
University of Texas at Tyler University of Texas at Tyler

Scholar Works at UT Tyler Scholar Works at UT Tyler

Electrical Engineering Theses Electrical Engineering

Fall 12-2011

Using a Micro-Integrator to Eliminate the Numerical Butterfly Using a Micro-Integrator to Eliminate the Numerical Butterfly

Effect in Non-Linear Chaotic Partial Differential Equations Effect in Non-Linear Chaotic Partial Differential Equations

Joshua Jemegbe

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Jemegbe, Joshua, "Using a Micro-Integrator to Eliminate the Numerical Butterfly Effect in Non-Linear
Chaotic Partial Differential Equations" (2011). Electrical Engineering Theses. Paper 2.
http://hdl.handle.net/10950/44

This Thesis is brought to you for free and open access by
the Electrical Engineering at Scholar Works at UT Tyler. It
has been accepted for inclusion in Electrical Engineering
Theses by an authorized administrator of Scholar Works
at UT Tyler. For more information, please contact
tgullings@uttyler.edu.

http://www.uttyler.edu/graduate/
http://www.uttyler.edu/graduate/
https://scholarworks.uttyler.edu/
https://scholarworks.uttyler.edu/ee_grad
https://scholarworks.uttyler.edu/ee
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/44?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tgullings@uttyler.edu

USING A MICRO-INTEGRATOR TO ELIMINATE THE

NUMERICAL BUTTERFLY EFFECT IN NON-LINEAR CHAOTIC

PARTIAL DIFFERENTIAL EQUATIONS

by

JOSHUA MISAN JEMEGBE

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical Engineering.

Dr. Ron Pieper, Ph.D., Committee Chair

College of Engineering and Computer Science

The University of Texas at Tyler

December 2011

The University of Texas at Tyler

Tyler, Texas.

This is to certify that the Master‟s Thesis of

JOSHUA MISAN JEMEGBE

has been approved for the thesis requirement on

 December, 2011

for the Master of Science in Electrical Engineering

 i

Table of Contents

List of Tables…………………………………………………………………………. iv

List of Figures………………………………………………………………………... v

Abstract……………………………………………………………………...….......... viii

1. Introduction

1.1 Early Appearances of Chaos.....…….…………………………………...... 1

1.2 The Numerical Butterfly Effect…….…………………………………...... 1

1.3 Implementations of Chaotic Modeling…………………………………… 2

1.3.1 Chaotic Encryption..........…………………………………….. 3

1.3.2 Chaotic Secure Communications...…………………………… 3

1.4 Computing Chaotic Signals....……………………………………………. 3

2. Background

2.1 The Scope of this Research....……………………………………………. 5

2.2 The Sets of Chaotic Partial Differential Equations used in this Study 5

2.2.1 The Lorenz System..........…………………………………….. 5

2.2.2 The Rossler System.......................…………………………… 6

2.2.3 The Chen System............……………………………………... 7

2.2.4 The Chua System..........................……………………………. 7

2.2.5 The Hadley System..........…………………………………….. 8

2.2.6 The ACT System.......................………………....…………… 9

2.2.7 The Diffusionless Lorenz System...………………………….. 9

2.3 The Numerical Integration Algorithms Used..…. 10

2.3.1 The Euler's Method...……………………………………........ 10

2.3.2 The Modified Euler's Method...………...……………………. 11

2.3.3 Simpson's Rule..............…………………………………….... 12

2.3.4 The Fourth Order Runge-Kutta Method................................... 14

2.4 The Maximum Error Obtainable in Each Numerical Integration Method.. 16

2.5 Lyapunov Coefficients for the Chaotic Systems in this Study.................... 16

 ii

3. Introduction to the Micro-Integrator scheme 18

3.1 Overview..………………………………………. 18

3.2 Integration Without the Micro-Integrator.............................…………….. 18

3.3 The Proposal of the Micro-Integrator Solution....……................………... 19

3.4 Calculation of the Error..……................………... 22

3.4.1 Sample Error Calculation.…………………………………….... 23

3.5 A more detailed description of the Micro-Integrator................................. 23

3.6 Testing the Micro-Integrator Algorithm... 25

4. Methodology for the Evaluation of the Performance of the Micro-Integrator

4.1 The Micro-Integrator Performance Factor.....…………………………...... 26

4.1.1 The Memory Estimation Disclaimer... 26

4.2 Limiting the Error...……................………... 26

4.3 Error Control Without the Micro-Integrator.. 27

4.3.1 Algorithm for the error control without the Micro-Integrator...... 27

4.3.2 Alternate Depiction of the error control Algorithm without the

 Micro-Integrator.. 29

4.4 Error Control With the Micro-Integrator... 31

4.4.1 Algorithm for the error control with the Micro-Integrator............ 31

4.4.2 Alternate Depiction of the error control Algorithm with the

 Micro-Integrator ... 34

4.5 Other Parameters Introduced... 36

4.5.1 The Performance Measures... 36

4.5.2 Algorithm for the error control without the Micro-Integrator...... 36

4.5.3 The Performance Ratio... 36

4.6 Problems with the Modular Programming approach................................... 37

5. Test Cases and Results 38

5.1 A Brief description of the Parameters used in the Tables............................ 38

5.2 Result Tables......................………………………………………….……

 38

5.3 Graphical Presentation of Resullts.. 43

5.4 Observations on The Results.. 43

 iii

5.5 Table Data Presented in Plot.. 52

5.5.1 Illustrating the Effectiveness of the Error Control Algorithms.... 52

5.5.2 The Performance Measures of the Chaotic Systems.................... 53

5.5.3 Percentage Reduction in CPU time.. 57

5.5.4 Percentage Reduction in CPU time.. 57

6. Conclusion and Future Work 59

6.1 Conclusion.. 59

6.2 Future Work………………………………………….……

 59

References…………………………………………………………………………....…

 60

Appendix A Interpolation Algorithm.………………………............…...................... 63

Appendix B The Matlab Codes…………………………..…..................... 65

Appendix B-1 Lorenz Equations by Euler's Method without the Micro

Integrator ...

 65

Appendix B-2 Lorenz Equations by the Modified Euler's Method without the

Micro-Integrator ..

 69

Appendix B-3 Lorenz Equations by Simpson's Method without the Micro-

Integrator..

 74

Appendix B-4 Lorenz Equations by Runge-Kutta's Method without the Micro-

Integrator..

 80

Appendix B-5 Lorenz Equations by Euler's Method with the Micro-Integrator ... 86

Appendix B-6 Lorenz Equations by the Modified Euler's Method with the

Micro-Integrator...

 90

Appendix B-7 Lorenz Equations by Simpson's Method with the Micro-

Integrator ...

 94

Appendix B-8 Lorenz Equations by Runge-Kutta's Method with the Micro-

Integrator..

 99

Appendix C Principal Subroutines... 104

Appendix C-1 The Interpolation Subroutine... 104

Appendix C-2 The Error Calculation Subroutine.. 104

 iv

List of Tables

Table 2.1 The error bound in each numerical method by Step Size order

proportionality ……………………………………………....................

16

Table 2.2 Lyapunov Coefficients for the chaotic systems tested......................... 17

Table 5.1 Results from the Lorenz Equations with and without the Micro-

Integrator…………………………………………………

39

Table 5.2 Results from the Rossler equations with and without the Micro-

Integrator...………………………………………………………….....

39

Table 5.3 Results from the Chen equations with and without the Micro-

Integrator..................…………………………………………………..

39

Table 5.4 Results from the Chua equations with and without the Micro-

Integrator.………………….…………………......…………................

40

Table 5.5 Results from the Hadley equations with and without the Micro-

Integrator....................…………………………………………………

40

Table 5.6 Results from the ACT equations with and without the Micro-

Integrator...................………………………………………………….

40

Table 5.7 Results from the Diffusionless Lorenz with and without the Micro-

Integrator....…………………………………………………................

41

Table 5.8 Results from computing all the listed chaotic sets of partial differential

equations with Euler's method with and without the Micro-Integrator..

41

Table 5.9 Results from computing all the listed chaotic sets of partial differential

equations with Euler's method with and without the Micro-Integrator

on an increased time window …………………………….....................

42

Table 5.10 Demonstrating the accuracy of the error control algorithm by

computations with and without it for the Lorenz and Rossler systems

with the Micro-Integrator……………...……………....

42

 v

List of Figures

Figure 1.1 Plot of signal strength vs. time for the Lorenz Equations……… 2

Figure 2.1 Poincare Chaotic Attractor Map of the Lorenz System ……………….

6

Figure 2.2 Poincare Chaotic Attractor Map of the Rossler System ………………

6

Figure 2.3 Poincare Chaotic Attractor Map of the Chen System……………….... 7

Figure 2.4 Poincare Chaotic Attractor Map of the Chua System ………………...

8

Figure 2.5 Poincare Chaotic Attractor Map of the Hadley System……………....

8

Figure 2.6 Poincare Chaotic Attractor Map of the ACT System.. ………………..

9

Figure 2.7 Poincare Chaotic Attractor Map of the Diffusionless Lorenz System...

10

Figure 2.8 Visualization Sketch for Euler‟s Method………….....…............... 10

Figure 2.9 Visualization Sketch for the Modified Euler‟s Method....……............ 11

Figure 2.10 Visualization Sketch for Simpson‟s Method ...….……………...... 13

Figure 2.11 Visualization Sketch for Runge-Kutta‟s Method.………………… 14

Figure 3.1 Integration without the Micro-Integrator......….………………………. 18

Figure 3.2 Plot of the x variable of the Lorenz equations against time for

5000AN  and T=15s..…....

19

Figure 3.3 Schematic for the Micro-Integrator Concept ... 20

Figure 3.4 Automated Adaptive Extended Micro-Integrator Algorithm, typical

2HRoN  , 2,m  0.01E  …...…..

24

Figure 3.5 Convergence demonstration with Micro-Integrator algorithm,

5000AN  2HRoN  , 2,m  0.01E  , T=15seconds...........................

25

Figure 4.1 (a) Predictor Checker Algorithm Without the Micro-Integrator, (b)

Error Control Algorithm Without the Micro-Integrator using the

Predictor Checker Algorithm..

28

Figure 4.2 Alternate Depiction of the Error Control Algorithm without the

Micro-Integrator..

30

 vi

Figure 4.3 (a) First Predictor Checker Algorithm With the Micro-Integrator, (b)

Second Predictor Checker Algorithm With the Micro-Integrator, (c)

Error Control Algorithm With the Micro-Integrator using the

Predictor Checker Algorithm..

32

Figure 4.4 Alternate Depiction of the Error Control Algorithm with the Micro-

Integrator...

35

Figure 5.1 x vs t for the Lorenz System (a) Without the Micro-Integrator

2000AN  (b) Without the Micro-Integrator 3626132AN  (c) With

 the Micro-Integrator 1024AN  ..

44

Figure 5.2 x vs t for the Rossler System (a) Without the Micro-Integrator

2000AN  (b) Without the Micro-Integrator 345984AN  (c) With

 the Micro-Integrator 1024AN  ..

45

Figure 5.3 x vs t for the Chen System (a) Without the Micro-Integrator

2000AN  (b) Without the Micro-Integrator 1839110AN  (c) With

 the Micro-Integrator 1024AN  ..

46

Figure 5.4 x vs t for the Chua System (a) Without the Micro-Integrator

2000AN  (b) Without the Micro-Integrator 80551AN  (c) With the

 Micro-Integrator 1024AN  ..

47

Figure 5.5 x vs t for the Hadley System (a) Without the Micro-Integrator

2000AN  (b) Without the Micro-Integrator 1946160AN  (c) With

 the Micro-Integrator 1024AN  ..

48

Figure 5.6 x vs t for the ACT System (a) Without the Micro-Integrator

2000AN  (b) Without the Micro-Integrator 2059814AN  (c) With

 the Micro-Integrator 1024AN  ..

49

 vii

Figure 5.7 x vs t for the Diffusionless Lorenz (a) Without the Micro-Integrator

2000AN  (b) Without the Micro-Integrator 633032AN  (c) With the

 Micro-Integrator 1024AN  ..

50

Figure 5.8 x vs. t for the Chen equations Without the Micro Integrator (a) Using

Euler's Method, 2000AN  (b) Using the modified Euler's Method,

2000AN  (c) Using Simpson's Method, 2000AN  (d) Using Runge

-Kutta's Method, 2000AN  ..

51

Figure 5.9 Illustrating the Effectiveness of the Error Control Algorithm using the

Lorenz Equations..

52

Figure 5.10 Illustrating the Effectiveness of the Error Control Algorithm using the

Rossler Equations..

53

Figure 5.11 Performance Measures of the Lorenz System... 54

Figure 5.12 Performance Measures of the Rossler System.. 54

Figure 5.13 Performance Measures of the Chen System... 55

Figure 5.14 Performance Measures of the Chua System... 55

Figure 5.15 Performance Measures of the Hadley System.. 56

Figure 5.16 Performance Measures of the ACT System.. 56

Figure 5.17 Performance Measures of the Diffusionless Lorenz System.................. 57

Figure 5.18 Percentage Reduction in CPU time.. 58

Figure 5.19 Performance Ratios for the chaotic systems... 58

Figure A.1 Graphical representation of the Interpolation concept........................... 63

Figure A.2 Alternate Graphical representation of the Interpolation concept........... 63

Figure A.3 The Interpolation algorithm.. 64

 viii

Abstract

USING A MICRO-INTEGRATOR TO ELIMINATE THE

NUMERICAL BUTTERFLY EFFECT IN NON-LINEAR CHAOTIC

PARTIAL DIFFERENTIAL EQUATIONS

Joshua Misan Jemegbe

Thesis Chair: Ron Pieper, Ph. D.

The University of Texas at Tyler

December 2011

Chaos theory is a relatively new scientific paradigm for the analysis, simulation and

prediction of non-linear phenomena whose initial conditions determine the behavior of

their entire time series representation. It finds many applications in mathematics, science,

and engineering. These include, but are not limited, to data encryption and decryption,

designing secure communication systems, predicting weather patterns, noise fluctuations

on data lines, understanding turbulence in fluid flow, and analyzing quantum wells.

Systems that exhibit chaos are called chaotic systems. In computing solutions to non-

linear chaotic partial differential equation sets, slight deviations in step size could lead to

completely diverging trajectories as the system‟s time series progresses. This is called the

numerical butterfly effect. Smaller step sizes produce arrays closer to the desired

continuous time solution, but they require more sampling points and as a result more

memory. The Micro-Integrator produces results with a high level of accuracy while using

only a fraction of the amount of memory required by conventional numerical integration

methods. The reduction in memory requirements by the Micro-Integrator was quantified

by introducing a performance factor 'η' that was mathematically equal to the ratio of the

amount of memory required for computing without the Micro-Integrator to that required

for computing with it. Recorded values of the performance factor from the tests ranged

from 5 to 410 , out of which 75% were above 310 . The performance factor was also found

to depend on the type of chaotic system, the numerical method, and the time window for

computation. Less computationally efficient numerical methods resulted in higher

performance factors than the more efficient ones.

 1

Chapter One

Introduction

1.1 Early Appearances of Chaos

 In 1956, Benoit Mandelbrot published a paper [1] about self similar clusters of

apparently random electrical signals that he had observed in phone wires. This brought

about a new inquiry as to the nature of these signals and the reasons for their strange

patterns. Later, in 1960 Edward N. Lorenz noticed a similar pattern of fluctuations in the

non-linear system he was using in weather prediction calculations, and he was able to

trace its source to the fact that he had approximated the results from the previous

computation stage from the sixth decimal place to the third decimal place [2]. This

dependence of the behavior of the entire time series solution of certain non-linear systems

on initial conditions and integration step size formed the basis of a new paradigm for

their analysis and prediction called 'chaos theory'. Signals that exhibit this dependence are

called 'chaotic signals', and the systems that generate them are called 'chaotic systems'.

Mitchell Feigenbaum in the mid-70s demonstrated that the Reynolds numbers for

turbulence were predictable from chaos theory [3]. In the mid 80s, it was demonstrated

that chaos theory is applicable in solving the equations of pipeline networks [4]. More

recent investigations have demonstrated that chaotic signals could be used to achieve

secure communications [5,6].

1.2 The Numerical Butterfly Effect

Numerical computation of non-linear chaotic partial differential equation sets are not

only sensitive to initial conditions but also to integration step size [7-9]. Integrating the

same set of non-linear chaotic partial differential equations with different initial

conditions or different integration time steps produce entirely different trajectories as the

system's time series progresses [2,7,8]. As shown in Figure 1.1. This is known as the

numerical butterfly effect [2]. In Figure 1.1, the different plots were obtained by

integrating the Lorenz non-linear chaotic partial differential equation set using two

different integration step sizes of 0.011 and 0.0055 for the solid green and dotted blue

lines respectively.

 2

0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20
Lorenz Without Micro by Modified Euler Method, NA=2000 NB=4000 err=0.37348

time in seconds

s
ig

n
a
l
s
tr

e
n
g
th

integration time step=0.011

integration time step= 0.0055

Figure 1.1 Plot of signal strength vs. time for the Lorenz Equations.

1.3 Implementations of Chaotic Modeling

Chaotic equations have been implemented in analysis and simulation of a wide

range of phenomena and prove to have been inherent in certain existing theories without

being discovered. One of such is computing the quantum trajectory of an individual sub-

atomic particle [10], the dependence of the entire trajectory of the particle on initial

conditions and integration time step demonstrate the butterfly effect. Quantum wells in

tilted magnetic fields have also been found to make the enclosed electrons move in certain

chaotic patterns [11]. Research is also being carried out on how the wave functions of

electrons in ballistic motion progress from quantum disorder to chaos [12].

It has also been demonstrated that chaos is present in the transmission line

oscillator in an equivalence to the continuum limit of the generalized Rossler system [13].

These are only a few of the applications of chaotic modelling. The next two subsections

describe its applications to chaotic encryption and secure communication respectively.

 3

1.3.1 Chaotic Encryption

The erratic tendencies of chaotic signals make them excellent tools for message

encryption. This has led to the proposal of numerous schemes for the implementation of

chaos based signal encryption systems [14]. Specific attributes have uniquely

accompanied certain chaos based encryption algorithms which have placed them at an

advantage over other algorithms in their class. A few of these attrbutes are: significantly

reduced complexity [15], higher resistance to attack [16], universal range of

implementation [17], and superior encryption efficiency [18]. While a significant number

of simulations demonstrate the use of chaotic signals to encrypt signals, some research has

been done on using chaotic signals to amplify message signals that have been corrupted by

noise [19].

1.3.2 Chaotic Secure Communications

Secure digital communication schemes have also been proposed where chaotic

signals are used to encrypt the message at the transmitter, after which it is synchronized

with the receiver. Then by means of a decrypting procedure which relies on its

synchronism with the transmitter‟s chaotic signal generator, the original message is

recovered [5,6]. It is noteworthy that chaos synchronization helps modulation systems

overcome errors in computed chaotic arrays which would otherwise be expected to

interfere with the decrypting procedure. So even if the chaotic signal used in the

encryption phase at the transmitter has a varying trajectory from the standard array of its

values, due to the synchronization, the message signal can still be recovered successfully

without any damage done to it.

Apart from using numerical integration algorithms, chaotic signals can also be

generated by certain circuit implementations [20-22]. Understanding these could

determine the threshold where linear or non-linear systems transit to a chaotic state, and

help avert unforeseen problems that may arise in critical systems.

1.4 Computing Chaotic Signals

Ideally, solving the partial differential equations that model a particular class of

chaotic signals should produce an array of values that, when represented graphically,

 4

follow the specific trajectory associated with that particular class. But there are other

factors that come to play in the integration process. Because there are no analytical

solutions available for these chaos modeling equations, numerical integration techniques

are the only way to solve them [7]. The sensitive dependence of numerical integration

techniques on integration step size brings new considerations [5]. The pseudorandom

appearance of chaotic signals make it easy to mistake computed errors for actual chaotic

signals, but precision is still a factor here because there is order in chaos. This has led to

research for more accurate means of computing chaotic signals such as the method

proposed in this research.

