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Abstract models of self-assembly are mathematical models that cap-

ture the behavior of natural or artificial self-assembling systems. In

1995, conformational switching in self-assembling mechanical systems

was introduced and an abstract model of self-assembling systems, con-

formational switching model, was later developed where assembly in-

structions are written as rules representing the conformational changes

of self-assembling components. In 2004, another abstract model named

graph grammar was developed to self-assemble a prespecified graph

structure by generating a grammar or a set of rules. We first provide

the concepts related to the abstract models of self-assembly, followed

by a brief history of the development of conformational switching and

graph grammar approaches. An overview of the conformational switch-

ing model is provided, including descriptions of two types of conforma-

tional switches and the theory of one-dimensional self-assembling au-

tomata. A description of the graph grammar model is also provided,

including its topological properties and an algorithm for generating

graph grammar.
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1. Introduction

In a very simple and straightforward definition, self-assembly refers to the process,

natural or artificial, in which objects autonomously come together to form larger

complexes. There are numerous examples of self-assembly in nature. One very

simple example is water droplets on a lotus leaf, coming together spontaneously to

form a larger drop as depicted in Figure 1(a). Consider bubble rafts where small

or large soap bubbles form a larger pattern of soap bubbles as in Figure 1(b).

Crystalline structures such as the salt crystal shown in Figure 2 or the structure

of a tobacco mosaic virus are results of self-assembly.

(a) Water drops on a lotus leaf (b) Bubble Raft. Source: [14]

Figure 1: (a) Water drops on a lotus leaf self-assemble together to form a big drop
(b) Example of a bubble raft

Indeed self-assembly has application in many fields. Engineers are building con-

formational switches which has applications in microelectromechanical (MEMS)

and nanoelectromechanical (NEMS) devices. Biologists are trying to solve the

protein folding problem which concerns how the basic subunits or amino acid se-

quences of a protein determine its folded structure. Chemists are studying the pro-

cesses of forming larger and stable molecular structures polymerization. Computer

scientists are working on DNA computers to make computation faster. Mathe-

maticians are developing theoretical abstract models to capture and control the
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Figure 2: Salt(NaCl) crystal. Source: [15]

behavior of physical self-assembling systems. Our goal in this thesis is to under-

stand these efficient abstract mathematical models that represent physical self-

assembling systems. We begin by introducing abstract models of self-assembly. We

conclude the introduction with a brief timeline of historical developments related

to the discovery and advancements of abstract models of self-assembly. Through-

out this section, we refer to [4], [12] and Pelesko’s textbook on self-assembly titled

“Self-Assembly: The Science of Things That Put Themselves Together”[10].

1.1. Abstract Models of Self Assembly

Most of the works on self-assembly are based on experiments or physical mod-

els. We often find similarities among different physical self-assembling systems.

For example, in the self-assembly of a tobacco mosaic virus, self assembled protein

disks switch to a lockwasher configuration while interacting with RNA, chang-

ing its conformation [2, 3]. Similarly, proteins always change its conformation

while interacting with other proteins. In order to capture similar behavior in self-

assembling systems, we need an abstract or general model. These abstract models

may help us find the answers to questions like “what type of assembly or struc-

ture is possible?”by achieving coded self-assembly where the self-assembling com-

ponents of the system carry information about the final structure. Also one major
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advantage of these abstract models is they are computationally solvable; that is,

we can write computer algorithms to simulate the behavior of these models rather

than running time consuming and costly experiments [10]. In the next sections

we will discuss two types of abstract models : the conformational switching model

and the graph grammar model.

1.2. History and Background

Historically the idea of conformational switching in self-assembling systems was

first introduced by Kazuhiro Saitou and Mark J. Jackiela [6]. In their 1995 paper

[6] Saitou and Jackiela designed self-assembling mechanical systems where assem-

bly instructions can be written in terms of conformational switches. They showed

that mechanical components capable of changing conformations can be used to

encode any particular subassembly sequence and nondesirable sequences can be

blocked or minimized, therefore maximizing the yield of desired subassembly se-

quences. In 1996, Saitou and Jackiela published another paper titled [7], in which

they construct a self-assembling automaton (a sequential rule-based machine) ca-

pable of capturing the functions of conformation switches. In short, their abstract

model of self-assembly answered questions like “Is it possible to encode any partic-

ular subassembly sequence?”or “How many conformations are necessary to encode

the given subassembly sequence?”

In 2004, Eric Klavins and his collaborators introduced a new approach of self-

assembly called graph grammar [4]. They developed an experimental self-assembling

robotic system consisting of programmable parts or robots and showed how we

can use graph grammar or assembly rules to control the self-assembly of the pro-

grammable parts. They consider the conformation of a part as a symbol and the

final assembly structure as a simple graph labeled by such symbols. The initial sys-

tem is a simple graph where all the vertices or robotic components are labeled by

the same symbol without any edge between them and the graph grammar consists

3



of assembly rules that are pairs of simple labeled graphs. If a subset of vertices or

self assembling components together with their labels and edges matches the left

hand side graph of some rule, then the subset can be replaced by the right hand

side graph of the rule. If we continue to apply rules we may be able to produce

several stable assemblies or an unique stable assembly depending on the type of

rule set or grammar.

There are other abstract models of self assembly besides conformational switch-

ing and graph grammar. One very interesting model is Tile Assembly Model de-

veloped by Erik Winfree and his collaborators [13, 11, 9]. Their work was mo-

tivated by the natural self assembly of DNA helices. They showed that the tile

assembly model is Turing Universal by self-assembling a Sierpinski Triangle using

two-dimensional self-assembly of DNA tiles which are similar to the Wang Tiles

developed by Hao Wang in 1961. Their work provides an useful link between

self-assembly and algorithmic computation.

In this thesis, we focus particularly on the two abstract models : the conforma-

tional switching model and the graph grammar model.
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2. Conformational Switching

In this section, we discuss our first abstract model, conformational switching model,

developed by Kazuhiro Saitou and Mark J. Jackiela[12, 6, 7]. Many biological

structures are results of self-assembly where components change their conforma-

tions while interacting with other components. A good example is tobacco mosaic

virus or TMV. Figure 3 shows electron microgrph of TMV particles. It has rod-like

appearance, few hundred nanometers in length and about 18 nanometers in diam-

eter. These rod-like structures are actually helical and these helices are made of

proteins and RNA. In the self-assembly of tobacco mosaic virus[10, 3, 2] proteins

assemble themselves into “washer” or disk-like configuration, as shown in Figure

4.

Figure 3: Electron micrograph image of
TMV particles. Source:[17]

Figure 4: Protein disk in the assembly of
TMV

A hairpin loop of RNA enters into the core of the protein disk or washer config-

uration and as a result, the washer changes its conformation and takes a different

configuration called “lockwasher” configuration, as illustrated in Figure 5. As a

result, a portion of the RNA gets trapped inside the protein disks. In this new con-

figuration, another protein disk can bind to the first one by changing its conforma-

tion and by repetition the rod-like structure of tobacco mosaic virus is assembled.

Biologists believe that the assembly instructions for this kind of conformational

change are written in the protein units or components as conformational switches.
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(a)

(b)

Figure 5: Conformational change in the assembly of tobacco mosaic virus.
Source:[2, 3]

Saitou and Jackiela came up with a novel approach to build self-assembling

mechanical systems where assembly instructions can be written in the mechanical

parts or components as conformational switches [12, 6, 7]. They also provided

an abstract model, a one-dimensional self-assembling automaton, where assem-

bly instructions are represented as rules imitating the behavior of conformational

switches.

To understand how conformational switches encode an assembly sequence, con-

sider an example scenario, as illustrated in [10] by Pelesko. Consider a system
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consisting of a mixture of three types of particles A, B and C. These particles

are square tiles which have certain bond sites on its edges. These particles are

pictured in 6 .

A B C

Figure 6: Particles with different bond sites

In Figure 6 particle A has one bond site on its right edge colored red, particle

B has two bond sites on its left and right edges colored red and blue respectively

and particle C has one bond site on its left edge colored blue so that A can bond

to B on the left side and C can bond to B on the right side. Also A, B and C

cannot bond to themselves, they can only bond to each other. Assume we have a

large container containing equal numbers of A, B and C particles. At each step

we take two random particles or clusters out of the container and bind them if

they have the same colored edges. Then we return the particles, or cluster to the

container and repeat the process. If we continue this process we will be left with

a container of ABC clusters. But there is more than one way we can construct

ABC clusters. Here we have two possible subassembly sequences. These bonding

or sequences can be seen as rules as follows



A+B → AB

B + C → BC

AB + C → ABC

A+BC → ABC

(1)

Equation (1) indicates two approaches which we can follow to form ABC clusters

– we can either form a BC and then add an A or we can form AB and then add a

C. Saitou and Jackiela [12, 7] introduced a tree notation to represent the assembly
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Figure 7: Self-assembly with no conformational switches: ABC can assemble in
two ways. Source: [10]

of ABC clusters. To keep track of different subassembly sequences we parenthesize

every time a cluster is formed, indicating the order of the assembly. So in this case

the subassembly sequences would look like (A(BC)) and ((AB)C) depending on

the order of assembly. The tree notation for this assembly is depicted in Figure 7.

