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The University of Texas at Tyler                                                                                           

December 2011 

Chaos theory is a relatively new scientific paradigm for the analysis, simulation and 

prediction of non-linear phenomena whose initial conditions determine the behavior of 

their entire time series representation. It finds many applications in mathematics, science, 

and engineering. These include, but are not limited, to data encryption and decryption, 

designing secure communication systems, predicting weather patterns, noise fluctuations 

on data lines, understanding turbulence in fluid flow, and analyzing quantum wells. 

Systems that exhibit chaos are called chaotic systems. In computing solutions to non-

linear chaotic partial differential equation sets, slight deviations in step size could lead to 

completely diverging trajectories as the system‟s time series progresses. This is called the 

numerical butterfly effect. Smaller step sizes produce arrays closer to the desired 

continuous time solution, but they require more sampling points and as a result more 

memory. The Micro-Integrator produces results with a high level of accuracy while using 

only a fraction of the amount of memory required by conventional numerical integration 

methods. The reduction in memory requirements by the Micro-Integrator was quantified 

by introducing a performance factor 'η' that was mathematically equal to the ratio of the 

amount of memory required for computing without the Micro-Integrator to that required 

for computing with it. Recorded values of the performance factor from the tests ranged 

from 5 to 410 , out of which 75% were above 310 . The performance factor was also found 

to depend on the type of chaotic system, the numerical method, and the time window for 

computation. Less computationally efficient numerical methods resulted in higher 

performance factors than the more efficient ones. 
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Chapter One 

Introduction 

 

1.1  Early Appearances of Chaos 

 In 1956, Benoit Mandelbrot published a paper [1] about self similar clusters of 

apparently random electrical signals that he had observed in phone wires. This brought 

about a new inquiry as to the nature of these signals and the reasons for their strange 

patterns. Later, in 1960 Edward N. Lorenz noticed a similar pattern of fluctuations in the 

non-linear system he was using in weather prediction calculations, and he was able to 

trace its source to the fact that he had approximated the results from the previous 

computation stage from the sixth decimal place to the third decimal place [2]. This 

dependence of the behavior of the entire time series solution of certain non-linear systems 

on initial conditions and integration step size formed the basis of a new paradigm for 

their analysis and prediction called 'chaos theory'. Signals that exhibit this dependence are 

called 'chaotic signals', and the systems that generate them are called 'chaotic systems'. 

Mitchell Feigenbaum in the mid-70s demonstrated that the Reynolds numbers for 

turbulence were predictable from chaos theory [3]. In the mid 80s, it was demonstrated 

that chaos theory is applicable in solving the equations of pipeline networks [4]. More 

recent investigations have demonstrated that chaotic signals could be used to achieve 

secure communications [5,6]. 

 

1.2 The Numerical Butterfly Effect 

Numerical computation of non-linear chaotic partial differential equation sets are not 

only sensitive to initial conditions but also to integration step size [7-9]. Integrating the 

same set of non-linear chaotic partial differential equations with different initial 

conditions or different integration time steps produce entirely different trajectories as the 

system's time series progresses [2,7,8]. As shown in Figure 1.1. This is known as the 

numerical butterfly effect [2]. In Figure 1.1, the different plots were obtained by 

integrating the Lorenz non-linear chaotic partial differential equation set using two 

different integration step sizes of 0.011 and 0.0055 for the solid green and dotted blue 

lines respectively. 
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Figure 1.1 Plot of signal strength vs. time for the Lorenz Equations. 

 

1.3 Implementations of Chaotic Modeling 

Chaotic equations have been implemented in analysis and simulation of a wide 

range of phenomena and prove to have been inherent in certain existing theories without 

being discovered. One of such is computing the quantum trajectory of an individual sub-

atomic particle [10], the dependence of the entire trajectory of the particle on initial 

conditions and integration time step demonstrate the butterfly effect. Quantum wells in 

tilted magnetic fields have also been found to make the enclosed electrons move in certain 

chaotic patterns [11]. Research is also being carried out on how the wave functions of 

electrons in ballistic motion progress from quantum disorder to chaos [12]. 

It has also been demonstrated that chaos is present in the transmission line 

oscillator in an equivalence to the continuum limit of the generalized Rossler system [13]. 

These are only a few of the applications of chaotic modelling. The next two subsections 

describe its applications to chaotic encryption and secure communication respectively. 
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1.3.1 Chaotic Encryption 

The erratic tendencies of chaotic signals make them excellent tools for message 

encryption. This has led to the proposal of numerous schemes for the implementation of 

chaos based signal encryption systems [14]. Specific attributes have uniquely 

accompanied certain chaos based encryption algorithms which have placed them at an 

advantage over other algorithms in their class. A few of these attrbutes are: significantly 

reduced complexity [15], higher resistance to attack [16], universal range of 

implementation [17], and superior encryption efficiency [18]. While a significant number 

of simulations demonstrate the use of chaotic signals to encrypt signals, some research has 

been done on using chaotic signals to amplify message signals that have been corrupted by 

noise [19].  

