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The use of computer simulations is a powerful alternative in the Indoor Air Quality (IAQ) 

study due to the efficient performance and the amount of it is able to obtain. Multi-zone 

modeling is one of the most popular computing methods for IAQ study, thus can provide 

the knowledge of indoor airflow, temperature and contaminant concentration 

distributions. 

 

The study was conducted in TX Air House 1 using CONTAM software developed by U.S. 

National Institute of Standards and Technology (NIST) which is one of the most widely 

used airflow and indoor modeling program. The model was developed and calibrated to 

predict the contaminant distribution in residential buildings. 

 

In order to validate the results used in this work, statistical tools such as correlation 

coefficient, normalized mean square error and others were used to evaluate the 

accuracy of Indoor Air Quality (IAQ) prediction.  

 

Flow parameters and HVAC characteristics are the basis for the analysis and 

understanding of building airflow and tracer gas behavior. Dropping the number of 

individual flow parameters and tuning in on the HVAC characteristics during calibration, 
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allowed to reduce the error and elevated the accuracy of the model, since the zones 

have similar airflow dynamics and tracer gas behavior. 

 

Wind speed and wind direction could have significant influences in the distribution of the 

contaminant. The slight variations over time, the small amount of cross contamination 

between zones, and the physical conditions such as the tightness of the building, were 

observed to not allow these factors to have a real influence on the distribution of the 

contaminant.  
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1. Chapter One: INTRODUCTION 

 

Indoor air quality has received more attention lately due to its importance in the 

public health scope; although this is a critical component emerging in significance, a 

large amount of information is lacking in this field.  

 

Since the price of oil increased, the world changed its perspective on energy and started 

to save it by making the buildings more sealed thus, tending to minimize the supply of 

outdoor fresh air and resulting in the accumulation of indoor air contaminants. As a 

result, the indoor environmental quality became more problematic increasing reports of 

health problems related to poor indoor environments (Gretchen & Jagdish, 2012). 

 

People on average spend vast majority of their time in indoor environments where they 

are continually exposed to indoor air pollutants. In fact, the US Environmental Protection 

Agency (USEPA) estimates that the average person receives 72 percent of their 

chemical exposure at home, which means that the places what are considered safest, 

paradoxically, expose them to the largest amount of potentially hazardous pollutants. 

 

Investigators have reported a high prevalence of symptoms that are associated with 

poor Indoor Environmental Quality (IEQ). These concerns are often referred to as “Sick 

Building Syndrome” (SBS). Some symptoms are headache, fatigue, dizziness, and 

symptoms of irritation in eyes, nose, throat, and lower airways among the simple 

symptoms; however epidemiological studies have demonstrated that some cases of 

adverse health effects such as childhood leukemia, neurological disorders, non-

Hodgkin’s 
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Lymphoma, and respiratory symptoms were strongly associated with indoor 

contaminants (Hyun-Min & Park, 2008). 

 

Over the past years there have been changes in building materials, mechanical and 

electrical appliances and products used indoors. These materials and products emit 

different chemicals including solvents, unreacted monomers, and additives. Taken 

together, these changes have altered the kind and concentrations of chemicals that 

occupants are exposed to in their homes, workplaces and schools. Levels of other 

indoor pollutants have increased and remain high (e.g., phthalate esters, brominated 

flame-retardants, nonionic surfactants and their degradation products). Many of the 

chemicals presently found in indoor environments were not present 50 years ago. 

(Weschler, 2008) 

 

Due to the increasing of the exposition to the chemicals inside residential buildings, the 

development of the indoor air modeling has been growing lately, because of the powerful 

role that simulations has in the Indoor Air Quality (IAQ) study, since it has an efficient, 

and flexible performance that allow to obtain extensive information for IAQ analysis.   

 

Predicted contaminant concentrations can be used to determine the indoor air quality 

performance of a building before it is constructed and occupied. They can also be used 

to estimate personal exposure based on occupancy patterns in the building being 

studied. Consequently, the accurate and prompt identification of contaminant sources 

allow to remove the sources, isolate and clean the contaminated spaces reducing the 

long-term impact that it could have on people. 

 

The prediction of contaminant concentrations can be used to determine the indoor air 

quality performance of a building, to explore the impacts of various design related to 

ventilation system design and building material selection. However in the modeling field 

it is important to know how accurate is the information obtained through a model, 

therefore, the calibration of the multi-zone model provides higher confidence in analyzing 

IAQ issues during diverse operation, or in formulating response plans and evaluating the 

effectiveness of possible mitigation actions when the building is subject to either 
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accidental or intentional air-borne contaminant releases. In such cases, the programs 

have to be calibrated, i.e., the numerous model parameters need to be tuned so that 

simulated output closely matches observed system performance under some baseline 

conditions. 
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2. Chapter Two: LITERATURE REVIEW 

 

2.1 History Indoor Air Quality  

 

The main purpose of a building is to create comfortable environments capable to protect 

the human being from distinct elements coming from outside; these constructions need 

to be adequate for people who spend the majority of their time in indoor spaces, since 

now people are estimated to work and live up to 90% of their time inside; paradoxically 

buildings don’t always protect them, too many spaces  are more polluted than outdoor 

air; since sometimes the presence of molds, fungi, dust and toxic gases are trapped or 

growing on the inside exceeding the outdoor concentrations. (Burrough & Hansen, 

2008). 

 

By protecting ourselves from the outside, the man has confined himself inside an area 

with high concentrations of distinct substances creating an interior environment with a 

new atmosphere that could affect the health of the people which is exposed to 

contaminants for long-time. 

 

Sundell (2004) presented a review of the history of indoor air quality and how this 

concept began up to the present also explained some determinant factors affecting 

indoor air quality. 

 

Salthammer (2010) complemented Sundel’s work by presenting a brief history and some 

indoor references values for different substances as well as strategies for the verification 

of guidelines. 
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Bernardino Ramazzini (1633-1714) started with the study of occupational diseases; as a 

result he was regarded as the father of occupational medicine, later his work was 

followed by Percivall Pott (1775) who published a work on chimney sweeps (Sundell, 

2004). The Industrial Revolution brought a deterioration of human health within closed 

environments, mainly affecting factory workers quality of life; being exposed to the 

mechanical, chemical and, industrial processes of the 18th and 19th centuries.   

 

The findings of associations between health effects and working in heavily polluted 

areas, started to be known in the age of the industrial revolution. At that time work 

dealing with questions of ventilation and the consequences of the lack of ventilations t, 

(Thomas Tredgold 1824).  

 

(Heyman, 1881), also studied homes and concluded that natural ventilation cannot be 

relied on if we want to live on “clean” air. Pettenkofer and other researchers of this era 

often stated that source control is a prerequisite for good hygiene, and published about 

air exchange in dwelling houses. (G, 2010) 

 

At the turn of the 20th century, Ellen Richards presented the potential health risks of poor 

IAQ, and the negative mental and economic consequences. She also emphasized the 

potential hazards and benefits of indoor air, since houses were the cause of many 

people’s illnesses. Dust and inadequate ventilation, she claimed, contributed to 

pneumonia, tuberculosis and other illnesses (Kwallek, 2012). 

 

After 20 years, the American Society of heating and ventilating Engineers (ASHVE) 

recommended ventilation standards, in 1915 and around the 1930s there was e a little 

scientific effort within the field of ventilation, IAQ, and health in non-industrial premises.  

(Sundell, 2004) 

 

Yaglou (1936) studied the influence of bio-effluents on perceived air quality, and his 

work derived guidelines for ventilation which complemented the previous studies and the 

urgent need to establish a standard on ventilation. 
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In the late 1960s problems related to radon and formaldehyde became known, and 

converted prevalent in the early 1970s. House dust mites and SBS in the late 1970s and 

in the last decade, allergies and health issue related to indoor air again enter the 

scientific agenda. (Sundell, 2004) 

 

Wittman (1962) described the emission of formaldehyde occurring from particle board; it 

required 15 years before an indoor environmental, guideline value for formaldehyde of 

0.1 ppm was established. 

 

In 1967 the Standard No. 62 “ventilation for acceptable Indoor Air Quality” was issued 

which took the work of Yaglou and Fanger into consideration (Salthammer, 2010). 

 

In 1970 due to the high oil prices and the energy crisis, there was a need to build energy 

efficient construction, thus improving energy conservation, but there was a reduction in 

the exchange between outdoor fresh air and indoor air. This decrease of fresh air intake 

resulted in higher levels of chemical emissions by synthetic materials and chemical 

products that are broadly used in these airtight buildings.  

 

Consequently, the decrease of ventilation rates and the increase of the presence of 

synthetic sources have allowed a rise in the concentrations of volatile organic 

compounds (VOCs) and semivolatile organic compounds (SVOCs). These high 

concentrations have been related to the sick syndrome in the occupants during the last 

three decades (Junfeng & Kirk). 

 

Fangers (1992) emphasized the impact that load of pollution sources such as building 

materials, carpets and computers, the impact of ventilation and indoor air humidity have 

on people. 

 

Studies on exposure in indoor environments and health effects have been conducted, 

and have shown there is strong evidence of the relation between IAQ and lung cancer, 

allergies, other hypersensitivities such as sick building syndrome (SBS), and multiple 
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chemical sensitivity and respiratory infections. This new topic is very important in order 

to develop mechanisms to detect or prevent the detriment of indoor air (Sundell, 2004). 

 

2.2 Indoor Air Quality 

 

Indoor air quality is the physical effect of exposures of people inside of the building they 

are  occupying and is frequently expressed in accordance to the ventilation rate (in L/s 

per person and L/s per m2 floor area) or in concentrations for specific compounds. These 

concentrations are influenced by the sources present in indoor environments, outdoor 

sources and sources present in HVAC systems or surrounding spaces (Bluyssen, 2009). 

 

Indoor air is thought to be the same as indoor climate, and therefore related to thermal 

comfort aspects such as too warm or too cold, however by the time the thermal condition 

has changed its importance inside the structures, since the environment inside is always 

more polluted from indoor sources than from outdoor air and have developed certain 

conditions affecting people inside. This was and is the basis of the need for ventilation 

and for concerns on indoor air quality (Sundell, 2004). 

 

Frequently ventilation systems are set to minimize the amount of fresh air entering and 

circulating within the building. Heating, ventilating and air conditioning (HVAC) systems 

play a critical role in maintaining a clean indoor environment. However, inadequate 

design and operation of the HVAC system(s) can have negative effects on the indoor air 

quality, as well as the occupant’s health. 

 

(Clause and Beko, 2010) presented some considerations about indoor air quality and 

what are the biggest challenges after 20 years of research in the area, also they showed 

some opportunities to improve structurally one of the youngest disciplines.     
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2.3 Indoor Contaminants and Sources 

 

The main causes of Indoor Air Quality problems are airborne contaminants that can be 

generated inside or penetrate interior environments with passive or active airflows 

increasing the exposition to them and the concentrations indoors. Indoor air quality is 

determined by a range of conditions and the interactions of “sources” and “sink” and air 

movement among rooms and between the building and outside.  

 

Unfortunately, people cannot identify IAQ as easily as thermal comfort, making 

indispensable develop methods of controlling IAQ to guarantee an adequate indoor air 

quality. However every indoor environment is case dependent in that each building 

cannot be generalized to each other, making each scenario unique.  

