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I. INTRODUCTION 
 

Protein cages are compartments derived from protein subunits that self-assemble into hollow 

structures with nano-sized internal space surrounded by a protein coat. Protein cages have been 

found in a host of biological systems and have a range of biologic functions, from iron storage 

containers like ferritins, found in humans, to the capsids that form the structural foundation of 

viruses (Cristie-David et al. 2018).  The unique structure of protein cages and their size has 

garnered much attention for their use in a number of materials applications (Liu et al. 2018). In 

addition to their natural structures, the genetic encoding and protein composition confer the 

ability to readily modify protein cage structures through bioengineering techniques that maintain 

their robust self-assembly, solubility, and biocompatibility properties, but allow for synthetic 

enhancements and chemical reprogramming (Edwardson et al. 2022). Their programable 

interfaces permit the application of protein cages to a broad range of nanomaterials and the 

development of new nanobiotechnology (Beyeh et al. 2018). Examples of protein cage 

structures, including virus-like particles (VLPs), which are protein cages derived from viral 

capsids, are shown in Figure 1. 

https://sciwheel.com/work/citation?ids=13441139&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13441145&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12786374&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13441140&pre=&suf=&sa=0&dbf=0
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Figure 1. Examples of protein cages and virus-like particles. Structures shown are as follow 

(A)Bacteriophage P22, (B)Ferritin, (c) Encapsulin.  

  

Protein cage assembly and formation can be performed either in vivo, by assembly of purified 

proteins outside of the cell in a test tube, or in vitro, whereby the assembly takes place in the cell, 

typically as the protein subunits are being produced in their host cell (Giessen and Silver 2016). 

In recent years, synthetic biochemists have harnessed both genetic and synthetic chemical 

methods to manipulate protein cage structures both in vitro and in vivo (Casini et al. 2004). 

Protein cages have been produced from a number of expression host cells, however expression of 

protein subunits for protein cages is typically carried out in bacteria, such as E. coli, or yeast, 

since these production systems can easily be scaled up and are cost-effective (Fuenmayor et al. 

2017). The diversity of production systems and in vitro/in vivo methods for assembly provide 

broad adaptability of protein cages for  different applications, such as therapeutic delivery, 

https://sciwheel.com/work/citation?ids=5343133&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5650943&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7339592&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7339592&pre=&suf=&sa=0&dbf=0
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vaccines, and containers for medical applications that require more stringent care to prevent 

contamination or unwanted immune responses (Terasaka et al. 2018). A wide range of protein 

cages are in existence, many have been fully characterized to the molecular level, and they 

contain a range of shapes, sizes, and molecular architectures that provide a “library” of possible 

protein cages to choose from in developing new designer protein cage nanomaterials (Beyeh et 

al. 2018). A key feature of protein cages is the hollow interior, in which guest 

molecules/macromolecules can be trapped and confined. A large body of research has been 

dedicated to the encapsulation of various guest molecules on the interior of protein cage, which 

is discussed in the next section. 

 

A. Protein cages as Nanocontainers.  

 
Protein cages present an inspirational structure due to its sustainability, ease of production, as 

well as the profound need of biocompatible materials in medicine, technology, and energy 

applications (Kim et al. 2019). In the past decade, scientific interaction with protein cages have 

been highly focused on therapeutic applications. (Heddle et al. 2017). Use of protein cages can 

be subcategorized into either biotemplates or biomimics depending on the use of the protein 

cages. Biotemplates consist of biologic nanoparticles equipped to form novel and functional 

building materials (Freeman 2017) while biomimics intend to recreate or closely resemble the 

biological function of a protein or proteins structure (Ganganboina and Doong 2018). One of the 

main uses protein cages have been studied for is their utilization as nanocontainers. The directed 

assembly of viral capsids through single protein structures are viewed as molecular Lego sets, 

since they are usually assembling from repeating protein designs. They form highly symmetrical 

structures, as stated previously, from helical, icosahedral, cubic, or tetrahedral symmetries.  In 

nature, structure drives function, the variety of structures present display the variability of 

https://sciwheel.com/work/citation?ids=10867773&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13441140&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13441140&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13357459&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13309928&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13438990&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13439021&pre=&suf=&sa=0&dbf=0
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protein cages from viral capsids, which are adapted to their various environments (Lua et al. 

2014). However, protein cages are cost-efficient production of proteins. They are commonly 

assembled from a limited number of subunits to form the robust nanostructures present in nature 

(Cannon et al. 2020). Protein cages present a moldable nanoplatform that can provide humanity 

control over the size, the shape, the biocompatibility, and the ability to change the structure and 

therefore the functionality by environmental stimulus (Yang et al. 2021).  

 

Nevertheless, a single protein cannot achieve the complexity presented by the everchanging 

requirements for various applications, thus a “library” of proteins has been studied and their 

process of assembly, structural formation, and dynamics in order to harness their potential for 

future applications. Protein cages can form spherical, robust nanocontainers, as well as 

nanotubes (Schwarz et al. 2015). They can also be modified through the different interactions 

(Figure 2), such as internal interactions, surface interactions, and between the protein interfaces 

(Uchida et al. 2018). The variation of proteins that can be utilized can therefore provide possible 

control over the size, position, orientation, and synthesis of the nanocontainers.  

 

 

 

 

 

 

Figure 2. Representation of Protein Cages Interfaces. (A) Cryo-electron microscopy imaging 

reconstruction of sulfurous turreted icosahedral virus (75 nm in diameter) isolated from a 

boiling, acidic environment in Yellowstone National Park. (B) Schematic illustration of the three 

interfaces in a protein cage available for chemical or genetic modification. 

https://sciwheel.com/work/citation?ids=1370133&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1370133&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8642658&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13439029&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10096087&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5867995&pre=&suf=&sa=0&dbf=0
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Protein cages can range between 12 to 100 nanometers, and as imaginable as they are in the 

human mind, they are large molecular structures with a prospective chemical and genetical 

manipulation (Slocik et al. 2013). Since these structures are defined by their internal cargo 

capacity, they serve an ideal encapsulation potential for desirable nanomaterials or molecular 

cargos (Collett et al. 2021). Through the understanding of their assembly, protein cages can 

encapsule desired molecules through their directed assembly and attachment of the molecules to 

the interior (Edwardson et al. 2022)  

 

The focus of the research discussed in this thesis is on the utilization of the VLP protein cage 

derived from the Salmonella typhimirium bacteriophage P22, which will be referred to as a VLP 

going forward, for the encapsulation of enzymes to produce protein cage nanoreactors (Kim et al. 

2019). However, there are many other unique protein cages and VLP systems that have been 

extensively studied and are noteworthy for understanding the field. (Selivanovitch et al. 2019). 

The remainder of this chapter will discuss the different major families of protein cages and VLPs 

examined to date with a focus on their assembly, maturation, and methods for encapsulation of 

enzymes on their interior for constructing nanoreactors. 

 

B. Protein Cages Families of Nanostructures  

 
 

Ferritins are a family of proteins present in biological system with the main function of storing 

and sequestering iron (Sano et al. 2005). They are found in all domains of life and due to their 

function of storing inorganic iron molecules, these were the first protein cages to be used as a 

template for synthesis of inorganic nanoparticles. Ferritin has been classified the main iron 

https://sciwheel.com/work/citation?ids=10867772&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10867766&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12786374&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13357459&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13357459&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13437041&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13310024&pre=&suf=&sa=0&dbf=0
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storage molecule available. As a nanoparticle, ferritin has been extended beyond the scope of 

iron storage and aims to become a functional and novel biomolecule used for medical process 

such as iron delivery, chemotherapy, contrast agents, and biomarkers in an number of 

neurological diseases (Chiou and Connor 2018). These particles are referred as ferritin-like 

particles.  In recent approaches, ferritins-like particles have been developed to disassemble in the 

presence of low pH and reassemble at near neutral pH in the presence of a magnetic resonance 

imagining (MRI) contrast agent (Chakraborti et al. 2019), as delivery nanoparticles to induce an 

antigen-specific immune response (Han et al. 2014), and as protein fusions to fluorescent 

proteins to pave the way for new nanotechnical and pharmacological applications (Tetter and 

Hilvert 2017).  

 

Encapsulins are a novel prokaryotic compartment (Gabashvili et al. 2020) composed of shell 

proteins that form icosahedral capsid nano compartments that are used to encapsulate only one 

type of cargo. Genes which produce encapsulin are present throughout prokaryotic genomes and 

provide a large diversity of cargo proteins. Encapsulins have been studied as well to produce 

programmable nanoreactors and produce nanomaterials (Ren et al. 2019; Almeida et al. 2021). 

Encapsulins impose a protection against proteases, such as trypsin, and maintain their robust 

protein structure from degradation. Studies have encouraged scientists to study encapsulins for 

applications in recombinant protein vaccines, treatment for cancer, and various other diseases. 