In the previous example, the rules do not enforce any subassembly sequences to

assemble ABC, i.e. the final container may contain either ((AB)C) or (A(BC))

or both depending on the order in which the rules are being fired. According to

Saitou and Jackiela [12, 6, 7] one can enforce a particular subassembly sequence

by designing conformational switches, which are like assembly instructions built in

the components. A conformational switch causes the formation of a bond at one

site and may be used to change the conformation of another site, thus blocking or

enabling other subassembly sequences. In the next subsection we give a detailed

description of a special type of conformational switch called Minus Device and how

minus device improves the yield of the self-assembling system. Again throughout

the next subsections we refer to the work of Saitou and Jackiela [12, 6, 7] and the

book [10] of Pelesko.
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2.1. Minus Devices

In the previous example, there are two equally likely subassembly seuqences.

Saitou and Jackiela [12, 6, 7] introduced the idea of a conformational switch which

enforces a particular subassembly sequence. These switches are built-in mecha-

nisms inside the mechanical components or particles. Saitou and Jackiela called

these switches minus devices.

(a) mechanism

(b) notation

(c) interaction with another particle

Figure 8: A mechanical conformational switch: Minus Device (a) mechanism (b)
notation (c) interaction with another particle. Source: [12]

Figure 8(a) shows a patricle with a minus device in it. It has right and left bars

that can slide horizontally, and one interior sliding block that can slide vertically.

In Figure 8(a) we also see the status of the minus device before and after the

conformational change. Before conformational change the left bar can be pushed

in. But the right bar can not be pushed in due to the interior block position.

9



When some other particle or component pushes the left bar in, the interior block

slides down so that the right bar can be pushed in. Figure 8(b) shows a nota-

tional diagram of a minus device. The arrow indicates the direction in which the

horizontal bars can be pushed in. Figure 8(c) shows an example assembly of two

particles or components where one of the two particles or components has a minus

device in it and the other one has no switching mechanism. Since only the left bar

can be pushed in before the particle changes its conformation, the particle with

no switching mechanism must come from the left to bond. Once the left bar is

pushed in, both of these particles or components bond together and the right bar

becomes free to be pushed in. Then another particle with no switching mechanism

comes from the right, and pushes the right bar and attached itself to the cluster.

Now since the right bar cannot be pushed in before a particle or component comes

from the left and pushes the left bar, we see a left to right assembly.

Now we go back to our previous example, with no conformational switching,

and build a minus device inside the particle B. With our previous assumption, C

particles can only bind to the B particles on the right, which is possible only when

some A particle comes from the left side and pushes the left bar. This causes the

right bar to automatically open up. Now when an A particle from the left pushes

the left bar, B particle changes its conformation and makes the right bar free to

be pushed in. We can denote the new conformation of B particle as B
′
. Then

a C particle comes from the right and pushes the right bar and attach itself to

the (AB
′
) cluster, resulting in an assembly ((AB

′
)C). Recall that the parentheses

denote the order in which the assembly takes place. We can view this assembly

in terms of rules of the form,


A+B → AB

′

B
′
+ C → B

′
C

(2)

We see these rules enforce only one subassembly sequence, denoted ((AB)C). So

10



conformational switches allow us to enforce a particular subassembly sequence. As

Pelesko [10] has noted, though the above system is simple enough to understand

how the minus devices encode a particular subassembly sequence, it does not make

it easy to see the effect of conformational switching or minus devices on the yield

of a self-assembling system. One example scenario, as given by Pelesko[10], is a

system of A, B and C particles as shown in Figure 9(a) where a B particle can bind

to an A particle first and then a C particle can bind to the AB cluster, forming a

complete square ABC cluster, as shown in Figure 9(b) or a C particle can bind to

an A particle first, forming an AC cluster only shown in Figure 9(c). Our goal is

to form ABC clusters. So the possible assemblies are as follows,


A+B → AB

AB + C → ABC

A+ C → AC

(3)

(a) (b)

(c) (d)

Figure 9: Improving the yield of a system: (a) no conformational switch (b) ABC
complex (c) AC complex (d) System with conformational switch

Certainly the yield of this system, the output of ABC clusters, may not be very

high since once an AC cluster is formed, a B particle can not attach itself to AC.

Now suppose we have a system like the one shown in Figure 9(d) where A particle
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has a conformational switch in it. In this case, a B particle must bind to A first,

pushing the bar, following which a C particle binds to the AB cluster, forming a

complete square ABC cluster as shown in Figure 9(b). The possible assemblies in

this case are given below.


A+B → A

′
B

A
′
B + C → A

′
BC

(4)

Thus conformational switching increases the yield of the system by blocking the

formation of AC clusters.

2.2. Assembly of Four Particles and Plus Devices

So far we have seen the application of conformational switching in a three par-

ticle system. Imagine a system consisting of a mixture of four particles A, B,

C and D. Our goal is to assemble an ABCD complex. As Saitou and Jack-

iela noted, five non-ambiguous subassembly sequences are possible: (((AB)C)D),

((AB)(CD)), ((A(BC))D), (A((BC)D)) and (A(B(CD))). They also noted that

three of these five non-ambiguous subassembly sequences, given (((AB)C)D),

((AB)(CD)), (A(B(CD))), are encodable by minus devices and remaining two

subassembly sequences, given ((A(BC))D) and (A((BC)D)), can not be encoded

by minus devices due to the fact that propagation of conformational change

through the particles can not be done by minus devices. By simulating the above

system using a genetic algorithm, Saitou and Jackiela noticed that the two unen-

codable subassembly sequences ((A(BC))D) and (A((BC)D)) yield better than

other best encodable sequences like (A(B(CD))) or (A(B(CD))). To encode these

sequences Saitou and Jackiela introduced another type of comformational switch

called plus device which has a sliding bar that allows propagation of conforma-

tional change through the particles or components.

12



Figure 10: Conformational switching mechanism that encodes subassembly se-
quence ((A(BC))D). Source:[12]

Figure 10 illustrates the encoding of subassembly sequence ((A(BC))D) by plus

and minus devices. Note that particle B has both a plus and a minus devices.

Notice when particle A attaches itself to the cluster B
′
C a conformational change

of particle B from B
′

to B
′′

propagates to particle C resulting in a conformational

change of particle C. As a result D particle can attach itself to the C particle and

form an ABCD complex. Other subassembly sequences can also be encoded by

some combination of plus and minus devices.

2.3. The Abstract Model: One-dimensional Self-assembling

Automata

In the previous subsections, we have discussed how minus and plus devices can

encode subassembly sequences, and increase the yield of a self-assembling system.

But can we generalize this theory for any subassembly sequence? By generalization

Saitou and Jackiela mean the following two questions:

13



• Is it possible to encode a given assembly sequence by using minus devices

only, or by using minus and plus devices?

• If an assembly sequence is encodable, then how many conformations are

necessary to encode the assembly sequence?

According to Saitou and Jackiela, the relationship between assembly sequences

and conformational switches is analogous to the relation between languages and

machines, where an assembly sequence is an instance of a language and a set of

conformational switches which encode the assembly sequence is a machine that

accepts the instance of the language.

To answer the previous questions, Saitou and Jackiela defined a formal model,

called a one-dimensional self-assembling automaton. A one-dimensional self as-

sembling automaton is a sequential rule-based machine that processes one-dimensio

nal strings of symbols. Here the rules abstracts conformational changes and as-

sembly instruction of symbols or components, where each component can take a

finite number of conformations required for assembly.

Throughout the following subsections we refer to the work of Saitou and Jackiela

[12, 7].

2.3.1. Terminology

In the following definitions and examples, a component is an element of a finite

set Σ, and an assembly is a string in Σ+. A component a ∈ Σ can take a finite

number of conformations denoted by a, a
′
, a
′′
, a
′′′
. . ., and the transition from one

conformation to another is represented by a set of assembly rules, which represent

the type of conformational switches, or more specifically the function of confor-

mational switches.