 

We know today that indoor concentrations of some pollutants are influenced by outdoor 

concentrations. However for many other pollutants, such as formaldehyde and 

phthalates, indoor levels mainly are the result of indoor sources. 

 

(Bluyssen, 2009) described the indoor air quality factors and its complexity associated 

with the characteristics of the contaminants as well as the type of source and how they 

can interact this makes it to understand the different processes of diffusion, sorption, 

evaporation and deposition of the pollutants over time.  

 

Sources of pollutants may be building materials, furnishings or the HVAC system, 

consumer products, office or equipment; however a source can also emit compounds 

that are produced by contact with other compounds, consequently the mix of pollutants 

in indoor environments can be transformed due to chemical reactions, modifying the 

chemical composition of indoor air and hence occupants chemical exposures.   

 

In indoor environments any source emits pollutants that come into the indoor air of a 

place that may lead to decreased levels of acceptable indoor air quality; those pollutants 

can react with each other or with pollutants from other sources, creating new pollutants.  
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The mode of emission of contaminant inside indoor environments is complex, because 

the mechanisms such as: diffusion, sorption, and  evaporation are not well understood; 

besides there are sources in the indoor environment that release compounds which are 

absorbed onto indoor surfaces, those compounds can desorbed, react with compounds 

on the new source, and re-emit (secondary emission). There is another issue in the 

emission over time. Depending on the compound emitted, a different pattern of emission 

over time can occur, however a better understanding could result in predictions and 

explanation on the emission behavior to be predictable (Bluyssen, 2009). 

 

The geometry and structure of a building, as well as the heating, ventilating, and air 

conditioning system have a huge influence on the building indoor conditions. Partitions, 

furniture and passageways between indoor spaces can also distort the airflow and the 

contaminant distributions (Liu & Zhai, 2007). 

 

According to the complexity of the behavior of the contaminants inside indoor 

environments it is necessary to contemplate different IAQ means to control them. 

Although increasing ventilation seems the most recommended, there are several studies 

that have shown that increased air changes per hour have little or no correlation to some 

pollutants; this is the case with some voltaic organic compounds and radon (Burrough & 

Hansen, 2008). 

 

2.4 Managing Indoor Air Quality 

 

Sick Building Syndrome is used to describe acute symptoms which can affect the health 

of the occupants of a building and are associated to the fact that people spend time in a 

particular construction. The symptoms usually are resolved once the person leaves the 

structure or the source is controlled (Fotoula, 2011).   

 

The most common symptoms known as Sick Building Syndrome (SBS) are: discomfort, 

headaches, nausea, dizziness, sore throats, dry or itchy skin, sinus congestion, nose 

irritation, excessive fatigue, incidence of asthma attacks and nasal allergy symptoms. 

Sometimes, more vague symptoms are presented such as difficulty in concentration, 
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sensitivity to odors and personality changes. In this case the construction has developed 

a condition that can make the occupants uncomfortable, irritated or even ill. 

 

The most common theories about the cause of sick building syndrome are related to 

factors such as: building materials, since some materials allow micro-organisms to grow 

on or in them, or the building materials may have chemicals or other substances in them 

or off - gassed; poor sanitation; ozone, organic solvents and formaldehyde in the 

atmosphere; office equipment, furnishings and other materials and products located or 

used in the building which can produce fumes; air borne chemical fumes or gasses from 

anything in the building; building air conditioning; inadequate ventilation; pollutants from 

inside or outside the building that were circulated by the air conditioning system and 

other environmental factors (Janis, 2006)  

 

There are only three techniques for the control  of all indoor air pollutants: dilution in 

which the ventilation brings in outdoor air has a strong benefit of diluting indoor 

contaminants rather than a negative effect of bringing in outdoor pollutants, since the 

concentration is related to the air change rate and the source strength; the next 

technique is extraction which are basically filtration and air cleaning of airborne 

contaminant, although some air cleaners are highly effective at particle removal; the air 

cleaners are generally not designed to remove gaseous pollutants (Liu & John, 2008); 

and finally the last technique is source control which basically is the elimination or 

removal or substitution at the source, this is the most effective way to improve indoor air 

quality because it eliminates individual sources of pollution or reduces their emissions in 

many cases. Source control usually requires some type of investigative procedure to 

determine precise source components. 

 

Accurate prediction of source location can help determine and implement proper indoor 

environmental control measures, such as, shutting down the room with the source, 

supplying fresh air to the room, or exhausting dirty air out of the room. 
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2.5 Modeling Indoor Air Pollutant   

 

With the advances in computer technology, computer simulations have become a 

dominant alternative in the IAQ study due to the efficient performance and large 

information that is able to obtain that is used for IAQ improvement.  

 

Rapid advancements have been made in the field of environmental engineering that 

have allowed the development of new modeling techniques. Software developments 

over the past two decades have led to simulation techniques being applied to integrated 

building and HVAC systems.  Axley James (2007) reviewed the historical development 

of the multi-zone airflow modeling theory explaining the approach upon which Multi-zone 

building airflow analysis may be based and how the analysis can be proven to be 

reasonably reliable, accurate and computational effective.   

 

Simulations are used to prevent under or over-utilization of resources and to optimize 

system performance as well as reduce the probabilities of failure in the development of 

systems being suitable for prediction and optimization research. It’s involving a large 

numbers of variables, and the models of simulations can be reconfigured and 

experimented that usually in an investigational approach is impossible as they are too 

expensive or impractical to do in the system. 

 

Kadiyala and Kumar (2012) validated indoor air quality modeling using acceptable 

criteria for statistical proof in public transit buses. The research showed the importance 

of corroborating modeling techniques to ensure the accuracy in the results, since one of 

the serious limitations in the current literature is that very few studies have used 

measures to guarantee the reliability of the newly developed indoor air quality models. 

 

Methods to model transport phenomena in physical systems are divided in two main 

categories, macroscopic or microscopic. The macroscopic systems, are based on 

idealizing systems with finite sized control volumes in which , momentum, or energy 

transport are described in terms of ordinary differential conservation equations (Axely, 

2007) 
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Microscopic methods are based on continuum description of mass, momentum, and 

energy transport defined in terms of partial differential conservation equations that are 

frequently applied to portions of a physical system. Two computer simulations models 

are highly used in the study of building indoor environmental quality, which are multi-

zone and Computational Fluid Dynamics (CFD) (Axely, 2007). 

 

Indoor concentrations of airborne contaminants can be estimated by basic principles, 

where they are functions of penetration efficiency, air exchange rate (AER, also termed 

air change rate), decay rate, indoor source strength, and unit volume (Long et al., 2001; 

Pepper and Carrington, 2009). However for effective control and improvement 

measures, it is important to have an accurate and prompt identification of contaminant 

spaces. Liu and Zhai (2007) reviewed inverse modeling methods for indoor airborne 

pollutant tracking Liu and Zhai (2007) discussed the use of inverse modeling to identify 

potential indoor pollutant sources with limited pollutant sensor data. The study reviews 

various inverse modeling methods for advection– dispersion problems.  

 

Liu and Zhai (2007) verified the feasibility and accuracy of the adjoint probability method 

for indoor pollutant tracking introducing the principles of the probability-based inverse 

modeling method and the corresponding equations as well as the CFD based inverse 

modeling algorithm. The method and algorithm were demonstrated and verified by two 

examples cases. 

 

Another study made by Liu and Zhai (2008) describes the principles of the probability – 

based adjoin inverse modeling method and formulates a multi-zone model based inverse 

prediction algorithm in attempt to track indoor contaminant source location for buildings 

with many compartments. 

 

2.5.1 Computational Fluid Dynamics (CFD)  

 

Computational fluid dynamics models provide the spatial distribution and temporal 

evolution of air pressure, velocity, temperature, humidity, contaminants, and turbulence 
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intensity by numerically solving the conservation equation mass, momentum energy, and 

species concentrations; however one of the major problems associated with CFD is that 

simulations are not fast enough to meet building design and control purposes (Xiang & 

Zhiqiang, 2007). 

 

CFD model is only applied for indoor spaces where contaminant concentration is 

significantly non-uniform and for the rest of the spaces in building multi-zone software 

are applied. CFD model can predict fate and transport characteristics of indoor pollutants 

that allow the designers to create appropriate indoor layouts, effective sensor locations, 

and safe rescue path emergencies.  

 

For many realistic problems, contaminant source conditions are unknown and need to 

be first identified through limited sensor outputs and then the forward CFD simulation 

can be conducted to reveal the contaminant release history and predict its development 

trend with and without proper control measures.  

 

 

2.5.2 Multi-zone  

 

Multi-zone models incorporate mass, energy and contaminant interactions among 

exterior, heating, ventilation and air conditioning (HVAC) systems, and pertinent zones 

inside the studied building. This type of simulation can calculate air exchange and 

contaminant migration within a room of a building and between a building and outdoors. 

 

Multi-zone models treat rooms of a building as zones with uniform properties connected 

by flow elements, or links. The links represent airflow paths such as doors, windows, 

wall cracks, fans, and ducts and thus can provide a quick prediction of airflow and 

contaminant distribution in the whole building; as a result multi-zone model-based 

inverse modeling can locate the spaces with potential contaminant sources as well as 

determining the relevant source characteristics. Consequently for buildings with large 

rooms, identifying which room contains contaminant sources may be sufficient for 

contaminant control. 
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Among various multi-zone models, CONTAM developed by the U.S. National Institute of 

Standards and Technology (NIST), is one of the most extensively used and validated 

multi-zone programs (Liu & John, 2008). 

 

CONTAM is a popular tool to determine building air infiltration, exfiltration, and room to 

room airflows driven by wind pressures on building exteriors, buoyancy effects related to 

the indoor and outdoor air temperature difference, and mechanical ventilation. It also 

predicts the dispersal of airborne contaminants and can be used to calculate personal 

exposure to contaminants. 

 

(Townsend, 2009) Calibrated a computer model for residential ventilation systems and 

used the calibrated model to extend the results obtained in previous field testing. The 

main purpose of this study was evaluating ventilation systems that were not present in 

the houses tested by Hendron and to provide the capability to extend the results of field 

testing in one location under one set of environmental conditions to many locations 

under many sets of environmental conditions. 

 

(Wang & Dols, 2010) introduced the algorithm for two methods of connecting CONTAM 

and CFD0, the external link for performing external airflow analysis, and the internal link 

for implanting a CFD zone in a CONTAM airflow and contaminant transport network. In 

this work they showed the embedded CFD zone is very useful for analysis of short-time 

contaminant transport, especially for evaluation of occupant exposure.  

 

(Syder, 2010) proposed a methodology to calibrate multi-zone airflow model in a 

building. In this study it was found that the macro zones in the CONTAM software 

provided a robust manner of calibrating a complex model, since the zones reduce the 

number of individual flow parameters that need to be tuned during calibration. 

 

(Firrantello, 2007) presented a calibration methodology based on measured heating, 

ventilation, and air-conditioning (HVAC) airflow rates and inter-zonal airflow direction; 

this has been partially validated using collected field data. 
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2.6 Types of Modeling 

 

The modeling process can be divided into three different types, according to the 

characteristics of the problem. 

 

1. Type 1, the direct problem or “forward problem”: given input and system 

parameters, find out of the model. 

 

2. Type 2, the reconstruction problem or “inverse problem”: given system 

parameters and output, find out which input has led to this output. 

 

3. Type 3, the identification problem or “inverse problem”: given input and output, 

determine the system parameters that agree with the relationship between input 

and output.   