Additionally, they can sustain high temperature over a wide of pH range, can be engineered to 

alter shell cargo proteins, while enclosing enzymatic reactions, and size-constrained metal 

biomineralization (Sigmund et al. 2018). 
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Lumazine synthase are capsid-forming bacterial enzymes, which catalyzes the penultimate step 

in the biosynthesis of riboflavin, also known as vitamin B2 (Azuma et al. 2017). Usually forming 

icosahedral capsid with triangulation number of T=1, with an outer diameter of around 16 nm 

and consist of a total 60 identical subunits (Wei et al. 2017). Since mammals are dependent on 

the uptake of this vitamin, the production pathway is present mostly in microorganisms and 

plants, which establishes the lumazine synthase as an interesting protein to study for medical and 

vaccine development (Ra et al. 2014; Tuan et al. 2014). Studies have also shown how robust and 

versatile the lumazine synthase structure is by creating negatively charged luminal surfaces to 

investigate structural catalysts (Azuma et al. 2016). Since it is predominantly present in plants 

and microorganisms, including human pathogens, it is also a potential targeting nanostructure to 

anti-infective agents (Morgunova et al. 2007).  

 

Major Vault Proteins, also known as ribonucleoprotein particles, are a large, oval 

ribonucleoprotein. They are abundant in eukaryotic cells and appear to be involved in the 

complex pathways of growth and proliferations of cells (Tanaka and Tsukihara 2012). Past 

studies have suggested that the formation, abundance, and conservation of vault proteins can 

have important attributes in fighting infections, resisting chemotherapy, and surviving nutritional 

stress, since they seem to be crucial for the dendric cell differentiation and maturation (Suprenant 

2002). In the past, they have been used to study genes associated with lung multidrug resistance 

and chemotherapy resistance lung cancer (Ben et al. 2019), as well as the study of an 

extracellular vesicle to investigate the distribution, accumulation and efflux of 

chemotherapeutics for breast cancer cells in vitro (Lehuédé et al. 2019). More importantly, and 

related to this research they have been utilized to encapsulate magnetic resonance imagining 
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contrast agents, as a promising protein structure as they are responsive to external stimuli such as 

heat, pH, magnetic field, etc. (Wang et al. 2015) 

 

Heat Shock Proteins are a family of molecular chaperones which have a role in protein folding. 

Ranging between 10 to 150 kDa weight that are activated to detect and control different forms of 

stress, and an indication birds to adapt to stress changes in their environment. (Baykalir and 

Simsek 2018). Heat shock proteins have a highly versatile cage-like structure whose exterior and 

interior surfaces are modifiable to both genetic and chemical modifications. Assembling into an 

empty 24 subunit cage with octahedral symmetry, forming an interior diameter of 12 nm. 

Previously, heat shock proteins have been used to deliver tumor microenvironment targeting 

nanoparticles and therapeutics, such as antigens and  MRI imagine fluorescent molecules,  (Shi 

et al. 2020). 

 

Viral Capsids are also a family of protein cages that are present in viral biology. The interior 

surface of viral capsids can direct the attachment or nucleation of molecular materials, as it does 

for the viral capsid in nature. Viruses package their viral genome or nucleic acid within the 

capsid, the mechanism for packaging the viral genome can be utilized to direct the encapsulation 

of non-viral genomic cargos  Nanoparticles derived from viral capsids are known as virus-like 

particles (VLPs). Initial VLP work focused on utilizing Cowpea chlorotic mottle virus (CCMV), 

an RNA-containing plant virus, which was composed by 180 identical coat protein that would 

then self-assemble to form an icosahedral cage structure (Minten et al. 2009). CCMV forms a 

structure with a 28 nm outer diameter and a 24 nm interior diameter. Currently, through protein 

design and genetic engineering, it is possible to apply changes in the interior structures of the 
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coat proteins to attach molecules that can then be encapsulated. Additional VLPs from Porcine 

Circovirus type 3 (PCV3) VLP with a 10 nm diameter has been developed in order to detect and 

facilitate the screening of swine serum for clinical purposes (Wang et al. 2020); human 

parvovirus B19 VLP and the effects of pH and ionic strength on the assembly process (Sánchez-

Rodríguez et al. 2012); and the capsid of human papillomavirus (HPV) which accommodates 

multiple mutant particles natural design in order to produce an HPV vaccine for multiple strains 

of the virus (Wang et al. 2020).  

 

On top of that, the employment of enzymes as biocatalyst across industries such as food 

processing, medical diagnostics, energy, and biofuel will require the optimized and stable 

enzymes. VLPs have been used in the past to encapsulate enzymes in order to stabilize them, 

protect them, and study them through scaffolding protein-mediated encapsulation, osmolyte-

mediated encapsulation (Fu et al. 2018; Glasgow et al. 2012). The MS2 bacteriophage VLP has 

been used to encapsulate single-stranded-DNA in a variety of sized ranging from 200 to 1500 

nucleotides. As well as encapsulating MRI contrasting enhancement molecules, proteins, and 

nanoparticles. Capitalizing on the 2 nm pores which allow small molecules have access to the 

internal VLP space (Glasgow et al. 2012; Giessen and Silver 2016). The Qβ VLP has been used 

to encapsulate small-ultra red fluorescent proteins to generate non-invasive in vivo imagine 

agents (Fabian et al. 2020), as well as encapsulating fluorescent particles in order to bioconjugate 

encapsulated biomaterials. The P22 VLP has showed to have a higher encapsulation efficiency 

than the Qβ and the MS2 (Glasgow et al. 2012), as it is assembled through the co-expression of 

two simple protein structures; coat protein (CP), and a scaffolding protein (SP) which directs the 

assembly of the capsid. The P22 VLP consist of 420 copies of the CP monomer whose assembly 
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is guided with the aid of approximately 300 SP. The P22 VLP has been used in the past as a 

programmable targeting agent, delivery nanoplatform, and nanoreactor platform for catalytic 

enzyme encapsulation. P22 provides a platform that can be modified due to the guided assembly 

of the scaffolding protein (SP), since the SP can be truncated, providing increased space for 

cargo on the interior, and will still guide the formation of the viral capsid. Moreover, the fusion 

of the proteins together can guarantee co-encapsulation of a defined ratio of enzyme cargoes that 

can be determined to determine the local concentration of encapsulated catalyst (Patterson et al. 

2012; Schwarz et al. 2015; Kim et al. 2019). 
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II. P22 BACTERIOPHAGE VIRUS-LIKE PARTICLES  
 

A. Virus Like Particles  

 
Viruses have developed a large variety of capsids to packages, protect, and deliver their DNA or 

RNA genome (Terasaka et al. 2018). Their well-characterized 3D structure makes them a wide-

ranging building block for applications (Wilkerson et al. 2018). Despite the vast differences in 

symmetry, shape and complexity, protein capsids follow a few common design principles 

(Cannon et al. 2020). Most common viral capsids studied are built to form virus-like particles 

(VLPs), which are viral capsid proteins that self-assemble to form the viral coat proteins 

produced through recombinant technology yielding a non-infectious particle (Hortsch and 

Weuster-Botz 2011). VLPs can be modified either through a chemical or genetic modification to 

provide different applications in the biotechnological realm (Lu et al. 2022). VLPs can be 

modified externally to produce attachment points with antigens to result in an immunological 

response and can be used to produce vaccines. VLPs can be modified internally to attach 

desirable cargos such as therapeutics, inorganic materials, catalysts, functional proteins and 

imagine agents (Ren et al. 2019; Patterson et al. 2012; McCoy et al. 2018). 

 

VLPs use a symmetric arrangement of the same protein to maximize space for cargo while 

minimizing genetic information load and liability. Viruses have maximized arrangements of 

asymmetric protein chains to form triangular faces of at least three protein chains resulting in 

platonic solid structures such as tetrahedra, octahedra, and icosahedral, composed of four, eight, 

and 20 equilateral triangles, respectively (Cheng-Chung Lee et al. 2003). Icosahedral symmetric 

capsids are the most common natural capsids (Prevelige et al. 1988). Nature favors the 

icosahedral capsid since it provides a maximized container volume and making it a dominating 
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reaction chamber. (Edwardson et al. 2022). A curious observation, demonstrated by Caspar and 

Klung, of many cages consisting of more than 60 subunits, product of a single protein chain 

monomer, would allow small deformations in inter-subunit interactions to allow a single protein 

to use the same surface chemistry to create a large icosahedral symmetric capsid (Johnson and 

Olson 2021).  

 

Understanding the assembly, interaction, and disassembly of protein capsids, as well as the 

interaction with the cargo molecule permits the scientific community to harness the system for 

biotechnology, nanomaterials, and applications. While some small cargos can be infused through 

the porous VLP surface, larger cargos might present a more difficult task that requires control 

over the production and assembly for the loading and, if necessary, the release of the cargo. To 

aid in loading large cargoes an understanding of the capsid assembly through its guided pathway 

to form the final complex structure with a high predictability and efficiently is needed.   