 

1.3.2 Chaotic Secure Communications 

Secure digital communication schemes have also been proposed where chaotic 

signals are used to encrypt the message at the transmitter, after which it is synchronized 

with the receiver. Then by means of a decrypting procedure which relies on its 

synchronism with the transmitter‟s chaotic signal generator, the original message is 

recovered [5,6]. It is noteworthy that chaos synchronization helps modulation systems 

overcome errors in computed chaotic arrays which would otherwise be expected to 

interfere with the decrypting procedure. So even if the chaotic signal used in the 

encryption phase at the transmitter has a varying trajectory from the standard array of its 

values, due to the synchronization, the message signal can still be recovered successfully 

without any damage done to it. 

Apart from using numerical integration algorithms, chaotic signals can also be 

generated by certain circuit implementations [20-22]. Understanding these could 

determine the threshold where linear or non-linear systems transit to a chaotic state, and 

help avert unforeseen problems that may arise in critical systems. 

 

1.4 Computing Chaotic Signals 

Ideally, solving the partial differential equations that model a particular class of 

chaotic signals should produce an array of values that, when represented graphically, 
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follow the specific trajectory associated with that particular class. But there are other 

factors that come to play in the integration process. Because there are no analytical 

solutions available for these chaos modeling equations, numerical integration techniques 

are the only way to solve them [7]. The sensitive dependence of numerical integration 

techniques on integration step size brings new considerations [5]. The pseudorandom 

appearance of chaotic signals make it easy to mistake computed errors for actual chaotic 

signals, but precision is still a factor here because there is order in chaos. This has led to 

research for more accurate means of computing chaotic signals such as the method 

proposed in this research. 

A very direct approach to reducing the error in the computed chaotic signal would 

be reducing the integration step size [7]. This leads to a reduction in the error, but 

increases the amount of memory used by the computer in executing the integration 

process. Due to the complexity of these computations, memory limited computers are 

frequently at a loss. This problem inspired the design of the Micro-Integrator algorithm 

[7]. In this research it was demonstrated on six different systems of non-linear chaotic 

partial differential equations to achieve low error levels while using only a fraction of the 

amount of memory required by conventional integration schemes.  
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Chapter Two 

Background 

 

2.1 The Scope of this Research 

This research focuses on applying the proposed Micro-Integrator [7] to eliminate 

the numerical butterfly effect in the Lorenz [23,31], Rossler [24,31], Chen [25,31], Chua 

[26,31], Hadley [27,31], ACT [28,31], and Diffusionless-Lorenz chaotic systems of 

equations[29,31]. Solutions to these equations were computed with and without the Micro-

Integrator using four numerical integration methods, the Euler, Modified Euler, Simpson, 

and Fourth Order Runge-Kutta methods [30,32]. It is a continuation of previous work 

done in the referenced paper [7] where the Micro-Integrator was first  applied to the 

Lorenz Equations alone and computed using only Euler's method. Here the study has been 

extended to include the six other sets of chaotic partial differential equation sets and three 

additional numerical integration methods. 

 

2.2 The Sets of Chaotic Partial Differential Equations used in this Study 

The different sets of chaotic partial differential equations used in this study are 

listed here, and their Poincaré maps as generated by the Modified Euler's method using 

MATLAB are shown. The Poincare map of a chaotic partial differential equation set is a 

plot of its x variable versus its y variable over a length of time. It serves as a standard 

means of identification of different chaotic systems. 

 

2.2.1  The Lorenz System 

 The Lorenz System of equations is given below: 

 

(10 10 )

(28 )

( (8 3))

dx y x dt

dy x y xz dt

dz xy z dt

   
   

  
   
            

(2.1) 

 

The initial conditions are 0 0 011.2, 8.4, 33.4x y z    
 

from references [23,31]. The 

Poincaré chaotic attractor map for the Lorenz system of equations is shown in Figure. 2.1. 
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Figure 2.1 Poincare Chaotic Attractor Map of the Lorenz System. 

 

2.2.2  The Rossler System
  

 The Rossler System of equations is given below: 

 

            

( )

( 0.2 )

(0.2 ( 5.7))

dx y z dt

dy x y dt

dz z x dt

    
   

 
   
               

(2.2)

  

 

The initial conditions are 0 0 011.2, 2.4, 0x y z    
 

from references [24,31]. The 

Poincaré chaotic attractor map of the Rossler system of equations is shown in Figure. 2.2. 
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Figure 2.2 Poincare Chaotic Attractor Map of the Rossler System. 
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2.2.3 The Chen System 

 The Chen System of equations is given below 

 

(35(y-x))

(-8xz+28y)

( 3 )

dx dt

dy dt

dz xy z dt

   
   

   
           

(2.3) 

             

The initial conditions are 0 0 010, 0, 37x y z   
 
from references [25,31]. The Poincaré 

chaotic attractor map of the Chen system of equations is shown in Figure. 2.3. 
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Figure 2.3 Poincare Chaotic Attractor Map of the Chen System. 

 

2.2.4 The Chua System 

 The Chua System of equations is given below: 

 

9(y-x+(5x/7)+((1.5/7)(|x+1|-|x-1|)))

(x-y+z)

( 100 / 7)

dx dt

dy dt

dz y dt

   
   


   
               

(2.4) 

 

The initial conditions are 0 0 00, 0, 0.6x y z  
 
from references [26,31]. The Poincaré 

chaotic attractor map of the Chua system of equations is shown in Figure. 2.4.
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Figure 2.4 Poincare Chaotic Attractor Map of the Chua System. 