 

The model’s multi-zone and CFD models can predict airflow and contaminant 

distributions based on given inputs (boundary conditions) and system parameters 

(building and system characteristics), which is a direct or forward problem. 

 

  

2.7 Validation of Indoor Air Quality Model 

 

One of the important prerequisites for an indoor air quality (IAQ) model to be acceptable 

for use predicting the associative components is to perform statistical validation of the 

model. Statistical validation of the IAQ model performance can be done in three ways: 

operational model evaluation, dynamic model evaluation, and probability model 

evaluation. 

 

(Kadiyala & Kumar, 2012) focused on the operational model evaluation, examining the 

performance of nine ANN-based PM10.0 IAQ models by application of the ranked 

statistical performance measures using four different software programs. 
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Besides, (Kumar, 2012) provided a comprehensive review of all existing statistical 

performance measures, summarized the mathematical equations on computing the 

various statistical performance measures. 

 

(Emmerich, 2006) Presented a review of empirical validation studies of the application of 

multi-zone indoor air quality (IAQ) models to residential scale buildings. This review 

focuses on empirical verification efforts, although Herrlin listed three techniques of model 

validation: 

 

1. Analytical verification—comparison to simple, analytically solved cases 

2. Inter-model comparison—comparison of one model to another 

3. Empirical validation—comparison to experimental tests 

 

There are some difficulties in validating multi-zone airflow models. These include input 

uncertainty (particularly of air leakage distribution) and attempting to simulate processes 

that cannot be modeled (e.g., using a steady-state airflow model to simulate the dynamic 

airflow process).  

 

(Herrlin, 1992), showed but the number of cases a complex multi-zone model can 

simulate are unlimited, an absolute validation is impossible. However, validation efforts 

are still important to identify and eliminate large errors and to establish the range of 

applicability of the model. Therefore, a model's performance should be evaluated under 

a variety of situations. Herrlin, 1992 also emphasizes that it is important to recognize that 

a model's predictions will always have a degree of uncertainty. 

 

2.7.1 Analytical Verification 

 

Analytical verifications are routinely performed to check a numerical solution. For 

example, CONTAM has been checked for a number of analytical cases including airflow 

elements in series and parallel, power law airflow elements, quadratic flow elements, 

stack effect, wind pressure, doorway elements, duct elements, fan elements, 
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contaminant dispersal, a contaminant filter, and a simple kinetic reaction. Therefore, 

analytical verification is of limited value in determining the adequacy of a multi-zone IAQ 

model for practical applications. 

 

2.7.2 Inter-Model Comparison 

 

Inter-model comparison provides a relative check of the assumptions and numerical 

solutions of different models. As with analytical verification, inter-model comparisons are 

of limited value in evaluating a model’s adequacy for practical applications. However, 

good inter-model comparisons also enable generalization of empirical validation 

conclusions beyond the specific model studied. 

 

Once again, power law flow elements and airflow elements were used to connect the 

four interior zones with each other and the ambient zone. A single wind speed and 

ambient temperature condition were applied. It should be noted that both inter-model 

comparisons discussed test the models for only a very limited range of conditions. 

 

2.7.3 Empirical Validations 

 

Empirical validation tries to compare model assumptions and numerical solutions with a 

more absolute standard. However, the standard is only as accurate as the 

measurements used to produce also the standard agreement between measurements 

and predictions could result from compensating errors in the model. 

 

ASTM guide D5157, Standard Guide for Statistical Evaluation of Indoor Air Quality 

Models (ASTM 1991), provides information on establishing evaluation objectives, 

choosing datasets for evaluation, statistical tools for assessing model performance, and 

considerations in applying the statistical tools. 

 

ASTM D5157 provides three statistical tools for evaluating the accuracy of IAQ 

predictions and two additional statistical tools for assessing bias. Values for these 
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statistical criteria are provided to indicate whether the model performance is adequate. 

The measures for assessing agreement between predictions include the following: 

 

1. The correlation coefficient of predictions vs. measurements should be 0.9 or 

greater.  

2. The line of regression between the predictions and measurements should have a 

slope between 0.75 and 1.25 and an intercept less than 25% of the average 

measured concentration.  

3. The normalized mean square error (NMSE) should be less than 0.25. NMSE is 

calculated as. 

 

𝑵𝑴𝑺𝑬 = ∑ (𝑪𝒑𝒊 − 𝑪𝒐𝒊)
𝟐/𝒏𝑪𝒐𝑪𝒑

𝑵
𝑰=𝟏   Equation (1) 

 

Where  

 

Cp: predicted concentration  

Co: observed concentration. 

 

And, the measures for assessing bias include: 

 

4.  Normalized or fractional bias (FB) of the mean concentrations. Fractional bias 

should be 0.25 or lower and is calculated as 

 

𝑭𝑩 = 𝟐(𝒄𝑷 − 𝑪𝒐)/(𝒄𝑷 + 𝑪𝒐) Equation (2) 

 

5.  Fractional bias based on the variance (FS), which should be 0.5 or lower. FS is 

calculated as 

 

𝑭𝑺 =
𝟐(𝝈𝟐𝒄𝑷−𝝈𝟐𝑪𝒐)

𝝈𝟐𝒄𝑷+𝝈𝟐𝑪𝒐
  Equation (3) 

 



 

19 
 

3. Chapter Three: BACKGROUND 

 

3.1 Major Assumptions of Multi-zone Models 

 

Multi-zone models implement mathematical relationships to model airflow and 

contaminant related phenomenon and therefore incorporate assumptions that simplify 

the model from that of the modeled phenomenon (Walton, 2013). 

 

1. Well-mixed zones: this assumption refers to the treatment of each zone as a 

single node, wherein the air has uniform (well-mixed) conditions throughout. 

These conditions include temperature, pressure and contaminant concentrations. 

2. One-Dimensional Convection/Diffusion Zones: all zones were considered to 

be well-mixed, i.e., having a uniform concentration. However, zones can be 

preconfigured by the user to be one-dimensional convection/diffusion zones in 

which contaminants can be allowed to vary along a user-defined axis.  

3. Duct Systems: typically, during contaminant simulation, there are similarities 

between duct junctions and well-mixed zones and between duct segments and 

airflow paths. In this case the volumes of the duct junctions are determined from 

the duct segments to which they are connected.  

4. Conservation of mass: when performing a steady-state simulation, the mass of 

air within each zone is conserved by the model. This implies that air can neither 

be created nor destroyed within a zone. However, when performing a transient 

simulation, CONTAM now provides the option of allowing the accumulation or 

reduction of mass within a zone due to the variation of zone density/pressure and 

the implementation of non-trace contaminants within a simulation.  

5. Trace contaminants: trace contaminants are those that are found in low enough 

levels that they do not affect the density of air within a zone. 
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6. Change in the density of air: The program will allow for contaminants to reach 

levels that would, in actuality, affect the density, but the program will still treat 

them as if they were trace contaminants. 

7. Airflow paths: airflow elements provided by CONTAM is modeled using either a 

powerlaw or quadratic relationship between airflow and pressure differences 

across the flow path. 

8. Source/sink models: CONTAM provides several different source/sink elements 

or representations of contaminant generation/removal processes. 

 

3.2 Ventilation and Infiltration 

 

Ventilation is intentional introduction of air from outside into the building and it can be 

natural or mechanical ventilation. Between natural ventilation elements are: open 

windows, doors, grilles, and any other intentional building envelope penetration and it is 

driven by differential pressure.  

 

On the other hand Infiltration is the flow of outdoor air into a building through cracks and 

other unintentional openings and through the normal use of exterior doors for entrance 

and exit. Infiltration is also known as air leakage into a building.  

 

Ventilation and infiltration differ significantly in how they affect energy consumption, air 

quality, and thermal comfort, and they can vary with weather conditions, building 

operation, and use. 

 

   

3.3 Driving Mechanisms for Ventilation and Infiltration 

 

Natural ventilation and infiltration are driven by pressure differences across the building 

envelope caused by wind and air density differences due to temperature differences 

between indoor and outdoor air. 

 

Mechanical air-moving systems also induce pressure differences across the envelope 

through operation of appliances, such as combustion devices, leaky forced-air thermal 

distribution systems, and mechanical ventilation systems. The indoor and outdoor 
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pressure difference at a location depends on the magnitude of these driving 

mechanisms as well as the opening in the building envelope (ASHRAE, 2009). 

3.4 Stack Pressure  

 

Stack Pressure is the hydrostatic pressure caused by the mass of a column of air 

located inside or outside a building. It can also occur within a flow element, such a duct 

or chimney that has vertical separation between its inlet and outlet. The hydrostatic 

pressure in the air depends on density and the height of interest above a reference 

point. 

 

Sherman (1991) showed that any single-zone building can be treated as an equivalent 

box from the point of view of stack effect, if its leaks follow the power law. The building is 

then characterized by an effective stack height and neutral pressure level (NPL) or 

leakage distribution. 

 

Stack pressure differences are positive when the building is pressurized relative to 

outdoors, which causes flow out of the building. Therefore, in the absence of other 

driving forces and assuming no stack effect within the flow element themselves, when 

indoor air is warmer than outdoors, the base of the building is depressurized and the top 

is pressurized relative to outdoors; when indoor air is cooler than outdoor, the reverse is 

true.   

  

3.5 Description of Wind in Buildings 

 

Wind pressure is the most important driving force for airflow through the building 

envelope since wind creates a distribution of static pressure on the building’s exterior 

surface that depends the wind direction, wind speed, air density, surface orientation and 

surrounding conditions. Wind pressure is generally positive on the air windward side of 

the building, and negative on the leeward sides (ASHRAE, 2009). 

 

Air movement around buildings is three-dimensional turbulent flow. A more accurate 

approach than surface-averaged pressure coefficient is to account for variations in wind 

pressure coefficients by location over a building surface. Swami and Chandra (1988) 
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presented a correlation of wind pressure coefficients for high-rise buildings, where the 

value of Cp (wind pressure coefficient) was determined for a specific point on the building 

facade instead of being averaged over the entire facade. Since it may only apply to high-

rise buildings and cannot represent average ones, the correlation has not been 

incorporated into CONTAM. 

 

Cp (wind pressure coefficient)), is a function of location on the building envelope and 

wind direction. Most pressure coefficient data are for winds normal to building surfaces. 

Unfortunately, for a real building, this fixed wind direction rarely occurs, and when the 

wind is not normal to the upwind wall, these pressure coefficients do not apply. 

 

Walker and Wilson (1994) developed a harmonic trigonometric function to interpolate 

between the surface average pressure coefficients on a wall that were measured with 

the wind normal to each of the four building surfaces. This function was developed for 

low-rise building that are three stories or less in height. 

 

The measured data used to develop the harmonic function from Akins et al. (1979) and 

Wiren (1985) show that typical values for the pressure coefficients are Cp (1)= 0.6, 

Cp(2)= -0.3, Cp (3) = Cp (4)= -0.65. Because of geometry effects on flow around a 

building application of this interpolation functions is limited to low-rise buildings of 

rectangular plan form with the longest wall less than three times the length of the 

shortest wall.    

   

3.6 Buoyancy-Driven Airflows with Temperature Gradients 

 

Besides the effects of wind pressure, buoyancy-driven airflows are also common in 

natural ventilation. In simulations of buoyancy-driven flows, zone temperature is a crucial 

factor. Since the current version of CONTAM does not include the calculation of energy 

conservation, a uniform temperature must be manually specified for each zone. 