 

 

 

Figure 3. Capsid Assembly Mechanism. Three dimers from a hexamer, two of which 

assemble into a dodecamer, and two dodecamers assemble into the full shell. (Edwardson et 

al. 2022) 

The environment in which these capsids are being formed provide a drive, since typically capsid 

assembly is driven by entropically stable pathways. The capsid is formed by burying its 
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hydrophobic surface and exposing hydrophilic surface (Gast et al. 2021). The adhesive and 

cohesive properties of water and the interaction water molecules have with the single protein 

chain leads to the formation of the capsid assembly (Johnson and Olson 2021).  Yet, capsids that 

constitute of 24 or more subunits, rely on more than just the driving force of hydrophobic and 

hydrophilic interactions in solution (Le et al. 2019). They rely on quasi-equivalence and 

flexibility of the subunit formation. As presented in Figure 3, there are two extremes of the 

observed mechanism in which can start through nucleation-and-growth or by en masse (in a 

group) assembly around the cargo to rearrange into a well-organized capsid (Edwardson et al. 

2022). 

 

Nucleation-and-growth mechanism has most observed in capsids modeled after viruses in the 

presence of a low loading cargo or genomic cargo. Initially producing protomer building blocks 

such as dimers or trimers with low affinity to each other (Lauria et al. 2017). This allows them to 

associate once a critical concentration has been produced. Then they recruit additional protomers 

to complete the capsid assembly as depicted in Figure 4. En masse nucleation is induced by the 

interaction changes with environmental promoters (Calcines-Cruz et al. 2021). This can be 

through environmental changes cues or association with molecules such as RNA genomes or 

partner proteins, such as scaffolding proteins. This mechanism needs to be excellently regulated 

to avoid the formation of incomplete or unwanted structures. Natural systems manage this 

formation of unwanted structures by exploiting the weak protomer interactions, this prevents the 

depletion of free subunits and can reverse the binding. (Prevelige et al. 1993; Terasaka et al. 

2018; Edwardson et al. 2022) 
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Figure 4. (a) The formation of capsid nuclei can happen spontaneously above a critical 

concentration or can be induced by environmental changes, as well as the interaction with the 

cargo. (c) The cargo can be the leading driving force to bring into proximity to rearrange into 

completed capsids.  

 

B. P22 Virus-Like Particles 

 

VLPs serve as a well-understood molecular platform without the infectious material presented in   

their viral counterparts. They have a regular and programable architectures derived from viruses 

and are an exceptional platform to develop nanomaterials. Studies on VLPs have highlighted the 

ability to encapsulate cargo just like their viral counterparts, although they permit greater access 

to a wider variety of cargo molecules (Waghwani et al. 2020) 

 

The P22 VLP is inspired by the P22 bacteriophage in the Podoviridae family that infects 

Salmonella typhimurium. The assembly of the capsid requires the coat protein (CP) and 

scaffolding protein (SP) (Figure 5). In the absence of the scaffolding protein, the coat protein 

assembles to form a large and closed structure. This leads to the understanding of the proper 

folding and determination of the SP since it is necessary for the formation of the capsid; 
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approximately 300 copies of the 33 kDa SP co-assemble with the 420 copies of the 47 kDa CP to 

form a T=7 procapsid. The procapsid has structural spaces or pores, approximately 25 nm in 

diameter, which is located at the center of each hexametric CP cluster and provide an exit and 

entry port to the interior of the VLP, allowing compounds in the range of 5-8kDa entering the 

VLP. (Schwarz et al. 2015; Teschke and Parent 2010). 

 

C. Structure and Folding of the Coat Protein 

 

The P22 VLP coat protein (CP) has a unique biochemical property, which allows it to remain 

stable until reaching excess temperatures of 80 C (Teschke and Parent 2010). As stated earlier, 

the coat protein on its own cannot produce a mature phage structure without the aid of the SP but 

will assemble into a T=4 capsid and have aberrant spiral structures. A mature P22 VLP capsid 

with a T=7 icosahedra structure will result in a 10-15% increase in volume (Parent et al. 2010).  

The CP assembly of the P22 VLP is simplified due to 1) the monomeric coat protein added one 

at a time; and 2) the maturation does not require proteolytic cleavage of the coat protein, the 

breakdown of the coat protein with the aid of a secondary enzyme, as some other viral capsids 

require (Genes et al. 1973). The icosahedral cage structure can also be utilized as a platform for 

modification of the exterior surface (Newcomer et al. 2015). It has been shown that amines, 

carboxylic acids, and thiol groups can react with activated small molecules, such as activated 

fluorescence labeling, without disrupting the overall cage structure (Servid et al. 2013).  
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Figure 5. (A)Bacteriophage P22 Coat Protein. (B) Bacteriophage P22 scaffolding protein 

 

 

 

 

D. Structure and Folding of the Scaffolding Protein 

 

The P22 VLP scaffolding protein was predicted to be a highly -helical protein, 33 kDa in size. 

The C-terminal region of the scaffolding protein compromises the part of the region that interacts 

with the coat protein, and the deletion of the final 11 amino acids of the SP C-terminus makes 

the scaffolding protein incapable of binding to the coat protein. The N-terminus on the other 

hand can be readily truncated and truncation by deletion of the first 141 amino acids residues of 

the SP is still capable to direct the assembly of the P22 VLP. The C-terminal 35 residues are 

revealed to be the coat binding domain. Importantly, the assembly requires the presence of CP 

and the SP, without a change of pH or divalent cation alteration. (Thuman-Commike et al. 1996; 

Johnson and Chiu 2007)  

 

It has been previously showed by Douglas and co-workers  (Waghwani et al. 2020; O’Neil et al. 

2011; Uchida et al. 2018; McCoy et al. 2018), that the SP can be severely truncated at the N-

terminus to up to 162 amino acid residues and still direct the assembly of the P22 VLP. The 
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truncated version of the SP results in additional space in the interior of the VLP (Prevelige et al. 

1988). The additional empty space can be exploited to encapsulate large guest 

molecules/macromolecules by fusing their peptide sequence to the SP, which directs and 

localizes cargoes into the P22 VLP as the CP assembles. Through this strategy, it has been 

shown that a wide array of proteins can be encapsulated inside the P22 VLP, including the 

encapsulation of catalytic enzymes that remain active (Selivanovitch et al. 2021; Waghwani et al. 

2020; Uchida et al. 2015; Patterson et al. 2017; O’Neil et al. 2011). The P22 VLP permits access 

to the encapsulated catalyst through the porous VLP surface, which contains pores of 2 to 4.5 

nanometers depending on the structural morphology (Selivanovitch et al. 2021). Through the 

expression of the SP fused with the catalyst, high internal packaging that resemble the 

concentrations present in biological systems can be achieved.  

 

E. Encapsulation of Catalytic Cargoes 

 

Catalytic cargoes can be introduced through a series of paths explored in the past. The methods 

to encapsulate cargos can be divided into in vivo and in vitro strategies. The in vitro assembly 

approach grants control over an additional level of complexity than in vivo, but requires 

additional steps of purification and preparation (Waghwani et al. 2020). Additionally, the P22 

VLPs produced through in vitro assembly can be layered to produce architectural structures that 

can disassemble and reassembly in vitro. Sharma and coworkers were able to encapsulate 

catalytic cargo by fusing it to the N-terminus of the truncated SP and were expressed in E.coli 

cells, and through a separate construct, the CP was expressed in E.coli same was done for the 

expression of a wild type of the CP. While the catalytic cargo-SP and the wild type SP are mixed 

together through different molar ratios, and a 1:1 SP:CP ratio. (Sharma and Douglas 
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2020).Through in vivo process, it is possible to attach a cargo on the VLP surface both internally 

and externally due to the VLP P22 repetitive protein structure. The gene encoding the CP protein 

can be mutated in order to permit an attachment target, not internally and externally (Giessen and 

Silver 2016; Azuma et al. 2018). In the past this has been allowed by mutating one amino acid 

into a cysteine such as S133C or K118C, and then a cargo molecule is conjugated through thiol-

maleimide conjugation inside the VLP (Kim et al. 2019). This methodology was first used by 

tagging florescence labeling molecules in the interior of VLPs.  

 

In addition, in vivo modifications can be directed through fusion of a catalytic enzyme to the SP, 

by truncating the SP and adding gene encoding information through a genetic containing an 

enzyme of interest, such as formate dehydrogenase (FDH), alcohol dehydrogenase D (AdhD), 

CelB, GalA, hydrogenase, as well as simultaneous encapsulation of multiple enzymes, to name a 

few  (O’Neil et al. 2011).  The P22 VLP provides a mechanism to encapsulate the enzyme by 

forming an enzyme-SP which directs the assembly of the P22 VLP in the presence of the CP. 

This permits the truncated SP fused with the desired enzyme to be encapsulated. (Jordan et al. 