Definition 1. A one-dimensional self-assembling automaton, abbreviated SA, is

a pair M = (Σ, R), where Σ is a finite set of components, and R is a finite set of
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assembly rules of the form either aα + bβ → aγbδ or aαbβ → aγbδ, where a, b ∈ Σ

and α, β, γ, δ ∈ {′}∗. indicating different conformations of the components, and

also aε = a where ε represents the null string.

Here the conformation set of a component a ∈ Σ is a set Ca = {aα|α ∈ {′}∗, aα

appears in R}. Hence the conformation set of SA, M , is the union of all confor-

mation sets of all the components a ∈ Σ . The rules of the form aα + bβ → aγbδ

are called attaching rules that represents the minus devices and the rules of the

form aαbβ → aγbδ are called propagation rules that represents the plus devices.

Using the definition above , the self-assembling system in our previous three

particle example can be defined as M = (Σ, R), where Σ = {A,B,C}, and R =

{A+B → AB
′
, B

′
+C → B

′
C}. The conformation set of M is C = {A,B,B′ , C}.

According to Saitou and Jackiela in our previous example of the three particles

A,B,C system SA M has a component container where there are infinite number

of slots capable of storing an assembly or the null string ε. Suppose initially there

are a finite number of slots containing assemblies and also a number of empty

slots containing ε. Components are self-assembled by picking a random pair of

assemblies or an assembly in the container and then applying the rules in R to the

assemblies. After the application of each rule the resulting assemblies are deleted

from and added to the container slots. According to Saitou and Jackiela one of

following three outcomes is possible everytime one or two assemblies are picked:

1. If the two assemblies (x, y) are of the form (zaα, bβu) for some a, b ∈ Σ,

z, u ∈ Σ∗, and if R has a rule r of the form aα + bβ → aγbδ and r fires, delete

x and y, and add zaγbδu.

2. If an assembly x = zaαbβu for some a, b ∈ Σ, z, u ∈ Σ∗, and if R has a rule

r of the form aαbβ → aγbδ and r fires, delete x and add zaγbδu.

3. If neither of the above applies, the pair of assemblies or one assembly are

returned to the container, leaving the container unchanged.
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So far we have talked about representing a self-assembling system in terms of

components and rules. But we need to be able to describe the state of a self-

assembling system at any point in the process of self-assembly. So we need a

representation of the container listing present assemblies and we also have to keep

a track of the sequence in which these assemblies have been formed.

Saitou and Jackiela defined SEQ(A) as the language generated by the context-

free grammar ∀a ∈ A, S → (SS)|a, where A is a finite set. Also note that

A ⊂ SEQ(A). A string x in SEQ(A) is a full parenthesization of a string u =

RM-PAREN(x) in A+, where RM-PAREN is a function that removes parentheses

from its argument string.

Figure 11: Binary tree representations of subassembly sequences

As we discussed before, we use the tree notation to represent an assembly se-

quence. Figure 11 illustrates binary tree representations of subassembly sequences

((AB)C) and (A(BC)) from the three particle system.

Definition 2. A subassembly sequence is a string in SEQ(Σ). A subassembly

sequence x is basic if x contains at most one copy of elements in Σ, that is,

∀a ∈ Σ, Na ≤ 1.

Let M = (Σ, R) be an SA where Σ = {a, b, c}. Then the subassembly sequence

((ab)c) is basic since it contains only one copy of each component in Σ. Throughout

this subsection we’ll deal with basic sequences only.

Definition 3. Let M = (Σ, R) be an SA. A configuration of M is a bag 〈x|x ∈

SEQ(C)〉, where C is the conformation set of M .
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Let x ∈ SEQ(Σ) be a subassembly sequence. A configuration Γ covers x if

Γ = 〈a|a ∈ Σ〉 and ∀a ∈ Σ, Na(x) ≤ NUMa(Γ), where NUMa(Γ) is the number

of as in Γ.

We can trace the sequence of any self-assembly process by carefully observing the

configuration every time the component container changes due to the application

of a rule from the rule set. We use the notation Γ `M Φ to denote the change of

configuration of SA M from Γ to Φ as a result of applying a rule in the rule set R

to the component container exactly once. Similarly, we use the notation Γ `∗M Φ

to denote the change of configuration of M from Γ to Φ as a result of applying one

or more rules in the rule set R to the component container zero or more times.

The following example illustrates these concept more clearly.

In our previous three-particle system M = (Σ, R), where Σ = {A,B,C}, and

R = {A+B → AB
′
, B

′
+ C → B

′
C}. Let the configurations Γ = 〈A,B,B,C,C〉

and Φ = 〈A,B,C〉. Now by Definition 3 both of these configurations cover the

subassembly sequence x = ((AB)C). To self-assemble x from Γ we apply rule

A+B → AB
′

first and then apply rule B
′
+ C → B

′
C .

〈A,B,B,C,C〉 `M 〈(AB
′
), B, C, C〉 `M 〈((AB

′
)C), B, C〉 (5)

Self-assembly of any subassembly sequence terminates only when no rule firing

is possible, otherwise it keeps running due to infinite times of rule firing. So it

is pretty obvious to say that a self-assembling automaton assembles a particular

string or sequence if the process of self-assembly terminates, and the terminating

configurations must contain the string that is assembled in the sequence. Saitou

and Jackiela called these configurations as stable configurations. The following

definition gives a more formal and mathematical description of stable configura-

tions.

Definition 4. Let M = (Σ, R) be an SA, Γ be a configuration of M , and x ∈
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SEQ(Σ) be a subassembly sequence. Γ is stable if there is no rule firing from Γ,

that is, SM(Γ) = {Γ}, where SM(Γ) = {Φ|Γ `∗M Φ}

M terminates from Γ if all configurations derived from Γ can derive a stable

configuration, that is, ∀Φ ∈ SM(Γ),∃Φ1 ∈ SM(Φ), such that SM(Φ1) = {Φ1}. M

self-assembles x from Γ if both of the following conditions hold:

1. M terminates from Γ.

2. ∀Φ ∈ S∗M(Γ),∃y ∈ Φ such that x = RM-PRIME(y), where S∗M(Γ) is a set

of stable configurations derived from Γ, and RM-PRIME is a function that

removes the prime (′) symbols from its argument.

Thus in the above three-particle system, M self-assembles x = ((AB)C) from

the configuration Γ = 〈A,B,B,C,C〉.

2.3.2. An Algorithm for Constructing One-dimensional Self-assembling

Automata

In this section we consider the problem: Given a basic subassembly sequence

x ∈ SEQ(Σ), is it possible to write an algorithm to construct a set of rules R such

that an SA M = (Σ, R) self-assembles x from any configuration that covers x?

According to Saitou and Jackiela [7], such an algorithm can be written since x can

be represented as a parse tree that is a binary assembly tree. A computer imple-

mentation of this algorithm would definitely help us to derive the rules needed to

self-assemble any assembly sequence without doing any time-consuming physical

experiment. In Algorithm 1 [7] GenerateRules takes as input a basic subassem-

bly sequence x ∈ SEQ(Σ), a variable flag ∈ {left, right, none} which indicates

the direction of next assembly, and a set of rules or assembly instructions R.

GenerateRules(x, none, ∅) returns a pair (u,R), where u is the final assembly(with

all conformations) such that RM-PRIME(u) =RM-PAREN(x) and R is the set of

rules containing the assembly rules to assemble x from Γ. Also note that INC is
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a function that increments the conformation of each component by adding a (′)

symbol to its argument string . LEFT and RIGHT functions return the left and

right end symbol of their argument strings.

Figure 12: Parse tree representation of subassembly sequence ((a(bc))d)

Let us illustrate Algorithm 1 with an example: let Σ = {a, b, c, d} be a com-

ponent set, and x = ((a(bc))d) be a subassembly sequence. A configuration

Γ = 〈a, b, b, c, c, d〉 covers x. A parse tree of x is shown in Figure 12. Since x

is not a single component, line 1-2 is skipped. Now GenerateRules recursively

traverses the left and right subtrees in line 3, starting with y = (a(bc)) , z = d

and comes down to y = b, z = c, that is, at this time, GenerateRules(b, right, R1)

and GenerateRules(c, left, R2) are called, where R2 is the rule set returned by

GenerateRules(b, right, R1). As GenerateRules(b, right, R1) returns (b, R2) where

R2 = ∅ by line 1-2 and as a result GenerateRules(c, left, R2) returns (c, R3)

where R3 = R2 = ∅ by line 1-2. Now in function GenerateRules((bc), left, R3)

flag = left, by line 7 aα = b, by line 8 bβ = c, and thus by line 13 a new at-

taching rule is added to the empty rule set R3 and a new rule set R4 is generated,

where R4 = {b + c → b
′
c} by line 14. Then in line 15 PropagateLeft(b, R4)

is called and returns (b
′
, R4) (by line 1-2 in the definition of PropagateLeft).