An improper setting of the zone temperature may result in inaccurate or even wrong 

results. The temperature can also stratify along the height of a zone and the assumption 

of a uniform temperature is invalid. 
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3.7 Trace Gas Measurements  

 

Several tracer gas measurement procedures exist (including the ASTM Standard E741 

test method) involve an inert or nonreactive gas used to label the indoor air. The tracer is 

released into a building and the concentration of the tracer gas is monitored and related 

to the building’s air exchange rate. All tracer measurement techniques are based on a 

mass balance of the tracer gas in the building. Assuming the outdoor concentration is 

zero and the indoor concentration is well mixed (ASHRAE, 2009). 
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4. Chapter Four: MATHEMATICAL MODEL 

 

The central concern of indoor air quality analysis is the prediction of airborne 

contaminant dispersal in buildings. Airborne contaminants disperse throughout buildings 

in a complex manner that depends on the nature of air movements in-to, out-of, and 

within the building system; the influence of the heating, ventilating, and air-conditioning 

(HVAC) systems; the possibility of removal, by filtration, or contribution, by generation, of 

contaminants; and the possibility of chemical reaction, radio-chemical decay, settling, or 

sorption of contaminants. 

 

The basis for contaminant dispersal analysis is the application of conservation of mass 

for all species in a control volume (c.v.). A control volume is a volume of air which may 

correspond to a single room, a portion of a room, or several well-coupled rooms (a 

CONTAM zone) or the ductwork (where a junction, under the well-mixed assumption, 

has half the volume of each of the adjacent duct segments).  

 

4.1 Properties of Air 

 

In CONTAM air is treated as an ideal gas with properties computed from the ideal gas 

law. The density of air is given by 

 

𝝆 = 𝒎/𝑽 Equation (4) 

 

𝝆 =
𝑷

𝑹𝑻
 Equation (5) 
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Where,  

 

𝑚: 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑖𝑟  

𝑣: 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑣𝑜𝑙𝑢𝑚𝑒  

𝑃: 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝑅: 𝑡ℎ𝑒 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑎𝑖𝑟  

𝑇: 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 

The mass of air in control volume i is the sum of the masses of the individual 

contaminants in the (c.v). 

 

𝒎𝒊 = ∑ 𝒎𝒊


     Equation (6) 

 

The concentration of contaminant  in c.v. i is defined as 

 

𝑪𝒊
 = 𝒎𝒊

/𝒎𝒊 Equation (7) 

 

4.2 Contaminant Concentrations 

 

Within CONTAM a contaminant may be added to c.v. i by: 

 

a) Inward airflows through one or more paths at the rate ∑ 𝐹𝑗=𝑖(1 − 𝑛𝑗
)𝐶𝑗


𝑗  where 

𝐹𝑗−𝑖 is the rate of air mass flow from c.v. j to c.v. i and 𝑛𝑗
 is the filter efficiency in 

the path. 

b) species generation at the rate 𝐺𝑖
  

 

A species may be removed from the c.v. by: 

 

a) outward airflows from the zone at a rate of ∑ 𝑗 𝐹𝑖−𝑗𝐶𝑖
 where 𝐹𝑖−𝑗 is the rate of air 

mass flow from c.v. i to c.v. j, and 

b) Species removal at the rate 𝑅, 𝑖𝐶, 𝑖  where 𝑅,𝑖 is a removal coefficient. 
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Combining these processes into a single equation for the rate of mass gain of species  

in c.v. 𝑖 gives: 

 

𝒅𝒎𝒊


𝒅𝒕
=  ∑ 𝒋 𝑭𝒋−𝒊(𝟏 − 𝒏𝒋

)𝑪𝒋
 + 𝑮𝒋

 + 𝒎𝒊 ∑ 𝑲𝑪𝒊


− ∑ 𝑭𝒊−𝒋𝑪𝒊
 − 𝑹𝒊


𝒋 𝑪𝒊


  Equation (8) 

 

 

The transient conservation of species mass in a control volume is given by: 

 

mass of contaminant  in c.v. 𝑖 at time 𝑡 + 𝑡 = mass of contaminant  in c.v. 𝑖 at time 

𝑡 +  𝑡  (rate gain of contaminant  - rate loss of contaminant ). 

Or in equation from as: 

 

𝝆𝒊𝑽𝒊𝑪𝒊
|𝒕+∆𝒕 ≈ 𝝆𝒊𝑽𝒊𝑪𝒊

|𝒕 + 𝒕 [∑ 𝒋 𝑭𝒋−𝒊(𝟏 − 𝒏𝒋
)𝑪𝒋

 + 𝑮𝒋
 + 𝒎𝒊 ∑ 𝑲𝑪𝒊


− ∑ 𝑭𝒊−𝒋𝑪𝒊

 −𝒋

𝑹𝒊
 𝑪𝒊

]
𝒕+𝜹𝒕

 Equation (9) 

 

4.3 Numerical Calculation of Contaminant Concentrations 

 

There are different solutions for Equation 6 that can be characterized by the choice of 𝜹𝒕 

to determine the rate of gain or loss. CONTAM has traditionally chosen  𝜹𝒕 = 𝒕 and 

Equation 6 becomes: 

 

𝝆𝒊𝑽𝒊 + 𝒕(∑ 𝑭𝒊−𝒋 − 𝑹𝒊


𝒋 )𝑪𝒊
|

𝒕+∆𝒕
≈ 𝝆𝒊𝑽𝒊𝑪𝒊

|𝒕 + 𝒕 [∑ 𝒋 𝑭𝒋−𝒊(𝟏 − 𝒏𝒋
)𝑪𝒊

 + 𝑮𝒊
 +

𝒎𝒊 ∑ 𝑲𝑪𝒊


 ]
𝒕+∆𝒕

Equation (10) 

 

All concentrations 𝐶𝑖
 at time 𝑡 + ∆𝑡 are functions of various other concentrations also at 

𝑡 + ∆𝑡. This is the standard implicit method, and it requires that a full set of Equations 

must be solved simultaneously. 

 

The number of equations, N, equals the number of species times the number of control 

volumes. In a traditional Gauss elimination (or LU decomposition) solution the 

computation time is proportional to N3, making it impractical for large problems. 
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CONTAM offers three solution methods which take advantage of matrix sparsity to 

handle cases with large numbers of equations. These are a direct skyline algorithm, an 

iterative biconjugate gradient (BCG) algorithm, and an iterative successive over 

relaxation (SOR) algorithm (LU decomposition is provided only for testing and 

benchmarking). The skyline algorithm is very fast for problems of intermediate size but 

can be slow for large problems. The SOR algorithm requires much less memory and 

may be faster for large problems unless there are convergence difficulties. In such cases 

use the BCG solution, although it may also experience convergence difficulties. It can be 

useful to test the different methods to determine which will give optimum performance 

before doing a long transient simulation. 

 

4.4 Airflow Analysis 

 

Over the years many methods have been developed to compute building airflows which 

are necessary for contaminant analysis.( Feustel and Dieris, 1992) report 50 different 

computer programs for multizone airflow analysis. Note that "zones" go by many other 

names in these programs, e.g., nodes, cells, and rooms are common alternatives. The 

airflow calculations in CONTAM are based on the algorithms developed in AIRNET 

[Walton 1989a and 1989b] 

 

4.4.1 Basic Equations 

 

The air flow rate from zone 𝑗 to zone  𝑖 , 𝐹𝑗,𝑖 = 𝑓(𝑃𝑗 − 𝑃𝑖)  

The mass of air,𝑚𝑖(𝐾𝑔) in zone 𝑖  is given by the ideal gas law 

 

𝒎𝒊 = 𝝆𝒊𝑽𝒊   Equation (11) 

 

Where, 

 

𝑉𝑖: Zone volume (m3) 

𝜌𝑖: Zone pressure (Pa) 

𝑇𝑖: Zone Temperature (K), and 

𝑅: 287.055 (J/Kg*K) (gas constant of air) 
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For a transient solution the principle of conservation of mass states that 

 

 

𝝏𝒎𝒊

𝝏𝒕
= 𝝆𝒊

𝑽𝒊

𝝏𝒕
+𝑽𝒊

𝝆𝒊

𝝏𝒕
= ∑ 𝑭𝒋,𝒊 + 𝑭𝒊 Equation (12) 

 

Where, 

 

𝑚𝑖: Mass of air in zone 𝑖 

𝐹𝑖,𝑗: Airflow rate (Kg/s) between zone 𝑗 and zone𝑖: positive values indicate flows from 𝑗 to 

𝑖 and negative values indicate flows from 𝑖 to 𝑗. 

 

4.4.2 Airflow Elements 

 

Infiltration is the result of air flowing through openings, large and small, intentional and 

accidental, in the building envelope. Simulation programs require a mathematical model 

of the flow characteristics of the openings. For a general introduction see Chapter 27 of 

(ASHRAE 2005) and section 2.2 of (Feustel 1990). 

 

Flow within each airflow element is assumed to be governed by Bernoulli's equation: 

 

∆𝑷 =  (𝑷𝟏 +
𝝆𝑽𝟏

𝟐

𝟐
) − (𝑷𝟐 +

𝝆𝑽𝟐
𝟐

𝟐
) + 𝝆𝒈(𝒛𝟏 − 𝒛𝟐) Equation (13) 

 

Where, 

 

∆𝑃: Total pressure drop between points 1 and 2. 

𝑃1, 𝑃2: Entry and exit static pressures. 

𝑉1, 𝑉2: Entry and exit velocities. 

𝜌: Air density 

𝑔: Acceleration of gravity (9.81 m/s2) 

𝑧1, 𝑧2: Entry and exit elevations. 
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The following parameters apply to the zones: pressure, temperature (to compute density 

and viscosity), and elevation. The zone elevation values are used to determine stack 

effect pressures. When the zone represents a room, the airflow elements may connect 

with the room at other than its reference elevation.  

 

4.4.3 Powerlaw Flow Elements 

 

Most infiltration models are based on the following empirical (powerlaw) relationship 

between the flow and the pressure difference across a crack or opening in the building 

envelope: 

 

𝑸 = 𝑪(∆𝑷)𝒏 Equation (14) 

 

The volumetric flow rate, Q [m3/s], is a simple function of the pressure drop, P [Pa], 

across the opening. A common variation of the powerlaw equation is: 

 

𝑭 = 𝑪(∆𝑷)𝒏 Equation (15) 

 

Where the mass flow rate, F (kg/s), is a simple function of the pressure drop. A third 

variation is related to the orifice equation: 

 

𝑸 = 𝑪𝒅𝑨√
𝟐∆𝑷

𝝆
  Equation (16) 

 

Where, 

   

Cd: discharge coefficient, and  

A: orifice opening area.  

 

Theoretically, the value of the flow exponent should lie between 0.5 and 1.0. Large 

openings are characterized by values very close to 0.5, while values near 0.65 have 

been found for small crack-like openings.  
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The CONTAM functions for powerlaw elements calculate flows using both the laminar 

and the turbulent models and select the method giving the smaller magnitude flow. 

 

 

4.4.4 Leakage Areas  

 

The powerlaw model can be used with the component leakage area formulation which 

has been used to characterize openings for infiltration calculations [ASHRAE 2001, p. 

25.18]. The leakage area is based on a series of pressurization tests where the airflow 

rate is measured at a series of pressure differences ranging from about 10 Pa to 75 Pa. 