2016). Changes to enzymes kinetics have been found through the in vivo assembly pathway 

verses the normal kinetics of the enzymes and recent kinetics results have also found changes to 

in vitro encapsulated enzymes vs. their in vivo counterparts. Because of these differences, 

methods for investigating how in vivo encapsulation might alter enzyme kinetics are needed, 

which is the focus of the research outlined in the subsequent sections of this thesis. 
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III. DESIGNING METHODS FOR TEMPORAL 

ENCAPSULATION OF ENZYMES INSIDE OF THE P22 VLP  
 

Encapsulating enzymes in the P22 VLP has been extensively studied, with one of the end goals 

of the research being to produce catalytic nanoreactors that protect the enzymes from 

denaturation and degradation. Additionally, it was hypothesized that encapsulation would lead to 

emergent properties and could be used to study enzymes in a crowded and confined environment 

that mimics cellular conditions normally experienced by enzymes. As noted in the previous 

chapter the P22 VLP has been utilized to encapsulate a number of different enzyme cargoes, 

however these have largely focused on the encapsulation of enzymes originating from 

hyperthermophilic organism, such as Pyrococcus furiosus, which are known to be robust and 

show more thermal and chemical stability than enzymes originating from mesophilic organisms. 

The advantage of encapsulating enzymes inside of VLPs is hypothesized to be more 

advantageous for mesophilic enzymes, but the use of the P22 VLP for mesophilic enzyme 

encapsulation has only recently been examined.  

 

Encapsulation strategies of enzymes inside of the P22 VLP have largely focused on in vivo 

assembly strategies, where enzymes genetically fused to the SP are simultaneously co-expressed 

with the P22 CP, leading to subsequent encapsulation of the enzyme-SP fusion protein inside the 

P22 VLP interior. Interestingly, encapsulation of enzymes using a simultaneous co-expression 

strategy has resulted in active enzymes, but often with alterations to their kinetics parameters 

relative unencapsulated enzyme. The first example of encapsulation was examined for the 

hyperthermophilic alcohol dehydrogenase D (AdhD) from P. furiosus, which showed decreased 

kcat and KM upon encapsulation. The change in AdhD parameters were attributed to crowding and 

confinement effects at the time, since the internal concentrations of AdhD neared 6 mM, similar 
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to the macromolecular concentrations of the cell (Patterson, D. P et al 2012). Later examples of 

hyperthermophilic enzymes showed little change to the overall kinetics although co-confinement 

of enzymes was found to show channeling effects (Patterson, D. P et al 2014). The first example 

of a mesophilic enzyme encapsulated inside P22 was the encapsulation of a heme dependent 

cytochrome P450 (CYP) enzyme that was able to activate pro-drug after encapsulation. 

Interestingly, the authors utilized a two-plasmid approach for the production of the CYP for 

encapsulation inside the P22 VLP to obtain active enzyme. Later, Paul Jordan, et al. produced a 

hydrogenase enzyme using the two-plasmid approach, although induction was performed 

simultaneously by controlling concentrations of inducers (Jordan et al. 2016). Although the 

single co-expression simultaneous expression and two plasmid approach was described for the 

encapsulation of mesophilic enzymes, no study was performed to examine what effect these 

different approaches had on the overall activity of the encapsulated enzymes but focused on 

whether active enzyme was obtained. The previous studies have left unanswered questions into 

what role the encapsulation strategy, either a single vector co-induction or a multiple vector 

expression strategy had on enzyme kinetics. 

 

The Patterson research group became interested in the encapsulation of a mesophilic enzyme 

called Formate Dehydrogenase (FDH) from Candida boidinii, which catalyzes both the oxidation 

of formate to CO2 when it is in the presence of excess NAD+ and can also catalyze the reduction 

of CO2 to formate with the excess concentration of NADH. Industrially FDH is used as a means 

of production of NADH and has also been used to produce tert-L-leucine, one of the largest 

enzymatic processes in pharmaceutical chemistry. Initially it was thought that FDH 

encapsulation would be useful in constructing nanoreactors that could be used in performing 
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carbon fixation of carbon dioxide, by FDH conversion of carbon dioxide to formate, coupled 

with a secondary enzymatic alcohol dehydrogenase that would yield methanol. However, initial 

investigations of FDH encapsulation by the single plasmid co-expression method yielded P22 

VLPs encapsulating FDH that were inactive. This led to investigations with a two plasmid 

approach where the expression of the FDH-SP fusion protein could be staggered relative the 

expression of the CP. Figure 6 shows the comparison of FDH-SP containing P22 VLPs (FDH-

P22) that were prepared by two different method, simultaneous co-expression of FDH-SP and 

CP from a single plasmid and a staggered sequential expression of FDH-SP, followed by 

expression of CP from two separate plasmids. Interestingly, when the staggered expression 

approach, whereby FDH-SP was induced to express first for 2 hours, then subsequently CP was 

expressed for 2 hours, the FDH-P22 VLPs showed active FDH. These results suggested that a 

temporally controlled expression of FDH, and potentially other enzymes, was important to 

obtaining active FDH-VLPs, which spurred the investigations discussed in the remainder of this 

thesis. 

 

The initial findings that FDH could only be encapsulated as an active enzyme inside the P22 

VLP if FDH-SP was expressed and produced before the P22 CP suggested that the FDH-SP 

fusion protein need a period for maturation, which we define as protein folding and incorporation 

of any non-protein cofactor, before encapsulation by CP. It has been previously suggested that 

encapsulation of enzyme-SP fusion proteins by CP is rapid (Patterson et al. 2013). However, 

inactivity could also be the result of crowding inside the FDH-P22 VLP. In order to investigate 

the cause of the inactivity via the co-expression system and the ability to obtain active enzymes 
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via a two vector sequential system, the Patterson group developed an expression system strategy 

allowing FDH-SP, as well as other enzyme-SP systems, to be temporally expressed separate 

 

  

Figure 6. Comparison of FDH-P22 produced from either sequential or co-expressed 

strategies. (A) SDS-PAGE gel results of FDH-P22 produced via sequential (Seq) or co-

expression (Co) methods. Both strategies showed co-purification of FDH-SP (59 kDa) and CP 

(47 kDa) by SDS-PAGE. (B)Transmission electron microscope images showing that both 

strategies produce P22 nanoparticles that are indistinguishable from one another. Scale bar are 

200nm. (C)Comparison of the activity of conversion of formate to carbon dioxide simultaneously 

converting NAD+ to NADH, by FDH-P22 generated by either sequential or co-expression 

methods which was monitored at 340 nm. No activity is observed for even high amounts of 

coFDH-P22, which only shows scattering effects due to the P22 VLP, whereas seqFDH-P22 was 

found to be highly active. According to Patterson et al.  
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from the production of CP. The strategy is outlined in Figure 7, which compares the different 

expression strategies for FDH-SP. For the 2 vector approach, the gene encoding FDH was 

amplified from genomic C. boidinii then inserted into pBad, which provides ampicillin resistance 

  

Figure 7. Strategies for encapsulation of active formate dehydrogenase enzyme (FDH).  

(A) Single vector approach where Scaffolding protein (SP) is fused with FDH and co-expressed 

with the bacteriophage P22 VLP coat protein (CP) and inducing expression with IPTG directing 

encapsulation. (B) Two-vector approach that delays the CP from being expressed by fist 

inducing FDH-SP fused protein with arabinos, allowing time to mature, and then induced the 

expression of the CP with IPTG to induce encapsulation. 

 

for selection purposes and can be induced by arabinose. The genes encoding CP were inserted 

into a pRSFDuet-1 vector, which contains kanamycin resistance and is induced by IPTG. The 

pBad plasmid is only inducible by arabinose, while the pRSFDuet-1 is only inducible by IPTG, 

allowing temporal control of expression in the different plasmids. It is important to mention that 

IPTG also suppresses the expression of the pBad plasmid, so once IPTG is added gene 

expression of the FDH-SP or other enzyme-SP produced using the system is inhibited, largely 
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preventing or reducing new unmatured enzymes from being produced once IPTG is added. This 

system provides an ideal set up for investigating the contribution maturation of enzymes is 

playing on changes to enzyme kinetics vs. crowding and confinement effects. 

