recorded input speech signal'); 
xlabel('Length of the input speech signal'); 
ylabel('Amplitude of the input speech signal'); 
  
  
% Discrete cosine transform of the recorded signal 
a0=dct(rec) 
figure(2) 
stem(a0) 
title('Discrete cosine transform of the recorded signal'); 
xlabel('Length of the DCT spectrum'); 
ylabel('Amplitude of the DCT spectrum'); 
  
% Thresholding the spectrum to make it sparse 
for i=1:1:2000; 
if  a0(i,1)<=0.05 && a0(i,1)>=-0.06 
        a0(i,1)=0; 
else 
        a0(i,1)=a0(i,1); 
end  
end 
a0; 
figure(3) 
stem(a0) 
title('The Threshold spectrum'); 
xlabel('The length of the threshold spectrum'); 
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Appendix B (Continued) 

 
 
ylabel('Amplitude of the threshold spectrum');  
  
% Pre-defined measurement matrix 
xx=sort(ceil(400*randn(1,1000))); 
n=2000 
for i=1:n 
A(:,i)=sin(i*xx)'; 
end 
A = orth(A')'; 
figure(4) 
plot(A) 
title('Pre-defined Measurement matrix'); 
disp('Done.'); 
  
     
%  Observations matrix 
y = A*a0; 
figure(5) 
plot(y) 
title('Observation Vector'); 
  
  
%initial guess = min energy 
x0 = A'*y; 
  
%solve the LP 
tic 
xp = l1eq_pd(x0, A, [], y, 1e-2); 
toc 
figure(6) 
plot(xp) 
title(' Reconstructed Spectrum using l1-minimization'); 
  
% Calculating the error between the Received reconstructed spectrum and actual 
spectrum 
figure(7) 
stem(abs(xp-a0),'-') 
title(' Absolute Error of Reconstructed spectrum and Threshold spectrum '); 
xlabel('Length of the Absolute Error between the reconstructed spectrum and transmitted 
threshold spectrum'); 
ylabel('Absolute error'); 
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Appendix B (Continued) 

 
% Inverse dicrete cosine transform of reconstructed signal 
 
x0=idct(xp) 
wavplay(x0,Fs) 
figure(8) 
stem(x0) 
title('Reconstructed signal at the receiver'); 
xlabel('Length of the reconstructed signal using IDCT'); 
ylabel('Amplitude of the reconstructed signal using IDCT'); 
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Appendix C 

 
MATLAB code for sampling the Laplacian speech signal generated by randraw 

function 
 
clc; 
clear all; 
close all; 
 
%Length of the signal 
L=512; 
x=randraw('laplace', [100, 6], 1e2 ); 
figure(1) 
plot(x) 
title('The input speech signal'); 
xlabel('The length of the signal'); 
ylabel('Amplitude of the signal'); 
  
%Fourier transform of the input speech signal 
y0=fft(x,L); 
z=abs(y0); 
a0=fftshift(z); 
figure(2) 
stem(a0) 
axis([0 512 0 11000]); 
title('Power spectrum of input speech signal'); 
xlabel('The length of the spectrum'); 
ylabel('Magnitude'); 
 
%Making the signal sparse by threshholding 
for i=1:1:L; 
if a0(i,1)>=2000 
        a0(i,1)=a0(i,1); 
else 
        a0(i,1)=0; 
         
end 
end 
 a0; 
 
% Making the signal sparse 
figure(3) 
stem(a0) 
axis([0 512 0 12000]); 
title('Threshold spectrum'); 
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Appendix C (Continued) 
 

xlabel('The length of the threshold spectrum'); 
ylabel('Amplitude of the threshold spectrum'); 
K=200 
N=512 
 
% measurement matrix 
disp('Creating measurment matrix...'); 
A = randn(K,N); 
A = orth(A')'; 
disp('Done.'); 
     
% observations 
y = A*a0;  
  
% initial guess = min energy 
x0 = A'*y; 
  
% solve the LP 
tic 
xp = l1eq_pd(x0, A, [], y, 1e-3); 
toc 
 
% Reconstructed output 
figure(4) 
stem(xp) 
axis([0 512 0 11000]); 
title('The reconstructed received spectrum'); 
xlabel('The length of the received spectrum'); 
ylabel('Amplitude of the received spectrum'); 
  