The effective leakage area is based on a rearrangement of equation 

 

 

𝑳 =
𝑸𝒓√𝝆/∆𝑷𝜸

𝑪𝒅
  Equation (17) 

 

Where,  

 

L= equivalent or effective leakage area [m2],  

Pr= reference pressure difference [Pa],  

Qr= predicted airflow rate at Pr (from curve fit to pressurization test data) [m3/s], and  

Cd= discharge coefficient.  

 

There are two common sets of reference conditions:  

 

Cd = 1.0 and Pr = 4 Pa  

or  

Cd = 0.6 and Pr = 10 Pa.  

 

4.4.5 Ducts  

 

The theory of flows in ducts (and pipes) is well established and summarized in Chapter 

35 of the 2005 ASHRAE Fundamentals Handbook [ASHRAE 2005] The Analysis is 
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based on Bernoulli's equation and its assumptions. The dynamic losses due to fittings 

and so forth are given by 

 

∆𝑷𝒅 = 𝑪𝒅
𝝆𝑽𝟐

𝟐
  Equation (18) 

 

Where, Cd = dynamic loss coefficient. Total pressure losses are given by 

 

∆𝑷 = ∆𝑷𝒇 + ∑ ∆𝑷𝒅 Equation (19) 

 

Since F = VA, where A is the cross section (or flow) area,  

 

𝑭 = √
𝟐𝝆𝑨𝟐∆𝑷
𝒇𝑳

𝑫
+∑ 𝑪𝑫

 Equation (20) 

 

CONTAM calculates the friction factor using the nonlinear Colebrook equation. 

 

4.4.6 Constant Flow Fans 

 

One particularly simple but useful airflow element sets a constant flow between two 

nodes. Since the flow is constant, the partial derivatives of flow with respect to the 

node pressures must be zero. The constant flow element does not contribute to the 

Jacobian, (A), but it does add to the right side vector, (B). 

 

CONTAM provides two constant flow elements: one for constant mass flow and one 

for constant volumetric flow. 
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5. Chapter Five: RESEARCH SITE AND METHODS 

 

5.1 Research Site 

 

The study area corresponds to the research-houses built at the University of Texas at 

Tyler by the department of TxAIRE They were created for the development of projects 

that provide a better understand of energy efficiency and all related topics. 

 

House are located inside the campus of the University of Texas at Tyler as shown in 

Figure 1 and described in Table 1. 

 

 

Figure 1. House Location 
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Table 1. Coordinates House 1 

Longitude 95°15'33.35"W 

Latitude 32˚18’52”.49N 

Altitude 540 msnm 

 

 

5.1.1 House Characteristics 

 

The two TXAIRE houses are identical; the only difference is the attic of the houses, 

House 1 has a vented attic, in which the insolation and air barriers are located in the 

ceiling that separates the house from the attic, and for the purpose of this research, the 

house selected for this work was number 1 due to a time constrain of time that allowed 

just a House 1 study. The House has and ERV and HVAC systems which allow 

comparisons of the performance of both systems in different seasons.   Figure 2 shows 

an exterior view of House 1. 

 

 

Figure 2. Research House. 
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5.1.2 Floor Plan  

 

Figures 3 and 4 show the plan of the house and the mechanical drawing, which show 

information about the heating, ventilating and air conditioning system that allow 

analyzing the whole system and how the airflows and exchange of air are performed 

under the house features which have a direct influence on the indoor air quality of the air 

performance. 

 

Figure 3. Floor Plan  
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Figure 4. Ventilation System 
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5.2 METHODS 

 

5.2.1 Data Source 

 

Figure 5 shows the data sources used in this research. There were five main sources of 

data: cooling and heating system; meteorological data; physical plant; contaminant 

concentration data and sampling. Each of these data sources is described in more detail 

in the sections that follow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Data Sources used for the research 
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5.2.1.1 Physical Plant 

 

The floor area is a significant factor to consider when predicting air infiltration which is 

one of the primary factors affecting indoor air quality and energy consumption. High 

infiltration rates can decrease harmful exposures to pollutants of indoor origin, or they 

can increase exposures to pollutants that originate outdoor. Table 2 shows the 

characteristics of the house and the total surfaces area and volume. 

 

Table 2. Physical Characteristics of the House 

Zone Name 
Floor 

Area (ft2) 

Max 

Height (ft) 

Volume 

(ft3) 

Exterior Wall 

Area (ft2) 

Exterior 

Surface Area 

(ft2) 

Living Room 750 10.0 7220 472 1972 

Master 

Bedroom 
337 9.0 2766 433 1107 

Bedroom 3 159 8 1272 100 418 

Bathroom 64 8 512 50 178 

Bedroom 2 165 9 1485 315 645 

Total 1475 44 13255 1370 4320 

 

 

5.2.1.1.1 Envelope Leakage  

 

Air leakage data from literature as well as values used in previous studies were used in 

this research, this is very important since this data shows individual and whole building 

zone air exchange rates and determines airflow rates and pressure differences between 

zones. These inter-zone airflow rates are useful for predicting pollutant transport within 

buildings with well mixed zones (ASHRAE, 2009). Table 3 shows the airflows elements 

used for the simulation of the building. 
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Table 3 Airflow elements of the building  

General ceiling, typical value 

HVAC ceiling penetration, tight value 

Attic door, tight value 

Bathroom door, closed, including frame and undercut, manuf. home 

Closet door, closed, tight value 

Closet door frame, tight value 

Door, exterior, wood, frame, tight value 

Door, exterior, single, tight value 

Door, exterior, sliding glass, tight value 

Exterior door frame 

Garage door, closed, tight value 

Door, interior closed, including frame and undercut 

Door, interior, closed, tight value 

Hall doorway, typical value 

Attic floor 

Ceiling-joint joint, tight value 

Floor-wall joint, tight value 

Wall-wall joint, tight value 

Electrical outlet, tight value 

Plumbing penetration, interior, tight value 

Garage roof, tight value 

Attic vent, based on attic floor area, typical value 

Bathroom exhaust vent, tight value 

Kitchen exhaust vent, tight value 

Wall, interior, typical value 

Window frame, wood, tight value 

Window 

 

 

5.2.1.1.2 Heating and Cooling System 

 

The TX Air House has an Energy Recovery Ventilation (ERV), which exchanges the 

energy contained in exhausted building or space air using it to treat the incoming 

outdoor ventilation air in residential and commercial HVAC systems. During the warmer 

seasons, the system pre-cools and dehumidifies while humidifying and pre-heating in the 

cooler seasons. 
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Also, House 1 has the heating, ventilation, and air conditioning (HVAC), in which the 

three central functions of heating, ventilating, and air-conditioning are interrelated 

especially with the need to provide thermal comfort and acceptable indoor air quality. 

HVAC systems provide ventilation, reduce air infiltration, and maintain pressure 

relationships between spaces. 

 

 

5.2.1.1.3 ERV System 

 

The ERV system takes outdoor air at a rate of 165 CFM. The zones which are by the air 

supplied are: master bedroom, Bedroom 3, and Bedroom 2, in this system there are 4 

exhaust ducts which are located in the kitchen and the Foyer, and two bathrooms area. 

Table 4 shows the airflows of each supply and exhaust points, and Figure 6 the 

appearance of it. 

 

 

Figure 6. Energy Recovery Ventilator (ERV) 
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Table 4 Supply and exhaust terminals of ERV 

ZONE SUPPLY (CFM)/EXHAUST (CFM) 

MASTER BEDROOM 58 (S) 

MIDDLE BEDROOM 46 (S) 

FRONT BEDROOM 61 (S) 

ENTRYWAY EXHAUST 64 (E) 

KITCHEN EXHAUST 101 (E) 

 

 

5.2.1.1.4 HVAC System 

 

The HVAC system has a fan with a capacity of 1200 CFM. This system does not take 

any air from outside and therefore the recirculation of the system is 100%.  Table 5 

shows the airflows of each terminal in the HVAC system. 

 

Table 5 Supply and return terminals of HVAC 

ZONE SUPPLY (CFM)/EXHAUST (CFM) 

MASTER BATHROOM 176 (S) 

MIDDLE BATHROOM 80 (S) 

MAIN 943 (S) 

EXHAUST 334 (E) 

RETURN 866 (R) 

                  

 

5.2.1.1.4.1 Ducts 

 

Only horizontal segments can be displayed on the ContamW SketchPad, but vertical 

segments can be implemented as well. Each duct segment is referred to as duct flow 

element. Duct flow elements describe the mathematical relationship between flow 

through and pressure drop along the duct, the flow resistance or forced flow 

characteristics, cross-sectional geometry, and optional leakage per unit length of a duct. 
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Table 6 shows the values used in the software for the duct sections which are based on 

(ASHRAE, 2009). 

 

Table 6. Duct characteristics 

Type of duct Relative 

Elevation 

Terminal Loss 

coefficient 
Free face Area Duct Area 

Circular 8.5 ft 0.8 0.33 ft2 0.338 ft2 

 

5.2.1.1.4.2 Filters 

 

The air filters remove particles from the air stream to keep the air conditioning system 

clean and to remove particles from the air. As the filters get loaded with particles, the 

filter becomes more efficient, but it also increases resistance and reduces airflow. The 

system will not perform as well thus affecting the efficiency of the system and the 

building air. 

 

The Minimum Efficiency Reporting Value (MERV). The ratings are based on the ability to 

filter out undesirable particles from the air. This allows comparing distinct filters through 

a numerical value ranging from 1 (lowest efficiency) to 20 (highest efficiency) and 

indicates how well the filter captures and holds dirt and dust of a specified size range. 

Table 7 presents the rating of the filters in the duct system of the Tx Air House 1. 

 

Table 7. Filters of the Return terminals 

TYPE OF FILTER LOCATION MERV 

Air Purification System ERV 12 

Filter M3 RETURN TERMINALS 10 

 

5.2.1.1.5 Contaminant Data 

 

Airborne contaminants are dispersed throughout buildings due to several transport 

mechanisms. The concentration contaminants were taken in the Tx Air House 1.  

Table 8 shows the characteristics of the species or contaminants will be used during the 

simulation. 
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Table 8 Characteristics of CO2 

CONTAMINANT 

MOLECULAR 

WEIGHT 

(Kg/Kmol) 

EEFECTIVE 

DENSITY 

(Kg/m3) 

DIFFUSION 

COEFFICIENT 

cm2/s 

SPECIFIC 

HEAT 

KJ/(KgK) 

CO2 44.02 1.91 0.00019 0.83 

  

 

5.2.1.1.6 Meteorological Data 

 

Meteorological data has an essential impact in the distribution and dispersion of 

contaminant. The principal parameter in the movement of contaminants by the 

atmosphere is the wind, its speed and direction of wind, which are interrelated with 

temperature gradients. Meteorological data from the local station located in the House 

was used for the advance of the research. Table 9 shows the average of the 

meteorological variables measured for the sampling day.  

 

Table 9. Average of meteorological parameters  
 

Temperature 
Outside 

Hi 
Temperature 

Low 
Temperature 

Humidity 
Outside 

 

Wind 

Speed 

Wind 

Direction 

73 73 73 84 3.01 337 

 

 

5.2.1.1.7 Outdoor Weather 

 

Figures 7 through 10 show the weather characteristics. 
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Figure 7. Temperature 

 

 

Figure 8. Relative Humidity 
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Figure 9. Wind Speed 

 

 

 

Figure 10. Wind Direction 
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5.3 Sampling 

    

Calibration exercises were performed in the House 1 of the department of Tx-Air to 

collect tracer gas data, CO2 releases need to be performed in the building and CO2 

sensors were placed throughout the building to record CO2 concentrations. 