A very direct approach to reducing the error in the computed chaotic signal would

be reducing the integration step size [7]. This leads to a reduction in the error, but

increases the amount of memory used by the computer in executing the integration

process. Due to the complexity of these computations, memory limited computers are

frequently at a loss. This problem inspired the design of the Micro-Integrator algorithm

[7]. In this research it was demonstrated on six different systems of non-linear chaotic

partial differential equations to achieve low error levels while using only a fraction of the

amount of memory required by conventional integration schemes.

 5

Chapter Two

Background

2.1 The Scope of this Research

This research focuses on applying the proposed Micro-Integrator [7] to eliminate

the numerical butterfly effect in the Lorenz [23,31], Rossler [24,31], Chen [25,31], Chua

[26,31], Hadley [27,31], ACT [28,31], and Diffusionless-Lorenz chaotic systems of

equations[29,31]. Solutions to these equations were computed with and without the Micro-

Integrator using four numerical integration methods, the Euler, Modified Euler, Simpson,

and Fourth Order Runge-Kutta methods [30,32]. It is a continuation of previous work

done in the referenced paper [7] where the Micro-Integrator was first applied to the

Lorenz Equations alone and computed using only Euler's method. Here the study has been

extended to include the six other sets of chaotic partial differential equation sets and three

additional numerical integration methods.

2.2 The Sets of Chaotic Partial Differential Equations used in this Study

The different sets of chaotic partial differential equations used in this study are

listed here, and their Poincaré maps as generated by the Modified Euler's method using

MATLAB are shown. The Poincare map of a chaotic partial differential equation set is a

plot of its x variable versus its y variable over a length of time. It serves as a standard

means of identification of different chaotic systems.

2.2.1 The Lorenz System

 The Lorenz System of equations is given below:

(10 10)

(28)

((8 3))

dx y x dt

dy x y xz dt

dz xy z dt

   
   

  
   
       

(2.1)

The initial conditions are 0 0 011.2, 8.4, 33.4x y z    

from references [23,31]. The

Poincaré chaotic attractor map for the Lorenz system of equations is shown in Figure. 2.1.

 6

-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25
2D Poincare Map - Lorenz Without Micro - Trapezoidal

x

y

Figure 2.1 Poincare Chaotic Attractor Map of the Lorenz System.

2.2.2 The Rossler System

 The Rossler System of equations is given below:

()

(0.2)

(0.2 (5.7))

dx y z dt

dy x y dt

dz z x dt

    
   

 
   
       

(2.2)

The initial conditions are 0 0 011.2, 2.4, 0x y z    

from references [24,31]. The

Poincaré chaotic attractor map of the Rossler system of equations is shown in Figure. 2.2.

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10
2D-Poincare Map - Rossler by Trapezoidal Method

x

y

Figure 2.2 Poincare Chaotic Attractor Map of the Rossler System.

 7

2.2.3 The Chen System

 The Chen System of equations is given below

(35(y-x))

(-8xz+28y)

(3)

dx dt

dy dt

dz xy z dt

   
   

   
      

(2.3)

The initial conditions are 0 0 010, 0, 37x y z   

from references [25,31]. The Poincaré

chaotic attractor map of the Chen system of equations is shown in Figure. 2.3.

-25 -20 -15 -10 -5 0 5 10 15 20 25
-30

-20

-10

0

10

20

30
2D Poincare Map - Lorenz Without Micro - Trapezoidal

x

y

Figure 2.3 Poincare Chaotic Attractor Map of the Chen System.

2.2.4 The Chua System

 The Chua System of equations is given below:

9(y-x+(5x/7)+((1.5/7)(|x+1|-|x-1|)))

(x-y+z)

(100 / 7)

dx dt

dy dt

dz y dt

   
   


   
      

(2.4)

The initial conditions are 0 0 00, 0, 0.6x y z  

from references [26,31]. The Poincaré

chaotic attractor map of the Chua system of equations is shown in Figure. 2.4.

 8

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
2D Poincare Map - Lorenz Without Micro - Trapezoidal

x

y

Figure 2.4 Poincare Chaotic Attractor Map of the Chua System.

2.2.5 The Hadley System

The Hadley System of equations is given below:

2 2(0.25 2)

(4 1)

(4)

dx y z x dt

dy xy xz y dt

dz xy xz z dt

     
  

     
       

(2.5)

The initial conditions are 0 0 00, 0, 1.3x y z  

from references [27,31] . The Poincaré

chaotic attractor map of the Hadley system of equations is shown in Figure. 2.5.

-1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
2D Poincare Map - Lorenz Without Micro - Trapezoidal

x

y

Figure 2.5 Poincare Chaotic Attractor Map of the Hadley System.

 9

2.2.6 The ACT System

 The ACT System of equations is given below.

3

2

(1.8())

((4)(1.8) 0.02)

((1.5)(1.8) (0.07))

x y dtdx

dy y xz x dt

dz z xy z dt

  
  

     
         

(2.6)

The initial conditions are
 0 0 00.5, 0, 0x y z   from references [28,31]. The Poincaré

chaotic attractor map for the ACT system of equations is shown in Figure. 2.6.

-15 -10 -5 0 5 10 15
-30

-20

-10

0

10

20

30
2D Poincare Map - act Without Micro - Trapezoidal

x

y

Figure 2.6 Poincare Chaotic Attractor Map of the ACT System.

2.2.7 The Diffusionless Lorenz System

 The Diffusionless Lorenz System of equations is given below:

()

()

(1)

dx y x dt

dy xz dt

dz xy dt

    
   

    
      

(2.7)

The initial conditions are 0 0 01, 1, 0.01x y z    from references [29,31]. The Poincaré

chaotic attractor map for the Diffusionless Lorenz equations is shown in Figure. 2.7.

 10

-3 -2 -1 0 1 2 3 4
-6

-4

-2

0

2

4

6
2D Poincare Map - act Without Micro - Trapezoidal

x

y

Figure 2.7 Poincare Chaotic Attractor Map of the Diffusionless Lorenz System.

2.3 Numerical Integration Algorithms.

The numerical integration methods used in this study were: the Euler's Method

[23], Modified Euler's Method [23], Simpson's Method [21], and the fourth order Runge-

Kutta Method [21].

2.3.1 Euler's Method

 Euler's method operates according to Figure2.8 and Equations (2.8a-b).

Figure 2.8 Visualization Sketch for Euler's Method.

 11

1 0 0 0

2 0 0 0

3 0 0 0

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.8a)

1 0

1 0

1 0

i

i

i

x x x

y y y

z z z













     
     

 
     
          

 (2.8b)

For each iteration, the incremental set was obtained according to the specific equation or

set of equations being integrated. The incremental set was then added to the initial values

to create the next set of values in the solution array.

2.3.2 The Modified Euler's Method

 The Modified Euler's method comes next in order of complexity, it works as

described by Figure 2.9 and Equations (2.9a-e).

Figure 2.9 Visualization Sketch for the Modified Euler's Method.

1 1 0 0 0

1 2 0 0 0

1 3 0 0 0

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.9a)

 12

1 0 1

1 0 1

1 0 1

x x x

y y y

z z z







     
     

 
     
          

 (2.9b)

2 1 1 1 1

2 2 1 1 1

2 3 1 1 1

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.9c)

1 2

1 2

1 2

1

2

x x x

y y y

z z z

  

  

  

      
      

       
            

 (2.9d)

1 0

1 0

1 0

i

i

i

x x x

y y y

z z z













     
     

 
     
          

 (2.9e)

For each iteration, an incremental set was obtained according to the set of equations

being integrated and was added to the initial values. The values obtained were then

substituted back into the equations to create a second incremental set which was then

averaged with the first to get a final incremental set. This set was used to obtain the next

set of values in the solution array.

2.3.3 Simpson's Rule

 Simpson's Rule is a Newton Cotes formula that approximates the solution to an

integral using quadratic polynomials. It is a third order numerical integration method thatt

is more complex than the Euler and Modified Euler methods, but not as complex as the

Fourth Order Runge-Kutta Method. It operates as shown in Figure 2.10 and Equations

(2.10a-g). For each iteration, three sets of increments are obtained successively, the first

by substituting the initial values into the sets of equations, the second by adding the first

increment to the initial values and substituting back into the sets of equations; and the

third by adding the second to the initial values and substituting back into the sets of

equations. The final sets of increments which are used to define the next values of the

arrays, are obtained by adding the first increment to four times the second, and then to the

last increment and dividing the sum by six.

 13

Figure 2.10 Visualization Sketch for Simpson's Rule.

1 1 0 0 0

1 2 0 0 0

1 3 0 0 0

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.10a)

1 0 1

1 0 1

1 0 1

x x x

y y y

z z z







     
     

 
     
          

 (2.10b)

2 1 1 1 1

2 2 1 1 1

2 3 1 1 1

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.10c)

2 1 2

2 1 2

2 1 2

x x x

y y y

z z z







     
     

 
     
          

 (2.10d)

3 1 2 2 2

3 2 2 2 2

3 3 2 2 2

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.10e)

1 2 3

1 2 3

1 2 3

1
4

6

x x x x

y y y y

z z z z

   

   

   

        
        

           
                

 (2.10f)

 14

1 0

1 0

1 0

i

i

i

x x x

y y y

z z z













     
     

 
     
          

 (2.10 g)

2.3.4 The Fourth Order Runge-Kutta Method

 The Fourth Order Runge-Kutta Method was the most complex of all the

numerical methods used in this study. As shown in Equation (2.11a-i). four sets of

increments were obtained during each iteration, the first by substituting the initial values

into the sets of equations, the second by adding the initial values to one half the first set

of increments, substituting back into the sets of equations; the third by adding the initial

values to one half the second set of increments, then substituting back into the sets of

equations and the fourth incremental by adding the initial values to the fourth set of

increments, and then substituting back into the set of equations. The final sets of

increments are obtained by adding the first increment to two times the sum of the second

and third increments, and then to the last increment and dividing the sum by six.

Figure 2.11 Visualization Sketch for Runge-Kutta's Method.

 15

1 1 0 0 0

1 2 0 0 0

1 3 0 0 0

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.11a)

1 0 1

1 0 1

1 0 1

0.5

x x x

y y y

z z z







     
     

 
     
          

 (2.11b)

2 1 1 1 1

2 2 1 1 1

2 3 1 1 1

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.11c)

2 0 2

2 0 2

2 0 2

0.5

x x x

y y y

z z z







     
     

 
     
          

 (2.11d)

3 1 2 2 2

3 2 2 2 2

3 3 2 2 2

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.11e)

3 0 3

3 0 3

3 0 3

0.5

x x x

y y y

z z z







     
     

  
     
          

 (2.11 f)

4 1 3 3 3

4 2 3 3 3

4 3 3 3 3

(, ,)

(, ,)

(, ,)

x f x y z t

y f x y z t

z f x y z t

 

 

 

   
   


   
      

 (2.11 g)

1 2 3 4

1 2 3 4

1 2 3 4

1
2

6

x x x x x

y y y y y

z z z z z

    

    

    

           
           

               
                      

 (2.11 h)

1 0

1 0

1 0

i

i

i

x x x

y y y

z z z













     
     

 
     
          

 (2.11 i)

 16

2.4 The Maximum Error Obtainable in Each Numerical Integration Method

A general equation for the integration estimate which covers the Simpson and

Runge-Kutta methods is presented in Equation (2.12) [30].
mpQ is the integration

estimate for the Simpson and Runge-Kutta methods. A and B are constants of the

method.
if represents samples of the function to be integrated, and

iw are weight factors.

The second term on the right hand side of the equation is related to the error bound.

 (2.12)

For the Simpson's method, m is 1; and for the Fourth Order Runge-Kutta method, m is 2.

The equation does not apply to the Euler and Modified Euler methods. The information

contained in Equation (2.12) is displayed in Table 2.1. along with the data for the Euler

and Modified Euler methods which was obtained directly from reference [30]. In the

Table, ' ' is a sign of proportionality.

Table 2.1 The error bound in each numerical method by Step Size order proportionality.

Numerical Integration Method Maximum Error

Euler's method ()t

Modified Euler's method
2()t

Simpson's method
3()t

Fourth Order Runge-Kutta method
4()t

2.5 Lyapunov Coefficients for the Chaotic Systems in this study

 The value of the maximum positive Lyapunov coefficient is thought to impact the

sensitivity of chaotic equations to initial conditions [31]. It is expected that the higher

the coefficient the greater the sensitivity to initial conditions. This sensitivity is expected

to impact the resolution parameter in the computation with more resolution being

required for higher initial condition sensitivity. The observations derived from this work

regarding these points will be commented on in the future work section of the conclusion.

 
/2

2

/2

m
m

mp i i

m

Q A t w f B t 




 

 17

Table 2.2 Lyapunov Coefficients for the chaotic systems tested.

 Chaotic System Lyapunov Coefficients [31]

1 Lorenz System 0.90, -14.57

2 Rossler System 0.07, -5.39

3 Chen System 2.03, -12.03

4 Chua System 0.33, -2.52

5 Hadley System 0.17, -4.45

6 ACT System 0.16, -9.21

7 Diffusionless Lorenz System 0.21, -1.21

 18

Chapter 3

Introduction to the Micro-Integrator scheme

3.1 Overview

 This chapter is a brief self-contained introduction to the Micro-Integrator scheme.

To a significant degree, the introduction is based on recent work contained in references

[7,33]. To illustrate the main ideas, the Lorenz chaotic partial differential equation set

was numerically integrated using the Modified Euler's method.

 It was observed while integrating the Lorenz and Rossler equations [33] using the

Euler's method that adjusting the parameter 'N', used to set the number of iterations

caused noticeable changes in the approximate solutions to the differential equations

associated with these systems. Increasing it to the point of eliminating the numerical

butterfly effect proved to be impractical, as the computer displayed an out of memory

error at every attempt to go past a certain error level. This memory problem inspired the

need for the design of the Micro-Integrator algorithm.

3.2 Integration Without the Micro-Integrator

 Integration without the Micro-Integrator was done using standard numerical

integration routines that can be shown with the following Figure;

Figure 3.1 Numerical Integration Without the Micro-Integrator.

 19

 The time step t , is the amount of time between successive elements in the

solution vector. The integration time frame T is the amount of time over which the

solution array is spread. The resolution parameter N is the number of elements in the

solution array. These parameters are related by the formula;

 / (1)t T N   (3.1)

Figure 3.2 Plot of the variable of the Lorenz equations

 against time for 5,000 and for 15 .A

x

N T s 

Figure 3.2 was obtained by integrating the Lorenz Equations using the Modified Euler's

method and plotting its x values against time. The problem of the numerical butterfly

effect is visible here. It can be seen the solution does not yet exhibit the N-stable

condition. The , A Bx x solutions, corresponding to 5,000AN  and 10,000BN 

respectively, start to diverge about 6 seconds into the T=15 second simulation. Although

not shown here the N-stable convergence property is eventually achieved with the Lorenz

problem for 50,000AN  .

3.3 The Proposal of the Micro-Integrator Solution

 The Micro-Integrator was proposed [7] as a solution to the memory problems with

selecting a large resolution parameter. The tests in this section support the observations

 20

that there are an unlimited number of discrete time solutions to differential equations with

specified initial conditions. If the resolution is high enough (extremely short time step

t), the discrete time solution becomes insensitive to the time step size and equally

important indistinguishable from the unique continuous time solution.

Figure 3.3 Schematic for the Micro-Integrator Concept.

 Figure 3.3 briefly shows how the Micro-Integrator works. The large scale time

intervals t and micro subintervals t are illustrated in the top half. Given HRN , a

high resolution or micro- integrator parameter, which produces a partition of the interval

t into 1HRN  equal segments. Along with the sub-interval spacing, it is given by:

1() / ()i i HRt t t N   (3.2)

As shown on Figure 3.3, δt is a subinterval on time intervals such as 1[,]i it t  . The

program does not record the dynamic high resolution variable array; because of this, the

memory storage requirements are not expanded. The primary objective is to more

accurately propagate the time series of the dynamic variables between large-scale time

 21

intervals 1i it t  without high memory requirements. The Micro-Integrator scheme

initially creates temporary dynamic variables (, ,)u v w at the onset of the process:

 1(, ,) (, ,)i jx y z u v w  (3.3)

After the last j-index internal loop for the Micro-Integrator scheme as shown in Figure

3.3, the temporary dynamic variable sets are transferred back to a recorded dynamic

variable set as per:

1(, ,) (, ,)
HRj N iu v w x y z  (3.4)

The Micro-integrator process is repeated for every large-scale time interval. For testing

purposes the Modified Euler Method was also employed as the specific algorithm within

the Micro-integrator The Micro-Integrator temporary dynamic variable updates are

distinguished with subscripts “old” and “new”. Since memory storage is not required

formal indexing is obviated.

 How high should the resolution parameter for the Micro-parameter, HRN , be set

in order to avoid the numerical butterfly effect? It will not only depend on the particular

chaos system simulated but also the particular numerical integration technique selected.

Therefore a straightforward numerical answer or formula is not readily available. On the

other hand, there is a simple test for which the discrete time solution can be taken as a

good approximation to the continuous time solution. In particular, the extended Micro-

Integrator program is run initially with a resolution parameter seed value HRAN and the

(, ,)A A A ix y z 1,2,...,i N solutions are recorded. Then the Micro-Integrator program is

run with a new and higher resolution parameter HRBN . It relates to HRAN by the

following formula:

 HRB HRAN m N  (3.5)

 22

Where =2m is a typical value. A solution (, ,)B B B ix y z . 1,2,...,i N is then recorded. In

step two a comparison is made to check if the initial low-resolution solution

(, ,)A A A ix y z and the higher resolution solution (, ,)B B B ix y z have become

indistinguishable. If indistinguishable then either the higher resolution B-solution

(, ,)B B B ix y z or lower resolution A-solution would be considered a good approximation to

the continuous time solution, insensitive to increases in HRN , and free of the numerical

butterfly effect. If A and B solutions are not close enough by some criterion then the

process is repeated. In this situation the previously used higher resolution parameter

HRBN supplants HRAN in the next test cycle. As described, this will require multiple

pairs of program runs (,)HRA HRBN N for repeated test until the criterion that the two

solutions are indistinguishable is met.

3.4 Calculation of the Error

The error is calculated as the difference between the computed chaotic signal

, ,A A Ax y z
 using a resolution of AN and , ,B B Bx y z using a resolution of 2B AN N  .

1 1

1

1{ , }
{ ,.. , ,.. }

N N

N

A BN

i
A B

A A B B

x x

d x x
max x x x x








 (3.6)

{ , }

{ , }

{ , }

x A B

y A B

z A B

d x x

d y y

d z z







   
   

   
   
   

(3.7)

The terms  ,A Bd x x ,  ,A Bd y y ,  ,A Bd z z each represents a distance metric for the

vectors Ax and ,Bx Ay and ,By Az and ,Bz respectively. The maximum error is obtained

by taking the largest value from among the distance them as follows.

 23

 max max , ,x y z    (3.8)

max is then compared to an upper-bound error E which is one of the program inputs.

maxIf solution approximately free of ButterFly effectE  (3.9a)

maxIf Continue increasing resolution E  (3.9b)

3.4.1 Sample Error Calculation, In the case of the Lorenz Without the Micro-Integrator

computed using the Fourth Order Runge-Kutta Method.

 This answer can be verified from Table 5.1.

3.5 A Detailed Description of the Micro-Integrator

 The flow chart process for the automated adaptive Micro-Integrator algorithm is

shown in Figure 3.4 to clarify how these concepts are brought together. Besides

initialization of the dynamic variables, the inputs to the algorithm include the large scale

resolution parameter N, the error bound E, and a seed value for the Micro-Integrator

resolution parameter HRON . The system description and initial conditions were not

adjusted in the tests discussed and therefore not explicitly mentioned as inputs for the

  30.0855
, 4.96 10

17.2281
d xA xB   

  30.1230
, 5.41 10

22.7455
d yA yB   

  30.1502
, 3.48 10

43.1996
d zA zB   

3

3

3

{ , } 4.96 10

{ , } 5.41 10

{ , } 3.48 10

x A B

y A B

z A B

d x x

d y y

d z z













                                         

   3 3 3

max max , , max 4.96 10 ,5.41 10 ,3.48 10x y z          

3

max 5.41 10  

 24

algorithm. If the error test does not meet the required condition, the Micro-Integrator

resolution parameter is increased by a factor „m‟ then repeated. Once the error is satisfied,

the automated process is stopped and the current values of all the resolution parameters

are fixed.