 

Initial enzyme studies of FDH-SP encapsulation were carried out by Dr. Patterson and 

coworkers, who produced preliminary data for FDH-P22 produced with 2, 4, and 16 hour 

expression times of FDH-SP before induction of CP and subsequent production of what were 

termed sequential FDH-P22 VLPs (seqFDH-P22). Summaries of results from these studies are 

provided in Chapter V to compare with the results that I obtained for times of 0 and 1 hour 

inductions of FDH-SP before induction of CP. In addition, a secondary enzyme that has been 

previously studied using the co-expression system, namely AdhD from Pyrococcus furiosus, was 

examined as well to see if changes in catalytic parameters were actually due to crowding and 

confinement, as previously thought, or were due to maturation effects. AdhD is a monomeric 

thermostable and hyperthermophile protein which catalyzes the reduction of acetoin (2-hydroxy-

2-butanone) to 2,3 butanediol. AdhD contains a high intrinsic resistance to denaturation, leading 

to prolonged and stable activity. Again, investigations of 2, 4, and 16 hour expression of AdhD-

SP before induction of CP were previously determined by others in the Patterson Group, with my 

contribution focused on ascertaining the effects of early 0 and 1 hour expression times on AdhD-

SP activity. Through the use of the two-plasmid system for temporal controlled expression, both 

FDH-SP and AdhD-SP encapsulation were examined, and new insights were garnered into the 

role that enzyme maturation plays on the activity of enzymes encapsulated inside the P22 VLP. 
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IV. MATERIALS AND METHODS 
 

The investigation of the temporally controlled expression of FDH-SP and AdhD-SP in 

relation to the P22 CP are outlined in the various subsections below.  

 

Materials. DNA modifying enzymes were purchased from New England Biolabs (Ipswich, 

MA) and Promega (Madison, WI).  The pBAD plasmid was purchased from Life 

Technologies (Grand Island, NY). DNA primers were purchased from Eurofins MWG 

Operon (Huntsville, AL).  E. coli BL21(DE3) chemically competent and 10G 

electrocompotent cells were purchased from Lucigen (Middleton, WI).  Candida boidinii cell 

stock was purchased from ATCC (Manassas, VA).  QIAquick gel extraction kit and QIAprep 

Spin Miniprep kit were purchased from Qiagen (Valencia, CA).  All chemical reagents were 

from Fisher Scientific (Pittsburgh, PA) or P212121, LLC (Ypsilanti, MI). 

 

Molecular Biology. The gene encoding FDH was amplified from genomic DNA extracted 

from Candida boidinii using the primers 5’-AAAAAAGCTTCCATGGCAAA 

GATTGTCTTAGTTCTTTATGATGCTGGTAAGCAC-3’ and 5’-AAAAGAGCTCGG 

ATCCTTTCTTATCGTGTTTACCGTAAGCTTTAGT-3’, containing NcoI and BamHI 

restriction enzyme sites, respectively, which were utilized for insertion of the FDH gene into 

the pETDuet Assembler Vector containing P22 SP and CP, according to the procedure 

previously described. The genes encoding FDH-SP and AdhD-SP were removed from the 

pETDuet Assembler vector by digestion with NcoI and SacI restriction enzymes and 

transferred to a pBAD vector treated with the same restriction enzymes and ligated with T4 

DNA ligase. Ligation reactions were transformed into E. cloni 10G electrocompotent cells 
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and plated on LB agar plates containing ampicillin for selection. Colonies resulting from 

transformation of the ligation were screened by colony PCR and all hits were sequenced 

(Eurofins MWG Operon) for complete verification. After verifying the correct sequences, 

DNA was transformed into BL21(DE3) for expression. For sequential expression, pBad 

vector (ampicillin resistance) containing the Enzyme-SP protein fusion gene (FDH-SP or 

AdhD-SP) was co-transformed with a pRSF vector (kanamycin resistance) containing P22 

CP, and media containing both ampicillin and kanamycin was used to provide selection for 

bacteria containing both plasmids. For FDH-SP controls the single pBAD vector was 

transformed and the media supplemented with ampicillin for selection.     

 

Heterologous Expression and Purification. Co-expression of FDH-SP and CP via the pET-

Duet Assembler Vector was carried out as previously described for other P22 constructs. E. 

coli BL21(DE3) strains (Lucigen) harboring constructs for sequential expression (i.e., 

containing both pBAD and pRSF vectors) were grown in LB medium at 37 °C in the 

presence of ampicillin (0.1 mg/ml) and kanamycin (0.05 mg/ml) to maintain selection for the 

plasmids. Expression of the enzyme-SP fusion protein was induced by addition of L-

arabinose to a final concentration of 33.3 mM once the cells reached mid log phase 

(OD600=0.8) and cultures were grown for 2-16 hours, after which isopropyl β-D-

thiogalactopyranoside (IPTG) was added, to a total concentration of 0.5 mM, to induce 

expression of CP. Subsequently, cells were harvested by centrifugation after allowing 1 hour 

induction with IPTG and cell pellets were stored at -20 °C overnight. Co-expression of the 

dual vector system, to produce 0 hour constructs, was performed by addition of both IPTG 

and arabinose at the levels used for sequential expression and expression was allowed to go 
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overnight before harvesting by centrifugation. Purification was carried out as previously 

described. Briefly, cell pellets were resuspended and lysed by sonication and insoluble cell 

matter removed by centrifugation at 12,000 x g for 45 minutes. Ultracentrifugation over a 

35% (w/v) sucrose cushion on a Sorvall wX+ Ultra Series centrifuge (Thermoscientific) at 

38,000 rpm using a Fiberlite F50L-8x39 rotor yielded highly pure viral pellets, which were 

subsequently resuspended in PBS and further purified by size exclusion chromatography 

and/or ultracentrifugation over a cesium chloride gradient (0.2 mg/ml to 0.4 mg/mL in PBS) 

at 38,000 rpm on a Sorvall wX+ Ultra Series centrifuge (Thermoscientific) using a TH-641 

rotor. VLPs were concentrated and transferred into PBS by ultracentrifugation and VLP 

pellets resuspended in PBS with rocking at 4°C. 

 

Free FDH-SP was produced using the pBAD vector containing FDH-SP transformed into 

BL21(DE3). Cells were grown in LB media supplemented with ampicillin (0.1 mg/mL) and 

induction carried out by addition of 33.3 mM L-arabinose once the cells reached mid log 

phase (OD600=0.8), and cultures were incubated for 16 hours. Controls examining expression 

of FDH-SP from pBAD in the presence of the empty pRSF-Duet plasmid were produced in 

the same way as for free FDH-SP, but with addition of kanamycin for selection and IPTG 

(0.5 mM) during induction. Cells were harvested by centrifugation and subsequently 

resuspended in buffer as previously described for FDH. Subsequently, the cell suspension 

was sonicated using a Qsonica sonicator and centrifuged on a Beckman Alegra benchtop 

centrifuge at 12,000 x g for 45 min at 4 °C to remove cell debris. The FDH-SP protein was 

purified by performing Ion Exchange Chromatography of the sonicate supernatant using a 

MonoQ anion exchange resin on a Biorad NGC FPLC via a linear gradient elution of a 10 
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mM sodium phosphate, 10 mM sodium chloride, pH 7.4 buffer and 10 mM sodium 

phosphate, 1 M sodium chloride, pH 7.4 buffer. Samples containing FDH-SP were 

subsequently dialyzed against 100 mM potassium phosphate, pH 7.4 and stored at 4 °C until 

performing analyses (Patterson, D. P et al. 2012).  

 

All FDH samples were handled in a way to minimize exposure to light as much as possible 

under the conditions present in our lab to prevent light inactivation of the enzyme. Samples 

were covered with aluminum foil after purification and placement into microcentrifuge tubes. 

In addition, it was found that consistent results for FDH activity required growth and 

expression from colonies taken from recently transformed plates and not from long term 

storage glycerol stocks of frozen cell culture maintained at -80 degrees C. 

 

SDS-PAGE. Protein samples were mixed with 4X loading buffer containing DTT and heated 

in a boiling water bath for 10 minutes, and subsequently spun down on a bench top 

centrifuge.  Samples were separated on a gel containing a 5% polyacrylamide stacking gel 

and a 18% polyacrylamide running/separating gel using a constant current of 35 mA for 

approximately 1-1.5 hours.  Gels were stained with Coomassie blue and destained or stained 

with InstantBlue (Expedeon) according to the manufacturer’s directions.  Images were taken 

on a UVP MultDoc-IT Digital Imaging System or AlphaImager Mini (Protein Simple) and 

analyzed using the AlphaView SA software. 

 

Densitometry. Densitometry was performed on SDS-PAGE results to determine relative 

amounts of FDH-SP or AdhD-SP to CP using AlphaView SA software and the Band 
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Analysis module according to the manufacturer’s directions. Relative ratios of enzyme-SP to 

CP were utilized to determine enzyme concentrations in samples as previously described for 

use in kinetics analyses (Patterson, D. P et al. 2012). 

 

Size Exclusion Chromatography with Multiangle Light Scattering and Refractive Index 

Detection.  Samples separated over a WTC-0200S (Wyatt Technologies) size exclusion 

column utilizing an Agilent 1200 HPLC to apply and maintain a 0.7 mL/minute flow rate of 

50 mM phosphate, pH 7.2 buffer containing 100 mM sodium chloride and 200 ppm sodium 

azide.  Samples of 25 μL were injected onto the column and total run time was 30 minutes. 