 

To start the test, the CO2 tank was opened in the Master Bedroom with the appropriate 

ventilation system operating to reach reasonable steady-state conditions, according to 

the design experiment. 

 

The samples were taken on October 11, 2013 in Tx-Air House 1 with the CO2 Tank 

generator and the Flow meter Omega Model: FL2001. Figure 11 and 12 show the 

equipment used during the testing and Table 10 shows the different experiments 

designed for the research. 

 

Figure 11. Flow Meter 
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Figure 12. CO2 Tank 
 

 

The sample collection was located at 5 ft above the floor to approximate human 

exposures; also it was collected in the Master Bedroom where there is good air 

circulation.  

This area was selected due to the high activity use and the potential pathway doors, 

vents, windows, walls, ventilation grilles, and the possible mixing height of the air of the 

building. 

 

The gas was released with steady – injection at a flow rate of 1.0 SCFH during the 

experiment; however some calculations were required, since the airflow-meter was for 

the air, not CO2. 

Table 10. CO2 airflow  

Airflow air  Density of CO2 Airflow CO2 

1.0 CFM 2.814 Kg/m3 1.313 x 10 -3 Kg/s 

    

 

Table 11 shows the characteristic of each scenario, the time and duration.  
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Table 11. Time and characteristic of experiment 

EXPERIMENTS CONDITIONS TIME 

Experiment 1 
Recirculation ON 

ERV 100% 
9:25 to 1:30 

Experiment 2 
Recirculation OFF 

ERV 100% 
1:50 to 3:55 

Experiment 3 
Recirculation ON 

ERV OFF 
4:05 to 6:10 
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5.4 Model Input 

 

5.4.1 Building Zones 

 

The Tx Air House was divided into 6 zones since the multi-zone CONTAM model treats 

rooms of building as zones with uniform properties. It was necessary divide the building 

into complete zones to allow the program to predict the concentrations and the airflows 

in the house Figure 13 shows the sketchpad of the building with supply and return 

terminals, and Figure 14 explained the connotation of the symbols in the sketchpad. 

 

Figure 13. Schematic Representation and Building Components 
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Figure 14. Symbols Representation 
 

 

5.4.2 Flow Paths 

Table 12 Flow Paths  

Type of Element Mathematical 

Model 

One-way Flow 

using Power law 

Models 

Leakage Area 

Data 

Orifice Area Data 

Fan and Forced 

Flow Models 

Constant Volume 

Flow 
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5.4.3 Simulation 

 

Airflow Test 

 

The Airflow test generates data related to building ventilation. The data is used to gauge 

the reasonableness of model inputs before beginning analysis of a building. 

 

All simulations were performed as steady contaminant dispersion and steady-state 

airflow simulations. This means that the building’s pressure distribution, volumetric 

airflow rates through each flow path and contaminant concentrations are calculated and 

remain fixed for one set of conditions.  

 

 

Table 13 presents the initial concentrations for the different simulations. 

  

Table 13. Initial Concentrations 

EXPERIMENTS 
LIVING 

ROOM 

BEDROOM 

2 

BEDROOM 

3 
BATHROOM 

MASTER 

BEDROOM 
ATTIC 

1 386 335 419 404 398 298 

2 407 342 426 426 419 291 

3 415 338 424 436 428 285 
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6. Chapter Six: RESULTS 

 

6.1 AIRFLOW TEST 

Table 14 Airflow Test Results 

PARAMETER VALUE UNITS 

Building Air change rate 0.387 ach 

Ambient Temperature 60 ˚F 

Pressure 99348.9 Pa 

Wind speed 2.42 m/s 

Wind Direction 337 degrees 

Conditioned Zones 18612.2 ft3 

Ducts & AHS (conditioned) 62.1 ft3 

Unconditioned Zones 984.3 ft3 

 

Table 15 Air change per hour in the system 

ZONE 

 
C/U SUPPLY RET/EXH 

CIRC 

TOT 
P [PA] T [C] 

VOL 

[m3] 

ATTIC U 0 0 0.02 -0.4 28.2 27.9 

MASTER 

BEDROOM 
C 7.3743 5.0002 4.37 2.1 23.9 93.9 

MAIN C 7.9209 8.3997 8.92 -0.8 23.9 209 

MIDDLE 

BEDROOM 
C 2.8226 4.3583 4.36 0.3 23.9 44.3 

BATH 2 C 1.8747 0 9.85 0.7 23.9 17.8 

FRONT 

BEDROOM 
C 2.329 2.078 5.08 3 23.9 46 

GARAGE C 0 0 0.02 0.8 23.9 115.9 
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Table 16 Inter-zonal Airflows 

from\to Attic Main 
Master 

Bedroom 

Middle 

Bedroom 
Bathroom 

Front 

Bedroom 
Garage 

Attic 0 0 0 0 0 0 0 

Master 

Bedroom 
0 119.308 0 0 0 0 0 

Main 0 0 162.277 38.6873 52.0887 0 18.827 

Middle 

Bedroom 
0 0 0 0 0 0 0 

Bathroom 0 0 0 24.6331 0 107.456 0 

Front 

Bedroom 
0 0 0 0 107.456 0 0 

Garage 0 1.3434 0 0 0 0 0 

Ambient 0.3575 0 0 0 0 0 0 

 

 

6.2 VALIDATION 

 

CONTAM could provide inaccurate results in the simulations with non-uniform 

momentum effect, temperature, and contaminant concentration. Before executing all the 

experiments it was necessary to validate the information provided by the software. 

 

Hence, this chapter first verifies the accuracy of the model through the data measured in 

the TxAir House. Results were evaluated statistically using ASTM D5157-97 Standard 

Guide for Statistical Evaluation of Indoor Air Quality Models (ASTM 2008). ASTM D5157 

has three criteria relevant to evaluating the results of this work. 

  

It was necessary for the validation to examine the concentrations obtained versus the 

concentrations predicted by the simulation, and establish the correlation coefficient, the 

normalized mean square error (NMSE) and the Fractional bias. The results are 

presented in the Tables 18 through 20. And the Tables 21 through 23 presents the final 

measured and predicted concentrations.   
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Table 17. Statistical Evaluation of Experiment 1 

CONTAMINANT 
Living  

Room 

Bedroom  

2 

Bedroom  

3 

Master  

Bedroom 
Bathroom Attic 

r > 0.9 0.9907 09985 0.968 0.9995 0.999 1.0 

M 

0.75 to 1.25 
0.987 0.9949 0.992 0.9991 0.999 1.0 

b/Co 

< 0.25 0.02 0.03 0.04 0.02 0.04 0.07 

NMSE 

< 0.25 0.066 0.047 0.135 0.022 0.091 0.260 

FB 

< 0.25 -0.036 -0.031 -0.052 -0.021 -0.043 -0.072 

FS 

< 0.5 -0.017 -0.009 0.017 -0.001 0.000 0.00 

Maximum Error 4.248 3.420 5.564 2.355 4.776 7.915 

Minimum Error 3.109 2.716 4.437 1.872 3.858 6.299 

Average Error 3.6 3.0 5.1 2.097 4.2 6.987 

 

Table 18. Statistical Evaluation of Experiment 2 

CONTAMINANT 
Living  

Room 

Bedroom 

2 

Bedroom 

3 

Master 

 Bedroom 
Bathroom Attic 

r > 0.9 0.9626 0.978 0.982 0.9947 0.9905 0.9993 

m 

0.75 to 1.25 
0.9732 0.9409 0.965 1.01 1.0027 1.006 

b/Co 

< 0.25 0.018 0.020 0.005 0.044 0.047 0.052 

NMSE 

< 0.25 0.000 0.041 0.044 0.024 0.053 0.073 

FB 

< 0.25 -0.046 -0.040 -0.041 -0.031 -0.045 -0.053 

FS 

< 0.5 -0.016 -0.100 -0.053 0.034 0.015 2.000 

Maximum Error 5.611 4.960 5.007 3.261 5.030 5.457 

Minimum Error 3.438 2.635 3.161 2.602 4.025 4.744 

Average Error 4.4 3.91 4.02 3.0 4.4 5.2 
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Table 19. Statistical Evaluation of Experiment 3 

CONTAMINANT 
Living  

Room 

Bedroom 

2 

Bedroom 

3 
Master Bedroom Bathroom Attic 

r > 0.9 0.9939 0.9804 0.9924 1.0 0.9704 1.0 

m 

0.75 to 1.25 
1.0048 1.012 1.003 0.9365 0.91 1.0 

b/Co 

< 0.25 0.045 0.073 0.111 
0.111 

0.159 0.489 

NMSE 

< 0.25 0.040 0.029 0.020 
0.199 

0.043 0.077 

FB 

< 0.25 -0.039 -0.033 -0.028 
0.087 

-0.041 -0.055 

FS 

< 0.5 0.0156 0.0449 0.000 
0.101 

-0.101 0.00 

Maximum Error 4.266 4.062 5.230 2.827 4.699 5.440 

Minimum Error 3.529 2.777 4.421 2.454 3.428 5.028 

Average Error 3.838 3.3 4.8 2.725 4.0 5.314 
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Table 20. Results Experiment 1 

 
LIVING ROOM BEDROOM - 2 BEDROOM-3 BATHROOM MASTER BEDROOM ATTIC 

TIME MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED 

9:25 408.62 393.74 340.98 330.10 459.85 435.98 413.88 394.11 434.23 424.48 303.54 284.19 

9:30 417.82 402.94 343.61 333.73 433.25 412.38 429.31 409.54 460.83 452.08 305.84 286.49 

9:35 418.8 403.92 347.87 335.99 431.28 407.41 446.38 427.14 466.41 456.66 307.16 287.81 

9:40 422.74 407.86 347.22 335.34 434.23 412.36 452.62 432.85 456.56 445.81 304.2 284.85 

9:45 424.38 409.50 345.58 335.70 428.98 405.11 481.52 461.75 459.85 450.64 295.99 276.64 

9:50 427.67 412.79 345.58 334.70 432.26 410.39 487.1 467.33 467.4 458.65 301.25 281.90 

9:55 427.34 412.46 363.64 352.76 432.26 412.39 480.86 461.09 457.55 447.80 294.02 274.67 

10:00 431.61 416.73 375.13 364.25 432.92 412.05 463.79 444.02 469.7 459.95 294.68 275.33 

10:05 431.61 416.73 380.71 369.83 434.89 411.02 473.97 454.20 469.37 459.67 297.63 278.28 

10:10 434.56 419.68 381.37 370.49 433.58 412.71 467.07 447.30 471.34 460.59 296.32 276.97 

10:15 443.43 428.55 358.05 347.17 437.85 413.98 483.82 464.05 477.91 468.16 300.92 281.57 

10:20 462.14 447.26 356.08 346.20 432.26 410.39 486.44 467.67 474.29 464.54 303.54 284.19 

10:25 463.46 445.58 359.04 347.16 435.22 411.35 473.97 454.20 475.61 465.86 298.62 279.27 

10:30 467.07 449.19 356.08 344.20 431.61 410.74 483.49 463.72 489.73 479.98 290.74 271.39 