 HRON and _res IN are used interchangeably here, they represent the initial values

of the Micro-Integrator's resolution parameter HRAN . Also, HRAN and _res AN are used

interchangeably, they represent the real-time values of the Micro-Integrator's resolution

parameter.

Figure 3.4, Automated Adaptive Extended Micro-Integrator Algorithm, typical 2HRON  ,

2,m  0.01.E 

 25

3.6 Testing the Micro-Integrator Algorithm

 The test performed demonstrated that the Micro-Integrator process allowed a N-

stable numerical solution. The Lorenz Equations were integrated using the Modified

Euler's Method and a resolution parameter of 5,000AN  . The algorithm described

proceeds until max 0.01E   . Figure 3.5 is a plot of the vector x obtained from the

integration process. Convergence was obtained with only memory storage requirement

associated with a (, ,)x y z array size of 5000, not 50,000. This is a very good

approximation for the exact continuous time solution vector to the Lorenz Equations. The

error criterion was reached using a Micro-Integrator resolution parameter of e _ 16r s AN  .

Figure 3.5 Convergence demonstration with Micro-Integrator algorithm, 5000AN 

2HRON  , 2,m  0.01E  , T=15s.

It was found that the modified-Euler's Method of numerical integration worked very

well with the proposed Micro-Integrator algorithm. Hence it was possible to achieve

convergence without excessive use of computer memory.

 26

Chapter Four

Methodology for the Evaluation of the Performance factor of the Micro-Integrator

Scheme

4.1 The Micro-Integrator Performance Factor

 In order to gauge the utility of the Micro-Integrator scheme, a performance factor

was introduced. This performance factor was defined as the ratio of memory

requirements as defined by:

2

1

N

N
 (4.1)

Where  represents the Micro-Integrator performance factor, 1N and 2N are the number

of sampling points (AN values) used when computing the chaotic signal with and

without the Micro-Integrator, respectively. The values 1N and 2N are used as measures

of the amount of memory required in each case.

4.1.1 The Memory Estimation Disclaimer

 It is very important to state here that estimating the amount of memory required

by the computer by measuring the size of its output array as was done in this study is

accurate only to a certain extent. The actual memory used would be slightly different

from this value. But for the purpose of this research, it was used as a good estimate.

4.2 Limiting the Error

 In order to compare performance factors with various chaotic systems and

numerical methods, it is required that the error max be reached within a band centered

on the selected  .

max

% %
1 1

100 100
E E

 


   
      

   
 (4.2)

 27

Where the percentage deviation allowed  is specified as an error control computer

program input parameter. A typical value for this in the numerical tests is 10%. Error

control algorithms were designed to limit the computational error to within a fraction of a

specified error limit. There were two versions, one for use with and the other for use

without the Micro-Integrator. They were designed to ensure a more accurate comparison

between computations with and without the Micro-Integrator.

4.3 Error Control Without the Micro-Integrator

4.3.1 Algorithm for the Error Control Without the Micro-Integrator

 Figure 4.1(a) is a predictor checker algorithm used to simplify the representation

of the error control algorithm without the Micro-Integrator. It operates in five stages; the

first stage integrates the set of equations using the input resolution parameter AN and

produces a vector VA


 which is a set made up of , y , zA A Ax arrays. The second stage

calculates the resolution parameter BN by qdoubling AN . The third stage integrates the

system of equations using the resolution parameter BN and produces a vector VB


 which

is a set made up of , y , zB B Bx arrays. At this stage, VB


 is twice the size of VA


, the

fourth stage uses an interpolation algorithm to double the size of VA


 so that it can be

accurately compared to VB


. In the fifth stage, the error max between VA


 and VB


 is

calculated using the error calculation process explained in chapter 3.

 In Figure 4.1(b), the predictor checker algorithm is used twice in a flow chart

representation of the error control algorithm. First, the program inputs are fed into the

predictor checker algorithm. After the error max between VA


 and VB


 has been

calculated by the predictor checker algorithm, it is then compared to the set error limit 'E'.

If max is greater than E, then AN is doubled, and the value obtained is used to replace its

current value, the predictor checker stage is then repeated until max becomes less than E.

stpp' which is the deviation of max from E is then calculated by dividing the absolute

value of the difference between max and E by E. The absolute value of 'stpp' is then

compared to the maximum allowable deviation devE .

 28

 (a)

(b)

Figure 4.1: (a) Predictor Checker Algorithm Without the Micro-Integrator, (b) Error

Control Algorithm Without the Micro-Integrator using the Predictor Checker Algorithm.

 29

If 'stpp' is greater than devE , a check is then performed to see if it is greater than zero. If

it is greater than zero, AN is then incremented by a fraction of its current value defined

by a parameter AflucN represented by the symbol  in the flow chart. The value of AN

obtained is then fed back into the predictor checker, after which the program returns to

the stage where 'stpp' is being calculated. If 'stpp' is less than zero, AN is then decreased

by AflucN , the value of AN obtained is then fed back into the predictor checker

algorithm and the program returns to the stage where 'stpp' is being calculated. This goes

on until 'stpp' becomes less than devE , when this happens, then the program is

terminated and the current values of Ax and Bx are plotted against time.

4.3.2 Alternate Depiction of the Error Control Algorithm Without the Micro-Integrator

 As shown in Figure 4.2, the error control algorithm for the case without the

Micro-Integrator was designed to be fed the following input parameters: ' E ' the desired

error limit, ' AN ' the initial value of the resolution parameter, ' AflucN ' the percentage

fluctuation of AN for each iteration, ' devE ' the maximum allowable percentage error

deviation of the results from the desired error limit; and kloopMax the maximum number

of iterations. For each iteration, the values , ; and A A Ax y z , are computed using the input

resolution parameter AN as the size of the solution array and to compute t . The values

, ; and B B Bx y z are computed using 2 AN in place of AN . Due to the size differences in

the A and B arrays, an interpolation algorithm had to be introduced to double the size of

the array A to make it comparable to B. The error calculation process as explained in

chapter 3 is then applied to calculate the error ' 1E ' after which its deviation from the

desired error limit ' stpp ' is calculated by subtracting the error 1E from the error limit E

and dividing the difference by 1E . The deviation stpp is then compared to the maximum

allowable error deviation devE ; if stpp is greater than devE , then the deviation in the

error is too large, the algorithm then performs a check to see if stpp is greater than zero,

if stpp is greater than zero then the value of AN used in the present iteration is added to

its product with AflucN rounded to the nearest significant Figure. The result obtained is

 30

used as the value of
AN for the next iteration. If stpp is less than zero, then the present

AN 's product with
AflucN rounded to the nearest significant figure is subtracted from it

and the result obtained is used as the value of AN for the next iteration.

Figure 4.2 Alternate Depiction of the Error Control Algorithm without the Micro-

Integrator.

 31

This goes on until stpp is less than devE , or when the failsafe is triggered. The failsafe

is triggered when kloop becomes greater than kloopMax . The values of the output

vectors are then plotted against time which in this case is a discrete set of elements

increasing by unity from 1 to 1AN  for the A arrays and from 1 to 1BN  for the B

arrays.

4.4 Error Control With the Micro-Integrator

4.4.1 Algorithm for the error control with the Micro-Integrator

 Figure 4.3(a) is the first predictor checker algorithm used in the error control

algorithm with the Micro-Integrator. It works in five stages, in the first stage, two input

parameters _res AN (the initial value of the Micro-Integrator's resolution parameter) and

1E (the error limit) are fed into the program, and 2E is defined by dividing 1E by ten. In

the second stage, the set of equations is integrated using a fixed conventional resolution

parameter AN along with the input value of the Micro-integrator's resolution parameter

_res AN . In the third stage, a second Micro-Integrator resolution parameter _res BN is

calculated by doubling _res AN .

 (a)

 32

 (b)

(c)

Figure 4.3: (a) First Predictor Checker Algorithm With the Micro-Integrator, (b) Second

Predictor Checker Algorithm With the Micro-Integrator, (c) Error Control Algorithm

With the Micro-Integrator using the Predictor Checker Algorithm.

 33

In the fourth stage, the set of equations is integrated using the same fixed conventional

resolution parameter
AN along with the newly calculated value of the Micro-integrator's

resolution parameter
_res BN . In the fifth stage, the error

max between VA


 and VB


 is

calculated using the error calculation process explained in chapter 3. There is no need for

interpolatioon here because VA


 and VB


 are the same size.

 Figure 4.3(b) is the second predictor checker algorithm used in the error control

algorithm with the Micro-Integrator. It is used at a point where the VA


 array is fixed. It

simply integrates the equation set to obtain the VB


 array and calculates the error between

it and the fixed VA


 array.

 The complete error control algorithm is shown in Figure 4.3(c). At the start of the

program, its inputs are fed into the first predictor checker algorithm. After the error max

between VA


 and VB


 has been calculated by the predictor checker algorithm, it is then

compared to 2E . If max is greater than 2E , then _res AN is doubled, and the value

obtained is used to replace its current value, the predictor checker stage is then repeated

until max becomes less than 2E . 'stpp' which is the deviation of max from 2E is then

calculated by dividing the absolute value of its difference from max by itself. The

absolute value of 'stpp' is then compared to the maximum allowable deviation devE . If

'stpp' is greater than devE , a check is then performed to see if it is greater than zero. If it

is greater than zero, _res AN is then incremented by a fraction of its current value defined

by a parameter _res AflucN represented by the symbol  in the flow chart. The value of

_res AN obtained is then fed to the second predictor checker, after which the program

returns to the stage where 'stpp' is being calculated. If 'stpp' is less than zero, _res AN is

then decreased by _res AflucN , the value of _res AN obtained is then fed to the second

predictor checker algorithm and the program returns to the stage where 'stpp' is being

calculated. This goes on until 'stpp' becomes less than devE , when this happens, then the

program is terminated and the current values of Ax and Bx are plotted against a vector of

elements increasing by 1 from 0 to 1AN  .

 34

4.4.2 Alternate Depiction of the Algorithm for the error control with the Micro-Integrator

 As shown in Figure 4.4, the error control algorithm for the case with the Micro-

Integrator was designed to be fed the following input parameters: '
1E ' the error limit,

'
AN ' the standard resolution parameter, '

er sIN ' the initial value of the Micro-Integrator

resolution parameter '
NresAfluc ' which is the fluctuation per iteration of

resAN (the Micro-

Integrator's resolution parameter), ' devE ' the maximum allowable deviation from the

error limit; and kloopMax , the maximum number of iterations. First, ' 2E ' is defined as

one tenth the value of 1E . Then , ; and A A Ax y z are computed using Figure 3.3 (the basic

Micro-Integrator algorithm). The Micro-Integrator resolution parameter is then doubled

and the obtained value is used to compute , , and xB yB zB arrays. The error is then

computed as described in Chapter 3, and compared to 2E . If it is greater than 2E , then

the Micro-Integrator's resolution parameter is doubled and the computation is re-done

(using the doubled Micro-Integrator resolution parameter). If it is less than 2E , then its B

arrays are stored as a reference to be used in the second phase of the algorithm. The

second phase of the algorithm uses in the stored B array and the Micro-Integrator's

resolution parameter. It computes a new set of A arrays which are then compared to the

stored arrays from the previous stage of computation and calculates the error. The

deviation stpp is then calculated by subtracting the error limit from the error just

calculated and dividing the difference by the error limit. The result is then compared to

devE . If stpp is greater than devE , then a second check is performed to see if stpp is

greater than zero. If stpp is greater than zero, if stpp is greater than zero then the value

of _res AN used in the present iteration is added to its product with _res AflucN rounded to

the nearest significant figure, and the result obtained is used as the new value of _res AN

while the A arrays are re-computed. If stpp is less than zero, then the present _res AN 's

product with _res AflucN rounded to the nearest significant Figure is subtracted from it

and the result obtained is used as the new value of _res AN for the next iteration. This goes

on until stpp is less than devE , or when the failsafe is triggered. The failsafe is triggered

when kloop becomes greater than kloopMax . The output is then plotted.

 35

Figure 4.4 The error control algorithm with the Micro-Integrator.

 36

 The interpolation algorithm isn't needed in the computations with the Micro-

Integrator because, the A and B arrays are always the same size.

4.5 Other Parameters Introduced

4.3.1 The Performance Measures

 The Performance Measures are the logarithm to base ten of the Micro-Integrator

performance factors of each of the chaotic systems of equations being integrated.

4.3.2 Percentage Reduction in CPU time

 The percentage reduction in CPU time is defined by this formula:

1 2

1

100%
t t

t



  (4.3)

Where  is the percentage reduction in CPU time, 1t is the CPU time required for

integrating without using the Micro-Integrator; and 2t is the CPU time required for

integrating with the Micro-Integrator.

4.3.3 The Performance Ratio

 The Performance ratio was introduced while studying a single Chaotic System of

Equations being integrated twice for two different time frames; first with a low time

frame; and then with a higher time frame. It could be represented by this formula:

Hi

Lo

r



 (4.4)

Where r is the Performance Ratio, Hi is the Micro-Integrator performance factor

obtained from integrating with the higher time frame; and Lo is the Micro-Integrator

performance factor obtained from integrating with the lower time frame.

 37

4.6 Problems with the Modular Programming approach

 A complete modular approach was attempted for designing program codes for

these algorithms for ease of implementation and debugging. Each chaotic differential

stage was manually put into a custom function, so that in the integration stage; the

differentials could be done by recalling the assigned functions. There were certain

advantages gained by using this approach, but there were more disadvantages. The

advantages were: relative ease of debugging as opposed to the non modular approach,

little chances of introducing error, ease of understanding (for someone new to the code),

ease of implementation; less bulky codes (than their non-modular versions). There was

one big disadvantage with the modular programming approach in this experiment, the

modular programs took too much more time to run that their non modular equivalents.

This overhead in time came from the fact that the modular programs had to recall specific

assigned functions (subroutines) stored separately within the computer. This disadvantage

was enough to discourage further use of the modular approach in this study, as this is

research is directed towards computational efficiency in terms of memory and CPU time.

 38

Chapter 5

Test Cases and Results

 The purpose of this Chapter is to quantify the reduction in memory requirements

from using the Micro-Integrator in terms of the performance factor introduced in Chapter

4. The result tables showing the integration input parameters, results, and output graphs

from solving the Lorenz, Rossler, Chen, Chua, Hadley, ACT, and Diffusionless Lorenz

chaotic partial differential equations, with and without the Micro-Integrator, are presented

here.

5.1 A Brief Description of the Parameters used in the Tables

 (1) Integration Time Frame

 This is the difference between the initial and final time of the integration operation.

(2) Error Limit

 This is the desired error limit. The true error varies within a set percentage of this.

(3) True Error

 This is the actual error measured during the computational process.

(4) CPU Time

 This is the time taken for the program to execute the integration process.

(5) Loop Count

 This is the number of iterations the program takes to satisfy the error criteria.

 All the parameters not described in this section were described in chapter 4.

5.2 Result Tables

 This section contains all the result tables. For Tables 5.1 to 5.7, each Table

represents a specific Chaotic System being integrated with and without the Micro-

Integrator respectively using the four different numerical methods. The central bold

columns containing 2N and 1N highlight the advantage in using the Micro-Integrator. The

2N column displays the amount of memory required for integrating without the Micro-

Integrator for each numerical method, while the 1N column displays those required for

integrating with the Micro-Integrator.

 39

Table 5.1 Results from the Lorenz Equations with and without the Micro-Integrator.

Lorenz

System

Without the Micro-Integrator With the Micro-Integrator

Seed AN = 410 , fluc AN =30%, Seed _res AN =2, fluc _res AN = 30%

 Integration time frame = 0-22 seconds, Set error limit = 0.005 ± 10%

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Modified Euler 20 87s 4.59 3626132 1024 4.60 17s 14+4 3935 3.54 310

Simpson 14 19s 4.80 1946160 1024 4.75 13s 13+7 2328 1.90 310

Runge-Kutta 13 18s 5.41 10541 1024 5.49 1.2s 5+3 12 10.29

Table 5.2 Results from the Rossler equations with and without the Micro-Integrator.

Rossler

System

Without the Micro-Integrator With the Micro-Integrator

Seed AN =4000, fluc AN =30%, Seed _res AN =2, fluc _res AN = 30%

 Integration time frame = 0-200 seconds, Set error limit = 0.005 ± 10%

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Modified Euler 12 3.9s 5.24 345984 1024 4.80 3.3s 11+4 493 3.38 210

Simpson's 12 3.8s 4.86 345984 1024 4.63 3.2s 11+4 493 3.38 210

Runge-Kutta 8 1.3s 5.33 68343 1024 4.98 2.2s 8+5 81 66.74

Table 5.3 Results from the Chen equations with and without the Micro-Integrator.

Chen System

Without the Micro-Integrator With the Micro-Integrator

Seed AN =5000, fluc AN =40%, Seed _res AN =2, fluc _res AN = 30%

 Integration time frame = 0-8 seconds, Set error limit = 0.005 ± 10%

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Modified Euler 18 36s 4.72 1839110 1024 4.61 10s 13+16 2031 1.80 310

Simpson 13 7.5s 5.12 648717 1024 4.58 3s 11+2 738 6.34 210

Runge-Kutta 2 0.4s 5.00 7500 1024 4.97 1.3s 4+5 7 7.32

 40

Table 5.4 Results from the Chua equations with and without the Micro-Integrator.

Chua

System

Without the Micro-Integrator With the Micro-Integrator

Seed AN =5000, fluc AN =40%, Seed _res AN =2, fluc _res AN = 30%

 Integration time frame = 0-50 seconds, Set error limit = 0.005 ± 10%

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Modified Euler 20 13s 4.92 80551 1024 5.19 1.5s 6+9 49 78.66

Simpson 13 3.8s 4.97 78210 1024 5.41 1.8s 7+5 58 76.38

Runge-Kutta 4 1.3s 5.21 46875 1024 4.64 1.9s 8+13 59 45.78

Table 5.5 Results from the Hadley equations with and without the Micro-Integrator.

Hadley

System

Without the Micro-Integrator With the Micro-Integrator

Seed AN = 410 , fluc AN =30%, Seed _res AN =2, fluc _res AN = 30%

 Integration time frame = 0-80 seconds, Set error limit = 0.005 ± 10%

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Modified Euler 14 24s 5.31 1946160 1024 5.25 15s 14+5 2755 1.90 310

Simpson 14 22s 4.89 1946160 1024 4.57 9s 13+5 2558 1.90 310

Runge-Kutta 10 4s 5.45 155478 1024 4.73 1.2s 6+13 26 1.52 210

Table 5.6 Results from the ACT equations with and without the Micro-Integrator.

ACT System Without the Micro-Integrator With the Micro-Integrator

Seed AN = 3 410 10to , fluc AN =40%, Seed _res AN =2, fluc _res AN = 30%

 Integration time frame = 0-80 seconds, Set error limit = 0.005 ± 10%

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Modified Euler 19 106s 5.22 2059814 1024 5.30 67s 13+7 2328 2.01 310

Simpson 19 93s 4.55 1922492 1024 4.84 95s 13+9 2119 1.88 310

Runge-Kutta 17 23s 4.69 11110 1024 5.41 1.6s 5+7 10 10.85

 41

Table 5.7 Results from the Diffusionless Lorenz with and without the Micro-Integrator.