Samples were detected using a UV-Vis detector (Agilent), a Wyatt HELEOS Multi Angle 

Laser Light Scattering (MALS) detector, a quasi-elastic light scattering detector (QELS), and 

an Optilab rEX differential refractometer (Wyatt Technology Corporation).  The number 

average molecular weight, Mn, was calculated with Astra 5.3.14 software (Wyatt 

Technology Corporation) based on the molecular weight distribution. Molecular weights 

determined for empty P22 VLPs was subtracted from molecular weights determined for 

enzyme loaded P22 VLPs to determine the mass of enzyme encapsulated, which was utilized 

to calculate the loading of enzymes per VLP by dividing by the molecular weight of the 

individual enzyme-scaffolding proteins calculated from the amino acid sequence. Enzyme 

packaging per particle was used to determine relative ratios of enzyme concentrations as 

previously describe.  

 

Transmission Electron Microscopy.  Samples (10 μL, 0.1 mg/mL protein) were applied to 

glow discharged formvar coated grids and incubated for 30 seconds and excess liquid was 
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removed with filter paper.  Grids were then washed with 10 μL of distilled water, liquid was 

removed with filter paper shortly after addition, and then stained with 5 μL 2% uranyl acetate 

after which excess stain was removed with filter paper.  Images were taken on a JEOL JEM 

1010 transmission electron microscope at accelerating voltage of 100 kV.  

 

Enzyme Kinetics Assays. Activity assays were carried out on a Cary 300 Bio UV-Visible 

Spectrophotometer fitted with a Cary Dual Cell Peltier Accessory for heating. For FDH 

assays, buffers were preheated in the hot water bath connected with the temperature control 

module that maintained constant a temperature of 30 ºC on the spectrophotometer cuvette 

holder.  Kinetics assays for FDH were carried out in 100 mM potassium phosphate buffer, 

pH 7.5, in a similar manner as describe previously. Briefly, buffer solutions containing 

formate concentrations ranging from 0.5-100 mM were placed in a cuvette with NAD+ (300 

µM) and the instrument was blanked. After blanking, FDH sample was added to the activity 

assay solution, mixed in the cuvette by pipetting, and the production of NADH was 

monitored at 340 nm for 3-5 minutes. Assays for AdhD-P22 were carried out as previously 

described using the same instrumentation as the FDH assays with an evaluation at a 

temperature at 50 ºC. To briefly summarize AdhD-P22 activity assays, preheated (50 ºC) 

buffer solutions containing acetoin concentrations ranging from 0.1-100 mM were placed 

into a heated cuvette and the solution was blanked. A small volume of NADH was added to 

produce 300 µM NADH, which was checked in the spectrometer which was check before 

addition of AdhD to determine the rate of non-enzymatic thermal degradation of NADH. 

AdhD was added to the cuvette, the solutions were mixed thoroughly by pipetting, and the 

loss of NADH was monitored at 340 nm for 3-5 minutes. The non-enzymatic thermal 
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degradation rate of NADH was subtracted from the enzymatic rate of NADH during data 

processing. Data from kinetics runs for both enzymes were processed in Excel to determine 

the initial velocities at each substrate concentration, which were converted to turnover by 

dividing by the total enzyme concentration utilized in the run. Absorbance values from 

assays were converted to concentration using the extinction coefficient at 340 nm for NADH 

(ε340) of 6,220 M-1cm-1. Total enzyme concentrations were determined from the ratios of 

enzyme to CP found by SEC-MALS or SDS-PAGE densitometry according to methodology 

previously described. Free FDH-SP was calculated directly from its solution absorption at 

280 nm and the extinction coefficient for FDH-SP. Extinction coefficients (ε280) used in 

calculating protein concentrations were 55,450 M-1cm-1 for FDH-SP, 44,380 M-1cm-1 for CP, 

and 62,990 M-1cm-1 for AdhD-SP, which were calculated using Protein Calculator v3.3 or 

v3.4 (Chris Putnam, The Scripps Research Institute, USA). Data was further analyzed using 

Prism 5 (GraphPad Software) graphing software by fitting with the Michaelis-Menten non-

linear fitting function to determine kinetics parameters. Comparative statistical analysis was 

performed on kinetics parameters using the student’s t-Test in the Excel software package. 

The turnover per enzyme density was determined individually for each batch, which was 

compared between time variations by the same Student’s t-test analysis as for the kinetics 

parameters.   
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V. INVESITIGATIONS AND FINDINGS FOR 0 HOUR AND 1 

HOUR ENCAPSULATION STRATEGIES  
 

A. Temporal Investigation of Formate Dehydrogenase 

 
The focus of the investigation was to determine the effects of temporal delays on the folding and 

then encapsulation of FDH-SP enzymes determined by their catalytic activity. Investigations 

carried out by me focused on no delay between the induction of FDH-SP and CP, henceforth 

termed 0 hour delay, and a 1 hour delay between the induction of FDH-SP and the CP using the 

two-plasmid expression system described previously. After production of the 0 hour and 1 hour 

seqFDH-P22 VLPs, the VLPs were characterized by SDS-PAGE. Results from the SDS-PAGE 

showed bands of 59 kDa for the FDH-SP and 47 kDa for the CP (Figure 8), consistent with co-

purification and likely encapsulation of FDH-SP inside P22 VLPs.  

 

 

Figure 8.  SDS-PAGE Characterization of FDH-P22 produce by sequential induction by using 

a two-plasmid system. The figure represents the SDS-PAGE analysis for the 0 and 1 hour 

construct. Two batches of the 0 hour construct are being represented by the lanes labeled 1 and 

2. 
 
In complement to the SDS-PAGE characterization, TEM images of the 0 hour and 1 hour 

constructs showed particles with diameters of 62.2±1.9 nm 61.6 ± 2.0 nm, consistent with the 

expected diameter of 58 nm for the T=7 icosahedral capsid of the expected structures (Figure 9). 
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Overall, TEM showed well-formed particles, although the 0 hour did show some mis-formed 

aggregates, possible due to limited FDH-SP available during assembly. The particle size and 

molar mass was also evaluated by size exclusion chromatography coupled to in-line angle light 

scattering, quasi-elastic light scattering, and refractive detectors (SEC-MALS/QELS/RI),  

 
Figure 9. Transmission electron microscope FDH-P22 Characterization. The TEM images of 

the 0 and 1 hour constructs produced using a two-plasmid approached. The 0 hour construct 

show abnormal formation of the FDH-P22. 

 

resulting in the 30.7±0.6 MDa for the 0 hour and 30.6±0.6 MDa for 1 hour (Figure 10), 

corresponding to 164±11 and 168±11 copies of FDH-SP encapsulated, respectively, significantly 

lower than 215±3 copies of FDH-SP encapsulated by the single plasmid co-induction strategy 

(coFDH-P22). In addition, the 0 hour and 1 hour seqFDH-P22 samples showed lower 

encapsulation values in comparison to 2, 4, and 16 hour samples of seqFDH-P22 examined 

previously. Overall, the results indicate that an increase in induction time of FDH-SP before 

induction of the CP leads to an increased amount of FDH-SP encapsulated, with the 16 hour 

seqFDH-P22 values nearing the amount observed for coFDH-P22. The SEC-MALS/QELS/RI 

results also allow us to study the hydrodynamic radius (Rh), representing the outer diameter of 

the VLP, and the apparent VLP structure being spherical and the radius of gyration (Rg), 
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representing the mass weighted distance from the core of the molecule. The ratio of Rg to Rh 

(Rg/Rh) provides an indication of the packing density, with an Rg/Rh=1 for hollow spherical 

particles with infinitely thin shells and Rg/Rh of less than 1 for spherical particles with thicker 

walls or solid spheres.  

 

Figure 10. Characterization of FDH P22 construct by SEC-MALS/2ELS/RI. SEC 

chromatograms for FDH-P22 produce with two plasmid system providing the 0 and 1 hour 

constructs. 

 

The hydrodynamic radius of the purified P22 VLPs were found to be consistent across the board 

regardless of the amount of FDH-SP induction time. The SEC-MALS/QELS/RI (Figure 10) 

show us the Rg/Rh ratio to be 0.84 for the 0 hour construct, while the 1 hour construct resulted in 

a Rg/Rh ratio to be that of 0.87, which presents the tight internal packaging of the VLP with the 

FDH enzyme. Additionally, we are able to compare the different constructs as it is summarized 

in Table 1.  The Rg/Rh values of near 0.90 for all constructs are consistent with dense packaging 

of FDH-SP on the interior of the P22 capsid. Although TEM images for 0 hour showed some 

mis-formed particles, likely due to lower FDH-SP available to template assembly, overall SEC-

MALS/QELS/RI and TEM show well formed P22 VLPs with sizes and packaging consistent 

with the formation of intact P22 VLPs encapsulating FDH-SP. 
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Table 1. Determination of FDH-P22 VLP molar mass, packaging, and solution radii analysis 

by SEC-MALS/QELS/RI. Increased copies of FDH were observed with increased induction 

times of FD-SP, mantaining overall packaging of teh interior as evidenced by the Rg/Rh. Single 

vector co-induced FDH-P22 showed the highest packaging, with the longest sequential 

expression stratechy showing comparable packaging levels of FDH. The table shows previoys 

data from 2 to 16 hours before encapsulation, and the 0 to 1 hour of this study.  