10:35 470.03 455.15 357.72 347.84 430.29 406.42 481.85 462.08 487.1 477.35 291.07 271.72 

10:40 448.68 433.80 363.64 352.76 438.83 416.96 478.23 458.46 507.46 497.71 286.8 267.45 

10:45 462.47 447.59 367.58 356.70 439.82 415.95 493.34 473.57 472.65 462.90 288.11 268.76 

10:50 454.26 439.38 371.19 360.31 435.22 413.35 484.47 464.70 472 462.25 288.77 269.42 

10:55 458.2 443.32 367.9 357.02 447.7 427.83 487.1 467.33 473.64 463.89 290.41 271.06 

11:00 462.14 447.26 368.23 357.35 443.76 422.89 478.89 459.12 470.03 460.28 290.08 270.73 

11:05 470.35 455.47 371.84 360.96 442.44 418.57 476.92 457.15 467.4 457.65 279.9 260.55 

11:10 465.43 450.55 368.56 357.68 445.4 423.53 479.88 460.11 461.16 451.41 286.8 267.45 

11:15 468.71 453.83 368.89 358.01 440.8 420.93 478.89 459.12 462.47 452.72 278.59 259.24 

11:20 466.08 451.20 373.16 362.28 441.13 420.26 472.98 453.21 461.49 451.74 279.57 260.22 
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(Continued) 

 

 LIVING ROOM BEDROOM - 2 BEDROOM-3 BATHROOM MASTER BEDROOM ATTIC 

TIME MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED 

11:25 463.46 448.58 368.89 358.01 441.46 417.59 474.95 455.18 460.17 450.42 284.5 265.15 

11:30 466.74 451.86 362.32 351.44 434.23 413.36 472.98 453.21 457.88 448.13 287.46 268.11 

11:35 459.19 441.31 365.93 355.05 443.43 419.56 471.34 451.57 459.52 449.77 289.1 269.75 

11:40 458.2 440.32 360.68 349.80 452.29 430.42 471.01 451.24 455.25 445.50 289.43 270.08 

11:45 458.53 439.65 361.01 351.13 453.61 429.74 475.94 456.17 454.59 444.84 266.11 246.76 

11:50 459.85 441.97 361.34 349.46 470.35 449.48 467.4 447.63 455.58 445.83 268.74 249.39 

11:55 465.1 447.22 364.62 352.74 444.74 420.87 476.26 456.49 457.55 447.80 268.74 249.39 

12:00 470.03 452.15 363.64 353.76 437.19 415.32 474.29 454.52 458.53 448.78 265.45 246.10 

12:05 458.2 440.32 367.58 356.70 448.35 424.48 474.29 454.52 456.23 446.48 268.41 249.06 

12:10 454.92 437.04 358.71 347.83 442.44 420.57 494.98 475.21 454.92 445.17 260.53 241.18 

12:15 458.53 439.65 355.75 344.87 436.53 416.66 489.07 469.30 449.01 439.26 267.1 247.75 

12:20 449.34 430.46 357.4 346.52 443.76 422.89 486.44 466.67 448.35 438.60 264.8 245.45 

12:25 446.05 428.17 369.55 358.67 436.2 412.33 487.1 467.33 441.13 431.38 254.29 234.94 

12:30 444.41 425.53 389.25 378.37 435.88 412.01 462.47 442.70 447.37 437.62 258.23 238.88 

12:35 443.76 428.88 376.77 365.89 446.38 422.51 459.85 440.08 452.95 443.20 267.1 247.75 

12:40 456.23 441.35 348.86 337.98 444.41 420.54 474.29 454.52 456.89 447.14 258.56 239.21 

12:45 471.67 456.79 347.22 336.34 446.05 422.18 463.13 443.36 452.95 443.70 254.62 235.27 

12:50 464.11 449.23 346.23 335.35 445.73 421.86 459.52 439.75 463.13 453.38 256.92 237.57 

12:55 478.56 463.68 339.34 329.46 438.17 414.30 468.38 448.61 470.68 460.93 253.31 233.96 

13:00 476.26 461.38 336.05 325.17 440.47 419.60 453.61 433.84 486.77 477.02 244.44 225.09 

13:05 447.7 432.82 336.05 325.17 446.05 422.18 466.41 446.64 490.71 480.96 251.99 232.64 

13:10 449.01 434.13 336.38 326.50 444.41 422.54 483.49 463.72 465.43 455.68 254.95 235.60 
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Table 21. Results Experiment 2 

 LIVING ROOM BEDROOM-2 BEDROOM-3 BATHROOM MASTER BEDROOM ATTIC 

TIME MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED 

13:50 445.4 424.63 339.01 325.13 442.44 428.46 473.31 452.43 464.77 450.79 256.92 244.26 

13:55 444.08 422.31 334.08 322.20 431.28 416.30 483.49 461.82 472.65 459.31 261.84 249.18 

14:00 455.58 435.81 325.87 312.99 423.4 405.42 492.35 468.47 478.23 463.25 262.83 250.17 

14:05 465.43 444.66 323.9 308.02 442.44 425.46 498.92 476.04 482.5 467.16 245.75 234.09 

14:10 461.16 439.39 312.41 298.53 441.46 422.48 500.56 478.89 484.8 470.82 243.78 231.12 

14:15 459.85 439.08 314.38 300.50 440.47 420.49 503.19 479.31 486.11 472.77 242.8 230.14 

14:20 466.08 445.07 313.72 302.84 439.16 420.18 504.5 483.62 480.2 465.22 240.17 227.51 

14:25 466.74 445.97 309.78 299.90 413.55 394.57 503.19 482.31 482.83 467.49 247.72 235.06 

14:30 473.97 448.20 310.77 298.89 409.28 391.30 501.55 480.67 484.47 470.49 251.01 238.35 

14:35 464.44 443.67 304.53 291.65 407.64 393.66 517.31 496.43 485.79 472.45 250.35 237.69 

14:40 466.08 447.31 300.26 288.38 404.02 390.04 518.62 497.74 478.89 463.91 246.08 233.42 

14:45 466.08 445.31 301.57 289.69 402.38 388.40 518.62 496.95 476.59 461.25 246.41 233.75 

14:50 458.53 442.76 314.05 302.17 396.8 382.82 519.94 496.06 479.88 465.90 242.14 229.48 

14:55 465.1 444.33 320.62 307.74 401.4 387.42 499.25 476.37 476.26 462.92 245.1 232.44 

15:00 462.14 441.37 338.35 322.47 398.77 384.79 491.7 470.03 473.31 458.33 234.59 221.93 

15:05 462.47 441.70 327.19 318.31 403.04 389.06 489.73 465.85 470.68 455.34 237.87 225.21 

15:10 483.16 461.39 298.95 289.07 402.38 388.40 486.77 465.10 469.37 455.39 237.87 225.21 

15:15 493.67 473.90 286.8 275.92 390.56 376.58 474.62 450.74 512.71 499.37 231.96 219.30 

15:20 477.25 456.48 290.08 280.20 398.44 383.46 484.47 463.59 487.1 472.12 239.51 226.85 

15:25 480.86 459.09 289.43 277.55 396.14 380.16 486.11 465.23 488.09 472.75 241.81 229.15 

15:30 455.91 438.14 295.66 287.78 395.16 377.18 485.79 464.91 501.22 487.24 241.16 228.50 

15:35 460.17 439.16 298.95 291.07 400.41 381.43 492.68 471.80 470.35 457.01 243.45 230.79 

15:40 458.53 438.76 300.59 285.71 399.1 379.12 495.64 474.76 472.98 458.00 245.1 232.44 

15:45 459.19 433.42 303.22 288.34 401.07 382.09 493.67 472.00 473.97 458.99 244.44 231.78 
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Table 22. Results Experiment 3 

 LIVING ROOM FRONT BEDROOM MIDDLE BEDROOM BATHROOM MASTER BEDROOM ATTIC 

TIME MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED MEASURED PREDICTED 

4:05 385.64 370.76 336.71 325.17 420.11 400.08 407.31 392.33 397.79 386.92 305.19 289.27 

4:10 381.7 366.82 332.11 321.11 417.49 395.81 407.96 393.98 396.47 385.60 316.68 300.76 

4:15 372.17 356.29 324.23 314.69 445.07 425.39 396.8 379.82 384.65 373.78 312.74 296.82 

4:20 378.08 363.20 324.56 313.02 445.73 425.70 393.19 378.21 388.59 377.72 312.08 296.16 

4:25 387.28 372.40 331.13 319.59 437.85 416.17 404.35 388.37 393.19 382.32 299.6 283.68 

4:30 383.99 368.11 330.47 319.47 439.82 420.14 403.7 387.72 392.86 381.99 298.29 282.37 

4:35 385.96 372.08 334.74 325.20 415.52 395.49 406.65 389.67 398.44 387.57 300.59 284.67 

4:40 389.58 375.70 332.77 321.23 420.11 398.43 407.64 389.66 401.07 390.20 300.59 284.67 

4:45 390.23 376.35 333.43 319.89 420.44 400.76 407.64 388.66 399.76 388.89 296.98 281.06 

4:50 383.34 368.46 338.02 327.02 418.47 398.79 405.99 389.01 400.08 389.21 297.96 282.04 

4:55 385.64 370.76 331.13 321.59 414.53 394.50 423.4 405.42 395.49 384.62 296.65 280.73 

5:00 384.98 369.10 335.72 324.18 415.52 393.84 427.01 408.03 395.81 384.94 299.6 283.68 

5:05 383.99 369.11 343.61 332.61 413.22 393.54 424.05 407.07 392.2 381.33 296.32 280.40 

5:10 378.08 363.20 343.61 334.07 415.84 395.81 425.37 410.39 393.19 382.32 295.99 280.07 

5:15 385.64 369.76 356.08 345.08 418.8 397.12 400.41 383.43 394.83 383.96 297.96 282.04 

5:20 388.92 375.04 339.66 330.12 419.79 400.11 403.37 385.39 399.1 388.23 301.57 285.65 

5:25 393.19 379.31 337.37 325.83 419.13 399.10 404.02 385.04 399.1 388.23 300.92 285.00 

5:30 402.38 387.50 328.83 317.29 414.53 392.85 400.08 385.10 390.23 379.36 293.69 277.77 

5:35 404.68 389.80 326.86 314.86 413.55 393.87 398.44 384.46 409.61 398.74 294.68 278.76 

5:40 404.35 389.47 328.83 319.29 415.19 395.51 397.79 382.81 410.92 400.05 294.02 278.10 

5:45 410.26 394.38 323.58 312.04 414.53 394.50 394.5 380.52 411.9 401.03 293.37 277.45 

5:50 381.37 366.49 329.81 318.81 413.22 393.54 395.81 378.83 443.1 432.23 292.71 276.79 

5:55 383.67 368.79 335.07 325.53 421.43 401.75 402.05 387.07 398.44 387.57 298.62 282.70 

6:00 385.96 370.08 338.02 326.48 423.4 401.72 403.37 386.39 399.76 388.89 301.25 285.33 
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Figure 15. CO2 concentrations measured vs. predicted. Experiment 1 
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(Continued) 
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Figure 16. CO2 concentrations measured vs. predicted. Experiment 2 
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(Continued) 
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Figure 17. CO2 concentrations measured vs. predicted. Experiment 3 
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(Continued) 
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7. Chapter Seven: DISCUSSION 

 

This chapter covers the analysis of the results obtained though the study. The results 

are presented and discussed as the Airflow Test of the House, calibration data and the 

validation of the final model.    