Diffusionless

Lorenz System

Without the Micro-Integrator With the Micro-Integrator

Seed AN =5000, fluc AN =30%, Seed _res AN =2, fluc _res AN = 30%

 Integration time frame = 0-100 seconds, Set error limit = 0.005 ± 10%

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Modified Euler 23 23s 4.60 633032 1024 4.61 2.5s 11+3 703 6.18 210

Simpson 20 15s 4.52 538295 1024 4.83 3.6s 11+7 582 5.26 210

Runge-Kutta 6 0.5s 5.04 5292 1024 5.07 1.9s 4+4 5 5.17

 Tables 5.8 and 5.9 show the results from integrating the seven chaotic systems

using Euler's method. These results were kept separate from the other results because

Euler's method was far less efficient than the other methods and they couldn't be

compared on the same integration time frame. The difference between Tables 5.8 and 5.9

is that Table 5.9 contains values recorded for integrations using a larger time frame than

Table 5.8. It is observable that the Micro-Integrator performance factors are higher on

Table 5.9, this is evidence that the Micro-Integrator performance factor increases with an

increase in the integration time frame.

Table 5.8 Results from computing all the listed chaotic sets of partial differential

equations with Euler's method with and without the Micro-Integrator.

Euler's Table of Computations with and without the Micro-Integrator

Without the Micro-Integrator With the Micro-Integrator

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Lorenz 0-8s 17 47s 5.23 3722031 256 4.90 24s 18+6 30842 1.45 410

Rossler 0-80s 16 10s 4.74 708401 256 4.81 5.2s 14+18 4923 2.77 310

Chen 0-3s 17 29s 4.70 3284127 256 5.27 11s 17+5 22031 1.28 410

Chua 0-25s 10 13s 5.29 1537732 256 4.75 9.6s 16+11 10970 6.00 310

Hadley 0-20s 18 60s 4.81 3984762 256 4.59 25s 18+6 30842 1.56 410

ACT 0-20s 18 11s 5.09 367756 256 4.86 9s 13+5 1378 1.44 310

Diff Lorenz 0-50s 12 4.1s 4.70 432478 256 4.58 3.3s 15+8 3510 1.69 310

 42

Table 5.9 Results from integrating all the listed chaotic partial differential equations by

Euler's method with and without the Micro-Integrator on an increased time window.

Euler's Table of Computations with and without the Micro-Integrator

Without the Micro-Integrator With the Micro-Integrator

Loop

Count

CPU

Time

±5%

True

Error
310

2N 1N
True

Error
310

CPU

Time

±5%

Loop

Count _res AN 

Lorenz 0-8.1s 17 58s 5.01 6568290 256 4.57 29s 18+8 52123 2.57 410

Rossler 0-120s 16 15s 4.74 1751544 256 4.80 60s 14+18 78696 6.84 310

Chen 0-3.5s 21 91s 4.72 6206999 256 4.72 22s 18+5 44060 2.43 410

Chua 0-35s 14 60s 4.54 7784767 256 5.28 60s 19+15 45803 3.04 410

Hadley 0-35s 17 53s 5.43 6568290 256 4.84 48s 19+6 56312 2.57 410

ACT 0-30s 23 121s 5.23 7480318 256 4.66 252s 18+6 30842 2.92 410

Diff Lorenz 0-60s 18 40s 4.92 4926190 256 4.71 20s 17+7 40094 1.92 410

Table 5.10 shows the importance of the error control algorithm, it has two major

columns containing the error limits and actual errors obtained from integrating the Lorenz

Equations with the Micro-Integrator, both with and without the error control algorithm. It

can be confirmed from the Table that the error control algorithm brought the error to

within an accuracy limit of ±10%.

Table 5.10 Demonstrating the accuracy of the error control algorithm by computations

with and without it for the Lorenz and Rossler systems with the Micro-Integrator.

Without Error Control Algorithm With Error Control Algorithm

Set error limit Actual error Set error limit Actual error Accuracy

Lorenz

t=0-20s

0.01 7.55 310 0.01 1.05 210 ±10%

0.02 7.55 310 0.02 2.13 210 ±10%

0.03 7.55 310 0.03 2.78 210 ±10%

0.04 7.55 310 0.04 3.61 210 ±10%

0.05 7.55 310 0.05 4.57 210 ±10%

Rossler

t=0-100s

0.01 3.43 410 0.01 9.87 310 ±10%

0.02 3.43 410 0.02 1.97 210 ±10%

0.03 3.43 410 0.03 2.77 210 ±10%

0.04 3.43 410 0.04 3.92 210 ±10%

0.05 3.43 410 0.05 4.65 210 ±10%

 43

5.3 Graphical Presentation of Results

 This section contains the output graphs for all the chaotic systems in this study.

Figures 5.1a to 5.7c contain plots of the output x arrays for each of the chaotic systems.

Figures 5.1a, 5.2a, 5.3a, 5.4a, 5.5a, 5.6a; and 5.7a were the outputs from integrating the

chaotic systems without the Micro-Integrator using the Modified Euler's method with the

same resolutions of 2000AN  and 4000BN 

for the A and B arrays plotted using the

blue dotted line and the green solid lines respectively. The errors varied by Chaotic

System. Figures 5.1b, 5.2b, 5.3b, 5.4b, 5.5b, 5.6b; and 5.7b were integrated using the

same numerical method without the Micro-Integrator to an error limit of 0.005 bound to

±10%. The resolution parameter used for the green solid line was twice that used for the

blue dotted line. Figures 5.1c, 5.2c, 5.3c, 5.4c, 5.5c, 5.6c; and 5.7c were integrated with

the Micro-Integrator using the same numerical method to an error limit of 0.005 bound to

±10%. The Micro-Integrator resolution parameter used for the green solid line was twice

that for the blue dotted line.

 Figures 5.8a-d were plotted from solving the Chen equations without the Micro-

Integrator using the Euler, modified Euler, Simpson; and fourth order Runge-Kutta

methods respectively for the same resolution parameters of 2000AN  and 4000BN  .

This was done to test the relative efficiency of these numerical methods. Observations

were recorded in section 5.4 and in the results.

 The integrations done with the Micro-Integrator to meet an error limit of 0.005

bound to ±10% produced output graphs that were visually indistinguishable for the

different numerical methods. For the purpose of documentation, the results from using

the modified Euler were included in this section.

5.4 Observations

 From the result tables, it could be observed that the integrations done using the

Micro-Integrator required significantly less memory than those done without it. Also, the

amount of CPU time required was much less for the integrations done with the Micro-

Integrator, even though it first integrates to an accuracy ten times the desired limit, before

gradually reducing the resolution parameter to meet the exact accuracy limit. Also, the

higher order numerical methods performed much better than the lower ones.

 44

0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20
Lorenz Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.37348

time in seconds

XA

(a) Without the Micro-Integrator 2000AN 

0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20
Lorenz Without Micro by Trapezoidal Method, With error control NA=3626132 NB=7252264 err=0.0045914

time in seconds

XA

(b) Without the Micro-Integrator 3626132AN 

0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20
Lorenz With Micro Runge Kutta 4th Order With error control NA=1024 NresA=12 error=0.0054909

time in seconds

XA

(c) With the Micro-Integrator 1024AN 

Figure 5.1 x vs t for the Lorenz System.

 45

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10

15
Rossler Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.15861

time in seconds

XA

(a) Without the Micro-Integrator 2000AN 

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10

15
Rossler Without Micro by Simpsons Method, With error control NA=345984 NB=691968 err=0.005244

time in seconds

XA

(b) Without the Micro-Integrator 345984AN 

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10

15
Rossler With Micro 4th Order Runge Kutta Method With error control NA=1024 NresA=83 error=0.0047275

time in seconds

XA

(c) With the Micro-Integrator 1024AN 

Figure 5.2 x vs t for the Rossler System.

 46

0 1 2 3 4 5 6 7 8
-25

-20

-15

-10

-5

0

5

10

15

20

25
Chen Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.33582

time in seconds

XA

(a) Without the Micro-Integrator 2000AN 

0 1 2 3 4 5 6 7 8
-25

-20

-15

-10

-5

0

5

10

15

20

25
Chen Without Micro by Simpsons Method, With error control NA=1839110 NB=3678220 err=0.0047223

time in seconds

XA

(b) Without the Micro-Integrator 1839110AN 

0 1 2 3 4 5 6 7 8
-25

-20

-15

-10

-5

0

5

10

15

20

25
Chen With Micro 4th Order Runge Kutta Method With error control NA=1024 NresA=7 error=0.0049392

time in seconds

XA

(c) With the Micro-Integrator 1024AN 

Figure 5.3 x vs t for the Chen System.

 47

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Chua Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.247

time in seconds

XA

(a) Without the Micro-Integrator 2000AN 

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Chua Without Micro by Trapezoidal Method, With error control NA=80551 NB=161102 err=0.0049202

time in seconds

XA

(b) Without the Micro-Integrator 80551AN 

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Chua With Micro 4th Order Runge Kutta Method With error control NA=1024 NresA=59 error=0.0046367

time in seconds

XA

(c) With the Micro-Integrator 1024AN 

Figure 5.4 x vs t for the Chua System.

 48

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1

1.5

2

2.5
Hadley Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.3116

time in seconds

XA

(a) Without the Micro-Integrator 2000AN 

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1

1.5

2

2.5
Hadley Without Micro by Trapezoidal Method, With error control NA=1946160 NB=3892320 err=0.0053145

time in seconds

XA

(b) Without the Micro-Integrator 1946160AN 

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1

1.5

2

2.5
Hadley With Micro the 4th Order Runge Kutta Method With error control NA=1024 NresA=26 error=0.0047321

time in seconds

XA

(c) With the Micro-Integrator 1024AN 

Figure 5.5 x vs t for the Hadley System.

 49

0 10 20 30 40 50 60 70 80
-15

-10

-5

0

5

10

15
act Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.51269

time in seconds

XA

(a) Without the Micro-Integrator 2000AN 

0 10 20 30 40 50 60 70 80
-15

-10

-5

0

5

10

15
act Without Micro by Trapezoidal Method, With error control NA=2059814 NB=4119628 err=0.0052236

time in seconds

XA

(b) Without the Micro-Integrator 2059814AN 

0 10 20 30 40 50 60 70 80
-15

-10

-5

0

5

10

15
act With Micro by the 4th Order Runge Kutta Method With error control NA=1024 NresA=10 error=0.0054127

time in seconds

XA

(c) With the Micro-Integrator 1024AN 

Figure 5.6 x vs t for the ACT System.

 50

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

4
act Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.22066

time in seconds

XA

(a) Without the Micro-Integrator 2000AN 

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3
diffusionless Lorenz Without Micro by the Trapezoidal Method, With error control NA=633032 NB=1266064 err=0.0045953

time in seconds

XA

(b) Without the Micro-Integrator 633032AN 

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3
diffusionless Lorenz With Micro by the 4th Order Runge Kutta Method With error control NA=1024 NresA=5 error=0.0050742

time in seconds

XA

(c) With the Micro-Integrator 1024AN 

 Figure 5.7 x vs t for the Diffusionless Lorenz System.

 51

0 0.5 1 1.5 2 2.5 3 3.5
-20

-15

-10

-5

0

5

10

15

20

25
Chen Without Micro by Eulers Method, NA=2000 NB=4000 err=0.35001

time in seconds

XA

0 0.5 1 1.5 2 2.5 3 3.5
-20

-15

-10

-5

0

5

10

15

20

25
Chen Without Micro by Trapezoidal Method, NA=2000 NB=4000 err=0.075128

time in seconds

XA

0 0.5 1 1.5 2 2.5 3 3.5
-20

-15

-10

-5

0

5

10

15

20

25
Chen Without Micro by Simpson Method, NA=2000 NB=4000 err=0.016122

time in seconds

XA

0 0.5 1 1.5 2 2.5 3 3.5
-20

-15

-10

-5

0

5

10

15

20

25
Chen Without Micro by Runge Kutta Method, NA=2000 NB=4000 err=0.0018642

time in seconds

XA

(a) Using Euler's Method, 2000AN 

(b) Using the modified Euler's Method, 2000AN 

(c) Using Simpson's Method, 2000AN 

(d) Using Runge-Kutta's Method, 2000AN 

Figure 5.8 x vs. t for the Chen equations Without the Micro Integrator.

 52

Based on the results and expectations, A hierarchy could be drawn as follows; Euler,

modified Euler, Simpson, Runge-Kutta. This represents an order of increasing

complexity, and computational efficiency. A quick glance at this is presented in Figures

5.8a-d, from the graphs, the lag of the blue dotted line behind the green solid line shows

how computationally efficient that algorithm was in carrying out that integration. The

four integrations there were done for a specific value of the resolution parameter, yet

some of the results were much more accurate than the others, this is evidence that certain

numerical methods are more efficient than the others, and the hierarchy is correct.

5.5 Table Data Presented in Plots

5.5.1 Illustrating the Effectiveness of the Error Control Algorithms

 The effectiveness of the error control algorithm as shown in Table 5.10 are

represented graphically in Figures 5.9 and 5.10.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Actual error vs Set error for Lorenz; With and Without the Error Control Algorithm

Set Error Limit

A
c
tu

a
l
E

rr
o
r

Actual Error, Without the Error Control Algorithm

Actual Error, With the Error Control Algorithm

Ideal Error

Figure 5.9 Illustrating the Effectiveness of the Error Control Algorithm using the Lorenz

Equations.

 53

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Actual error vs Set error for Rossler; With and Without the Error Control Algorithm

Set Error Limit

A
c
tu

a
l
E

rr
o
r

Actual Error, Without the Error Control Algorithm

Actual Error, With the Error Control Algorithm

Ideal Error

Figure 5.10 Illustrating the Effectiveness of the Error Control Algorithm using the

Rossler Equations.

The pink line with diamond shaped points was obtained from plotting the errors achieved

without the error control algorithm versus the set error limit. The green line with asterix

points was obtained from plotting the errors achieved with the error control algorithm

versus the set error limit. The blue line with circle shaped points is an ideal reference

obtained by plotting the set error limits against each other.

5.5.2 The Performance Measures of the Chaotic Systems

 The Performance Measures of each of the chaotic systems as defined in Chapter 4

are represented graphically in this subsection. Figure 5.11 shows those for the Lorenz

Equations, Figure 5.12 shows those for the Rossler Equations, Figure 5.13 shows those

for the Chen Equations, Figure 5.14 shows those for the Chua Equations, Figure 5.15

shows those for the Hadley Equations, Figure 5.16 shows those for the ACT Equations;

and Figure 5.17 shows those for the Diffusionless Lorenz Equations.

 54

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Euler Modified Euler Simpson Runge Kutta

lo
g

1
0
 

Lorenz

Figure 5.11 Performance Measures of the Lorenz System.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Euler Modified Euler Simpson Runge Kutta

lo
g

1
0
 

Rossler

Figure 5.12 Performance Measures of the Rossler System.

 55

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Euler Modified Euler Simpson Runge Kutta

lo
g

1
0
 

Chen

 Figure 5.13 Performance Measures of the Chen System.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Euler Modified Euler Simpson Runge Kutta

lo
g

1
0
 

Chua

 Figure 5.14 Performance Measures of the Chua System.

 56

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Euler Modified Euler Simpson Runge Kutta

lo
g

1
0
 

Hadley

 Figure 5.15 Performance Measures of the Hadley System.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Euler Modified Euler Simpson Runge Kutta

lo
g

1
0
 

ACT

 Figure 5.16 Performance Measures of the ACT System.

 57

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Euler Modified Euler Simpson Runge Kutta

lo
g

1
0
 

DiffLorenz

Figure 5.17 Performance Measures of the Diffusionless Lorenz System.

5.5.3 Percentage Reduction in CPU time

 The percentage reduction in CPU time recorded for integrating all the chaotic

systems of Equations with and without the Micro-Integrator as represented by the data in

Tables 5.1 to 5.9 are shown graphically in Figure 5.18. The y axis is the percentage

reduction in CPU time, ordered by the numerical methods used. All the cases apart from

the Runge-Kutta showed reduction in CPU time with using the Micro-Integrator, while

the Runge-Kutta showed an increase.

5.5.4 The Performance Ratios

 The performance ratios obtained from integrating all the chaotic systems of

Equations for two different integration time frames by the Euler's method as represented

by Tables 5.8 and 5.9 are shown graphically in Figure 5.19. The y axis is the base ten

logarithm of each of the performance factors, and each of the chaotic systems are placed

on the x axis for comparism.

 58

0.5 1 1.5 2 2.5 3 3.5 4 4.5
-80

-60

-40

-20

0

20

40

60

80

 Euler Modified Euler Simpson Runge Kutta



Overall Percentage Reduction in CPU time for the Numerical Methods

Figure 5.18 Percentage Reduction in CPU time.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

 Lorenz Rossler Chen Chua Hadley ACT DiffLorenz

r

Ratio of the Performance Factors for two sets of Integration time windows

 Figure 5.19 Performance Ratios for the chaotic systems.

 59

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the results obtained, the advantages of the Micro-Integrator were visible and

have been quantified. In order to accurately gauge the differences in performances, an

error control algorithm was introduced during this research to limit the error to within a

certain percentage of a specified error limit. It was developed and used in the tests.

A performance factor was also introduced to quantify the advantages gained from

using the Micro-Integrator in terms of reduction in memory requirements. In at least 75%

of the cases, the performance factors exceeded a memory ratio of 1000. It was observed

that the numerical integration methods that were used in this research played a significant

role in the performance of the Micro-Integrator algorithm. The less computationally

efficient algorithms produced higher performance factors.

It was also noted that CPU times were affected by the selection of the numerical

integration algorithm, and the Micro-Integrator was very efficient in lowering CPU times.

The performance factors seemed to be influenced by the time windows for integration.

Higher time windows produced higher performance factors.

6.2 Future Work

 The Lyapunov coefficients for each of the chaotic systems showed some level of

correlation with the time windows for integration, which in turn influenced the Micro-

Integrator's performance factors. This would indirectly suggest that the Micro-Integrator's

performance factor has some dependence on the Lyapunov coefficients of the chaotic

systems. There are more investigations to be done here, possibly more advanced versions

of the Micro-Integrator algorithm would make it easier to explore this correlation. The

Micro-Integrator algorithm could be made more advanced than it currently is, for

instance, automatic selection of the conventional resolution parameter, alternate

structures to its current error control algorithm, tests with simpler error calculation

algorithms. More importantly, it could be applied to more sets of equations and put to use

in practical situations, to solve practical memory problems in real time simulations.

 60

References

[1] Benoit B. Mandelbrot, “Self-Similar Error Clusters in Communication Systems and

the Concept of Conditional Stationarity,” IEEE Transactions on Communications

Technology, vol. 13, Issue 1, pp 71-90, March 1965.

[2] Edward N. Lorenz, "Computational Chaos, a Prelude to Computational Instability,"

Physica D: Non-linear Phenomena, vol. 35, Issue 3, pp. 299-317, 1989.

[3] Douglas R. Hofstatder, "Strange Attractors: Mathematical Patterns delicately poised

between Order and Chaos," Scientific American, vol. 245, pp. 22-43, November

1981.

[4] R. J. Pieper, "Observations on Convergence Problems of Pipeline Networks" 30th

Southeastern Symposium on System Theory, Morgantown WV, pp. 39-42, March

1998.

[5] K. M. Cuomo, A. V. Oppenheim, “Synchronization of Lorenz-Based Chaotic

Circuits with Applications to Communications,” IEEE Transactions on Circuits and

Systems, vol. 40, pp. 626 – 633, October 1993.

[6] D. J. Blair, R. J. Pieper, “Observations on Message Transmission Using Rossler and

Lorenz Chaos Systems with PSpice and Matlab Models,” in Proceedings of the

Fortieth Southeastern Symposium on System Theory, New Orleans LA, pp. 69 – 73,

March 2008.

[7] R. J. Pieper, D. J. Blair, “A Practical Solution to the Numerical Butterfly Effect in

Chaotic Systems for Fast but Memory Limited Computers” 42
nd

 Southeastern

Symposium on System Theory, Tyler TX, pp. 335-339, March 2010.

[8] Joao Teixeira, Carolyn A. Reynolds, Kevin Judd, “Time Step Sensitivity of Non-

linear Atmospheric Models: Numerical Convergence, Truncation Error Growth, and

Ensemble Design,” Journal of the Atmospheric Sciences, vol. 64, pp. 175 – 189,

January 2007.