 

To further characterize the FDH-P22 activity, the oxidation of formate through the reduction of 

NAD+ was measured though UV-Vis at 340 nm. Interestingly, the 0 hour seqFDH-P22 showed 

nearly non-existent activity, with a turnover of 0.006 s-1 observed for one prep and none for the 

others. This result was consistent with the coFDH-P22, which was produced by co-expression on 

a single plasmid. However, when the 1 hour seqFDH-P22 was examined, it showed activity for 

all three preparations analyzed (Figure 11), with average kinetics parameters 0.39±0.08 s-1 for 

kcat, 32.4±8.15 for KM, and 0.013±0.006 for kcat/KM mM-1s-1.  

 

 
Figure 11. Evaluation of FDH-P22 kinetics with variation of formate concentration. Plots 

showing the results of kinetics assays from FDH-P22 produced with 1 hour delay. Data is fit to a 

Michaelis-Menten equation. 
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Additionally, the Patterson group generated data for 2, 4 and 16 hour temporal delay, along with 

a non-encapsulated FDH-SP (free FDH-SP) control, which is displayed in Table 2.  

 

Figure 12. Evaluation of Candida Boidinni FDH control kinetics analyzed through a 

variation of formate concentrations. The plot was produced through the analysis of industrially 

produced FDH and purchased from Sigma Aldrich. 

 

Results from the kinetic assays showed a general trend of increased kcat values for more extended 

FDH-SP induction, although some variability was observed from batch to batch. In comparison 

to the free FDH-SP, all seqFDH-P22 samples showed higher kcat values, with only the 16 hour 

seqFDH-P22 being statistically relevant. The KM values were found to be similar only between 

the free FDH-SP and 1 hour seqFDH-P22, which showed a much higher and statistically 

significant KM from its seqFDH-P22 counterparts. Taken together the results suggest that shorter 

induction times before encapsulation leads to kinetics values more similar to free FDH-SP, with 

longer FDH-SP induction before encapsulation leading to lower KM and higher kcat kinetic 

parameters, resulting in greater catalytic efficiency as observed in Table 2. 
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Table 2. The results show the average apparent kinetic parameters. Three independent 

preparations for FDH-P22 produced via co-expression, sequential expression (0 hr, 1 hr, 2 hr, 4 

hr, and 16 hr) and encapsulation strategies, as well as non-encapsulated FDH 

 

 

A closer evaluation of the kinetics parameters of FDH-P22 and FDH-SP in comparison to those 

published in the literature for FDH found that the kinetics parameters in our experiments were 

comparable for KM but show significant differences in kcat. In the literature KM values of 4-20 

mM for formate were found, with the 1 hour seqFDH-P22 even being close to the high KM range 

values published considering the standard deviation. However, kcat values of nearly tenfold or 

more lower are found for FDH-SP and seqFDH-P22, with turnovers of 2-6 s-1 found by others, 

depending on the study, which was surprising. Differences in the observed kcat values could be 

due to differences in our preparation methods and handling compared to those performed by 

others or due to genetic attachment of SP to FDH to produce FDH-SP. To examine the difference 

in kcat further, I performed kinetic assays on authentic C. boidinii FDH (Figure 12) that was 

purchased from a commercial source. Commercial C. boidinii FDH showed kinetic parameters of 

5.26 s-1 for kcat and 8.4 mM for KM (Table 2), consistent with published values, suggesting that 

fusion of SP to FDH may alter the kinetics.  
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An additional FDH-SP control was produced by expression of FDH-SP from pBAD in the 

presence of an empty pRSFDuet-1 vector (co-induced with IPTG) to see if the presence of the 

pRSFDuet-1 showed any effect on the kinetics of FDH-SP and the differences seen for the 

seqFDH-P22 samples. The FDH-SP produced in the presence of empty pRSFDuet-1 plasmid 

yielded an average kcat of 0.21 ± 0.03 s-1 and KM of 9.7 ± 1.1 mM (Figure 13), showing values 

that are lower in both kcat and KM than free FDH-SP and most of the encapsulated seqFDH-P22 

samples. For KM, the value was found to be statistically lower for FDH-SP produced in the 

presence of pRSFDuet-1 than the free FDH-SP control, 1 hour seqFDH-P22, and 16 hour 

seqFDH-P22 (p values of 0.0234, 0.0173, and 0.0084, respectively). The kcat FDH-SP produced 

in the presence of empty pRSFDuet-1 plasmid was found to be statistically lower than all but the 

4 hour seqFDH-P22, with p values ranging from 0.0041 to 0.0359 for the statistical analysis. 

Taken together the results from the FDH-SP control produced in the presence of an empty 

pRSFDuet-1 vector during expression shows a possible negative effect on kcat, in contrast to the 

improved kcat values found for seqFDH-P22 samples that were also produced with pRSFDuet-1 

present. No consistent finding is observed for the KM, since free FDH-SP control produced 

without pRSFDuet-1 present and the 1 hour seqFDH-P22, which was produced with the 

pRSFDuet-1 plasmid present, both had higher KM values, suggesting that the pRSFDuet-1 was 

not influencing the KM values observed. While a free FDH was not produced, the comparative 

studies performed between FDH-SP ensure that the kinetic differences observed for 

encapsulation were not due to preparation and handling or variations between the enzymes being 

encapsulated and serve the desired purpose of the study. 
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Figure 13. Evaluation of Kinetics of FDH-SP produced in the presence of an empty 

pRSFDuet plasmid 

 
Overall, the activity of the encapsulated of the FDH improved when there was an increased time 

delay between the induction of the FDH-SP and the CP. The findings also suggests that the 

crowding and confinement may play a role in the activity of the encapsulated FDH enzyme, as 

we see an increase in activity  with increased enzyme packaging load, which in general increases 

with increased delay time before induction of CP as displayed in Figure 14.  
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Figure 14. Comparison of FDH activity per enzyme encapsulated inside the P22 VLP by 

sequential induction. Enzyme activity per enzyme encapsulated shoed no signifiable change 

between induction times of FDH-SP. The enzyme activity per enzyme encapsulated were by 

dividing the average Kcat by the average number of enzymes encapsulated for 3 batches 

produced Error bars indicate the standard deviation found for each data set. 

 

 

B.  Temporal investigation of Alcohol Dehydrogenase D  

 

In the past, Patterson et al. were able to produce an active AdhD-P22 VLP through a single 

plasmid methodology, obtaining a kcat of 0.097  0.005 s-1 presenting that the enzyme had 

enough time to fold and mature in order to be active. They also obtained a KM of 1.23 0.21 mM, 

and a kcat/KM of 0.079 mM-1s-1 while free AdhD-SP showed to have a kcat of 0.77 0.03 s-1 , KM 

of 6.23 0.21 mM, with a catalytic efficiency (kcat/KM) of 0.124 mM-1s-1 (Patterson et al. 2012). 

Recently, others have examined an in vitro encapsulation method to produce AdhD-P22 that 

showed slightly altered results with kcat of 0.46 0.02 s-1 , KM of 4.67 0.30 mM, with a catalytic 

https://sciwheel.com/work/citation?ids=7089313&pre=&suf=&sa=0&dbf=0
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efficiency (kcat/KM) of 0.1 0.01 mM-1s-1. It can be observed that the co-induced construct has 

lower values than the in vitro constructs reported by Sharma et al, and substantially lower than 

the free AdhD-SP construct. It was hypothesized that the two-plasmid system could be used to 

improve the activity of the encapsulated AdhD in vivo. To examine the hypothesis, the genes that 

encode AdhD-SP were put into the pBAD plasmid (ampicillin resistant and induce by arabinose), 

while the genes encoding for the CP was cloned into the pRSFDuet-1 plasmid (kanamycin 

resistant and induced by IPTG). Again, using this methodology with two different antibiotic 

resistances allows for the selection of E.coli colonies that contain both plasmids, ensuring the 

ability to express both AdhD-SP and CP within the same cell.  

 

The two-plasmid system expression, purification, and characterization of AdhD-P22 VLPs was 

carried out in the same fashion as seqFDH-P22, including characterized by SDS-PAGE, SEC-

MALS/QELS/RI, and TEM. Again, the focus of the studies that I carried out were on 0 hour and 

1 hour time delays after induction of AdhD-SP before CP was induced. Results produced the 

expected bands of 50 kDa for the AdhD-SP, and 47 kDa for the CP (Figure 15).  

 

Figure 15. SDS-PAGE Characterization of AdhD P22. The 0 and 1 hour samples showed poor 

separation, which has been seen for AdhD-SP and CP in previous studies. SEC-MAL/RI helped 

further confirmation of AdhD-SP was encapsulated in the P22 VLP. 
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Figure 16. Characterization of seqAdhD-P22 by transmission electron microscopy. TEM images of 

seqAdhD-P22 produced with 0 and 1 hour delays. TEM samples are compared to previous studies 

performed by the Patterson research group. 