 

2.2.5 The Hadley System 

The Hadley System of equations is given below: 

 

2 2( 0.25 2)

( 4 1)

(4 )

dx y z x dt

dy xy xz y dt

dz xy xz z dt

     
  

     
            

(2.5) 

 

The initial conditions are 0 0 00, 0, 1.3x y z  
 
from references [27,31] . The Poincaré 

chaotic attractor map of the Hadley system of equations is shown in Figure. 2.5. 
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Figure 2.5 Poincare Chaotic Attractor Map of the Hadley System. 
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2.2.6 The ACT System 

 The ACT System of equations is given below. 

 

 

3

2

(1.8( ))

(( 4)(1.8 ) 0.02 )

(( 1.5)(1.8) ( 0.07 ))

x y dtdx

dy y xz x dt

dz z xy z dt

  
  

     
             

(2.6) 

 

The initial conditions are
 0 0 00.5, 0, 0x y z   from references [28,31]. The Poincaré 

chaotic attractor map for the ACT system of equations is shown in Figure. 2.6. 
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Figure 2.6 Poincare Chaotic Attractor Map of the ACT System. 

 

2.2.7 The Diffusionless Lorenz System 

  The Diffusionless Lorenz System of equations is given below: 

 

 

( )

( )

( 1)

dx y x dt

dy xz dt

dz xy dt

    
   

    
            

(2.7) 

 

The initial conditions are 0 0 01, 1, 0.01x y z     from references [29,31]. The Poincaré 

chaotic attractor map for the Diffusionless Lorenz equations is shown in Figure. 2.7. 
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Figure 2.7 Poincare Chaotic Attractor Map of the Diffusionless Lorenz System. 

 

2.3  Numerical Integration Algorithms.  

The numerical integration methods used in this study were: the Euler's Method 

[23], Modified Euler's Method [23], Simpson's Method [21], and the fourth order Runge-

Kutta Method [21].  

 

2.3.1 Euler's Method 

 Euler's method operates according to Figure2.8 and Equations (2.8a-b). 

 

 

Figure 2.8 Visualization Sketch for Euler's Method. 
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    (2.8b) 

 

For each iteration, the incremental set was obtained according to the specific equation or 

set of equations being integrated. The incremental set was then added to the initial values 

to create the next set of values in the solution array. 

 

2.3.2 The Modified Euler's Method 

 The Modified Euler's method comes next in order of complexity, it works as 

described by Figure 2.9 and Equations (2.9a-e).  

 

 

Figure 2.9 Visualization Sketch for the Modified Euler's Method. 
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     (2.9e) 

 

For each iteration, an incremental set was obtained according to the set of equations 

being integrated and was added to the initial values. The values obtained were then 

substituted back into the equations to create a second incremental set which was then 

averaged with the first to get a final incremental set. This set was used to obtain the next 

set of values in the solution array. 

 

2.3.3 Simpson's Rule 

         Simpson's Rule is a Newton Cotes formula that approximates the solution to an 

integral using quadratic polynomials. It is a third order numerical integration method thatt 

is more complex than the Euler and Modified Euler methods, but not as complex as the 

Fourth Order Runge-Kutta Method. It operates as shown in Figure 2.10 and Equations 

(2.10a-g). For each iteration, three sets of increments are obtained successively, the first 

by substituting the initial values into the sets of equations, the second by adding the first 

increment to the initial values and substituting back into the sets of equations; and the 

third by adding the second to the initial values and substituting back into the sets of 

equations. The final sets of increments which are used to define the next values of the 

arrays, are obtained by adding the first increment to four times the second, and then to the 

last increment and dividing the sum by six. 
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Figure 2.10 Visualization Sketch for Simpson's Rule. 
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   (2.10f) 



 14 

1 0

1 0

1 0

i

i

i

x x x

y y y

z z z













     
     

 
     
          

    (2.10 g) 

 

2.3.4 The Fourth Order Runge-Kutta Method 

 The Fourth Order Runge-Kutta Method was the most complex of all the 

numerical methods used in this study. As shown in Equation (2.11a-i). four sets of 

increments were obtained during each iteration, the first by substituting the initial values 

into the sets of equations, the second by adding the  initial values to one half the first set 

of increments, substituting back into the sets of equations; the third by adding the initial 

values to one half the second set of increments, then substituting back into the sets of 

equations and the fourth incremental by adding the initial values to the fourth set of 

increments, and then substituting back into the set of equations. The final sets of 

increments are obtained by adding the first increment to two times the sum of the second 

and third increments, and then to the last increment and dividing the sum by six. 

 

            

Figure 2.11 Visualization Sketch for Runge-Kutta's Method. 
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2.4 The Maximum Error Obtainable in Each Numerical Integration Method 

A general equation for the integration estimate which covers the Simpson and 

Runge-Kutta methods is presented in Equation (2.12) [30].  
mpQ  is the integration 

estimate for the Simpson and Runge-Kutta methods. A and B are constants of the 

method. 
if  represents samples of the function to be integrated, and 

iw  are weight factors. 

The second term on the right hand side of the equation is related to the error bound. 

 

          (2.12) 

 

For the Simpson's method, m is 1; and for the Fourth Order Runge-Kutta method, m is 2. 

The equation does not apply to the  Euler and Modified Euler methods. The information 

contained in Equation (2.12) is displayed in Table 2.1. along with the data for the Euler 

and Modified Euler methods which was obtained directly from reference [30]. In the 

Table, ' ' is a sign of proportionality. 