[9] Lun-Shin Yao, “Computed Chaos or Numerical Errors”, Non-linear Analysis:

Modelling and Control, vol. 15, No.1, pp. 109-126, 2010.

[10] Shouliang Bu, “Quantum trajectory of an individual particle in the presence of

chaos”, Physica D: Non-linear Phenomena, vol. 217, Issue 2, 15, pp. 103-106, May

2006.

[11] T. M. Fromhold , P. B. Wilkinson, P. M. Martin, A. Thornton, L. Eaves, F. W.

Sheard, P. C. Main, M. Henini “Chaos in quantum wells and analogous optical

systems”, Physica E: Low-dimensional Systems and Nanostructures, vol. 11, Issue

2-3, pp. 114-117, October 2001.

http://www.sciencedirect.com/science/journal/13869477

 61

[12] I.V. Gornyia, A.D. Mirlina, “Wave function correlations on the ballistic scale: from

quantum disorder to quantum chaos”, Physica E: Low-dimensional Systems and

Nanostructures, vol. 12, Issues 1-4, pp. 845-848, January 2002.

[13] Jonathan N. Blakely, Ned J. Corron, Shawn D. Pethel, “Equivalence of the

continuum limit of the generalized Rossler system and the chaotic transmission line

oscillator”, Physica D: Non-linear Phenomena, vol. 207, Issues 3-4, pp. 161-170,

August 2005.

[14] Stephen R. Addison, John E. Gray, “Chaos and Encryption, Problems and Potential”,

38th Southeastern Symposium on System Theory, Cookeville TN, pp. 275-279,

March 2006.

[15] Zhu Yu, Zhou Zhe, Yang Haibing, Pan Wenjie, Zhang Yunpeng, “A Chaos-Based

Image Encryption Algorithm Using Wavelet Transform”, 2
nd

 International Congress

on Image and Signal Processing, Shenyang China, pp. 1-5, October 2009.

[16] Shuo Zhang，Ruhua Cai, Yingchun Jiang, Shiping Guo,”An Image Encryption

Algorithm Based on Multiple Chaos and Wavelet Transform”, International

Congress on Image and Signal Processing, Tianjin China, pp. 1-5, October 2009.

[17] Shu-Mei Guo, Wen-Hsin Chang a, Jason S.-H. Tsai, Bo-Liang Zhuang, Li-Chun

Chen, “JPEG 2000 wavelet filter design framework with chaos evolutionary

programming”, Signal Processing Archive, Amsterdam Netherlands, vol. 88 Issue

10, pp 2542-2553, October 2008.

[18] Wang Juan, “Image Encryption Algorithm Based on 2-D Wavelet Transform and

Chaos Sequences”, International Conference on Computational Intelligence and

Software Engineering, Wuhan China, pp. 1-3, December 2009.

[19] John E. Gray and Stephen R. Addison, “Symbolic Noise, Signal Processing, and

Signal Enhancement by the use of Chaos”, 38th Southeastern Symposium on System

Theory, Cookeville TN, pp. 417-421, March 2006.

[20] Leon O. Chua and Rabinder N. Madan, “Sights and sounds of chaos”, IEEE

Circuits and Devices Magazine, vol.4, pp. 3-13, January 1988.

[21] J. C. Sprott, "Simple Chaotic Systems and circuits," American Journal of Physics,

vol. 68, Issue 8, pp. 758-763, 2000.

[22] R. Newcomb and S. Sathyan, "An RC op amp chaos generator," IEEE Transactions

on Circuits and Systems, vol.30, no.1, pp. 54- 56, January 1983.

[23] Edward N. Lorenz, "Deterministic Nonperiodic Flow," Journal of Atmospheric

Sciences, vol.20, pp130-141, 1963.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362500

 62

[24] O. E. Rossler, "An Equation for Continuous Chaos," Physics Letters, vol. 57A, pp.

397-398, 1976.

[25] G. Chen and T. Ueta, "Yet Another Chaotic Attractor," International Journal of

Bifurcation and Chaos, vol.9, pp.1465, 1999.

[26] Leon O. Chua; T. Matsumoto; and M. Komuro, "The Double Scroll," IEEE

Transactions on Circuits and Systems, vol. 33, pp. 798-818, August 1985.

[27] Edward N. Lorenz, "Irregularity: A Fundamental Property of the Atmosphere,"

Tellus vol. 36A, pp. 98-110, 1984.

[28] A. Arneodo; P. Coullet; and C. Tresser, "A Possible New Mechanism for the Onset

of Turbulence," Physics Letters A, vol. 81, pp 197-201, 1981.

[29] G. Van Der Schrier and L. R. M. Maas, "The Diffusionless Lorenz Equations;

Shilnikov bifurications and reduction to an explicit map" Physica D, vol.141, pp19-

36, 2000.

[30] Kaiser S. Kunz, “Numerical Analysis”, McGraw-Hill, New York, 1957.

[31] Julien Clinton Sprott, "Chaos and Time-Series Analysis," Oxford University Press,

New York, 2003.

[32] Steven C. Chapra; Raymond P. Canale; "Numerical Methods for Engineers"

McGraw-Hill, New York, 2010.

[33] Daniel J. Blair; "Observations on Modeling Chaotic Circuits and Systems with

Applications to Secure Communications," Master of Engineering Project Report,

University of Texas at Tyler, Department of Electrical Engineering, April 2008.

[34] Warwick Tucker, “Computing Accurate Poincaré Maps,” Physica D, vol.171, pp

127- 137, 2002.

 63

Appendix A: Interpolation Algorithm

The interpolation algorithm as depicted in Figures A.1 to A.3, was executed in a

Matlab code. Figures A.1 and A.2 are alternate graphical representations of the

procedure, and Figure A.3 is its algorithm in a flow chart. It is designed to increment

lower size arrays to match higher ones for better comparison. It uses the basic

interpolation rule, it calculates the slope and multiplies it to the differential time interval

under consideration and adds this product to the current value to find the next value. All

the parameters here are the same as defined in the thesis, and
iAx represents the

interpolated array of Ax .

Figure A.1 Graphical representation of the Interpolation concept.

Figure A.2 Alternate Graphical representation of the Interpolation concept.

 64

Figure A.3 The Interpolation algorithm.

 65

Appendix B: The Matlab Codes

 There were many Matlab codes used in this research, covering in excess of 300

pages. For ease of documentation, only those used to integrate the Lorenz Equations were

included in this Appendix.

Appendix B-1: Lorenz Equations by Euler's Method without the Micro-Integrator

%%%

%%
%This Program uses the Eulers Method to solve the Lorenz Non-linear

Chaotic Partial Differential Equation Set%
%%%

%%
clc;
clear all;
close all;
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=20; %upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%
y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx1=(10*y(i)-10*x(i))*dt;
 dy1=(28*x(i)-y(i)-x(i)*z(i))*dt;
 dz1=(x(i)*y(i)-8*z(i)/3)*dt;
% dx=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt;
% dy=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+0.5*dx1)*(z(i)+(0.5*dz1)))*dt;
% dz=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt;
 x(i+1)=x(i)+dx1;y(i+1)=y(i)+dy1;z(i+1)=z(i)+dz1;
end;
%plot of 2-D poincare map%
figure(1)
plot(x,y)
title('2D Poincare Map - Lorenz Without Micro - Eulers Method')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%
figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz Without Micro - Eulers Method')

 66

Appendix B (Continued)

xlabel('x')
ylabel('y')
zlabel('z')
grid
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=8.1; %upper time limit%
NVectA=[1000,2000,4000]; %Matrix of NA values%
NVectB=2*NVectA; %Matrix of NB values%
%Loop to use all values in the NA and NB matrices%
for k = 1:3;
 NA=NVectA(k);%Selecting NA from the matrix%
 NB=NVectB(k);%Selecting NB from the matrix%
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%
 xA=1:NA; %Primitive xA array%
 yA=1:NA; %Primitive yA array%
 zA=1:NA; %Primitive zA array%
 xB=1:NB; %Primitive xB array%
 yB=1:NB; %Primitive yB array%
 zB=1:NB; %Primitive zB array%
 dtA=(tf-ti)/NA;%time step A%
 dtB=(tf-ti)/NB;%time step B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%
 zA(1)=zi; %allocating initial values%
 starttime=cputime;
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA;
% dxA=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA;
% dyA=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+0.5*dxA1)*(zA(i)+(0.5*dzA1)))*dtA;
% dzA=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA;
 xA(i+1)=xA(i)+dxA1;yA(i+1)=yA(i)+dyA1;zA(i+1)=zA(i)+dzA1;
end;
 finishtime=cputime;usedtime=cputime-starttime;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integration%
 dxB1=(10*yB(i)-10*xB(i))*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB;
% dxB=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB;
% dyB=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+0.5*dxB1)*(zB(i)+(0.5*dzB1)))*dtB;

 67

Appendix B (Continued)

% dzB=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB;
xB(i+1)=xB(i)+dxB1;yB(i+1)=yB(i)+dyB1;zB(i+1)=zB(i)+dzB1;
end;
XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
%Plotting for the first set of NA and NB values from the input

Matrices%
if k==1 ;
 figure (3)
 plot(tA, xA, tB,xB)
 title(['Lorenz Without Micro by Eulers Method, NA=', num2str(NA), '

NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
end
%Plotting for the second set of NA and NB values from the input

Matrices%
if k==2 ;
 figure (4)
 plot(tA,xA,'g',tB,xB,'r')
 title(['Lorenz Without Micro by Eulers Method, NA=', num2str(NA), '

NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
end
%Plotting for the third set of NA and NB values from the input

Matrices%
 if k==3 ;
 figure (5)
 plot(tA,xA,tB,xB)
 title(['Lorenz Without Micro by Eulers Method, NA=', num2str(NA), '

NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
 end
end
start=cputime;
%Re-Computing with the error limit%
NA=10000;E=0.005;stpp=1;
devEper=10;flucperNA=15;
mark=0;devE=devEper*0.01;
flucNA=flucperNA*0.01;
KLoop=1;KLoopMax=40;
while abs(stpp)>devE ; NB=2*NA;
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%
 xA=1:NA;%Primitive xA array%
 yA=1:NA;%Primitive yA array%

 68

Appendix B (Continued)

 zA=1:NA;%Primitive zA array%
 xB=1:NB;%Primitive xB array%
 yB=1:NB;%Primitive yB array%
 zB=1:NB;%Primitive zB array%
 dtA=(tf-ti)/NA;%increment A%
 dtB=(tf-ti)/NB;%increment B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%
 zA(1)=zi; %allocating initial values%
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA;
% dxA=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA;
% dyA=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+0.5*dxA1)*(zA(i)+(0.5*dzA1)))*dtA;
% dzA=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA;
 xA(i+1)=xA(i)+dxA1;yA(i+1)=yA(i)+dyA1;zA(i+1)=zA(i)+dzA1;
end;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integration%
 dxB1=(10*yB(i)-10*xB(i))*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB;
% dxB=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB;
% dyB=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+0.5*dxB1)*(zB(i)+(0.5*dzB1)))*dtB;
% dzB=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB;
 xB(i+1)=xB(i)+dxB1;yB(i+1)=yB(i)+dyB1;zB(i+1)=zB(i)+dzB1;
end;
XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
stpp=(err-E)/E;

if stpp<0; % this implies the error is less than specification E
 if mark==0 % preset value needs to change to serve as flag error

specification crossed
 mark=1; % one time here
 end
 if abs(stpp)> devE; % in which case the measured deviation is

greater than specificied error deviation
 NA=fix(NA-flucNA*NA); % decreasing NA should lower measured

error getting it closer to E
 end;
end
 if stpp>0;% this implies the error is lgreater than specification E

 69

Appendix B (Continued)

 if mark==0; % Check if flag has not been set to use NA increse

rule on fast track
 if abs(stpp)> devE; % only want ot increase NA if measured

deviaiton is greater than specified
 %NA=NA+ fix(NA/log(NA));
 NA=fix(1.5*NA);

 end

 end
 if mark ==1 ;%
 if abs(stpp)> devE; % error is greater than apecified and flag

has been set to stop rapid increase NA
 NA=fix(NA+flucNA*NA);
 end
 end
end
KLoop=KLoop+1;
Kloop=KLoop-1
if KLoop == KLoopMax
 stop
end

end; % end on while condition based on abs(stpp)> devE;
figure (6)
 plot(tA, xA, tB,xB)
 title(['Lorenz Without Micro by Eulers Method, With error control

NA=', num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid

cputime=cputime-start
epsilon=err

Appendix: B-2: Lorenz Equations by the Modified Euler's Method without the

Micro-Integrator

%%%

%%%

%
%This Program uses the Modified Euler Method to solve the Lorenz Non-

linear Chaotic Partial Differential Equation Set without the Micro-

Integrator%
%%%

%%%

%
clc;
clear all;
close all;
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%

 70

Appendix B (Continued)

zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=22; %upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%

y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx1=(10*y(i)-10*x(i))*dt;
 dy1=(28*x(i)-y(i)-x(i)*z(i))*dt;
 dz1=(x(i)*y(i)-8*z(i)/3)*dt;
 dx2=(10*(y(i)+dy1)-10*(x(i)+dx1))*dt;
 dy2=(28*(x(i)+dx1)-(y(i)+dy1)-(x(i)+dx1)*(z(i)+dz1))*dt;
 dz2=((x(i)+dx1)*(y(i)+dy1)-8*(z(i)+dz1)/3)*dt;
 dx=0.5*(dx1+dx2);
 dy=0.5*(dy1+dy2);
 dz=0.5*(dz1+dz2);
 x(i+1)=x(i)+dx;
 y(i+1)=y(i)+dy;
 z(i+1)=z(i)+dz;
end;
%plot of 2-D poincare map%
figure(1)
plot(x,y)
title('2D Poincare Map - Lorenz Without Micro - Modified Euler')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%
figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz Without Micro - Modified Euler')
xlabel('x')
ylabel('y')
zlabel('z')
grid
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=22; %upper time limit%
NVectA=[1000,2000,4000]; %Matrix of NA values%
NVectB=2*NVectA; %Matrix of NB values%
%Loop to use all values in the NA and NB matrices%
for k = 1:3;
 NA=NVectA(k);%Selecting NA from the matrix%
 NB=NVectB(k);%Selecting NB from the matrix%
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%

 71

Appendix B (Continued)

 xA=1:NA; %Primitive xA array%
 yA=1:NA; %Primitive yA array%
 zA=1:NA; %Primitive zA array%

 xB=1:NB; %Primitive xB array%
 yB=1:NB; %Primitive yB array%
 zB=1:NB; %Primitive zB array%
 dtA=(tf-ti)/NA;%time step A%
 dtB=(tf-ti)/NB;%time step B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%

 zA(1)=zi; %allocating initial values%
 starttime=cputime;
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA;
 dxA2=(10*(yA(i)+dyA1)-10*(xA(i)+dxA1))*dtA;
 dyA2=(28*(xA(i)+dxA1)-(yA(i)+dyA1)-(xA(i)+dxA1)*(zA(i)+dzA1))*dtA;
 dzA2=((xA(i)+dxA1)*(yA(i)+dyA1)-8*(zA(i)+dzA1)/3)*dtA;
 dxA=0.5*(dxA1+dxA2);
 dyA=0.5*(dyA1+dyA2);
 dzA=0.5*(dzA1+dzA2);
 xA(i+1)=xA(i)+dxA;
 yA(i+1)=yA(i)+dyA;
 zA(i+1)=zA(i)+dzA;
end;
 finishtime=cputime;usedtime=finishtime-starttime;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integration%
 dxB1=(10*yB(i)-10*xB(i))*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB;
 dxB2=(10*(yB(i)+dyB1)-10*(xB(i)+dxB1))*dtB;
 dyB2=(28*(xB(i)+dxB1)-(yB(i)+dyB1)-(xB(i)+dxB1)*(zB(i)+dzB1))*dtB;
 dzB2=((xB(i)+dxB1)*(yB(i)+dyB1)-8*(zB(i)+dzB1)/3)*dtB;
 dxB=0.5*(dxB1+dxB2);
 dyB=0.5*(dyB1+dyB2);
 dzB=0.5*(dzB1+dzB2);
 xB(i+1)=xB(i)+dxB;
 yB(i+1)=yB(i)+dyB;
 zB(i+1)=zB(i)+dzB;
end;
XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
%Plotting for the first set of NA and NB values from the input

Matrices%
if k==1 ;
 figure (3)

 72

Appendix B (Continued)

 plot(tA, xA, tB,xB)
 title(['Lorenz Without Micro by Modified Euler Method, NA=',

num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
end
%Plotting for the second set of NA and NB values from the input

Matrices%
if k==2 ;
 figure (4)

 plot(tA,xA,'m--',tB,xB)
 title(['Lorenz Without Micro by Modified Euler Method, NA=',

num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 legend('integration time step=0.011','integration time step=

0.0055')
 ylabel('XA')
 grid
end
%Plotting for the third set of NA and NB values from the input

Matrices%
 if k==3 ;
 figure (5)
 plot(tA,xA,tB,xB)
 title(['Lorenz Without Micro by Modified Euler Method, NA=',

num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err),'

cputime=', num2str(usedtime),'s']);
 xlabel('time in seconds')
 ylabel('XA')
 grid
 end
end
start=cputime;
%Re-Computing with the error limit%
NA=10000;E=0.005;stpp=1;
devEper=10;flucperNA=30;
mark=0;devE=devEper*0.01;
flucNA=flucperNA*0.01;
KLoop=1;KLoopMax=40;
while abs(stpp) > devE ;
 NB=2*NA;
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%
 xA=1:NA;%Primitive xA array%
 yA=1:NA;%Primitive yA array%
 zA=1:NA;%Primitive zA array%
 xB=1:NB;%Primitive xB array%
 yB=1:NB;%Primitive yB array%
 zB=1:NB;%Primitive zB array%
 dtA=(tf-ti)/NA;%increment A%
 dtB=(tf-ti)/NB;%increment B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%

 73

Appendix B (Continued)

 zA(1)=zi; %allocating initial values%
 starttime1=cputime;
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA;
 dxA2=(10*(yA(i)+dyA1)-10*(xA(i)+dxA1))*dtA;
 dyA2=(28*(xA(i)+dxA1)-(yA(i)+dyA1)-(xA(i)+dxA1)*(zA(i)+dzA1))*dtA;
 dzA2=((xA(i)+dxA1)*(yA(i)+dyA1)-8*(zA(i)+dzA1)/3)*dtA;
 dxA=0.5*(dxA1+dxA2);

 dyA=0.5*(dyA1+dyA2);
 dzA=0.5*(dzA1+dzA2);
 xA(i+1)=xA(i)+dxA;
 yA(i+1)=yA(i)+dyA;
 zA(i+1)=zA(i)+dzA;
end;
 finishtime1=cputime;
 usedtime1=finishtime1-starttime1;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integration%
 dxB1=(10*yB(i)-10*xB(i))*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB;
 dxB2=(10*(yB(i)+dyB1)-10*(xB(i)+dxB1))*dtB;
 dyB2=(28*(xB(i)+dxB1)-(yB(i)+dyB1)-(xB(i)+dxB1)*(zB(i)+dzB1))*dtB;
 dzB2=((xB(i)+dxB1)*(yB(i)+dyB1)-8*(zB(i)+dzB1)/3)*dtB;
 dxB=0.5*(dxB1+dxB2);
 dyB=0.5*(dyB1+dyB2);
 dzB=0.5*(dzB1+dzB2);
 xB(i+1)=xB(i)+dxB;
 yB(i+1)=yB(i)+dyB;
 zB(i+1)=zB(i)+dzB;
end;
XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
stpp=(err-E)/E;

if stpp<0; % this implies the error is less than specification E
 if mark==0 % preset value needs to change to serve as flag error

specification crossed
 mark=1; % one time here
 end
 if abs(stpp)> devE; % in which case the measured deviation is

greater than specificied error deviation
 NA=fix(NA-flucNA*NA); % decreasing NA should lower measured

error getting it closer to E
 end;
end

 74

Appendix B (Continued)

if stpp>0;% this implies the error is lgreater than specification E
 if mark==0; % Check if flag has not been set to use NA increse

rule on fast track
 if abs(stpp)> devE; % only want ot increase NA if measured

deviaiton is greater than specified
 %NA=NA+ fix(NA/log(NA));
 NA=fix(1.5*NA);
 end

 end
 if mark ==1 ;%

 if abs(stpp)> devE; % error is greater than apecified and flag

has been set to stop rapid increase NA
 NA=fix(NA+flucNA*NA);
 end
 end
end
KLoop=KLoop+1;
Kloop=KLoop-1
if KLoop == KLoopMax
 stop
end

end; % end on while condition based on abs(stpp)> devE;
figure (6)
 plot(tA, xA,'--', tB,xB)
 title(['Lorenz Without Micro by Modified Euler Method, With error

control NA=', num2str(NA), ' NB=',num2str(NB), ' err=',

num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid

cputime=cputime-start
epsilon=err

Appendix B-3: Lorenz Equations by Simpson's Method without the Micro-

Integrator

%%%

%%%
%This Program uses the Simpson's Method to solve the Lorenz Non-linear

Chaotic Partial Differential Equation Set With The Micro-Integrator%
%%%

%%%
clc
clear all
close all
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%