Line 16 returns with (b
′
c, R4). Now in function GenerateRules((a(bc)), right, R4),

flag = right, by line 7 aα = a, by line 8 bβ = b
′
, and thus by line 18 a new

attaching rule of the form a + b
′ → ab

′′
is added to the rule set R4 by line 19.

Then in line 20 PropagateRight(b
′
c, R4) is called and a propagation rule of the
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Algorithm 1 GenerateRules(x, flag, R)

Require: x is a basic subassembly sequence
1: if x = a then
2: return (a,R)
3: else
4: if x = (yz) then
5: (u,R)← GenerateRules(y, right, R)
6: (v,R)← GenerateRules(z, left, R)
7: aα ← RIGHT (u)
8: bβ ← LEFT (v)
9: if flag = none then
10: R← R ∪ {aα + bβ → aαbβ}
11: return (uv,R)
12: end if
13: if flag = left then
14: R← R ∪ {aα + bβ → aINC(α)bβ}
15: (u,R)← PropagateLeft(u,R)
16: return (uv,R)
17: end if
18: if flag = right then
19: R← R ∪ {aα + bβ → aαbINC(β)}
20: (v,R)← PropagateRight(v,R)
21: return (uv,R)
22: end if
23: end if
24: end if

FUNCTION DEFINITION: PropagateLeft(u,R)
1: if u = aα then
2: return (aINC(α), R)
3: end if
4: if u = vaαbβ then
5: R← R ∪ {aαbINC(β) → aINC(α)bINC(β)}
6: (u,R)← PropagateLeft(vaα, R)
7: return (ubINC(β), R)
8: end if

FUNCTION DEFINITION: PropagateRight(u,R)
1: if u = aα then
2: return (aINC(α), R)
3: end if
4: if u = aαbβv then
5: R← R ∪ {aINC(α)bβ → aINC(α)bINC(β)}
6: (u,R)← PropagateRight(vaα, R)
7: return (aINC(α)u,R)
8: end if
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form b
′′
c → b

′′
c
′

is added to the rule set R4 resulting in a new rule set, say

R5 = {b + c → b
′
c, a + b

′ → ab
′′
, b
′′
c → b

′′
c
′} (by line 4-6) and (b

′′
c
′
, R5) is re-

turned. Now line 21 returns with (ab
′′
c
′
, R5). Next we go back to the function

GenerateRules(((a(bc))d), none,R5) where flag = none, by line 7 aα = c
′
, by line

8 bβ = d. Thus by line 9 a new attaching rule of the form c
′
+ d → c

′
d is added

and a new rule set, say R6 = {b+ c→ b
′
c, a+ b

′ → ab
′′
, b
′′
c→ b

′′
c
′
, c
′
+d→ c

′
d} is

generated in line 10. Line 11 returns with (ab
′′
c
′
d,R6). Also note that RM-PRIME

(ab
′′
c
′
d) =RM-PAREN((a(bc))d).

Thus an SA M = (Σ, R), discussed above, self-assembles x from any configura-

tion that covers x.

2.3.3. Classes of One-dimensional Self-assembling Automata

As we have discussed before, there are two types of rules in a one-dimensional self-

assembling automaton - attaching rules and propagation rules. Attaching rules

abstract the function of minus devices, whereas propagation rules abstract the

function of plus devices. Two classes of self-assembling automata can be defined

based on these two different rule types.

Definition 5. Let M = (Σ, R) be an SA. We call M class I if R contains only

attaching rules. M is class II if R contains both attaching and propagation rules.

We can also categorize basic subassembly sequences based on these two different

types of classes of SA. The basic subassembly sequences which correspond to the

class I SA are those in which the direction from which new components are added

does not change during the entire self-assembly process. But in case of basic

subassembly sequences that correspond to the class II SA the direction of self-

assembly must change at least once. The following discussion gives a more detailed

description of these classes and their corresponding subassembly sequences.

Definition 6. Let M = (Σ, R) be an SA. An assembly template is a string

t ∈ SEQ({p}). An instance of t on Σ is a subassembly sequence x ∈ SEQ(Σ)
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obtained by replacing each p in t by some a ∈ Σ. If x is an instance of t, then t is

an assembly template of x.

Let two strings t1 = (((pp)p)(pp)) and t2 = (((p(pp))p)p) be assembly templates,

and Σ = {a, b, c, d, e}. Then the basic subassembly sequences x1 = (((ab)c)(de))

and x2 = (((b(ac))e)d) are instances of t1 and t2 on Σ, respectively.

Definition 7. An assembly grammar is a context-free grammar with a language

that is a subset of SEQ({p}). The class I assembly grammar GI can be defined

by the following substitution rules:

GI =


S → (LR)

L→ (Lp)|p

R→ (pR)|p

(6)

Here S is called the start variable. To generate a string or sequence, first we

write down the start variable. Then we replace the variable with right hand

side of the rule corresponding to that variable and repeat the process until no

variables (S, L,R) remain. The language of GI , denoted L(GI), is the set of

all strings or sequences that can be generated by the context-free grammar GI .

The assembly template t1 = (((pp)p)(pp)) can be generated by GI , through the

following derivation:



S → (LR)

→ (L(pR))

→ (L(pp))

→ ((Lp)(pp))

→ (((Lp)p)(pp))

→ (((pp)p)(pp))

(7)
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and hence t1 ∈ L(GI).

Likewise the assembly template t3 = ((((pp)p)p)(p(pp))) can also be generated

by GI :



S → (LR)

→ ((Lp)R)

→ (((Lp)p)R)

→ (((Lp)p)(pR))

→ (((Lp)p)(p(pR)))

→ ((((Lp)p)p)(p(pR)))

→ ((((pp)p)p)(p(pR)))

→ ((((pp)p)p)(p(pp)))

(8)

The structure of assembly templates in L(GI) can be generalized by

(((· · · ((pp)p) · · · )p)(p(· · · (p(pp)) · · · ))) (9)

Figure 13 illustrates the parse tree or general binary tree of the assembly tem-

plates in L(GI). Each of the left and right subtrees is a linear assembly tree,

indicating that the direction of assembly does not change during the self-assembly

process.

The class II assembly grammar GII can also be defined by the following substi-

tution rules:
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Figure 13: (a) Parse tree of the assembly template t1 = (((pp)p)(pp)), (b) Gener-
alized parse tree of an assembly template generated by GI . Source: [7]

GII =



S → (L0R0)

L0 → (L0R1)|R1

R0 → (L1R0)|L1

L1 → (L1p)|p

R1 → (pR1)|p

(10)

The language of GII , denoted by L(GII), is the set of all strings or sequences that

can be generated by the context-free grammar GII . The assembly template t4 =

((p(p(pp)))((pp)(pp))) can be generated by GII , through the following derivation:
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

S → (L0R0)

→ ((L0R1)R0)

→ ((L0(pR1))R0)

→ ((L0(pR1))(L1R0))

→ ((L0(p(pR1)))((L1p)R0))

→ ((L0(p(pR1)))((L1p)(L1R0)))

→ ((R1(p(pR1)))((L1p)(L1R0)))

→ ((R1(p(pR1)))((L1p)(L1L1)))

→ ((p(p(pR1)))((L1p)(L1L1)))

→ ((p(p(pR1)))((L1p)(pL1)))

→ ((p(p(pp)))((L1p)(pL1)))

→ ((p(p(pp)))((pp)(pL1)))

→ ((p(p(pp)))((pp)(pp)))

(11)

Figure 14 illustrates the parse tree or general binary tree of the assembly tem-

plates in L(GII). Note that the direction of the assembly changes during the

self-assembly process.

From the above discussion we can see that for any assembly template t ∈ L(GI),

the direction of self-assembly does not change during the self-assembly of any

particular instance x of t. But if t belongs to the complement SEQ({p}) \L(GI),

then the direction of self-assembly changes at least once during the self-assembly

of x, instance of t. The following theorems are some important results based on

these observations.

Theorem 1. For any basic subassembly sequence x that is an instance of an

assembly template t ∈ L(GI), there exists a class I SA which self-assembles x

from a configuration that covers x.
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Figure 14: (a) Parse tree of the assembly template t4 = ((p(p(pp)))((pp)(pp))), (b)
Generalized parse tree of an assembly template generated by GII . Source: [7]

The above statement is an answer to the first of the two questions, as discussed

in section 1.3, which were the main focus of the work of Saitou and Jackiela.