%Absolute error between the reconstructed and original signal 
figure(5) 
stem(abs(xp-a0),'-') 
axis([0 512 0 0.004]); 
title(' Error between the reconstructed and actual spectrum '); 
xlabel('The length of the spectrum'); 
ylabel('Absolute error'); 
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Appendix D 

 
MATLAB code for compressing the test signal using wavelet compression 

 
% Load original one-dimensional signal. 
Fs=2000 
s=wavread('test.wav')'; 
figure(1) 
stem(s) 
title('Input speech signal'); 
xlabel('Length of the input speech signal'); 
ylabel('Amplitude of the input speech signal'); 
l_s = length(s);  
  
% Wavelet transform of input signal 
[cA1,cD1] = dwt(s,'db1'); 
  
%To extract the Level-1 Approximation and Detail coefficient 
A1 = idwt(cA1,[],'db1',l_s); 
D1 = idwt([],cD1,'db1',l_s); 
figure(2) 
subplot(1,2,1); plot(A1); title('Approximation A1') 
subplot(1,2,2); plot(D1); title('Detail D1') 
  
%Inverse Wavelet transform of Approximation and detail coefficient 
A0 = idwt(A1,D1,'db1',l_s); 
wavplay(A0,Fs) 
figure(3) 
stem(A0) 
title('Recontructed speech signal'); 
xlabel('Length of the reconstructed speech signal'); 
ylabel('Amplitude of the reconstructed speech signal'); 
err = max(abs(s-A0)) 
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Appendix E 
 

MATLAB code for reconstructing the speech signal using l1-minimization 
 
 l1eq_pd.m 
% 
% Solve 
% min_x ||x||_1  s.t.  Ax = b 
% 
% Recast as linear program 
% min_{x,u} sum(u)  s.t.  -u <= x <= u,  Ax=b 
% and use primal-dual interior point method 
% 
% Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) 
% 
% x0 - Nx1 vector, initial point. 
% 
% A - Either a handle to a function that takes a N vector and returns a K  
%     vector , or a KxN matrix.  If A is a function handle, the algorithm 
%     operates in "largescale" mode, solving the Newton systems via the 
%     Conjugate Gradients algorithm. 
% 
% At - Handle to a function that takes a K vector and returns an N vector. 
%      If A is a KxN matrix, At is ignored. 
% 
% b - Kx1 vector of observations. 
% 
% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if 
%     the duality gap is less than pdtol).   
%     Default = 1e-3. 
% 
% pdmaxiter - Maximum number of primal-dual iterations.   
%     Default = 50. 
% 
% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. 
%     Default = 1e-8. 
% 
% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored 
%     if A is a matrix. 
%     Default = 200. 
% 
% Written by: Justin Romberg, Caltech 
% Email: jrom@acm.caltech.edu 
% Created: October 2005 
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Appendix E (Continued) 
 
 
function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) 
  
largescale = isa(A,'function_handle'); 
  
if (nargin < 5), pdtol = 1e-3;  end 
if (nargin < 6), pdmaxiter = 50;  end 
if (nargin < 7), cgtol = 1e-8;  end 
if (nargin < 8), cgmaxiter = 200;  end 
  
N = length(x0); 
  
alpha = 0.01; 
beta = 0.5; 
mu = 10; 
  
gradf0 = [zeros(N,1); ones(N,1)]; 
  
% starting point --- make sure that it is feasible 
if (largescale) 
if (norm(A(x0)-b)/norm(b) > cgtol) 
    disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); 
    AAt = @(z) A(At(z)); 
    [w, cgres, cgiter] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); 
if (cgres > 1/2) 
      disp('A*At is ill-conditioned: cannot find starting point'); 
      xp = x0; 
return; 
end 
    x0 = At(w); 
end 
else 
if (norm(A*x0-b)/norm(b) > cgtol) 
    disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); 
    opts.POSDEF = true; opts.SYM = true; 
    [w, hcond] = linsolve(A*A', b, opts); 
if (hcond < 1e-14) 
      disp('A*At is ill-conditioned: cannot find starting point'); 
      xp = x0; 
return; 
end 
    x0 = A'*w; 
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Appendix E (Continued) 
 
end   
end 
x = x0; 
u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); 
  