 75

Appendix B (Continued)

ti=0; %lower time limit%

tf=20; %upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%
y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx1=(10*y(i)-10*x(i))*0.5*dt;
 dy1=(28*x(i)-y(i)-x(i)*z(i))*0.5*dt;

 dz1=(x(i)*y(i)-8*z(i)/3)*0.5*dt;
 xhf=x(i)+dx1;
 yhf=y(i)+dy1;
 zhf=z(i)+dz1;
 dx2=(10*yhf-10*xhf)*0.5*dt;
 dy2=(28*xhf-yhf-xhf*zhf)*0.5*dt;
 dz2=(xhf*yhf-8*zhf/3)*0.5*dt;
 xfl=xhf+dx2;
 yfl=yhf+dy2;
 zfl=zhf+dz2;
 dx3=(10*yfl-10*xfl)*0.5*dt;
 dy3=(28*xfl-yfl-xfl*zfl)*0.5*dt;
 dz3=(xfl*yfl-8*zfl/3)*0.5*dt;
 dx=(1/3)*(dx1+(4*dx2)+dx3);
 dy=(1/3)*(dy1+(4*dy2)+dy3);
 dz=(1/3)*(dz1+(4*dz2)+dz3);
 x(i+1)=x(i)+dx;
 y(i+1)=y(i)+dy;
 z(i+1)=z(i)+dz;
end;
%plot of 2-D poincare map%
figure(1)
plot(x,y)
title('Poincare Map - Lorenz Without Micro - Simpson')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%
figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz Without Micro - Simpson')
xlabel('x')
ylabel('y')
zlabel('z')
grid
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=22; %upper time limit%

 76

Appendix B (Continued)

NVectA=[1000,2000,4000]; %Matrix of NA values%
NVectB=2*NVectA; %Matrix of NB values%
%Loop to use all values in the NA and NB matrices%
for k = 1:3;
 NA=NVectA(k);%Selecting NA from the matrix%
 NB=NVectB(k);%Selecting NB from the matrix%
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%
 xA=1:NA; %Primitive xA array%
 yA=1:NA; %Primitive yA array%
 zA=1:NA; %Primitive zA array%
 xB=1:NB; %Primitive xB array%
 yB=1:NB; %Primitive yB array%
 zB=1:NB; %Primitive zB array%
 dtA=(tf-ti)/NA;%time step A%

 dtB=(tf-ti)/NB;%time step B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%
 zA(1)=zi; %allocating initial values%
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*0.5*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*0.5*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*0.5*dtA;
 xAhf=xA(i)+dxA1;
 yAhf=yA(i)+dyA1;
 zAhf=zA(i)+dzA1;
 dxA2=(10*yAhf-10*xAhf)*0.5*dtA;
 dyA2=(28*xAhf-yAhf-xAhf*zAhf)*0.5*dtA;
 dzA2=(xAhf*yAhf-8*zAhf/3)*0.5*dtA;
 xAfl=xAhf+dxA2;
 yAfl=yAhf+dyA2;
 zAfl=zAhf+dzA2;
 dxA3=(10*yAfl-10*xAfl)*0.5*dtA;
 dyA3=(28*xAfl-yAfl-xAfl*zAfl)*0.5*dtA;
 dzA3=(xAfl*yAfl-8*zAfl/3)*0.5*dtA;
 dxA=(1/3)*(dxA1+(4*dxA2)+dxA3);
 dyA=(1/3)*(dyA1+(4*dyA2)+dyA3);
 dzA=(1/3)*(dzA1+(4*dzA2)+dzA3);
 xA(i+1)=xA(i)+dxA;
 yA(i+1)=yA(i)+dyA;
 zA(i+1)=zA(i)+dzA;
end;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integration%
 dxB1=(10*yB(i)-10*xB(i))*0.5*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*0.5*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*0.5*dtB;
 xBhf=xB(i)+dxB1;
 yBhf=yB(i)+dyB1;
 zBhf=zB(i)+dzB1;

 77

Appendix B (Continued)

 dxB2=(10*yBhf-10*xBhf)*0.5*dtB;
 dyB2=(28*xBhf-yBhf-xBhf*zBhf)*0.5*dtB;
 dzB2=(xBhf*yBhf-8*zBhf/3)*0.5*dtB;
 xBfl=xBhf+dxB2;
 yBfl=yBhf+dyB2;
 zBfl=zBhf+dzB2;
 dxB3=(10*yBfl-10*xBfl)*0.5*dtB;
 dyB3=(28*xBfl-yBfl-xBfl*zBfl)*0.5*dtB;
 dzB3=(xBfl*yBfl-8*zBfl/3)*0.5*dtB;
 dxB=(1/3)*(dxB1+(4*dxB2)+dxB3);
 dyB=(1/3)*(dyB1+(4*dyB2)+dyB3);
 dzB=(1/3)*(dzB1+(4*dzB2)+dzB3);
 xB(i+1)=xB(i)+dxB;
 yB(i+1)=yB(i)+dyB;
 zB(i+1)=zB(i)+dzB;
end;

XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
%Plotting for the first set of NA and NB values from the input

Matrices%
if k==1 ;
 figure (3)
 plot(tA, xA, tB,xB)
 title(['Lorenz Without Micro by Simpsons Method, NA=', num2str(NA),

' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
end
%Plotting for the second set of NA and NB values from the input

Matrices%
if k==2 ;
 figure (4)
 plot(tA,xA,'--',tB,xB)
 title(['Lorenz Without Micro by Simpsons Method, NA=', num2str(NA),

' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
end
%Plotting for the third set of NA and NB values from the input

Matrices%
 if k==3 ;
 figure (5)
 plot(tA,xA,tB,xB)
 title(['Lorenz Without Micro by Simpsons Method, NA=', num2str(NA),

' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
 end
end

 78

Appendix B (Continued)

start=cputime;
%Re-Computing with the error limit%
NA=10000;E=0.005;stpp=1;
devEper=10;flucperNA=30;
mark=0;devE=devEper*0.01;
flucNA=flucperNA*0.01;
KLoop=1;KLoopMax=40;
while abs(stpp) > devE ;
 NB=2*NA;
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%
 xA=1:NA;%Primitive xA array%
 yA=1:NA;%Primitive yA array%
 zA=1:NA;%Primitive zA array%
 xB=1:NB;%Primitive xB array%
 yB=1:NB;%Primitive yB array%
 zB=1:NB;%Primitive zB array%

 dtA=(tf-ti)/NA;%increment A%
 dtB=(tf-ti)/NB;%increment B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%
 zA(1)=zi; %allocating initial values%
 starttime1=cputime;
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*0.5*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*0.5*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*0.5*dtA;
 xAhf=xA(i)+dxA1;
 yAhf=yA(i)+dyA1;
 zAhf=zA(i)+dzA1;
 dxA2=(10*yAhf-10*xAhf)*0.5*dtA;
 dyA2=(28*xAhf-yAhf-xAhf*zAhf)*0.5*dtA;
 dzA2=(xAhf*yAhf-8*zAhf/3)*0.5*dtA;
 xAfl=xAhf+dxA2;
 yAfl=yAhf+dyA2;
 zAfl=zAhf+dzA2;
 dxA3=(10*yAfl-10*xAfl)*0.5*dtA;
 dyA3=(28*xAfl-yAfl-xAfl*zAfl)*0.5*dtA;
 dzA3=(xAfl*yAfl-8*zAfl/3)*0.5*dtA;
 dxA=(1/3)*(dxA1+(4*dxA2)+dxA3);
 dyA=(1/3)*(dyA1+(4*dyA2)+dyA3);
 dzA=(1/3)*(dzA1+(4*dzA2)+dzA3);
 xA(i+1)=xA(i)+dxA;
 yA(i+1)=yA(i)+dyA;
 zA(i+1)=zA(i)+dzA;
end;
 finishtime1=cputime;
 usedtime1=finishtime1-starttime1;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integration%

 79

Appendix B (Continued)

 dxB1=(10*yB(i)-10*xB(i))*0.5*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*0.5*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*0.5*dtB;
 xBhf=xB(i)+dxB1;
 yBhf=yB(i)+dyB1;
 zBhf=zB(i)+dzB1;
 dxB2=(10*yBhf-10*xBhf)*0.5*dtB;
 dyB2=(28*xBhf-yBhf-xBhf*zBhf)*0.5*dtB;
 dzB2=(xBhf*yBhf-8*zBhf/3)*0.5*dtB;
 xBfl=xBhf+dxB2;
 yBfl=yBhf+dyB2;
 zBfl=zBhf+dzB2;
 dxB3=(10*yBfl-10*xBfl)*0.5*dtB;
 dyB3=(28*xBfl-yBfl-xBfl*zBfl)*0.5*dtB;
 dzB3=(xBfl*yBfl-8*zBfl/3)*0.5*dtB;
 dxB=(1/3)*(dxB1+(4*dxB2)+dxB3);
 dyB=(1/3)*(dyB1+(4*dyB2)+dyB3);
 dzB=(1/3)*(dzB1+(4*dzB2)+dzB3);

 xB(i+1)=xB(i)+dxB;
 yB(i+1)=yB(i)+dyB;
 zB(i+1)=zB(i)+dzB;
end;
XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
stpp=(err-E)/E;
%Plot for the correct Error Limit%

if stpp<0; % this implies the error is less than specification E
 if mark==0 % preset value needs to change to serve as flag error

specification crossed
 mark=1; % one time here
 end
 if abs(stpp)> devE; % in which case the measured deviation is

greater than specificied error deviation
 NA=fix(NA-flucNA*NA); % decreasing NA should lower measured

error getting it closer to E
 end;
end
if stpp>0;% this implies the error is lgreater than specification E
 if mark==0; % Check if flag has not been set to use NA increse

rule on fast track
 if abs(stpp)> devE; % only want ot increase NA if measured

deviaiton is greater than specified
 %NA=NA+ fix(NA/log(NA));
 NA=fix(1.5*NA);
 end
 end
 if mark ==1 ;%
 if abs(stpp)> devE; % error is greater than apecified and flag

has been set to stop rapid increase NA
 NA=fix(NA+flucNA*NA);
 end

 80

Appendix B (Continued)

 end
end
KLoop=KLoop+1;
Kloop=KLoop-1
if KLoop == KLoopMax
 stop
end

end; % end on while condition based on abs(stpp)> devE;
figure (6)
 plot(tA, xA, tB,xB)
 title(['Lorenz Without Micro by Simpsons Method, With error control

NA=', num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
cputime=cputime-start
epsilon=err

Appendix B-4: Lorenz Equations by Runge-Kutta's Method without the Micro-

Integrator

%%%

%%%
%This Program uses the 4th Order Runge-Kutta Method to solve the Lorenz

Non-linear Chaotic Partial Differential Equation Set%
%%%

%%%
clc;
clear all;
close all;
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=20; %upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%
y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx1=(10*y(i)-10*x(i))*dt;
 dy1=(28*x(i)-y(i)-x(i)*z(i))*dt;
 dz1=(x(i)*y(i)-8*z(i)/3)*dt;
 dx2=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt;

 81

Appendix B (Continued)

 dy2=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+(0.5*dx1))*(z(i)+(0.5*dz1)))*dt;
 dz2=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt;
 dx3=(10*(y(i)+(0.5*dy2))-10*(x(i)+(0.5*dx2)))*dt;
 dy3=(28*(x(i)+(0.5*dx2))-(y(i)+(0.5*dy2))-

(x(i)+(0.5*dx2))*(z(i)+(0.5*dz2)))*dt;
 dz3=((x(i)+(0.5*dx2))*(y(i)+(0.5*dy2))-8*(z(i)+(0.5*dz2))/3)*dt;
 dx4=(10*(y(i)+(dy3))-10*(x(i)+(dx3)))*dt;
 dy4=(28*(x(i)+(dx3))-(y(i)+(dy3))-(x(i)+(dx3))*(z(i)+(dz3)))*dt;
 dz4=((x(i)+(dx3))*(y(i)+(dy3))-8*(z(i)+(dz3))/3)*dt;
 dx=(1/6)*(dx1+2*(dx2+dx3)+dx4);
 dy=(1/6)*(dy1+2*(dy2+dy3)+dy4);
 dz=(1/6)*(dz1+2*(dz2+dz3)+dz4);
 x(i+1)=x(i)+dx;
 y(i+1)=y(i)+dy;
 z(i+1)=z(i)+dz;
end;
%plot of 2-D poincare map%
figure(1)
plot(x,y)
title('1D Poincare Map - Lorenz Without Micro - Runge-Kutta')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%

figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz Without Micro - Runge-Kutta')
xlabel('x')
ylabel('y')
zlabel('z')
grid
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=22; %upper time limit%
NVectA=[1000,2000,4000]; %Matrix of NA values%
NVectB=2*NVectA; %Matrix of NB values%
for k = 1:3;
 NA=NVectA(k);%Selecting NA from the matrix%
 NB=NVectB(k);%Selecting NB from the matrix%
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%
 xA=1:NA; %Primitive xA array%
 yA=1:NA; %Primitive yA array%
 zA=1:NA; %Primitive zA array%
 xB=1:NB; %Primitive xB array%
 yB=1:NB; %Primitive yB array%
 zB=1:NB; %Primitive zB array%
 dtA=(tf-ti)/NA;%time step A%
 dtB=(tf-ti)/NB;%time step B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%

 82

Appendix B (Continued)

 zA(1)=zi; %allocating initial values%
 starttime=cputime;
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA;
 dxA2=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA;
 dyA2=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+(0.5*dxA1))*(zA(i)+(0.5*dzA1)))*dtA;
 dzA2=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA;
 dxA3=(10*(yA(i)+(0.5*dyA2))-10*(xA(i)+(0.5*dxA2)))*dtA;
 dyA3=(28*(xA(i)+(0.5*dxA2))-(yA(i)+(0.5*dyA2))-

(xA(i)+(0.5*dxA2))*(zA(i)+(0.5*dzA2)))*dtA;
 dzA3=((xA(i)+(0.5*dxA2))*(yA(i)+(0.5*dyA2))-

8*(zA(i)+(0.5*dzA2))/3)*dtA;
 dxA4=(10*(yA(i)+(dyA3))-10*(xA(i)+(dxA3)))*dtA;
 dyA4=(28*(xA(i)+(dxA3))-(yA(i)+(dyA3))-

(xA(i)+(dxA3))*(zA(i)+(dzA3)))*dtA;
 dzA4=((xA(i)+(dxA3))*(yA(i)+(dyA3))-8*(zA(i)+(dzA3))/3)*dtA;
 dxA=(1/6)*(dxA1+2*(dxA2+dxA3)+dxA4);
 dyA=(1/6)*(dyA1+2*(dyA2+dyA3)+dyA4);
 dzA=(1/6)*(dzA1+2*(dzA2+dzA3)+dzA4);
 xA(i+1)=xA(i)+dxA;
 yA(i+1)=yA(i)+dyA;

 zA(i+1)=zA(i)+dzA;
end;
 finishtime=cputime;usedtime=finishtime-starttime;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integrator%
 dxB1=(10*yB(i)-10*xB(i))*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB;
 dxB2=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB;
 dyB2=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+(0.5*dxB1))*(zB(i)+(0.5*dzB1)))*dtB;
 dzB2=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB;
 dxB3=(10*(yB(i)+(0.5*dyB2))-10*(xB(i)+(0.5*dxB2)))*dtB;
 dyB3=(28*(xB(i)+(0.5*dxB2))-(yB(i)+(0.5*dyB2))-

(xB(i)+(0.5*dxB2))*(zB(i)+(0.5*dzB2)))*dtB;
 dzB3=((xB(i)+(0.5*dxB2))*(yB(i)+(0.5*dyB2))-

8*(zB(i)+(0.5*dzB2))/3)*dtB;
 dxB4=(10*(yB(i)+(dyB3))-10*(xB(i)+(dxB3)))*dtB;
 dyB4=(28*(xB(i)+(dxB3))-(yB(i)+(dyB3))-

(xB(i)+(dxB3))*(zB(i)+(dzB3)))*dtB;
 dzB4=((xB(i)+(dxB3))*(yB(i)+(dyB3))-8*(zB(i)+(dzB3))/3)*dtB;
 dxB=(1/6)*(dxB1+2*(dxB2+dxB3)+dxB4);
 dyB=(1/6)*(dyB1+2*(dyB2+dyB3)+dyB4);
 dzB=(1/6)*(dzB1+2*(dzB2+dzB3)+dzB4);

 83

Appendix B (Continued)

 xB(i+1)=xB(i)+dxB;
 yB(i+1)=yB(i)+dyB;
 zB(i+1)=zB(i)+dzB;
end;
XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
%Plotting for the first set of NA and NB values from the input

Matrices%
if k==1 ;
 figure (3)
 plot(tA, xA, tB,xB)
 title(['Lorenz Without Micro by Runge-Kutta Method, NA=',

num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
end
%Plotting for the second set of NA and NB values from the input

Matrices%
if k==2 ;
 figure (4)
 plot(tA,xA,tB,xB)
 title(['Lorenz Without Micro by Runge-Kutta Method, NA=',

num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')

 ylabel('XA')
 grid
end
%Plotting for the third set of NA and NB values from the input

Matrices%
 if k==3 ;
 figure (5)
 plot(tA,xA,tB,xB)
 title(['Lorenz Without Micro by Runge-Kutta Method, NA=',

num2str(NA), ' NB=',num2str(NB), ' err=', num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid
 end

end
start=cputime;
%Re-Computing with the error limit%
NA=10000;E=0.005;stpp=1;
devEper=10;flucperNA=30;
mark=0;devE=devEper*0.01;
flucNA=flucperNA*0.01;
KLoop=1;KLoopMax=40;
while abs(stpp)>devE;NB=2*NA;
 tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector%
 tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector%
 xA=1:NA;%Primitive xA array%

 84

Appendix B (Continued)

 yA=1:NA;%Primitive yA array%
 zA=1:NA;%Primitive zA array%
 xB=1:NA;%Primitive xB array%
 yB=1:NA;%Primitive yB array%
 zB=1:NA;%Primitive zB array%
 dtA=(tf-ti)/NA;%increment A%
 dtB=(tf-ti)/NB;%increment B%
 xA(1)=xi; %allocating initial values%
 yA(1)=yi; %allocating initial values%
 zA(1)=zi; %allocating initial values%
 starttime1=cputime;
for i=1:(NA-1);
 %The Integration%
 dxA1=(10*yA(i)-10*xA(i))*dtA;
 dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA;
 dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA;
 dxA2=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA;
 dyA2=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+(0.5*dxA1))*(zA(i)+(0.5*dzA1)))*dtA;
 dzA2=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA;
 dxA3=(10*(yA(i)+(0.5*dyA2))-10*(xA(i)+(0.5*dxA2)))*dtA;
 dyA3=(28*(xA(i)+(0.5*dxA2))-(yA(i)+(0.5*dyA2))-