This important result proves that a basic subassembly sequence in L(GI) can

be generated by using minus devices or attaching rules only. The proof of this

theorem follows Algorithm 1, since it suffices to show that the rule set returned

by GenerateRules(x, none, ∅) contains no propagation rules. Please refer to [7] for

a detailed and formal proof of Theorem 1. Here we give an outline of the original

proof by demonstrating an example assembly of a basic subassembly sequence x =

(((ab)c)(de)) which is an instance of the previously mentioned assembly template

t1 = (((pp)p)(pp)) which belongs to L(GI). Figure 15(a) shows a parse tree of t1.

Since the depth of the parse tree D(t) = 3, we can write t = (ldlrdr) where

dl = 2 is the depth of left subtree, dr = 1 is the depth of the right subtree,

lk = (lk−1p) for k = 1, 2 and rk = (prk−1) for k = 1, and l0 = r0 = p. Let yk

and zj be substrings of x of lk and rj, respectively. Now if we refer back to Al-

gorithm 1, GenerateRules(x, none, ∅) recursively calls GenerateRules(ydl , right, ∅)

and GenerateRules(zdr , left, R1) in lines 5-6 , where ydl = ((ab)c) , zdr = (de), and

R1 is the rule set returned by GenerateRules(ydl , right, ∅). Let R2 be the rule set
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Figure 15: (a) Parse tree of the assembly template t1 = (((pp)p)(pp)), (b) Parse
tree of an assembly sequence x = (((ab)c)(de)

returned by GenerateRules(zdr , left, R1). According to Algorithm 1 propagation

rules are added only after GenerateRules(x, none, ∅) returns in line 11. We have

to show that both R1 and R2 do not contain any propagation rule. By induc-

tion it can be easily shown that R1 does not contain any propagation rule, since

GenerateRules(ydl , right, ∅) recursively calls GenerateRules((ab), right, ∅) and

GenerateRules(c, left, R̃1), where by induction hypothesis R̃1 does not contain any

propagation rule and GenerateRules(c, left, R̃1) returns R̃1 by line 2 in Algorithm

1. Now the condition in line 16 is satisfied and an attaching rule is added to R̃1 in

line 17, resulting in a new rule set R̂1. After that, in line 18 PropagateRight(c, R̂1)

is called, returning the final rule set R1 = R̂1, which has no propagation rule.

Using the same mathematical induction on zdr , we can also prove that R2 does

not contain any propagation rule.

Theorem 2. For any basic subassembly sequence x that is an instance of an

assembly template t ∈ SEQ({p}) \ L(GI), there exists a class II SA which self-

assembles x from a configuration that covers x.

The significance of Theorem 2 is that it proves that any basic subassembly

sequence which is not a member of L(GI) can be generated by a combination of

plus and minus devices. Once again the reader is asked to refer to [7] for an original

and detailed proof of the above theorem by Saitou and Jackiela. Here is a brief

outline of the proof with an example. The proof largely follows Algorithm 1, since

it suffices to show that the rule set returned by GenerateRules(x, none, ∅) contains
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atleast one propagation rule. Suppose we have a basic subassembly sequence

x = ((a(bc))d) which is an instance of the assembly template t5 = ((p(pp))p) ∈

SEQ({p}). Figure 12 illustrates the parse tree of x.

It can be easily shown that t5 /∈ L(GI), that is, it can not be generated by

using minus devices or attaching rules only. Since the depth of the parse tree of

t5, D(t5) = 3, we can write t5 = (lldlr
r
dr

), where dl = 2 is the depth of the left

subtree, dr = 1 is the depth of right subtree, lli = (lli−1l
r
i−1) for i = 1, . . . , dl

and rri = (rli−1r
r
i−1) for i = 1, . . . , dr, and ll0 = rr0 = p. Since t2 /∈ L(GI)

there exists a j ∈ {1, . . . , dl}, in this case 2, such that, the length L(lrj ) = 2

(and/or there exists a j ∈ {1, . . . , dr}, in this case none, such that the length

L(rlj) = 2). When j = 2, L(lrj ) = 2. So ylj = a, yrj = (bc) and ylj+1 = (a(bc))

are substrings of x corresponding to llj, l
r
j , and llj+1, respectively. Let R0 be

the rule set containing no propagation rule. We have to show that the rule

set returned by GenerateRules(ylj+1, right, R0) contains at least one propaga-

tion rule. Now since ylj+1 = (a(bc)), GenerateRules(ylj+1, right, R0) recursively

calls GenerateRules(a, right, R0) and GenerateRules((bc), left, R1) in lines 5-6

of Algorithm 1, where R1 is the rule set returned by GenerateRules(a, right, R0).

After GenerateRules((bc), left, R1) returns, the condition in line 18 is satisfied

and attaching rule (a+ b
′ → ab

′′
) is added to R2, line 19. We call this new rule set

R̂2. Then in line 20 PropagateRight(ab
′′
c, R̂2) is called and the condition in line

4 in the subroutine is satisfied and at this point a propagation rule (b
′′
c→ b

′′
c
′
) is

added to R̂2. Therefore the rule set returned by GenerateRules(ylj+1, right, R0)

contains a propagation rule.

Since the function of a propagation rule or plus device cannot be replaced by

attaching rules or minus devices, it is not possible to self-assemble a class II basic

subassembly sequence stably and reliably by using a class I SA.
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2.3.4. Minimum Conformations in Self-assembly

In the previous section, we have discussed the problem of whether a given sub-

assembly sequence is encodable or not using minus and plus devices. In this

section, we focus on the problem: how many conformations are necessary to en-

code a given subassembly sequence? Our goal is to find the minimum number

of conformations necessary to self-assemble a given basic subassembly sequence

stably and reliably. As we have noted in earlier examples, in a self-assembly pro-

cess,the number of conformations of each component are not same. Therefore, we

focus on the maximum number of conformations of all components.

Definition 8. Let M be an self-assembling automaton(SA). The number of con-

formations n of M is defined by,

n = max{α|aα ∈ C} (12)

where C is the conformation set of M as defined earlier.

From our earlier discussion, there are three categories of assembly templates-

1) assembly templates in L(GI), the language associated with class I grammar, 2)

assembly templates in L(GII), the language associated with class II grammar, and

3) assembly templates in the set SEQ({p})\L(GII), that is, templates that are not

in the languages of class I and II grammar. The minimum number of conformations

that is necessary for the self-assembly of a basic subassembly sequence x depends

on the category of template it belongs to.

Theorem 3. For any basic subassembly sequence x that is an instance of an

assembly template t ∈ L(GI), there exists a class I SA with two conformations

which self-assembles x from a configuration that covers x. If the length of x,

L(x) ≥ 3, M is an SA with the minimum number of conformations which self-

assembles x from a configuartion that covers x.

According to Theorem 3, for any basic subassembly sequence x that is an in-
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stance of assembly templates in L(GI) the minimum number of conformations

required to self-assemble x is two. This statement makes sense since any attach-

ing rule generated by GenerateRules requires maximum two conformations for

each component. For a detailed proof of this theorem refer to [7]. For a basic sub-

assembly sequence that is an instance of an assembly template in L(GII) \L(GI),

Saitou and Jackiela stated the following.

Theorem 4. For any basic subassembly sequence x that is an instance of an

assembly template t ∈ L(GII) \ L(GI), there exists a class II SA M with two

conformations which self-assembles x from a configuration that covers x. And M

is an SA with the minimum number of conformations which self-assembles x from

a configuartion that covers x.

Consider our previous example where Σ = {a, b, c, d} and x = ((a(bc)d) which

is an instance of the assembly template t = ((p(pp))p) in L(GII) \ L(GI).

GenerateRules(x, none, ∅) returns with (ab
′′
c
′
d,R) where R is the rule set con-

taining {b + c → b
′
c, a + b

′ → ab
′′
, b
′′
c → b

′′
c
′
, c
′
+ d → c

′
d}. We can see that

M = {Σ, R} is a class II SA with two conformations which self-assembles x from

a configuration that covers x.

For basic subassembly sequences x that are instances of assembly templates in

SEQ(p) \ L(GII) Saitou and Jackiela showed that only three conformations are

necessary to self-assemble x from any configuration that covers x. A detailed

discussion on these results can be found in [7].
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3. Graph Grammar

In this section, we discuss another abstract model, graph grammar model, de-

veloped by Eric Klavins and his collaborators [1, 4, 5]. Klavins et al. designed

triangular programmable robotic tiles and showed how graph grammar can be

used to direct self-assembly of these robotic tiles. They modeled an assembly as

a simple graph labeled by discrete symbols that represent the conformation of

the components. Vertices of the graph represent the self-assembling components,

and an edge between two components represents that they are attached. Most

importantly assembly rules are pair of labeled graph rather than reaction mecha-

nism between two components as shown in the conformational switching model.