 

The TEM analysis of the purified particles showed formation of regular P22 VLPs with average 

diameters of 60.4 ± 3.9, and 62.0 ± 2.7 nm for 0 and 1 hours (Figure 16), respectively, 

comparable to 54.4± 1.9 observed previously for the coAdhD-P22. It can be observed that the 0 

hour sample of the seqAdhD-P22 produced some aberrant assemblies, similar to the previous 

results found for 0 hour seqFDH-P22, supporting the hypothesis that lower enzyme-SP levels 

leads to more aggregate and mis-formed P22 VLPs.   

 

 

 

 

 

 

 

 

 

 

Additional support for lower expression of enzyme-SP for loading comes from SEC-

MALS/QEL/RI, where a lower loading of the AdhD-SP was found for the 0 hour and 1 hour 

constructs compared with previous data gathered by the Patterson group, as shown in Table 3. 

Overall, the particles produced similar Rg/Rh ratio range from 0.81 to 0.92, indicating spherical 

particles with dense packing. Interestingly, lower levels of AdhD-SP enzyme were found to be 

encapsulated relative to the FDH-P22 VLP.  
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The Rg/Rh values of near 0.90 for all constructs are consistent with dense packaging of AdhD-

SP on the interior of the P22 capsid. Although TEM images for 0 hour showed some mis-formed 

particles, likely due to lower AdhD -SP available to template assembly, overall SEC-

MALS/QELS/RI and TEM show well formed P22 VLPs with sizes and packaging consistent 

with the formation of intact P22 VLPs encapsulating AdhD-SP. 

Table 3. Determination of AdhD-P22 VLP molar mass, packaging, and solution radii analysis 

by SEC-MALS/QELS/RI. Increased copies of AdhD were observed with increased induction 

times of AdhD-SP. 

 
 

 

Kinetic assays were performed in order to analyze the catalytic activity of the encapsulated 

AdhD, obtained in triplicate for each construct trial, with a variation of acetoin concentrations 

used in the kinetic assays to analyze the oxidation of NADH to NAD+, at a constant temperature 

of 50 C (Figure 17). Turnover rates were not significantly different for the 0 hour and 1 hour 

seqAdhD-P22 vs. values previously found, with kcat values ranging from 0.55-0.96 sec-1. The two 

vector expression data tracks more closely to the kcat value of 0.77 sec-1 observed previously for 

free AdhD-SP compared with the previous observation of only 0.1 sec-1 for the coAdhD-P22 

constructs previously examined by the author (Table 4). 
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Figure 17. Evaluation of AdhD-P22 kinetics with variations of Acetoin concentrations. Plots 

showing the kinetics assays for AdhD-P22 produced with 0, and 1 delay between AdhD-SP and 

CP induction. 
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Table 4. Kinetic parameters determined for AdhD-P22 constructs. The results show the 

apparent kinetic parameters for AdhD-P22 produced via sequential expression and a 

comparison with past values obtained from the co-expression strategies, in vivo encapsulation, 

and the non-encapsulated AdhD-SP (free AdhD-SP) values with *indicate statistical difference 

(Student t-test p<0.05) vs 2, 4, and 16 hour seqAdhD-P22 samples. 

 
  

These results show that 0 hour also had improved activity, with no statistical difference from the 

other constructs, suggesting that decoupling the expression of AdhD-SP and CP, by placing them 

on separate plasmids, improves the overall turnover of the enzyme. However, while the KM 

values of seqAdhD-P22 constructs produced at 2, 4, and 16 hour AdhD-SP expression were 

found to be consistent with free AdhD-SP (7.9-8.3 mM vs. 6.23 mM), the 0 hour and 1 hour 

seqAdhD-P22 constructs showed much lower KM values that mirrored those found previously for 

coAdhD-P22 (0.89 and 0.99 mM vs. 1.23 mM). It is unclear why the short expression times, 0 

hour and 1 hour, for AdhD-SP before encapsulation changes KM so drastically. The increased kcat 

and decreased KM observed for the 0 hour and 1 hour actually led to an improved catalytic 

efficiency, kcat/KM, that is improved over values seen for all other samples. These results suggest 

that increased induction times are not always necessary for optimal activity and that obtaining 

improved kinetic efficiency may vary and need to be determined on an enzyme-by-enzyme basis.  
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Figure 18. Comparison of AdhD activity per enzyme encapsulated inside the P22 VLP by 

sequential induction. Enzyme activity per enzyme encapsulated, found by dividing the average 

Kcat by the average number of enzymes encapsulated in a total of three batches produce, was 

not observed to change significantly between induction times of AdhD-SP. 
 

Further analysis was performed to see if the loading had any effect on activity of seqAdhD-P22 

VLPs, by plotting the kcat vs. the number of enzymes encapsulated per VLP, which is shown in 

Figure 18. A linear increase, correlating with an increase in induction time of AdhD-SP before 

encapsulation, is observed for seqAdhD-P22. Therefore, the findings here do not rule out effects 

from crowding and confinement, since in all cases the seqAdhD-P22 constructs still showed 

alleviation of substrate inhibition even though AdhD is well known to have substrate inhibition 

above concentrations of 40 mM acetoin,17 well below the substrate levels examined for 

seqAdhD-P22 constructs here. In addition, an increase in kcat per enzyme is observed for more 

densely packed seqAdhD-P22, suggesting the improvement may be a result of crowding. These 

findings suggest that confinement and crowding have the potential to alter the properties, such as 

enzyme substrate inhibition, and further investigations using encapsulation in VLPs may be used 

to examine this phenomenon furthermore. 

https://uttyleredu-my.sharepoint.com/personal/dpatterson_uttyler_edu/Documents/Flash%20Drive%20Storage_2021%20Start/FDH%20final%20Draft%20for%20submission/2021%20Submission/Final%20Updated%20Final%20Submission_ACS%20Synthetic%20Biology_Aug%202022.doc#_ENREF_17
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VI. CONCLUSION AND FUTURE DIRECTIONS 
 

 

This research shows that the methodology employed previously for the encapsulation of enzymes 

inside of VLPs can have an effect on the activity of the enzymes of interest.  Support for this is 

found from the encapsulation of formate dehydrogenase (FDH) described here, which was found 

to be inactive when encapsulated in a co-expression of the FDH-SP and CP through either a 

single or two plasmid approach. However, allowing the FDH-SP to be expressed temporally 

earlier from CP permitted the maturation of the FDH-SP and activity upon encapsulation. This 

can additionally be supported by the results for AdhD-SP, which showed a decoupling effect 

when using the two plasmid system, slightly different from FDH-SP. Moreover, AdhD retained 

previous kinetic advantages observed upon encapsulation, such as substate inhibition, using the 

sequential encapsulation of AdhD-SP.  

 

The results, jointly, presents the improvement of encapsulated enzyme kinetics can be obtained 

by permitting enzymes to mature before being encapsulated. Additionally, this lays the 

groundwork for further studies in compartmentalization of enzymes of interest, especially studies 

involving in vivo production and encapsulation, which can be applied in a two-plasmid system to 

separate the induction and production of the desired enzymes. However, it does demonstrate that 

the encapsulation system is not a universal application, but rather a unique approach that can be 

tailored for future enzymes of interest. As showed by the FDH encapsulation, which led to 

higher KM values as it had less time to mature before encapsulation, while AdhD-SP KM values 

were lower for those constructs with lower induction times. Typically, the longer induction times 

for the enzyme expression before encapsulation can result in an increase of enzyme maturity, as 

well as an increase in the number of enzymes being encapsulated inside the VLPs. 
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VLPs provide unique structures that are both elegant and a solution to packaging, protecting, and 

transporting molecular cargo. They present a range of structures and can generate a library of 

protein cages that can be used and applied to different needs.  It is important not to see viral 

structures as merely disease harboring structures that are working against humanity, but to 

consider them a system that can be modified to become new allies that can be harnessed and 

utilized for new applications that serve humanity.  Future investigations in enzyme encapsulation 

should look toward single enzyme reactions and identify effects caused by isolation, in addition 

to examining multiple enzymes encapsulation that can reflect biological pathways. Toward these 

studies the two plasmid system time delay, permitting the appropriate time for each enzyme to 

fold and achieve an efficient concentration, may be useful and helpful in advancing the field. In 

therapeutics, this can permit the encapsulation of enzymes that can be used therapeutically 

relevant and require temporal expression delays to gain useful activity. Other ways in which this 

encapsulation strategy may be useful is in the study of stability and folding stages of proteins 

such glutenase, lactase, and malate dehydrogenase. This research establishes the groundwork to 

construct enzyme nanoreactors built on protein cage structures allowing encapsulation of more 

challenging enzymes that require special maturation before encapsulation. 
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