(xA(i)+(0.5*dxA2))*(zA(i)+(0.5*dzA2)))*dtA;
 dzA3=((xA(i)+(0.5*dxA2))*(yA(i)+(0.5*dyA2))-

8*(zA(i)+(0.5*dzA2))/3)*dtA;
 dxA4=(10*(yA(i)+(dyA3))-10*(xA(i)+(dxA3)))*dtA;

 dyA4=(28*(xA(i)+(dxA3))-(yA(i)+(dyA3))-

(xA(i)+(dxA3))*(zA(i)+(dzA3)))*dtA;
 dzA4=((xA(i)+(dxA3))*(yA(i)+(dyA3))-8*(zA(i)+(dzA3))/3)*dtA;
 dxA=(1/6)*(dxA1+2*(dxA2+dxA3)+dxA4);
 dyA=(1/6)*(dyA1+2*(dyA2+dyA3)+dyA4);
 dzA=(1/6)*(dzA1+2*(dzA2+dzA3)+dzA4);
 xA(i+1)=xA(i)+dxA;
 yA(i+1)=yA(i)+dyA;
 zA(i+1)=zA(i)+dzA;
end;
finishtime1=cputime;
usedtime1=finishtime1-starttime1;
 xB(1)=xi; %allocating initial values%
 yB(1)=yi; %allocating initial values%
 zB(1)=zi; %allocating initial values%
for i=1:(NB-1);
 %The Integration%
 dxB1=(10*yB(i)-10*xB(i))*dtB;
 dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB;
 dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB;
 dxB2=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB;
 dyB2=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+(0.5*dxB1))*(zB(i)+(0.5*dzB1)))*dtB;
 dzB2=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB;
 dxB3=(10*(yB(i)+(0.5*dyB2))-10*(xB(i)+(0.5*dxB2)))*dtB;

 85

 Appendix B (Continued)

 dyB3=(28*(xB(i)+(0.5*dxB2))-(yB(i)+(0.5*dyB2))-

(xB(i)+(0.5*dxB2))*(zB(i)+(0.5*dzB2)))*dtB;
 dzB3=((xB(i)+(0.5*dxB2))*(yB(i)+(0.5*dyB2))-

8*(zB(i)+(0.5*dzB2))/3)*dtB;
 dxB4=(10*(yB(i)+(dyB3))-10*(xB(i)+(dxB3)))*dtB;
 dyB4=(28*(xB(i)+(dxB3))-(yB(i)+(dyB3))-

(xB(i)+(dxB3))*(zB(i)+(dzB3)))*dtB;
 dzB4=((xB(i)+(dxB3))*(yB(i)+(dyB3))-8*(zB(i)+(dzB3))/3)*dtB;
 dxB=(1/6)*(dxB1+2*(dxB2+dxB3)+dxB4);
 dyB=(1/6)*(dyB1+2*(dyB2+dyB3)+dyB4);
 dzB=(1/6)*(dzB1+2*(dzB2+dzB3)+dzB4);
 xB(i+1)=xB(i)+dxB;
 yB(i+1)=yB(i)+dyB;
 zB(i+1)=zB(i)+dzB;
end;
XAi=funcinterp(ti,tf,NA,NB,xA);
YAi=funcinterp(ti,tf,NA,NB,yA);
ZAi=funcinterp(ti,tf,NA,NB,zA);
err=functerr(XAi,xB,YAi,yB,ZAi,zB);
stpp=(err-E)/E;
%Plot for the correct Error Limit%

if stpp<0; % this implies the error is less than specification E
 if mark==0 % preset value needs to change to serve as flag error

specification crossed
 mark=1; % one time here
 end
 if abs(stpp)> devE; % in which case the measured deviation is

greater than specificied error deviation
 NA=fix(NA-flucNA*NA); % decreasing NA should lower measured

error getting it closer to E
 end;
end

if stpp>0;% this implies the error is lgreater than specification E
 if mark==0; % Check if flag has not been set to use NA increse

rule on fast track
 if abs(stpp)> devE; % only want ot increase NA if measured

deviaiton is greater than specified
 %NA=NA+ fix(NA/log(NA));
 NA=fix(1.5*NA);
 end

 end
 if mark ==1 ;%
 if abs(stpp)> devE; % error is greater than apecified and flag

has been set to stop rapid increase NA
 NA=fix(NA+flucNA*NA);
 end
 end
end
KLoop=KLoop+1;
Kloop=KLoop-1
if KLoop == KLoopMax

 86

Appendix B (Continued)

 stop
end

end; % end on while condition based on abs(stpp)> devE;
figure (6)
 plot(tA, xA, tB,xB)
 title(['Lorenz Without Micro by Runge-Kutta Method, With error

control NA=', num2str(NA), ' NB=',num2str(NB), ' err=',

num2str(err)]);
 xlabel('time in seconds')
 ylabel('XA')
 grid

cputime=cputime-start
epsilon=err

Appendix B-5: Lorenz Equations by Euler's Method with the Micro-Integrator

%%%

%%
%This Program uses the Eulers Method to solve the Lorenz Non-linear

Chaotic Partial Differential Equation Set With The Micro-Integrator%
%%%

%%
clc;
clear all;
close all;
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=20; %upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%
y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx1=(10*y(i)-10*x(i))*dt;
 dy1=(28*x(i)-y(i)-x(i)*z(i))*dt;
 dz1=(x(i)*y(i)-8*z(i)/3)*dt;
% dx=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt;
% dy=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+0.5*dx1)*(z(i)+(0.5*dz1)))*dt;
% dz=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt;
 x(i+1)=x(i)+dx1;
 y(i+1)=y(i)+dy1;
 z(i+1)=z(i)+dz1;

 87

Appendix B (Continued)

end;
%plot of 2-D poincare map%
figure(1)
plot(x,y)
title('2D Poincare Map - Lorenz With Micro - Eulers Method')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%
figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz With Micro - Eulers Method')
xlabel('x')
ylabel('y')
zlabel('z')
grid
clear
start=cputime;
%Computing with error/10%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=8.1; %upper time limit%
E1=0.005; %Error Limit%
N_resI=2;%Initial micro resolution%
EHR=E1/10;%error/10%
NA=256; %Resolution Parameter%
clear xA yA zA xB yB zB
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;
xA=1:NA; %Primitive xA array%
yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xB=1:NA; %Primitive xB array%
yB=1:NA; %Primitive yB array%
zB=1:NA; %Primitive zB array%
dt=(tf-ti)/(NA-1);%increment%
xA(1)=xi; %allocating initial values%
yA(1)=yi; %allocating initial values%
zA(1)=zi; %allocating initial values%
xB(1)=xi; %allocating initial values%
yB(1)=yi; %allocating initial values%
zB(1)=zi; %allocating initial values%
N_resA=N_resI;%Initial micro resolution%
epsilon=2*E1; %defining epsilon%
loop=1; %Initializing the first loop count parameter%
%The Micro-Integrator%
while epsilon > EHR %error constraint loop%
starttime=cputime;
 for i=1:(NA-1);
 u=xA(i);%creating the first dynamic variable %
 v=yA(i);%creating the second dynamic variable%
 w=zA(i);%creating the third dynamic variable %
 delta = (t(i+1)-t(i))/(N_resA);

 88

Appendix B (Continued)

 for j=1:N_resA;
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*delta;
 dv1=(28*u-v-u*w)*delta;
 dw1=(u*v-8*w/3)*delta;
% du=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta;
% dv=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta;
% dw=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta;
 u_new=ui+du1;v_new=vi+dv1;w_new=wi+dw1;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;
finishtime=cputime;usedtime=finishtime-starttime;
N_resB=2*N_resA;
for i=1:(NA-1);
 u=xB(i);%creating the first dynamic variable %
 v=yB(i);%creating the second dynamic variable%
 w=zB(i);%creating the third dynamic variable %
 delta = (t(i+1)-t(i))/(N_resB);
 for j=1:N_resB;
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*delta;
 dv1=(28*u-v-u*w)*delta;
 dw1=(u*v-8*w/3)*delta;
% du=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta;
% dv=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta;
% dw=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta;
 u_new=ui+du1;v_new=vi+dv1;w_new=wi+dw1;
 u=u_new;v=v_new;w=w_new;
 end;
 xB(i+1)=u;yB(i+1)=v;zB(i+1)=w;
end;
epsilon=functerr(xB,xA,yB,yA,zB,zA);
N_resA=2*N_resA;
loop=loop+1; %Incremental setup for the loop count%
loop_1=loop-1 %correcting the forward lag of +1 in the loop count%
end;
N_resA=0.5*N_resA;
figure(3)
plot(t, xA, t,xB)
title (['Lorenz With Micro Eulers Method with error/10 NA=',

num2str(NA), ' NresA=',num2str(N_resA),' error=', num2str(epsilon)]

);
xlabel('time in seconds')
ylabel('XA')
grid
%computing with actual error%
E=E1; %defining the error parameter%
flucperNAres=30;%fluctuation in N_resA per loop%

 89

Appendix B (Continued)

devEper=10; %percentage error deviation allowed%
Kloop=1; %Initializing the second loop count parameter%
KloopMax=25; %maximum number of loops before program termination%
devE=devEper*0.01;flucNAres=flucperNAres*0.01;
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E;
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB;
NAresAhold=N_resA;mark=0;X=1;
while abs(stpp)>devE;
 if stpp>0;
 N_resA= N_resA+fix(flucNAres*N_resA);
 else
 N_resA =N_resA-fix(flucNAres*N_resA);
 end;
clear xA yA zA
xA=1:NA; %Primitive xA array%yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xA(1)=xi; %allocating initial values%yA(1)=yi; %allocating initial

values%zA(1)=zi; %allocating initial values%
 for i=1:(NA-1);
 u=xA(i);%creating the first dynamic variable %
 v=yA(i);%creating the second dynamic variable%
 w=zA(i);%creating the third dynamic variable %
 delta=(t(i+1)-t(i))/(N_resA);
 for j=1:N_resA;
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*delta;
 dv1=(28*u-v-u*w)*delta;
 dw1=(u*v-8*w/3)*delta;
% du=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta;
% dv=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta;
% dw=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta;
 u_new=ui+du1;v_new=vi+dv1;w_new=wi+dw1;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;
 epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold);% here the A

array is smaller
 Kloop=Kloop+1; %Incremental setup for the loop count%
 loop_2=Kloop-1 %correcting the forward lag of +1 in the loop

count%
 if Kloop >KloopMax;
 stop
 end
stpp=(epsilon-E)/E;
end;
figure(4)
plot(t, xA, t,xB)
title (['Lorenz With Micro Eulers Method With error control NA=',

num2str(NA), ' NresA=',num2str(N_resA),' error=', num2str(epsilon)]

);
xlabel('time in seconds')

 90

Appendix B (Continued)

ylabel('XA')
grid
cputime=cputime-start
loop_1
loop_2
epsilon

Appendix B-6: Lorenz Equations by the Modified Euler's Method with the Micro-

Integrator

%%%

%%%
%This Program uses the Modified Euler Method to solve the Lorenz Non-

linear Chaotic Partial Differential Equation Set With The Micro-

Integrator%
%%%

%%%
clc
clear all
close all
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=20; %upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%
y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx=(10*y(i)-10*x(i))*dt;
 dy=(28*x(i)-y(i)-x(i)*z(i))*dt;
 dz=(x(i)*y(i)-8*z(i)/3)*dt;
 x(i+1)=x(i)+dx;
 y(i+1)=y(i)+dy;
 z(i+1)=z(i)+dz;
 dx=0.5*((10*y(i)-10*x(i))+(10*y(i+1)-10*x(i+1)))*dt;
 dy=0.5*((28*x(i)-y(i)-x(i)*z(i))+(28*x(i+1)-y(i+1)-

x(i+1)*z(i+1)))*dt;
 dz=0.5*((x(i)*y(i)-8*z(i)/3)+(x(i+1)*y(i+1)-8*z(i+1)/3))*dt;
 x(i+1)=x(i)+dx;
 y(i+1)=y(i)+dy;
 z(i+1)=z(i)+dz;
end;
%plot of 2-D poincare map%
figure(1)

 91

Appendix B (Continued)

plot(x,y)
title('Poincare Map - Lorenz With Micro - Modified Euler Method')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%
figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz With Micro - Modified Euler Method')
xlabel('x')
ylabel('y')
zlabel('z')
grid
clear
start=cputime;
%Computing with error/10%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=22; %upper time limit%
E1=0.005; %Error Limit%
N_resI=2;%Initial micro resolution%
EHR=E1/10;%error/10%
NA=1024; %Resolution Parameter%
clear xA yA zA xB yB zB
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;
xA=1:NA; %Primitive xA array%
yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xB=1:NA; %Primitive xB array%
yB=1:NA; %Primitive yB array%
zB=1:NA; %Primitive zB array%
dt=(tf-ti)/(NA-1);%increment%
xA(1)=xi; %allocating initial values%
yA(1)=yi; %allocating initial values%
zA(1)=zi; %allocating initial values%
xB(1)=xi; %allocating initial values%
yB(1)=yi; %allocating initial values%
zB(1)=zi; %allocating initial values%
N_resA=N_resI;%Initial micro resolution%
epsilon=2*E1; %defining epsilon%
loop=1; %Initializing the first loop count parameter%
%The Micro-Integrator%
while epsilon > EHR %error constraint loop%
 starttime=cputime;
 for i=1:(NA-1);
 u=xA(i);%creating the first dynamic variable %
 v=yA(i);%creating the second dynamic variable%
 w=zA(i);%creating the third dynamic variable %
 delta = (t(i+1)-t(i))/(N_resA);
 for j=1:N_resA;
 ui=u;vi=v;wi=w;
 %The Integration%

 92

Appendix B (Continued)

 du_new=(10*v-10*u)*delta;
 dv_new=(28*u-v-u*w)*delta;
 dw_new=(u*v-8*w/3)*delta;
 u=ui+du_new;
 v=vi+dv_new;
 w=wi+dw_new;
 du=du_new/2+(10*v-10*u)*delta/2;
 dv=dv_new/2+(28*u-v-u*w)*delta/2;
 dw=dw_new/2+(u*v-8*w/3)*delta/2;
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;
 finishtime=cputime;
 usedtime=finishtime-starttime;
N_resB=2*N_resA;
for i=1:(NA-1);
 u=xB(i);%creating the first dynamic variable %
 v=yB(i);%creating the second dynamic variable%
 w=zB(i);%creating the third dynamic variable %
 delta = (t(i+1)-t(i))/(N_resB);
 for j=1:N_resB;
 ui=u;vi=v;wi=w;
 %The Integration%
 du_new=(10*v-10*u)*delta;
 dv_new=(28*u-v-u*w)*delta;
 dw_new=(u*v-8*w/3)*delta;
 u=ui+du_new;
 v=vi+dv_new;
 w=wi+dw_new;
 du=du_new/2+(10*v-10*u)*delta/2;
 dv=dv_new/2+(28*u-v-u*w)*delta/2;
 dw=dw_new/2+(u*v-8*w/3)*delta/2;
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xB(i+1)=u;yB(i+1)=v;zB(i+1)=w;
end;
epsilon=functerr(xB,xA,yB,yA,zB,zA);
N_resA=2*N_resA;
loop=loop+1; %Incremental setup for the loop count%
loop_1=loop-1 %correcting the forward lag of +1 in the loop count%
end;
N_resA=0.5*N_resA;
figure(3)
plot(t, xA, t,xB)
title (['Lorenz With Micro Modified Euler Method with error/10 NA=',

num2str(NA), ' NresA=',num2str(N_resA),' error=', num2str(epsilon),'

cputime=', num2str(usedtime),'s']);
xlabel('time in seconds')
ylabel('XA')
grid
%computing with actual error%

 93

Appendix B (Continued)

E=E1; %defining the error parameter%
flucperNAres=30;%fluctuation in N_resA per loop%
devEper=10; %percentage error deviation allowed%
Kloop=1; %Initializing the second loop count parameter%
KloopMax=25; %maximum number of loops before program termination%
devE=devEper*0.01;flucNAres=flucperNAres*0.01;
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E;
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB;
NAresAhold=N_resA;mark=0;X=1;
while abs(stpp)>devE;

 if stpp>0;
 N_resA= N_resA+fix(flucNAres*N_resA);
 else
 N_resA =N_resA-fix(flucNAres*N_resA);
 end;
clear xA yA zA
xA=1:NA; %Primitive xA array%yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xA(1)=xi; %allocating initial values%
yA(1)=yi; %allocating initial values%
zA(1)=zi; %allocating initial values%
 for i=1:(NA-1);
 u=xA(i);%creating the first dynamic variable %
 v=yA(i);%creating the second dynamic variable%
 w=zA(i);%creating the third dynamic variable %
 delta=(t(i+1)-t(i))/(N_resA);
 for j=1:N_resA;
 ui=u;vi=v;wi=w;
 %The Integration%
 du_new=(10*v-10*u)*delta;
 dv_new=(28*u-v-u*w)*delta;
 dw_new=(u*v-8*w/3)*delta;
 u=ui+du_new;
 v=vi+dv_new;
 w=wi+dw_new;
 du=du_new/2+(10*v-10*u)*delta/2;
 dv=dv_new/2+(28*u-v-u*w)*delta/2;
 dw=dw_new/2+(u*v-8*w/3)*delta/2;
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;
 epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold);% here the A

array is smaller
 Kloop=Kloop+1; %Incremental setup for the loop count%
 loop_2=Kloop-1 %correcting the forward lag of +1 in the loop

count%
 if Kloop >KloopMax;
 stop
 end
stpp=(epsilon-E)/E;
end;

 94

Appendix B (Continued)

figure(4)
plot(t, xA, t,xB)
title (['Lorenz With Micro Modified Euler Method With error control

NA=', num2str(NA), ' NresA=',num2str(N_resA),' error=',

num2str(epsilon)]);
xlabel('time in seconds')
ylabel('XA')
grid
cputime=cputime-start
loop_1
loop_2
epsilon

Appendix B-7: Lorenz Equations by Simpson's Method with the Micro-Integrator

%%%

%%%
%This Program uses the Simpson's Method to solve the Lorenz Non-linear

Chaotic Partial Differential Equation Set With The Micro-Integrator%
%%%

%%%
clc
clear all
close all
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=20; %upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%
y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx1=(10*y(i)-10*x(i))*0.5*dt;
 dy1=(28*x(i)-y(i)-x(i)*z(i))*0.5*dt;
 dz1=(x(i)*y(i)-8*z(i)/3)*0.5*dt;
 xhf=x(i)+dx1;
 yhf=y(i)+dy1;
 zhf=z(i)+dz1;
 dx2=(10*yhf-10*xhf)*0.5*dt;
 dy2=(28*xhf-yhf-xhf*zhf)*0.5*dt;
 dz2=(xhf*yhf-8*zhf/3)*0.5*dt;
 xfl=xhf+dx2;
 yfl=yhf+dy2;
 zfl=zhf+dz2;
 dx=(1/6)*((10*y(i)-10*x(i))+(4*(10*yhf-10*xhf))+(10*yfl-

10*xfl))*dt;

 95

Appendix B (Continued)

 dy=(1/6)*((28*x(i)-y(i)-x(i)*z(i))+(4*(28*xhf-yhf-

xhf*zhf))+(28*xfl-yfl-xfl*zfl))*dt;
 dz=(1/6)*((x(i)*y(i)-8*z(i)/3)+(4*(xhf*yhf-8*zhf/3))+(xfl*yfl-