Though graph grammar model is somehow motivated by conformational switching

model of Saitou and Jackiela, it focuses on the topological structure of assembly

rather than geometrical or physical structures of assemblies or components.

Throughout this section and following subsections, we refer to Klavins et al.

work [4, 5].

3.1. Terminology

In this section we provide definitions and examples of basic concepts related to

graph grammar.

Definition 9. A simple labeled graph over an alphabet Σ is a triple G = (V,E, l)

where V is a set of vertices, E is a set of pairs of vertices from V , and l : V → Σ

is a labeling function which maps the vertices in V to the alphabet, Σ(i.e. the

labeling function l gives each vertex a name).

We denote an edge {x, y} ∈ E by xy. By graph Klavins et. al means a

network topology of an interconnected collection of robots where label l(x) of robot

x corresponds to the state of the robot and keeps track of the local information.

Figure 13 illustrates two example graphs. The graph in Figure 16(a) can be de-

31



noted as G1 = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}, {4, 1}}, λx.a) using lambda cal-

culus notation and the graph in (b) is denoted as

G2 = ({1, 2, 3, 4, 5}, {{1, 2}, {1, 3}, {1, 4}, {1, 5}}, λx.b) using the same notation.

(a) (b)

Figure 16: Examples of simple labeled graph

Definition 10. For two graphs G1 and G2 , f : G1 → G2 or f : VG1 → VG2 means

that f is a function from the vertex set of G1 to the vertex set of G2. A function

h : G1 → G2 is a label preserving embedding or label preserving monomorphism if

• h is one-to-one,

• {x, y} ∈ EG1 if and only if {h(x), h(y)} ∈ EG2 .

• lG1 = lG2 ◦ h.

If h is onto then it is called an isomorphism.

Definition 11. A rule is a pair of graphs r = (L,R) where VL = VR and the

graphs L and R are called the left hand side and right hand side of r respectively.

The size of rule r is |VL| = |VR|. A rule is named unary, binary or ternary

depending on the number of vertices in VL. A set of rules is called a rule set or

grammar. Here is an example of a rule set or grammar Φ which contains binary

and ternary rules
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Φ =



a a⇒ b− c, (r1)

a d⇒ c− e, (r2)

b

d

e
��� ???

⇒ b
′

d

e
�� ???

, (r3)

(13)

We represent a binary rule graphically as a a⇒ b−c. In this rule, VL = VR =

{1, 2} and vertex 1 is labeled as lL(1) = a in the left hand side and as lR(1) = b in

the right hand side. Note that a a⇒ b−c is a binary rule since |VL| = |VR| = 2.

Similarly, b

d

e
��� ???

⇒ b
′

d

e
�� ???

is a ternary rule since |VL| = |VR| = 3.

Definition 12. A rule r is applicable to a graph G if there exists a label preserving

embedding h : VL → VG, that is, We call this function h a witness.

That is, we find a similarity between the left hand side graph L of a rule and

the graph G. An action on a graph G is a pair (r, h) such that r is applicable to

G with witness h. Applying an action (r, h) on a graph G = (V,E, l) returns a

new graph G′ = (V ′, E ′, l′) defined by

V ′ = V

E ′ = (E − {{h(x), h(y)}|{x, y} ∈ EL}) ∪ {{h(x), h(y)}|{x, y} ∈ ER}

l′(x) =


l(x) if x /∈ h(VL),

lR ◦ h−1(x) otherwise.

We write G
r,h−→ G′ to denote that G′ is obtained from G by the application

of (r, h). For example, let us consider the graph G2 in Figure 13(b) and assume

we have a rule r of the form b b ⇒ c − c in the rule set Φ . It is easy to find

a label preserving embedding or witness between the left hand side graph of the

rule r and the graph G2. Therefore, we can apply an action (r, h) on the graph

G2. Figure 17 shows an application of rule r on the graph G2.
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Figure 17: An application of rule r on the graph G2

After application of (r, h), the resultant graph G
′
2 has the following structure:

V
′

2 = V2 = {1, 2, 3, 4, 5}

E
′

2 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}}

As we defined before the labeling function l
′
(x) for the new resultant graph G

′
2

is same as the labeling function l(x) of the graph G2 except for the vertices 2 and

3 that are replaced by the vertices 1 nad 2 of right hand side graph R of the rule

r. Also note that the set of edges for the new graph G
′
2 has one extra edge {2, 3}

since right hand graph R of the rule r has an edge between the vertices {1, 2} in

R and since h(1) = 2 and h(2) = 3 in graph G2.

Definition 13. A graph assembly system is a pair (G0,Φ) where G0 is the initial

graph of the system and Φ is a set of rules. Klavins et. al identify a system by its

rule set or grammar Φ and assume that the initial graph is a infinite graph defined

by

G0 ≡ (N, ∅, λx.a)

Where a ∈
∑

is the initial symbol.Here λx.a is the lambda calculus notation

34



for the function assigning the label a to all vertices. That is, the initial graph G0

looks like the one given in Figure 18, where all the vertices are labeled a.

Figure 18: An example initial graph

Definition 14. A trajectory or assembly sequence of a system (G0,Φ) is a (finite

or infinite) sequence

G0
r1,h1−→ G1

r2,h2−→ G2
r3,h3−→ . . .

According to Klavins et al. , in a finite sequence there is no rule in Φ applicable

to the terminal graph. A system can have more than one trajectory since we

are dealing with nondeterministic systems. We denote the set of trajectories of a

system by τ(G0,Φ).

Definition 15. A graph G is reachable in the system (G0,Φ) if there exists a

trajectory σ ∈ τ(G0,Φ) with G = σk for some k. The set of all such reachable

graphs is denoted by R(G0,Φ).

Klavins et al. were particularly interested in the connected components of reach-

able graphs, as these correspond to the collection of robots that are connected by

physical links.

Definition 16. A connected graph H is a reachable component of a system

(G0,Φ) if there exists a graph G ∈ R(G0,Φ) such that H is a component of G.

The set of all such reachable components is denoted by C(G0,Φ). A reachable

component may be temporary. That is there may be some rule in Φ that operates
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on part of it.

Definition 17. A component H ∈ C(G0,Φ) is stable if, whenever H is a com-

ponent of Gk ∈ R(G0,Φ) via a monomorphism f , then H is also a compo-

nent via f of every graph in R(Gk,Φ). The stable components are denoted by

S(G0,Φ) ⊆ C(G0,Φ).

That is, the stable components are those that no applicable rule can change.

We illustrate all the definitions in this subsection by describing a self-assembly

system that assembles chains and cycles from individual parts, as demonstrated

by Klavins et al. [4, 5]. First of all, we need a rule set Φ. Suppose our rule set Φ

is defined by

Φ =


a a⇒ b− b, (r1)

a b⇒ b− c, (r2)

b b⇒ c− c, (r3).

Here the first rule r1 in Φ is given by the pair of graphs L = ({1, 2}, ∅, λx.a)

and R = ({1, 2}, {{1, 2}}, λx.b) , where L and R are left hand side and right hand

side of the rule r1 respectively. The initial graph G0 in this case is given by

G0 ≡ (N, ∅, λx.a)

since all the robots are initially labeled by the symbol a. Now we have an initial

graph G0 in Figure 19. At first, the only rule we can apply is r1 since all of the

vertices in G0 is labeled by the symbol a. In order to apply a rule r1 from the

rule set Φ, we have to find a label-preserving embedding h from the vertex set

of the left hand side graph of r1 to the vertex set of the initial graph G0. It can

easily be shown that there exists such an embedding since both of these vertex

sets have vertices labeled by the symbol a only and their corresponding sets of
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Figure 19: An example trajectory or assembly sequence

edges are empty sets. Now that we have applied rule r1, r2 also become applicable

since we have vertices labeled b in the graph G1. Similarly, we can also apply

r3 once we apply r2. An example trajectory of this assembly process is shown in

Figure 19. Note that since the system is nondeterministic it can have more than

one trajectory or assembly sequence. We can see in Figure 19 that the reachable

set R(G0,Φ) and also the set of reachable components C(G0,Φ), as defined in

Definition 15 and 16 respectively, consist of only cycles and chains. But the cycles

are the stable components since there is no rule in which the left hand side graph

vertices are labeled by c, i.e. there is no such label-preserving embedding or witness
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which is needed to apply a rule . On the other hand, we can still apply rule r3 to

the chains since we have two vertices labeled b in graph G8 in the trajectory shown

in Figure 19. Thus the stable set S(G0,Φ), as defined in Definition 17, consists of

cycles only.