 

Table 2.1 The error bound in each numerical method by Step Size order proportionality. 

 

Numerical Integration Method Maximum Error 

Euler's method ( )t  

Modified Euler's method 
2( )t  

Simpson's method 
3( )t  

Fourth Order Runge-Kutta method 
4( )t  

 

2.5 Lyapunov Coefficients for the Chaotic Systems in this study 

 The value of the maximum positive Lyapunov coefficient is thought to impact the 

sensitivity of chaotic equations  to initial conditions   [31]. It is expected that the higher 

the coefficient the greater the sensitivity to initial conditions. This sensitivity is expected 

to impact the resolution parameter in the computation with more resolution being 

required for higher initial condition sensitivity. The observations derived from this work 

regarding these points will be commented on in the future work section of the conclusion. 

 

 
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Table 2.2 Lyapunov Coefficients for the chaotic systems tested. 

 

 Chaotic System Lyapunov Coefficients [31] 

1 Lorenz  System 0.90, -14.57  

2 Rossler System 0.07, -5.39 

3 Chen System 2.03, -12.03 

4 Chua System 0.33, -2.52 

5 Hadley System 0.17, -4.45 

6 ACT System 0.16, -9.21 

7 Diffusionless Lorenz System 0.21, -1.21 
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Chapter 3 

Introduction to the Micro-Integrator scheme 

3.1 Overview 

 This chapter is a brief self-contained introduction to the Micro-Integrator scheme. 

To a significant degree, the introduction is based on recent work contained in references 

[7,33]. To illustrate the main ideas, the Lorenz chaotic partial differential equation set 

was numerically integrated using the Modified Euler's method. 

 It was observed while integrating the Lorenz and Rossler equations [33] using the 

Euler's method that adjusting the parameter 'N', used to set the number of iterations 

caused noticeable changes in the approximate solutions to the differential equations 

associated with these systems. Increasing it to the point of eliminating the numerical 

butterfly effect proved to be impractical, as the computer displayed an out of memory 

error at every attempt to go past a certain error level. This memory problem inspired the 

need for the design of the Micro-Integrator algorithm. 

 

3.2 Integration Without the Micro-Integrator 

 Integration without the Micro-Integrator was done using standard numerical 

integration routines that can be shown with the following Figure; 

 

 

Figure 3.1 Numerical Integration Without the Micro-Integrator. 
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 The  time step t , is the amount of time between successive elements in the 

solution vector. The integration time frame T  is the amount of time over which the 

solution array is spread. The resolution parameter N is the number of elements in the 

solution array. These parameters are related by the formula; 

 

                / ( 1)t T N                               (3.1) 

 

            

Figure 3.2  Plot of the  variable of the Lorenz equations

       against time  for   5,000  and  for 15  .A

x

N T s 
  

 

Figure 3.2 was obtained by integrating the Lorenz Equations using the Modified Euler's 

method and plotting its x values against time. The problem of the numerical butterfly 

effect is visible here. It can be seen the solution does not yet exhibit the N-stable 

condition.  The ,  A Bx x  solutions, corresponding to 5,000AN   and 10,000BN   

respectively,  start to diverge about 6 seconds into the T=15 second simulation. Although 

not shown here the N-stable convergence property is eventually achieved with the Lorenz 

problem  for  50,000AN  . 

 

3.3 The Proposal of the  Micro-Integrator Solution  

 The Micro-Integrator was proposed [7] as a solution to the memory problems with 

selecting a large resolution parameter. The tests in this section support the observations 
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that there are an unlimited number of discrete time solutions to differential equations with 

specified initial conditions.  If the resolution is high enough (extremely short time step 

t ), the discrete time solution becomes insensitive to the time step size and equally 

important indistinguishable from the unique continuous time solution. 

 

 

Figure 3.3 Schematic for the Micro-Integrator Concept. 

 

 Figure 3.3 briefly shows how the Micro-Integrator works.  The   large scale time 

intervals t  and micro subintervals t  are illustrated in the top half. Given HRN , a  

high resolution or micro- integrator  parameter, which produces a partition of the interval 

t  into 1HRN   equal segments. Along with the  sub-interval spacing, it is given by: 

 

1( ) / ( )i i HRt t t N                          (3.2) 

 

As shown on Figure 3.3, δt is a subinterval on  time intervals such as 1[ , ]i it t  . The 

program does not record the dynamic high resolution variable array; because of this, the 

memory storage requirements are not expanded. The primary objective is to more 

accurately propagate the time series of the dynamic variables between large-scale time  
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intervals  1i it t    without high memory requirements. The Micro-Integrator  scheme 

initially creates temporary dynamic variables  ( , , )u v w  at the onset of the process: 

 

     1( , , ) ( , , )i jx y z u v w                         (3.3)       

      

After the last j-index internal  loop for  the Micro-Integrator scheme as shown in Figure 

3.3, the temporary dynamic variable sets are transferred back to a recorded dynamic 

variable set as per: 

 

1( , , ) ( , , )
HRj N iu v w x y z                         (3.4) 

 

The  Micro-integrator  process is repeated for  every large-scale time interval. For testing 

purposes the Modified Euler Method was also employed as the specific algorithm within 

the Micro-integrator  The Micro-Integrator  temporary dynamic variable updates are 

distinguished with subscripts “old” and “new”. Since memory storage is not required 

formal indexing is obviated. 