 

 

7.1 Airflow Test 

 

With the results of the airflow test it was possible to determine the infiltration value of the 

house which was 0.387 ach. According to the American Society of Heating, 

Refrigeration, and Air Conditioning Engineers (ASHRAE) this accomplishes the 

minimum ventilation rates in building providing acceptable indoor air quality of 0.35 ach 

for residential, and also the value match with the typical infiltration values in housing in 

America, since from tightly constructed housing with seasonal average air Exchange 

rates as low as 0.1 air changes per hour (ach) to loosely constructed housing with air 

exchange rates as great as 2.0 ach (ASHRAE, 2009). Table 14 shows the results of the 

airflow test. 

 

7.1.1 Zone Air Change Rates 

 

The individual zone air change rates for the different ventilation system in House 1 show 

low air change rates throughout all zones, with the lowest being in the Master and 

Middle bedroom zones.  

 

The ERV showed huge air change rate increases in the bedrooms but was about the 

same as the other ventilation system in the Living Room zone. 
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Table 16 shows the air changes rates per zone as well as the exhaust/return, outdoor 

airflows, and airflows from the system.  

 

Results for the zones indicate that the maximum air change rates in the supply system 

are in the Living Room zone and Master Bedroom. 

 

The Main or Living zone has the maximum amount of return because in this zone there 

is the exhaust terminal of ERV and also the return of the HVAC system, making this area 

an important exchange part in the house. 

 

The Master bedroom has the largest area, therefore the amount of air exhausted from 

the system is larger than other zones of the building increasing the exchange of air form 

this room. 

 

Outdoor air change rates were calculated as the total flow of outdoor air into the building 

(including both air leakage through the exterior envelope and outdoor air intake via the 

mechanical ventilation system) divided by the building volume. Attics were not included 

in the building volume. 

 

In the Attic there is no supply, return or exhaust since a diffuser is not located in this part 

of the house, and however there is an amount of outdoor air due to infiltration from the 

outside. 

 

This outside air supply tends to increase the positive air pressure in the room with 

respect to the exterior; this causes fluctuations in the positive pressure (with respect to 

the exterior) in the zones. 

 

The vented attic air change rate was about 0.02 ach and this can be explained by 

referring to the meteorological station information which indicates that the wind speed 

during the sampling period was 3.01 m/s.
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7.1.2 Inter-zonal Airflows   

 

Table 17 shows the intern-zonal airflows, where the airflow from the Main area to the 

Master Bedroom is the highest for the HVAC system and the impact of the direction of 

the Exhaust ventilation system.  

 

Airflow from the Garage to the Main or Living Room zone was the lowest for the 

ventilation system since the ERV system was design to supply air to the bedrooms and 

exhaust from the Main or Living Room zone. Thus the living zone, negative and the 

bedrooms become positive.  

 

The highest inter-zonal airflow was found between the main zone and the Master 

bedroom. Since the ERV system and the HVAC system supply air to the zones and the 

zones contain the larger area of the house, these results are well founded. 

 

 

7.2 Airflow Simulation Results 

 

The development of the CONTAM models for the TX Air House 1 and their association 

into airflow and contaminant transport behavior are described in this chapter. The 

development of the models presented a number of challenges and other issues that are 

worth discussion and address, the need for additional studies in the future. 

 

The method used in this research was to analyze the degree of match between the 

predicted concentrations and measured CO2 concentrations by, studying the plots for 

each macro-zone. The quality of the match between the two curves can be evaluated 

visually and statistically.  

 

7.2.1 Validation 

 

Statistical indices (including correlation coefficient, slope and intercept for regression line 

standard error of the estimate, normalized mean square error, and fractional bias) were 

calculated for the zones of the House to make quantitative comparisons regarding the 
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level of agreement between measurements and predictions of transient pollutant 

concentrations. 

 

Tables 18, 19 and 20 summarize the reported correlation coefficients between the 

predicted and observed data sets. (r) Ranges from -1 to +1, with -1 indicating an inverse 

relationship, 0 indicating no relationship, and +1 indicating strong relationship between 

the two datasets. ASTM suggests that r values greater than 0.9 generally indicate 

adequate model performance with respect to the correlation coefficient, which was found 

in the data analyzed in this study. All the relationships are positive an adequate 

performance. 

 

Also a slope was founded between the suggested range of 0.75 and 1.25 as the DS 157. 

Thus the regression between the predicted and the measured values matched well. 

 

It is recommended that 
𝑏

𝐶𝑜
< 0.25 where 𝐶𝑜 is the mean value of the observed data. This 

generally indicates adequate performance with respect to the regression, and was found 

in these results. 

 

The NMSE is a measure of the magnitude of the error between the predicted and 

observed data sets value of less than 0.25 indicates a satisfactory performance of the 

model. 

 

The Fractional Bias (FB) is a measurement of the bias of the mean concentrations of the 

predicted data. Value less than 0.25 indicates an acceptable performance of the model 

with respect to FB. 

 

The Index of variance bias (FS) was found to be less than 0.5 in all the data sets 

confirming satisfactory performance of the model.   

 

Good performance was seen between the modeling results and the CO2 gas results. As 

described before, the greatest agreement was obtained for experiment 2 even though all 

the models presented a good fit between the measured and predicted concentrations. 
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Several methods of plotting the resulting tracer gas release data were evaluated. It was 

found that CO2 concentrations curves for individual rooms were the most capable for 

analyzing the gas changes. There were no important changes in the predicted 

concentrations which confirm good results of the model versus the concentrations 

measured in the house. 

 

The overall goal of these tracer gas simulations was to be able to identify macro-zones 

that do not change under varying conditions. 

 

Figures 15, 16 and 17 show the individual CO2 concentration curves for each room of 

the building for every set of conditions described in Table 11. 

 

Since there were different scenarios or simulations but the same releases occurred, it 

became apparent that the release location could have a significant impact on which 

rooms are affected by contamination, and also the Inter- zonal airflow behavior impact in 

the distribution of the contaminants inside the building. 

 

Wind speed and wind direction could have significant influences in the distribution of the 

contaminant. However the slight variations over time, the small amount of cross 

contamination between zones, and the physical conditions such as the tightness of the 

building, were observed to not allow these factors to have a real influence on the 

distribution of the contaminant. 

 

The macro-zones identified did not show significant changes under the various 

conditions for both the airflow-based and tracer gas-based analyses. This confirms that 

the airflow dynamics are dominated by the HVAC in the slight variations in tracer gas 

behavior as well as cross contamination between zones.  

 

The differences of the concentrations of the contaminant need to be evaluated as 

significant for occupant exposure and the type of calibration is performed since the type 

of contaminant varies and the impact on human health as well, this dynamics need to be 

specified by the researcher in the scope of the study. 
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7.2.2 Calibration Data 

 

Some differences between predicted and measured concentrations remain after tuning 

the flow parameters, thus possible measurement errors and uncertainties for factors 

impacting room air changes and source rate need to be investigated (i.e., HVAC airflow 

rates, room volumes, and outside air percentages, and additional sources).  

 

All locations had higher predicted concentrations than measured, showing the model 

was over predicting the concentrations; therefore it was necessary to adjust the system 

volume, instead of the room volumes which were estimated from floor the plans. Since 

an increase in the system volume results in a decrease in the predicted concentrations 

making bigger difference between the predictions and the measurements are smaller. 

 

Assuming the HVAC airflow rates were measured accurately, it was initially 

hypothesized that these differences must be attributed to airflow into and out of the room 

via the exterior envelop or inter-zonal airflow paths. Consequently, adjustments to the 

flow parameters (coefficients and exponents) for these airflow paths was tried. The flow 

exponent was varied from the default of 0.65 to 0.5 and 0.7. This represents the range of 

typical flow exponents recommended by Walton and Dols (2008).  

 

Other sources of inconsistencies between measured and predicted behavior could 

include uncertainties or errors in HVAC airflow rate or leakage in the system, CO2 

concentration measurements, errors in the development of the PCW model and the 

consequences of the well-mixed assumption which need to be explored for improvement 

of the model.  

 

The ERV and HVAC airflow rates, were changed ad was the source airflow, which 

showed a difference in the predicted concentrations for the measurement location of the 

macro-zones. The leakage exponent did have a positive impact in the curve however it 

was not really significant in improving the model. 

 

The well-mixed assumption of the multi-zone model may also be a significant source of 

error. It is possible that the CO2 sensor was placed in a location where it recorded 

concentrations that were not representative of the room average due to the small 
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temperature difference between the outside air and the return air. Therefore, it is valid to 

assume that the initial concentration used in the model may have an error. 

 

        

7.3 Limitations of Study 

 

The CONTAM models of the reference buildings provide important tools to evaluate the 

ventilation and IAQ performance of various buildings. However, there are a number of 

limitations to the CONTAM models that need to be considered and addressed in the 

future. The CONTAM simulations maintained a constant indoor air temperature and 

used the minimum amount of outdoor ventilation air specified for each zone (or HVAC 

system) thus simplifying the system, without taking into account the ERV unit that 

complements the HVAC system. Thus, future applications of CONTAM to these models 

may consider varying supply airflow rates and indoor temperatures.  

 

For this study, there was just one source taken into account. For future simulations it is 

important to recognize more possible sources that may improve the simulation results of 

the model. 

 

The software has some issues with the hydrostatic pressure calculation as well as the 

average air density in duct stack calculation, varying the leakage and the pressure drop 

in the duct system.    
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8. Chapter Eight: CONCLUSION 

 

The process of calibrating a model is critical in simulations for predicting contaminant 

dispersion and estimating personal exposure. Therefore it is important emphasize the 

accuracy of the model to obtain precise results.   

 

Reducing the number of individual flow parameters that need to be tuned during 

calibration reduces the error and elevates the accuracy of the model since the zones 

have similar airflow dynamics and tracer gas behavior. 

 

Flow parameters and HVAC characteristics are the base for the analysis and 

understanding of building airflow and tracer gas behavior. Tuning the model for these 

factors improved accurate of the model. 

 

In the experimental design method, the same location release was used for the different 

experiments; therefore it would be useful to see different releases places to confirm if the 

contaminant distribution is governed by the internal airflow dynamics. 

 

Altering the flow parameters in the airflow paths of macro-zones during calibration did 

not seem to significantly improve the match between measured and predicted tracer gas 

curves. 

 

Due to minor variations in observed wind direction and wind speed, it was concluded 

that wind direction and speed had little impact on the concentration curve. However, the 

leakage had a large impact when there was wind resulting from wind induced infiltration 

which was low for this building.  
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The time and cost involved in performing a model calibration study inevitably limits the 

scope, allowing presentation of results in the model for only small options between large 

building features, airflows, and contaminant concentrations which could be applied. 

 

Future studies can address meteorological variations, active contaminants, or 

specialized situations such as ambient pollutant entry, small time scales, and non-trace 

contaminants. 

 

ASTM Standard Guide 5157 provides a significant tool for statistical evaluation of multi-

zone models, since different model applications require different levels of accuracy. 

Some studies include only averages of percent differences between measured and 

predicted values, reducing the amount of information on the effectiveness of the model 

at predicting airflows and concentrations, exaggerating large relative differences for 

small absolute values.  
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