Let us consider another rule set Φ
′

as defined by

Φ
′
=



a a⇒ e− q, (r1)

a e⇒ d− u, (r2)

a d⇒ c− t, (r3)

a c⇒ b− s, (r4)

a b⇒ p− r, (r5)

q

u

t
��� ??

?

⇒ q
′

u

t
�� ??

?

, (r6)

q
′

t

s
��� ??

?

⇒ q
′′

t

s
�� ??

?

, (r7)

q
′′

s

r
�� ??

?

⇒ q
′′′

s

r
�� ??

?

, (r8)

q
′′′

r

p
�� ???

⇒ q
′′′′

r

p
�� ???

, (r9)

q
′′′′ − t⇒ q

′′′′
t, (r10)

q
′′′′ − s⇒ q

′′′′
s, (r11)

q
′′′′ − r ⇒ q

′′′′
r, (r12)

(14)

Note that the rule set Φ
′

consists of binary and ternary rules. It also contains

destructive rules r10, r11 and r12. An example trajectory is shown in Figure 20.

Here the intial graph G0 is same as the one we used for the rule set Φ.

We can see in Figure 20 that the reachable set R(G0,Φ) and also the set of

reachable components C(G0,Φ) consist of cycles and chains. But the cycles are

the only stable component. Also note that there is only one cycle of length six
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Figure 20: An example trajectory of the system (G0,Φ
′
)

unlike the previous example where we have cycles of various length. Thus rule set

Φ
′

produces an unique stable component.

3.2. Topological Properties of the Graph Grammar Model

Now that we are familiar with some basic terminologies of graph grammar and

how these grammars generate stable components, we should consider the problem
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of constructing uniquely stable components. In the previous example of assembly

system (G0,Φ) all cycles of length three or greater are stable. But in the assembly

system (G0,Φ
′
) only cycles of length six are stable. The question is “how can we

construct a cycle or cycles of exactly one particular length?” that is, an unique

stable component. According to Klavins et al.,

it is intuitively clear that a grammar containing only binary rules can

not distinguish between a cycle of length 2N , and two identical cycles

of length N [4]

. Klavins et al. suggests that a rule set consisting of larger rules can construct a

stable cycle of particular size. Let us consider another situation as illustrated by

Klavins et al. [4, 5]. We’ll take our rule set Φ2 to be the one shown below:

Φ2 =



a a⇒ b− c, (r1)

a c⇒ e− d, (r2)

a e⇒ g − f, (r3)

b

d

f
��� ???

⇒ b1

d1

f1
�� ??

, (r4)

b1

f1

g
�� ??

⇒ b2

f2

g1
�� ??

, (r5)

b2 − f2 ⇒ b3 f3, (r6)

(15)

Note that our rule set Φ2 consists of two ternary rules r4 and r5, and also one

destructive rule r6. Now suppose we have an initial graph G0 and an example

trajectory or assembly sequence as depicted in Figure 21. Here the stable set

consists of an unique cycle of length four. If instead of the ternary rules, we used

a binary rule of the form b g ⇒ b1 − g1, then stable set would contain cycles

of length 4, 8, 12 and so on. This limitation is implied by Theorem 5 discussed

below.
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Figure 21: An example trajectory or assembly sequence for the assembly system
(G0,Φ2). Source:[5]

Klavins et al. bounded the size of reachable and stable sets of an assembly

system (G0,Φ) using an algebraic topological tool, called covering space theory.

First we give a formal definition of a cover of a graph.

Definition 18. Given a graph G, an n-fold cover of G is a graph G̃ such that

there exists a label-preserving n-to-1 continuous map p : G̃ → G which is a local

homeomorphism.

Theorem 5. Let (G0,Φ) is an assembly system with an acyclic rule set Φ. Then

the set of reachable components C(G0,Φ) is closed under covers. In particular,

C(G0,Φ) contains infinitely many isomorphism types of graphs if it contains any

graph with a cycle.

A proof of this theorem can be found in Klavins et al. papers [4, 5]. We illustrate

the same proof with an example.

Let us consider a part of an assembly sequence or trajectory of an assembly

system (G0,Φ) where Φ is the rule set as shown in subsection 3.1. Part of this

assembly sequence or trajectory α is shown in Figure 22 .
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Figure 22: Part of a trajectory or assembly sequence for the assembly system
(G0,Φ) and its lifting.

We pick H = b

c c

b ∈ C(G0,Φ) as a component of 4th graph in the trajectory α,

that is, α4. Suppose H̃ is a 2-fold cover of H with a covering projection p : H̃ → H

as shown in Figure 22. We are going to reverse or disassemble the trajectory σ

and then lift the disassembly to build another trajectory α̃ with H̃, a component

of α̃8. Here α̃8 is the graph consisting of disjoint union of H̃ with 2 disjoint copies

of the complement α4−H. We define the projection p4 : α̃8 → α4 via p on H̃ and

the projection of the copies of α4 −H.

We can see that the image of the right hand side of the rule r1 (i.e. the rule

which produces α4 ), h4(R1) is a subtree of α4. Now we have (α̃8, p4) is a covering

space of α4, R1 is a connected and locally arcwise-connected space, and b ∈ R1,

b ∈ α̃8, and b = p4(b) and we have a map h4 : (R1, b) → (α4, b). Since R1 is

acyclic the fundamental group π(R1, b) contains only the identity element and

the subgroup h4∗π(R1, b) is a subset of p4∗π(α̃8, b). Now according to the lifting
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property of arbitrary maps to a covering space (Theorem 5.1 in [8]), it follows that

there exists a lifting h̃4 : (R1, b)→ (α̃8, b) and the inverse image R̃1 = p4
−1(R1) is

a disjoint union of isomorphic copies of R1.

Now we can reverse the assembly by replacing each R1 in R̃1 with the left hand

side of the rule L1 2 times since we have 2-fold cover. Suppose after 2 replacements

we obtain a graph α̃6 and L̃1 is the disjoint union of 2 copies of L1 within the graph

α̃6. Now we define a projection map p3 : α̃6 → α3, where α3 is the 3rd graph in the

trajectory α, to be (i) p4 on the complement of L̃1; and (ii) the projection L̃1 → L1

identifying the disjoint copies. Now the graph α̃6 is obviously a 2-fold cover of

α3 via p3 since labels and indices are preserved. Now if we continue this process

inductively, it will eventually terminate in a covering projection p0 : α̃0 → α0,

where α0 is the initial graph in the trajectory α and α0 = G0. Since we know that

the lift of any discrete set is a discrete set, we have that α̃0 is isomorphic to G0.

Thus α̃ ∈ τ(G0,Φ) and H ∈ C(G0,Φ).

3.3. Algorithms for Generating Graph Grammar

Klavins et al. considered a question: Given a graph G and an initial graph G0,

can we find a set of rules Φ such that S(G0,Φ) = {G}(up to isomorphism and

not considering labels)? They devised an algorithm [4, 5] for constructing a rule

set or grammar to assemble a given tree (i.e. an acyclic graph) and then used it to

build another algorithm [4, 5] for constructing a rule set to assemble any arbitrary

graph.

3.3.1. Algorithm for Generating Graph Grammar for Any Tree

Algorithm 2 defines a recursive procedure CreateTree that, given any tree T , pro-

duces a set of binary rules ΦT such that S(G0,ΦT ) = {T} [4, 5].

The algorithm takes an unlabeled tree (V,E) as input and returns (Φ, l) where
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Φ is the rule set and l is a labeling function on V . In lines 1-2 the singleton graph

is labeled with the label a. Next an edge {p, q} is chosen randomly from the set of

edges E in line 4. Now in lines 5-6 CreateTree is called recursively on the two tree

components (V1, E1) and (V2, E2) resulting from deletion of {p, q} from E. The

recursive calls on (V1, E1) and (V2, E2) return two rule sets Φ1 and Φ2 respectively

and also two labeling functions l1 and l2 respectively in line 7. The algorithm uses

new labels m and n to label the vertices of the right hand side graph of the new

rule. Now in line 9 the final rule set Φ is formed by combining the two rule sets

Φ1 and Φ2. The new labeling function l is constructed in line 10 from the two

previously derived labeling functions l1 and l2.