 How high should the  resolution parameter for the Micro-parameter, HRN ,  be set 

in order to avoid the  numerical butterfly effect?  It will not only depend on the particular 

chaos system simulated but also the particular numerical integration technique selected. 

Therefore a straightforward numerical answer or formula is not readily available. On the 

other hand, there is a simple test for which the discrete time solution can be taken as a 

good approximation to the continuous time solution. In particular, the  extended Micro-

Integrator program is run initially  with  a  resolution parameter seed value HRAN  and the 

( , , )A A A ix y z  1,2,...,i N  solutions are recorded.  Then the Micro-Integrator program is 

run with a new and higher resolution parameter HRBN . It relates to HRAN  by the 

following formula: 

 

                HRB HRAN m N                 (3.5)     
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Where =2m  is a typical value. A  solution  ( , , )B B B ix y z . 1,2,...,i N  is then recorded. In 

step two a  comparison is made to check if the  initial  low-resolution  solution 

( , , )A A A ix y z  and the higher resolution solution ( , , )B B B ix y z  have become 

indistinguishable. If indistinguishable then either the higher resolution B-solution 

( , , )B B B ix y z  or lower resolution A-solution would be considered a good approximation to 

the continuous time solution, insensitive to increases in HRN , and free of the numerical 

butterfly effect.  If A and B solutions are not close enough by some criterion then the 

process is repeated. In this situation the previously used higher resolution parameter 

HRBN  supplants HRAN   in the next test cycle.  As described, this will require multiple 

pairs of program runs ( , )HRA HRBN N for repeated test until the criterion that the two 

solutions  are  indistinguishable is met.    

 

3.4 Calculation of the Error 

The error is calculated as the difference between the computed chaotic signal 

, ,A A Ax y z
 using a resolution of AN  and , ,B B Bx y z  using a resolution of 2B AN N  . 
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(3.7) 

 

The terms  ,A Bd x x ,  ,A Bd y y ,  ,A Bd z z  each represents a distance metric for the 

vectors Ax  and ,Bx  Ay  and ,By  Az  and ,Bz  respectively. The maximum error is obtained 

by taking the largest value from among the distance them as follows. 
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 max max , ,x y z           (3.8)     

 

max  is then compared to an upper-bound error E which is one of the program inputs. 

maxIf  solution approximately free of  ButterFly effectE      (3.9a) 

maxIf  Continue increasing resolution E                (3.9b) 

 

3.4.1  Sample Error Calculation, In the case of the Lorenz Without the Micro-Integrator 

computed using the Fourth Order Runge-Kutta Method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   This answer can be verified from Table 5.1.  

 

3.5 A Detailed Description of the Micro-Integrator 
 

 The flow chart process for the automated adaptive Micro-Integrator algorithm is 

shown in Figure 3.4 to clarify how these concepts are brought together. Besides 

initialization of the dynamic variables, the inputs to the algorithm include the  large scale 

resolution parameter N, the error bound E, and a seed value for the Micro-Integrator 

resolution parameter HRON . The system description and initial conditions were not 

adjusted in the tests discussed and therefore not explicitly mentioned as inputs for the 
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algorithm. If the error test does not meet the required condition, the Micro-Integrator 

resolution parameter is increased by a factor „m‟ then repeated. Once the error is satisfied, 

the automated process is stopped and the current values of all the resolution parameters 

are fixed.  

 HRON  and _res IN  are used interchangeably here, they represent the initial values 

of the Micro-Integrator's resolution parameter HRAN . Also, HRAN  and _res AN  are used 

interchangeably, they represent the real-time values of the Micro-Integrator's resolution 

parameter. 

 

 

Figure 3.4, Automated Adaptive Extended Micro-Integrator Algorithm, typical 2HRON  , 

2,m  0.01.E   
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3.6 Testing the Micro-Integrator Algorithm  

      The  test performed demonstrated  that the Micro-Integrator process allowed a N-

stable numerical solution. The Lorenz Equations were integrated using the Modified 

Euler's Method and a resolution parameter of 5,000AN  . The algorithm described 

proceeds until max 0.01E   . Figure 3.5 is a plot of the vector x obtained from the 

integration process. Convergence was obtained with only memory storage requirement 

associated with a ( , , )x y z  array size of 5000,  not 50,000. This is a very good 

approximation for the exact continuous time solution vector to the Lorenz Equations. The 

error criterion was reached using a Micro-Integrator resolution parameter of e _ 16r s AN  . 

 

  
Figure 3.5  Convergence demonstration with  Micro-Integrator algorithm, 5000AN   

2HRON  , 2,m  0.01E  , T=15s. 

 

It was found that the modified-Euler's Method of numerical integration worked very 

well with the proposed Micro-Integrator algorithm. Hence it was possible to achieve 

convergence without excessive use of computer memory.      
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Chapter Four 

Methodology for the Evaluation of the Performance factor of the Micro-Integrator 

Scheme 

 

4.1 The Micro-Integrator Performance Factor 

 In order to gauge the utility of the Micro-Integrator scheme, a performance factor 

was introduced. This performance factor was defined as the ratio of memory 

requirements as defined by: 

 

2

1

N

N
                                                   (4.1) 

 

Where   represents the Micro-Integrator performance factor, 1N  and 2N  are the number 

of sampling points ( AN  values) used when computing the chaotic signal with and 

without the Micro-Integrator, respectively. The values 1N  and 2N  are used as measures 

of the amount of memory required in each case.  