8*zfl/3))*dt;
 x(i+1)=x(i)+dx;
 y(i+1)=y(i)+dy;
 z(i+1)=z(i)+dz;
end;
%plot of 2-D poincare map%
figure(1)
plot(x,y)
title('Poincare Map - Lorenz With Micro - Simpson')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%
figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz With Micro - Simpson')
xlabel('x')
ylabel('y')
zlabel('z')
grid
clear
start=cputime;
%Computing with error/10%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=22; %upper time limit%
E1=0.005; %Error Limit%
N_resI=2;%Initial micro resolution%
EHR=E1/10;%error/10%
NA=1024; %Resolution Parameter%
clear xA yA zA xB yB zB
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;
xA=1:NA; %Primitive xA array%
yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xB=1:NA; %Primitive xB array%
yB=1:NA; %Primitive yB array%
zB=1:NA; %Primitive zB array%
dt=(tf-ti)/(NA-1);%increment%
xA(1)=xi; %allocating initial values%
yA(1)=yi; %allocating initial values%
zA(1)=zi; %allocating initial values%
xB(1)=xi; %allocating initial values%
yB(1)=yi; %allocating initial values%
zB(1)=zi; %allocating initial values%
N_resA=N_resI;%Initial micro resolution%
epsilon=2*E1; %defining epsilon%
loop=1; %Initializing the first loop count parameter%
%The Micro-Integrator%

 96

Appendix B (Continued)

while epsilon > EHR %error constraint loop%
 starttime=cputime;
 for i=1:(NA-1);
 u=xA(i);%creating the first dynamic variable %
 v=yA(i);%creating the second dynamic variable%
 w=zA(i);%creating the third dynamic variable %
 delta = (t(i+1)-t(i))/(N_resA);

 for j=1:N_resA;% microintegrator loop
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*0.5*delta;
 dv1=(28*u-v-u*w)*0.5*delta;
 dw1=(u*v-8*w/3)*0.5*delta;
 uhf=u+du1;
 vhf=v+dv1;
 whf=w+dw1;
 du2=(10*vhf-10*uhf)*0.5*delta;
 dv2=(28*uhf-vhf-uhf*whf)*0.5*delta;
 dw2=(uhf*vhf-8*whf/3)*0.5*delta;
 ufl=uhf+du2;
 vfl=vhf+dv2;
 wfl=whf+dw2;
 du=(1/6)*((10*v-10*u)+(4*(10*vhf-10*uhf))+(10*vfl-

10*ufl))*delta;
 dv=(1/6)*((28*u-v-u*w)+(4*(28*uhf-vhf-uhf*whf))+(28*ufl-

vfl-ufl*wfl))*delta;
 dw=(1/6)*((u*v-8*w/3)+(4*(uhf*vhf-8*whf/3))+(ufl*vfl-

8*wfl/3))*delta;
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;
 finishtime=cputime;
 usedtime=finishtime-starttime;
 N_resB=2*N_resA;
for i=1:(NA-1);
 u=xB(i);%creating the first dynamic variable %
 v=yB(i);%creating the second dynamic variable%
 w=zB(i);%creating the third dynamic variable %
 delta=(t(i+1)-t(i))/(N_resB);
 for j=1:N_resB;% microintegrator loop
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*0.5*delta;
 dv1=(28*u-v-u*w)*0.5*delta;
 dw1=(u*v-8*w/3)*0.5*delta;
 uhf=u+du1;
 vhf=v+dv1;
 whf=w+dw1;
 du2=(10*vhf-10*uhf)*0.5*delta;
 dv2=(28*uhf-vhf-uhf*whf)*0.5*delta;
 dw2=(uhf*vhf-8*whf/3)*0.5*delta;

 97

Appendix B (Continued)

 ufl=uhf+du2;
 vfl=vhf+dv2;
 wfl=whf+dw2;
 du=(1/6)*((10*v-10*u)+(4*(10*vhf-10*uhf))+(10*vfl-

10*ufl))*delta;
 dv=(1/6)*((28*u-v-u*w)+(4*(28*uhf-vhf-uhf*whf))+(28*ufl-vfl-

ufl*wfl))*delta;
 dw=(1/6)*((u*v-8*w/3)+(4*(uhf*vhf-8*whf/3))+(ufl*vfl-

8*wfl/3))*delta;
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xB(i+1)=u;yB(i+1)=v;zB(i+1)=w;
end;
epsilon=functerr(xB,xA,yB,yA,zB,zA);
N_resA=2*N_resA;
loop=loop+1; %Incremental setup for the loop count%
loop_1=loop-1 %correcting the forward lag of +1 in the loop count%
end;
N_resA=0.5*N_resA;
figure(3)
plot(t,xA,t,xB)
title(['Lorenz With Micro Simpsons Method with error/10 NA=',

num2str(NA), ' NresA=',num2str(N_resA),' error= ',

num2str(epsilon),' cputime=', num2str(usedtime),'s']);
xlabel('time in seconds')
ylabel('XA')
grid
%computing with actual error%
E=E1; %defining the error parameter%
flucperNAres=30;%fluctuation in N_resA per loop%
devEper=10; %percentage error deviation allowed%
Kloop=1; %Initializing the second loop count parameter%
KloopMax=25; %maximum number of loops before program termination%
devE=devEper*0.01;flucNAres=flucperNAres*0.01;
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E;
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB;
NAresAhold=N_resA;mark=0;X=1;
while abs(stpp)>devE;
 if stpp>0;
 N_resA= N_resA+fix(flucNAres*N_resA);
 else
 N_resA =N_resA-fix(flucNAres*N_resA);
 end;
clear xA yA zA
xA=1:NA; %Primitive xA array%
yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xA(1)=xi; %allocating initial values%
yA(1)=yi; %allocating initial values%
zA(1)=zi; %allocating initial values%
 for i=1:(NA-1);
 u = xA(i);%creating the first dynamic variable %
 v = yA(i);%creating the second dynamic variable%

 98

 Appendix B (Continued)

 w = zA(i);%creating the third dynamic variable %
 delta=(t(i+1)-t(i))/(N_resA);
 for j=1:N_resA;
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*0.5*delta;
 dv1=(28*u-v-u*w)*0.5*delta;
 dw1=(u*v-8*w/3)*0.5*delta;
 uhf=u+du1;
 vhf=v+dv1;
 whf=w+dw1;
 du2=(10*vhf-10*uhf)*0.5*delta;
 dv2=(28*uhf-vhf-uhf*whf)*0.5*delta;
 dw2=(uhf*vhf-8*whf/3)*0.5*delta;
 ufl=uhf+du2;
 vfl=vhf+dv2;
 wfl=whf+dw2;
 du=(1/6)*((10*v-10*u)+(4*(10*vhf-10*uhf))+(10*vfl-

10*ufl))*delta;
 dv=(1/6)*((28*u-v-u*w)+(4*(28*uhf-vhf-uhf*whf))+(28*ufl-vfl-

ufl*wfl))*delta;
 dw=(1/6)*((u*v-8*w/3)+(4*(uhf*vhf-8*whf/3))+(ufl*vfl-

8*wfl/3))*delta;
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;
epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold);
 Kloop=Kloop+1; %Incremental setup for the loop count%
 loop_2=Kloop-1 %correcting the forward lag of +1 in the loop count%
 if Kloop >KloopMax;
 stop
 end
stpp=(epsilon-E)/E ;
end;
figure(4)
plot(t,xA,t,xB)
title(['Lorenz With Micro Simpsons Method With error control NA=',

num2str(NA), ' NresA=',num2str(N_resA),' error=',

num2str(epsilon)]);
xlabel('time in seconds')
ylabel('XA')
grid
cputime=cputime-start
loop_1
loop_2
epsilon

 99

Appendix B-8: Lorenz Equations by Runge-Kutta's Method with the Micro-

Integrator

%%%

%%%

%%%%%%%%
%This Program uses the 4th Order Runge-Kutta Method to solve the Lorenz

Non-linear Chaotic Partial Differential Equation Set With The Micro-

Integrator%
%%%

%%%

%%%%%%%%
clc;
clear all;
close all;
%Pre-Integration Program Inputs%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=40; %Upper time limit%
N=40000; %Resolution parameter%
dt=(tf-ti)/N;%integration step%
x=0:N; %primitive x array%
y=0:N; %primitive y array%
z=0:N; %primitive z array%
x(1)=xi; %allocating initial values%
y(1)=yi; %allocating initial values%
z(1)=zi; %allocating initial values%
for i=1:N;
 %The Integration%
 dx1=(10*y(i)-10*x(i))*dt;
 dy1=(28*x(i)-y(i)-x(i)*z(i))*dt;
 dz1=(x(i)*y(i)-8*z(i)/3)*dt;
 dx2=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt;
 dy2=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+(0.5*dx1))*(z(i)+(0.5*dz1)))*dt;
 dz2=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt;
 dx3=(10*(y(i)+(0.5*dy2))-10*(x(i)+(0.5*dx2)))*dt;
 dy3=(28*(x(i)+(0.5*dx2))-(y(i)+(0.5*dy2))-

(x(i)+(0.5*dx2))*(z(i)+(0.5*dz2)))*dt;
 dz3=((x(i)+(0.5*dx2))*(y(i)+(0.5*dy2))-8*(z(i)+(0.5*dz2))/3)*dt;
 dx4=(10*(y(i)+(dy3))-10*(x(i)+(dx3)))*dt;
 dy4=(28*(x(i)+(dx3))-(y(i)+(dy3))-(x(i)+(dx3))*(z(i)+(dz3)))*dt;
 dz4=((x(i)+(dx3))*(y(i)+(dy3))-8*(z(i)+(dz3))/3)*dt;
 dx=(1/6)*(dx1+2*(dx2+dx3)+dx4);
 dy=(1/6)*(dy1+2*(dy2+dy3)+dy4);
 dz=(1/6)*(dz1+2*(dz2+dz3)+dz4);

 x(i+1)=x(i)+dx;
 y(i+1)=y(i)+dy;
 z(i+1)=z(i)+dz;
end;
%plot of 2-D poincare map%
figure(1)
plot(x,y)

 100

Appendix B (Continued)

title('Poincare Map - Lorenz With Micro - Runge-Kutta -4th Order')
xlabel('x')
ylabel('y')
grid
%plot of 3-D poincare map%
figure(2)
plot3(x,y,z)
title('3D Poincare Map - Lorenz With Micro - Runge-Kutta -4th Order')
xlabel('x')
ylabel('y')
zlabel('z')
grid
clear
start=cputime;
%Computing with error/10%
xi=-11.2;%initial value of x%
yi=-8.4; %initial value of y%
zi=33.4; %initial value of z%
ti=0; %lower time limit%
tf=22; %upper time limit%
E1=0.005; %Error Limit%
N_resI=2; %Initial micro resolution%
EHR=E1/10;%error/10%
NA=1024; %Resolution Parameter%
clear xA yA zA xB yB zB
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;
xA=1:NA; %Primitive xA array%
yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xB=1:NA; %Primitive xB array%
yB=1:NA; %Primitive yB array%
zB=1:NA; %Primitive zB array%
dt=(tf-ti)/(NA-1);%increment%
xA(1)=xi; %allocating initial values%
yA(1)=yi; %allocating initial values%
zA(1)=zi; %allocating initial values%
xB(1)=xi; %allocating initial values%
yB(1)=yi; %allocating initial values%
zB(1)=zi; %allocating initial values%
N_resA=N_resI;%Initial micro resolution%
epsilon=2*E1; %defining epsilon%
loop=1; %Initializing the first loop count parameter%
%The Micro-Integrator%
while epsilon > EHR %error constraint loop%
 starttime=cputime;
 for i=1:(NA-1);
 u = xA(i);%creating the first dynamic variable %
 v = yA(i);%creating the second dynamic variable%
 w = zA(i);%creating the third dynamic variable %
 delta = (t(i+1)-t(i))/(N_resA);
 for j=1:N_resA;% microintegrator loop
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*delta;

 101

Appendix B (Continued)

 dv1=(28*u-v-u*w)*delta;
 dw1=(u*v-8*w/3)*delta;
 du2=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta;
 dv2=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta;
 dw2=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta;
 du3=(10*(v+(0.5*dv2))-10*(u+(0.5*du2)))*delta;
 dv3=(28*(u+(0.5*du2))-(v+(0.5*dv2))-

(u+(0.5*du2))*(w+(0.5*dw2)))*delta;
 dw3=((u+(0.5*du2))*(v+(0.5*dv2))-8*(w+(0.5*dw2))/3)*delta;
 du4=(10*(v+(dv3))-10*(u+(du3)))*delta;
 dv4=(28*(u+(du3))-(v+(dv3))-(u+(du3))*(w+(dw3)))*delta;
 dw4=((u+(du3))*(v+(dv3))-8*(w+(dw3))/3)*delta;
 du=(1/6)*(du1+2*(du2+du3)+du4);
 dv=(1/6)*(dv1+2*(dv2+dv3)+dv4);
 dw=(1/6)*(dw1+2*(dw2+dw3)+dw4);
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;
 finishtime=cputime;
 usedtime=finishtime-starttime;
 N_resB=2*N_resA;
for i=1:(NA-1);
 u=xB(i);%creating the first dynamic variable %
 v=yB(i);%creating the second dynamic variable%
 w=zB(i);%creating the third dynamic variable %
 delta=(t(i+1)-t(i))/(N_resB);
 for j=1:N_resB;% microintegrator loop
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*delta;
 dv1=(28*u-v-u*w)*delta;
 dw1=(u*v-8*w/3)*delta;
 du2=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta;
 dv2=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta;
 dw2=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta;
 du3=(10*(v+(0.5*dv2))-10*(u+(0.5*du2)))*delta;
 dv3=(28*(u+(0.5*du2))-(v+(0.5*dv2))-

(u+(0.5*du2))*(w+(0.5*dw2)))*delta;
 dw3=((u+(0.5*du2))*(v+(0.5*dv2))-8*(w+(0.5*dw2))/3)*delta;
 du4=(10*(v+(dv3))-10*(u+(du3)))*delta;
 dv4=(28*(u+(du3))-(v+(dv3))-(u+(du3))*(w+(dw3)))*delta;
 dw4=((u+(du3))*(v+(dv3))-8*(w+(dw3))/3)*delta;
 du=(1/6)*(du1+2*(du2+du3)+du4);
 dv=(1/6)*(dv1+2*(dv2+dv3)+dv4);
 dw=(1/6)*(dw1+2*(dw2+dw3)+dw4);
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xB(i+1)=u;yB(i+1)=v;zB(i+1)=w;
end;

 102

Appendix B (Continued)

epsilon=functerr(xB,xA,yB,yA,zB,zA);
N_resA=2*N_resA;
loop=loop+1; %Incremental setup for the loop count%
loop_1=loop-1 %correcting the forward lag of +1 in the loop count%
end;
N_resA=0.5*N_resA;
figure(3)
plot(t,xA,t,xB)
title(['Lorenz With Micro Runge-Kutta 4th Order with error/10 NA=',

num2str(NA), ' NresA=',num2str(N_resA),' error= ', num2str(epsilon)]

);
xlabel('time in seconds')
ylabel('XA')
grid
%computing with actual error%
E=E1; %defining the error parameter%
flucperNAres=30;%fluctuation in N_resA per loop%
devEper=10; %percentage error deviation allowed%
Kloop=1; %Initializing the second loop count parameter%
KloopMax=25; %maximum number of loops before program termination%
devE=devEper*0.01;flucNAres=flucperNAres*0.01;
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E;
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB;
NAresAhold=N_resA;mark=0;X=1;
while abs(stpp)>devE;

 if stpp>0;
 N_resA= N_resA+fix(flucNAres*N_resA);
 else
 N_resA =N_resA-fix(flucNAres*N_resA);
 end;
clear xA yA zA
xA=1:NA; %Primitive xA array%
yA=1:NA; %Primitive yA array%
zA=1:NA; %Primitive zA array%
xA(1)=xi; %allocating initial values%
yA(1)=yi; %allocating initial values%
zA(1)=zi; %allocating initial values%
 for i=1:(NA-1);
 u = xA(i);%creating the first dynamic variable %
 v = yA(i);%creating the second dynamic variable%
 w = zA(i);%creating the third dynamic variable %
 delta=(t(i+1)-t(i))/(N_resA);
 for j=1:N_resA;
 ui=u;vi=v;wi=w;
 %The Integration%
 du1=(10*v-10*u)*delta;
 dv1=(28*u-v-u*w)*delta;
 dw1=(u*v-8*w/3)*delta;
 du2=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta;
 dv2=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta;
 dw2=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta;
 du3=(10*(v+(0.5*dv2))-10*(u+(0.5*du2)))*delta;

 103

Appendix B (Continued)

 dv3=(28*(u+(0.5*du2))-(v+(0.5*dv2))-

(u+(0.5*du2))*(w+(0.5*dw2)))*delta;
 dw3=((u+(0.5*du2))*(v+(0.5*dv2))-8*(w+(0.5*dw2))/3)*delta;
 du4=(10*(v+(dv3))-10*(u+(du3)))*delta;
 dv4=(28*(u+(du3))-(v+(dv3))-(u+(du3))*(w+(dw3)))*delta;
 dw4=((u+(du3))*(v+(dv3))-8*(w+(dw3))/3)*delta;
 du=(1/6)*(du1+2*(du2+du3)+du4);
 dv=(1/6)*(dv1+2*(dv2+dv3)+dv4);
 dw=(1/6)*(dw1+2*(dw2+dw3)+dw4);
 u_new=ui+du;v_new=vi+dv;w_new=wi+dw;
 u=u_new;v=v_new;w=w_new;
 end;
 xA(i+1)=u;yA(i+1)=v;zA(i+1)=w;
 end;

epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold);
 Kloop=Kloop+1; %Incremental setup for the loop count%
 loop_2=Kloop-1 %correcting the forward lag of +1 in the loop count%
 if Kloop >KloopMax;
 stop
 end
stpp=(epsilon-E)/E ;
end;
figure(4)
plot(t,xA,t,xB)
title(['Lorenz With Micro Runge-Kutta 4th Order With error control

NA=', num2str(NA), ' NresA=',num2str(N_resA),' error=',

num2str(epsilon)]);
xlabel('time in seconds')
ylabel('XA')
grid
cputime=cputime-start
loop_1
loop_2
epsilon

 104

Appendix C: Principal Subroutines

Appendix C-1: The Interpolation Subroutine

function XB=funcinterp(to,tf,NA,NB,XA)

pB=1:NB; %array 1 to size B%
pA=1:NA; %array 1 to size A%
XB(1) = XA(1); %defining the first values%
XB(NB)=XA(NA); %defining the last values%
tB=ones(size(pB)); %array of ones of size B%
tA=ones(size(XA)); %array of ones of size A%
tB=to*tB+(tf-to)/(NB-1)*(pB-tB);
tA=to*tA+(tf-to)/(NA-1)*(pA-tA);
i=1; %Initial value before iterations%
for k=1:(NB-1);
 while tB(k)> tA(i+1);
 i=i+1; %iteration increment%
 end;
 slope=(XA(i+1)-XA(i))/(tA(i+1)-tA(i)); %slope calculation%
 XB(k)=XA(i)+slope*(tB(k)-tA(i)); %interpolation rule%
end

Appendix C-2: The Error Calculation Subroutine

function Err=functerr(xB,xA,yB,yA,zB,zA)

%%%%% Error estimation ********* two arrays*** no loop in this

version, no corrective step on micro-loop
gX=[xA,xB]; %creates a concatonated array of x values%
gY=[yA,yB]; %creates a concatonated array of y values%
gZ=[zA,zB]; %creates a concatonated array of z values%

gXmax=max(abs(gX)) %maximum x value%
gYmax=max(abs(gY)) %maximum y value%
gZmax=max(abs(gZ)) %maximum z value%

gXmean=mean(abs(xA-xB)) %mean absolute x difference%
gYmean=mean(abs(yA-yB)) %mean absolute y difference%
gZmean=mean(abs(zA-zB)) %mean absolute z difference%

eps_x = gXmean/gXmax; %values normalized by maximum in x set%
eps_y = gYmean/gYmax; %values normalized by maximum in y set%
eps_z = gZmean/gZmax; %values normalized by maximum in z set%

epsilonV=[eps_x,eps_y,eps_z]; %combined error set%

epsilon = max(epsilonV) %maximum error%
g=0.5*max(size(xA)) %size of 'A' arrays%
Err=epsilon; %error%

	Using a Micro-Integrator to Eliminate the Numerical Butterfly Effect in Non-Linear Chaotic Partial Differential Equations
	Recommended Citation

	/var/tmp/StampPDF/CIbpFnkl1m/tmp.1459907986.pdf.Q684T