Algorithm 2 CreateTree(V,E)

Require: T = (V,E) is an unlabeled tree
1: if V = {p} then
2: return (∅, {(p, a)})
3: else
4: Choose any edge {p, q} ∈ E
5: let (V1, E1) be the component of (V,E − {p, q}) containing p.
6: let (V2, E2) be the component of (V,E − {p, q}) containing q.
7: let (Φk, lk) = CreateTree(Vk, Ek) for k = 1, 2
8: let m,n be new labels
9: Φ = Φ1 ∪ Φ2 ∪ {l1(p) l2(q)⇒ m− n}
10: l = (l1 − {(p, l1(p))}) ∪ (l2 − {(q, l1(q))}) ∪ {(p,m), (q, n)}
11: return (Φ, l)
12: end if

In Figure 23 we give an example of synthesizing a tree using the CreateTree pro-

cedure described above. Here we have a tree T = (V,E) where V = {1, 2, 3, 4, 5, 6}

and E = {{1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 6}}.

Since there is no singleton or isolated vertex in T , we can skip base cases(lines

1 − 2) for the moment. Now according to the lines 3 − 4, we pick an arbitrary

edge {2, 4} ∈ E, and remove it from the tree T , which results into two separate

tree components (V1, E1) and (V2, E2) where V1 = {1, 2, 3} , V2 = {4, 5, 6} and
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Figure 23: Generating rule set or grammar to produce a tree using CreateTree
procedure

E1 = {{1, 2}, {2, 3}} and E2 = {{4, 5}, {4, 6}}. Now line 7 makes a recursive call

to the CreateTree procedure and as we do not have any single vertex this time,

the procedure goes to line 8 − 9, according to which a rule m n ⇒ d − f is

to be added to the rule set Φ, and the two vertices 2 and 4 have two new labels

m and n, respectively. Then CreateTree procedure is called recursively on the

two components (V1, E1) and (V2, E2), which generates the rule sets Φ1 and Φ2

respectively. In the end the binary rule set or grammar Φ looks like the following.
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Φ =



a a⇒ g − j, (r1)

a a⇒ c− i, (r2)

i a⇒ m− e, (r3)

j a⇒ n− h, (r4)

m n⇒ d− f, (r5)

(16)

Also note that in the end all of the vertices get labeled a, which gives us the

intial graph G0, as depicted in Figure 23.

3.3.2. Algorithm for Generating Graph Grammar for Any Arbitrary

Graph

Given a graph G, Algorithm 3 defines a function CreateGraph that produces a

rule set ΦG such that S(ΦG) = {G} [4, 5]. Note that an aribtrary graph may

have cycle in it. Since according to Theorem 5 binary rules can not produce an

uniquely stable cycle, we need a rule set ΦG consisting of rules of larger sizes to

produce an uniquely stable graph.

The function CreateGraph takes an unlabeled graph (V,E) as input and returns

(Φ, l), where Φ is a rule set and l is a labeling function on V . First we find a

maximal spanning tree T = (V,ET ) by using an algorithm called Kruskal’s Algo-

rithm [16] in line 1. Now since we already have Algorithm 2 to generate rule set

for any tree, we call the procedure CreateTree on T = (V,ET ) to construct a rule

set Φ and a new labeling function l for this maximal spanning tree T in line 2.

We assign the label of the last vertex visited while executing CreateTree to a in

line 4. Next in line 6-14, we pick every edge {v, v′} that is not in the edge set ET

of the maximal spanning tree T , that is, the additional edges creating cycles in

the original graph G and then the Triangulate function is called in line 7-8. The

Triangulate function finds the shortest path between r and v and if the length of
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the shortest path is greater than one then a rule of the form Figure 25(b) is added

to rule set for each vertex along the shortest path and also new edges are added

to the spanning tree. Next another rule of the form as given in Figure 25(a) is

added to the rule set Φ and an edge {v, v′} is also added closing the spanning tree.

We remove all the extra edges between r and v in ES by generating destructive

rules in the same order we generated the triangular rules. Note that we change

the label of r or root node at every step of triangulation to maintain the order of

the rules. This rule set Φ produces a graph isomorphic to G and the only element

in the stable set for Φ, that is, the uniquely stable element.

(a) (b)

Figure 24: (a) An arbitrary graph G; (b) Maximal spanning tree T of G

(a)

(b)

Figure 25: Ternary rules used in Algorithm 3. Source:[4]

We illustrate Algorithm 3 with an example of synthesizing an arbitrary graph

G using the CreateGraph procedure. First of all, we need a graph G, same as the

one we used in the previous example of Algorithm 2 except the fact that the set of
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Algorithm 3 CreateGraph(V,E)

Require: G = (V,E) is an unlabeled connected graph.
1: let T = (V,ET ) be a maximal spanning tree of (V,E)
2: let (Φ, l) = CreateTree(V,ET )
3: let r be the last vertex visited while executing CreateTree.
4: let a = l(r).
5: let ES = ET
6: for all e = {v, v′} ∈ E − ET do
7: let (Ψ, ES, a) = Triangulate(V,ES, r, v, l, a)
8: let (Ψ

′
, ES, a) = Triangulate(V,ES, r, v

′
, l, a)

9: let b be a previously unused label
10: let ψ be the rule rule denoted in Figure 4(a)
11: let Φ = Φ ∪Ψ ∪Ψ

′ ∪ ψ
12: ES = ES ∪ {{v, v

′}}
13: let a = b
14: end for
15: for all v ∈ V do
16: if {r, v} ∈ ES − E then
17: let ψ be the rule a− l(v)⇒ a l(v)
18: let Φ = Φ ∪ ψ
19: end if
20: end for
21: return Φ

FUNCTION DEFINITION: Triangulate(V,E, r, v, l, a)
1: let Ψ = ∅
2: let (v1, . . . , vn) be the shortest path in G from r to v
3: for k = 2 to n− 1 do
4: let b be a previously unused label
5: let ψ be the rule denoted in Figure 4(b)
6: let Ψ = Ψ ∪ {ψ}
7: let E = E ∪ {{r, vi+1}}
8: let a = b
9: end for
10: return (Ψ, E, a)
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edges E has one more edge {1, 6} in it, as shown in Figure 24(a). Now according to

Algorithm 3, we find a maximal spanning tree of G using Kruskal’s algorithm[16].

Figure 24(b) shows the maximal spanning tree T = (V,ET ) derived from the graph

G. Note that, the maximal spanning tree T is similar to the tree that we used in

the previous example of Algorithm 2 in Figure 23. Thus by line 2 in Algorithm

3 , that is after applying CreateTree procedure on T , we have the similar rule

set Φ as shown in equation (11). By line 3-4, a = l(r) = f where r = 4 is the

last vertex visited while executing CreateTree procedure. Line 5 assigns the edges

of T , ET , to ES, that is, ES = {{1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 6}}. We see that

{v, v′} = {1, 6} is the only edge in E, but not in ET , that is, {1, 6} ∈ E − ET .

Thus by line 6-7 function Triangulate(V,ES, 4, 1, l, f) is called. Now by line 2 in

the Triangulate definition , the shortest path from 4 to 1 is 4 − 2 − 1 which is

of length 2. According to the for loop in line 3 of Triangulate definition and the

Figure 25(b) a ternary rule r6 is added to the rule set Ψ, an edge {4, 1} is also

added to ES (as shown in Figure 26(a)), and a = f
′
.

(a) (b)

Figure 26: Addition of edges to the assembly graph to produce ternary rules as
described in Algorithm 3

Then in line 8 in the CreateGraph procedure function Triangulate(V,ES, 4, 6, l, f
′
)

is called, going back to the Triangulate definition. But since the shortest path

from 4 to 6 is of length 1, Triangulate(V,ES, 4, 6, l, f
′
) returns (Ψ

′
, ES, f

′
) where

Ψ
′

= Ψ. Now by line 10 of the CreateGraph procedure and also by Figure 25(a)

another ternary rule r7 and Ψ are added to the rule set or grammar Φ. In line 12,

an edge {1, 6} is added to the ES (as shown in Figure 26(b)). Line 13 assigns f
′′

to a. In line 15-18 , a destructive rule r8 of the form f
′′ − c⇒ f

′′
c is added to
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rule set Φ to delete the extra edge {4, 1} in ES. Line 21 returns the final rule set

Φ as shown below.

Φ =



a a⇒ g − j, (r1)

a a⇒ c− i, (r2)

i a⇒ m− e, (r3)

j a⇒ n− h, (r4)

m n⇒ d− f, (r5)

f

d

c
��� ???

⇒ f
′

d

c
�� ???

, (r6)

c

f
′

g
�� ??

⇒ c

f
′′

g
�� ??

, (r7)

f
′′ − c⇒ f

′′
c, (r8)

(17)

Figure 27 illustrates an assembly of G as an uniquely stable component using

the rule set or grammar Φ to verify the correctness of Algorithm 3.
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Figure 27: An assembly of the graph G using the rule set Φ produced by
CreateGraph
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