 

4.1.1 The Memory Estimation Disclaimer 

 It is very important to state here that estimating the amount of memory required 

by the computer by measuring the size of its output array as was done in this study is 

accurate only to a certain extent. The actual memory used would be slightly different 

from this value. But for the purpose of this research, it was used as a good estimate. 

 

4.2 Limiting the Error 

 In order to compare performance factors with various chaotic systems and 

numerical methods, it is required that the error max  be reached within a band centered 

on the selected  . 

 

max
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1 1

100 100
E E
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Where the percentage deviation allowed   is specified as an error control computer 

program input parameter. A typical value for this in the numerical tests is 10%. Error 

control algorithms were designed to limit the computational error to within a fraction of a 

specified error limit. There were two versions, one for use with and the other for use 

without the Micro-Integrator. They were designed to ensure a more accurate comparison 

between computations with and without the Micro-Integrator. 

 

4.3 Error Control Without the Micro-Integrator  

4.3.1 Algorithm for the Error Control Without the Micro-Integrator 

 Figure 4.1(a) is a predictor checker algorithm used to simplify the representation 

of the error control algorithm without the Micro-Integrator. It operates in five stages; the 

first stage integrates the set of equations using the input resolution parameter AN  and 

produces a vector VA


 which is a set made up of ,  y ,  zA A Ax  arrays. The second stage 

calculates the resolution parameter BN  by qdoubling AN . The third stage integrates the 

system of equations using the resolution parameter BN  and produces a vector VB


 which 

is a set made up of ,  y ,  zB B Bx  arrays. At this stage, VB


 is twice the size of VA


, the 

fourth stage uses an interpolation algorithm to double the size of VA


 so that it can be 

accurately compared to VB


. In the fifth stage, the error max  between VA


 and VB


 is 

calculated using the error calculation process explained in chapter 3.  

 In Figure 4.1(b), the predictor checker algorithm is used twice in a flow chart 

representation of the error control algorithm. First, the program inputs are fed into the 

predictor checker algorithm. After the error max  between VA


 and VB


 has been 

calculated by the predictor checker algorithm, it is then compared to the set error limit 'E'. 

If max  is greater than E, then AN  is doubled, and the value obtained is used to replace its 

current value, the predictor checker stage is then repeated until max  becomes less than E. 

stpp' which is the deviation of max  from E is then calculated by dividing the absolute 

value of the difference between max  and E by E. The absolute value of 'stpp' is then 

compared to the maximum allowable deviation devE . 
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  (a) 

                     

(b)  

Figure 4.1: (a) Predictor Checker Algorithm Without the Micro-Integrator, (b) Error 

Control Algorithm Without the Micro-Integrator using the Predictor Checker Algorithm. 
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If 'stpp' is greater than devE , a check is then performed to see if it is greater than zero. If 

it is greater than zero, AN  is then incremented by a fraction of its current value defined 

by a parameter AflucN  represented by the symbol   in the flow chart. The value of AN  

obtained is then fed back into the predictor checker, after which the program returns to 

the stage where 'stpp' is being calculated. If 'stpp'  is less than zero, AN  is then decreased 

by AflucN , the value of AN  obtained is then fed back into the predictor checker 

algorithm and the program returns to the stage where 'stpp' is being calculated. This goes 

on until 'stpp' becomes less than devE , when this happens, then the program is 

terminated and the current values of Ax  and Bx  are plotted against time. 

 

4.3.2 Alternate Depiction of the Error Control Algorithm Without the Micro-Integrator 

 As shown in Figure 4.2, the error control algorithm for the case without the 

Micro-Integrator was designed to be fed the following input parameters: ' E ' the desired 

error limit, ' AN ' the initial value of the resolution parameter, ' AflucN ' the percentage 

fluctuation of AN  for each iteration, ' devE ' the maximum allowable percentage error 

deviation of the results from the desired error limit; and kloopMax  the maximum number 

of iterations. For each iteration, the values ,  ;  and A A Ax y z , are computed using the input 

resolution parameter AN  as the size of the solution array and to compute t . The values 

,  ;  and B B Bx y z  are computed using 2 AN  in place of AN . Due to the size differences in 

the A and B arrays, an interpolation algorithm had to be introduced to double the size of 

the array A to make it comparable to B. The error calculation process as explained in 

chapter 3 is then applied to calculate the error ' 1E ' after which its deviation from the 

desired error limit ' stpp '  is calculated by subtracting the error 1E  from the error limit E 

and dividing the difference by 1E . The deviation stpp  is then compared to the maximum 

allowable error deviation devE ; if stpp  is greater than devE , then the deviation in the 

error is too large, the algorithm then performs a check to see if stpp  is greater than zero, 

if stpp  is greater than zero then the value of AN  used in the present iteration is added to 

its product with AflucN  rounded to the nearest significant Figure. The result obtained is 
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used as the value of 
AN  for the next iteration. If stpp  is less than zero, then the present 

AN 's product with 
AflucN  rounded to the nearest significant figure is subtracted from it 

and the result obtained is used as the value of AN  for the next iteration.  