% set up for the first iteration 
fu1 = x - u; 
fu2 = -x - u; 
lamu1 = -1./fu1; 
lamu2 = -1./fu2; 
if (largescale) 
  v = -A(lamu1-lamu2); 
  Atv = At(v); 
  rpri = A(x) - b; 
else 
  v = -A*(lamu1-lamu2); 
  Atv = A'*v; 
  rpri = A*x - b; 
end 
  
sdg = -(fu1'*lamu1 + fu2'*lamu2); 
tau = mu*2*N/sdg; 
  
rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); 
rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; 
resnorm = norm([rdual; rcent; rpri]); 
  
pditer = 0; 
done = (sdg < pdtol) | (pditer >= pdmaxiter); 
while (~done) 
   
pditer = pditer + 1; 
   
w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv; 
w2 = -1 - 1/tau*(1./fu1 + 1./fu2); 
w3 = -rpri; 
   
sig1 = -lamu1./fu1 - lamu2./fu2; 
sig2 = lamu1./fu1 - lamu2./fu2; 
sigx = sig1 - sig2.^2./sig1; 
   
 if (largescale) 
    w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1)); 
    h11pfun = @(z) -A(1./sigx.*At(z)); 
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Appendix E (Continued) 
     
[dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); 
if (cgres > 1/2) 
      disp('Cannot solve system.  Returning previous iterate.  (See Section 4 of notes for 
more information.)'); 
      xp = x; 
return 
end 
    dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx; 
    Adx = A(dx); 
    Atdv = At(dv); 
else 
    w1p = -(w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1))); 
    H11p = A*(sparse(diag(1./sigx))*A'); 
    opts.POSDEF = true; opts.SYM = true; 
    [dv,hcond] = linsolve(H11p, w1p, opts); 
if (hcond < 1e-14) 
      disp('Matrix ill-conditioned.  Returning previous iterate.  (See Section 4 of notes for 
more information.)'); 
      xp = x; 
return 
end 
    dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx; 
    Adx = A*dx; 
    Atdv = A'*dv; 
end 
   
  du = (w2 - sig2.*dx)./sig1; 
   
  dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1; 
  dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2; 
   
  % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 
  indp = find(dlamu1 < 0);  indn = find(dlamu2 < 0); 
  s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]); 
  indp = find((dx-du) > 0);  indn = find((-dx-du) > 0); 
  s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]); 
   
  % backtracking line search 
  suffdec = 0; 
  backiter = 0; 
while (~suffdec) 
    xp = x + s*dx;  up = u + s*du;  
    vp = v + s*dv;  Atvp = Atv + s*Atdv;  
    lamu1p = lamu1 + s*dlamu1;  lamu2p = lamu2 + s*dlamu2; 
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Appendix E (Continued) 
     
    fu1p = xp - up;  fu2p = -xp - up;   
    rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; 
    rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); 
    rpp = rpri + s*Adx; 
    suffdec = (norm([rdp; rcp; rpp]) <= (1-alpha*s)*resnorm); 
    s = beta*s; 
    backiter = backiter + 1; 
if (backiter > 32) 
      disp('Stuck backtracking, returning last iterate.  (See Section 4 of notes for more 
information.)') 
      xp = x; 
return 
end 
end 
   
   
  % next iteration 
  x = xp;  u = up; 
  v = vp;  Atv = Atvp;  
  lamu1 = lamu1p;  lamu2 = lamu2p; 
  fu1 = fu1p;  fu2 = fu2p; 
   
  % surrogate duality gap 
  sdg = -(fu1'*lamu1 + fu2'*lamu2); 
  tau = mu*2*N/sdg; 
  rpri = rpp; 
  rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); 
  rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; 
  resnorm = norm([rdual; rcent; rpri]); 
  done = (sdg < pdtol) | (pditer >= pdmaxiter); 
  disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = 
%8.3e, Primal res = %8.3e',... 
    pditer, tau, sum(u), sdg, norm(rdual), norm(rpri))); 
if (largescale) 
    disp(sprintf('CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); 
else 
    disp(sprintf('H11p condition number = %8.3e', hcond)); 
end   
end 
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