 

  

Figure 4.2 Alternate Depiction of the Error Control Algorithm without the Micro-

Integrator. 
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This goes on until stpp  is less than devE , or when the failsafe is triggered. The failsafe 

is triggered when kloop  becomes greater than kloopMax . The values of the output 

vectors are then plotted against time which in this case is a discrete set of elements 

increasing by unity from 1 to 1AN   for the A arrays and from 1 to 1BN   for the B 

arrays. 

 

4.4 Error Control With the Micro-Integrator  

4.4.1 Algorithm for the error control with the Micro-Integrator 

 Figure 4.3(a) is the first predictor checker algorithm used in the error control 

algorithm with the Micro-Integrator. It works in five stages, in the first stage, two input 

parameters _res AN  (the initial value of the Micro-Integrator's resolution parameter) and 

1E (the error limit) are fed into the program, and 2E  is defined by dividing 1E  by ten. In 

the second stage, the set of equations is integrated using a fixed conventional resolution 

parameter AN  along with the input value of the Micro-integrator's resolution parameter 

_res AN . In the third stage, a second Micro-Integrator resolution parameter _res BN  is 

calculated by doubling _res AN .   

 

        

   (a) 
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   (b) 

 

 

(c) 

 

Figure 4.3: (a) First Predictor Checker Algorithm With the Micro-Integrator, (b) Second 

Predictor Checker Algorithm With the Micro-Integrator, (c) Error Control Algorithm 

With the Micro-Integrator using the Predictor Checker Algorithm. 
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In the fourth stage, the set of equations is integrated using the same fixed conventional 

resolution parameter 
AN  along with the newly calculated value of the Micro-integrator's 

resolution parameter 
_res BN . In the fifth stage, the error 

max  between VA


 and VB


 is 

calculated using the error calculation process explained in chapter 3. There is no need for 

interpolatioon here because VA


 and VB


 are the same size. 

 Figure 4.3(b) is the second predictor checker algorithm used in the error control 

algorithm with the Micro-Integrator. It is used at a point where the  VA


 array is fixed. It 

simply integrates the equation set to obtain the VB


 array and calculates the error between 

it and the fixed VA


 array. 

 The complete error control algorithm is shown in Figure 4.3(c). At the start of the 

program, its inputs are fed into the first predictor checker algorithm. After the error max  

between VA


 and VB


 has been calculated by the predictor checker algorithm, it is then 

compared to 2E . If max  is greater than 2E , then _res AN  is doubled, and the value 

obtained is used to replace its current value, the predictor checker stage is then repeated 

until max  becomes less than 2E . 'stpp' which is the deviation of max  from 2E  is then 

calculated by dividing the absolute value of its difference from max  by itself. The 

absolute value of 'stpp' is then compared to the maximum allowable deviation devE . If 

'stpp' is greater than devE , a check is then performed to see if it is greater than zero. If it 

is greater than zero, _res AN  is then incremented by a fraction of its current value defined 

by a parameter _res AflucN  represented by the symbol   in the flow chart. The value of 

_res AN  obtained is then fed to the second predictor checker, after which the program 

returns to the stage where 'stpp' is being calculated. If 'stpp'  is less than zero, _res AN  is 

then decreased by _res AflucN , the value of _res AN  obtained is then fed to the second 

predictor checker algorithm and the program returns to the stage where 'stpp' is being 

calculated. This goes on until 'stpp' becomes less than devE , when this happens, then the 

program is terminated and the current values of Ax  and Bx  are plotted against a vector of 

elements increasing by 1 from 0 to 1AN  . 
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4.4.2 Alternate Depiction of the Algorithm for the error control with the Micro-Integrator 

  As shown in Figure 4.4, the error control algorithm for the case with the Micro-

Integrator was designed to be fed the following input parameters: '
1E ' the error limit, 

'
AN ' the standard resolution parameter, '

er sIN ' the initial value of the Micro-Integrator  

resolution parameter '
NresAfluc ' which is the fluctuation per iteration of 

resAN  (the Micro-

Integrator's resolution parameter), ' devE ' the maximum allowable deviation from the 

error limit; and kloopMax , the maximum number of iterations. First, ' 2E ' is defined as 

one tenth the value of 1E . Then ,  ;  and A A Ax y z  are computed using Figure 3.3 (the basic 

Micro-Integrator algorithm). The Micro-Integrator resolution parameter is  then doubled 

and the obtained value is used to compute ,  ,  and xB yB zB  arrays. The error is then 

computed as described in Chapter 3, and compared to 2E . If it is greater than 2E , then 

the Micro-Integrator's resolution parameter is doubled and the computation is re-done 

(using the doubled Micro-Integrator resolution parameter). If it is less than 2E , then its B 

arrays are stored as a reference to be used in the second phase of the algorithm. The 

second phase of the algorithm uses in the stored B array and the Micro-Integrator's 

resolution parameter. It computes a new set of A arrays which are then compared to the 

stored arrays from the previous stage of computation and calculates the error. The 

deviation stpp is then calculated by subtracting the error limit from the error just 

calculated and dividing the difference by the error limit. The result is then compared to 

devE . If stpp  is greater than devE , then a second check is performed to see if stpp  is 

greater than zero. If stpp  is greater than zero, if stpp  is greater than zero then the value 

of _res AN  used in the present iteration is added to its product with _res AflucN  rounded to 

the nearest significant figure, and the result obtained is used as the new value of _res AN  

while the A arrays are re-computed. If stpp  is less than zero, then the present _res AN 's 

product with _res AflucN  rounded to the nearest significant Figure is subtracted from it 

and the result obtained is used as the new value of _res AN  for the next iteration. This goes 

on until stpp  is less than devE , or when the failsafe is triggered. The failsafe is triggered 

when kloop  becomes greater than kloopMax . The output is then plotted. 
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Figure 4.4 The error control algorithm with the Micro-Integrator. 
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 The interpolation algorithm isn't needed in the computations with the Micro-

Integrator because, the A and B arrays are always the same size. 

 

4.5 Other Parameters Introduced 

4.3.1 The Performance Measures 

 The Performance Measures are the logarithm to base ten of the Micro-Integrator 

performance factors of each of the chaotic systems of equations being integrated.  

 

4.3.2 Percentage Reduction in CPU time 

 The percentage reduction in CPU time is defined by this formula: 

 

1 2

1

100%
t t

t



       (4.3) 

 

Where   is the percentage reduction in CPU time, 1t  is the CPU time required for 

integrating without using the Micro-Integrator; and 2t  is the CPU time required for 

integrating with the Micro-Integrator. 

 

4.3.3 The Performance Ratio 

 The Performance ratio was introduced while studying a single Chaotic System of 

Equations being integrated twice for two different time frames; first with a low time 

frame; and then with a higher time frame. It could be represented by this formula: 

 

Hi

Lo

r



      (4.4) 

 

Where r is the Performance Ratio, Hi  is the Micro-Integrator performance factor 

obtained from integrating with the higher time frame; and Lo  is the Micro-Integrator 

performance factor obtained from integrating with the lower time frame. 
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4.6  Problems with the Modular Programming approach 

 A complete modular approach was attempted for designing program codes for 

these algorithms for ease of implementation and debugging. Each chaotic differential 

stage was manually put into a custom function, so that in the integration stage; the 

differentials could be done by recalling the assigned functions. There were certain 

advantages gained by using this approach, but there were more disadvantages. The 

advantages were: relative ease of debugging as opposed to the non modular approach, 

little chances of introducing error, ease of understanding (for someone new to the code), 

ease of implementation; less bulky codes (than their non-modular versions). There was 

one big disadvantage with the modular programming approach in this experiment, the 

modular programs took too much more time to run that their non modular equivalents. 

This overhead in time came from the fact that the modular programs had to recall specific 

assigned functions (subroutines) stored separately within the computer. This disadvantage 

was enough to discourage further use of the modular approach in this study, as this is 

research is directed towards computational efficiency in terms of memory and CPU time. 
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Chapter 5 

Test Cases and Results 

 

 The purpose of this Chapter is to quantify the reduction in memory requirements 

from using the Micro-Integrator in terms of the performance factor introduced in Chapter 

4. The result tables showing the integration input parameters, results, and output graphs 

from solving the Lorenz, Rossler, Chen, Chua, Hadley, ACT, and Diffusionless Lorenz 

chaotic partial differential equations, with and without the Micro-Integrator, are presented 

here. 

 

5.1 A Brief Description of the Parameters used in the Tables 

 (1) Integration Time Frame 

 This is the difference between the initial and final time of the integration operation. 

(2) Error Limit 

 This is the desired error limit. The true error varies within a set percentage of this. 

(3) True Error 

 This is the actual error measured during the computational process. 

(4) CPU Time 

 This is the time taken for the program to execute the integration process. 

(5) Loop Count 

 This is the number of iterations the program takes to satisfy the error criteria.  

 All the parameters not described in this section were described in chapter 4. 

 

5.2 Result Tables 

 This section contains all the result tables. For Tables 5.1 to 5.7, each Table 

represents a specific Chaotic System being integrated with and without the Micro-

Integrator respectively using the four different numerical methods. The central bold 

columns containing 2N  and 1N  highlight the advantage in using the Micro-Integrator. The 

2N  column displays the amount of memory required for integrating without the Micro-

Integrator for each numerical method, while the 1N  column displays those required for 

integrating with the Micro-Integrator.  
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Table 5.1 Results from the Lorenz Equations with and without the Micro-Integrator. 

 

Lorenz 

System 

 

Without the Micro-Integrator With the Micro-Integrator  

Seed AN = 410 , fluc AN =30%,  Seed _res AN  =2, fluc _res AN = 30%   

 Integration time frame = 0-22 seconds, Set error limit = 0.005 ± 10% 

 

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Modified Euler 20 87s 4.59 3626132 1024 4.60 17s 14+4 3935 3.54 310  

Simpson 14 19s 4.80 1946160 1024 4.75 13s 13+7 2328 1.90 310  

Runge-Kutta 13 18s 5.41 10541 1024 5.49 1.2s 5+3 12 10.29 

 

Table 5.2 Results from the Rossler equations with and without the Micro-Integrator. 

 

Rossler 

System 

 

Without the Micro-Integrator With the Micro-Integrator  

Seed AN =4000, fluc AN =30%, Seed _res AN  =2, fluc _res AN = 30%   

 Integration time frame = 0-200 seconds, Set error limit = 0.005 ± 10%  

 

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Modified Euler 12 3.9s 5.24 345984 1024 4.80 3.3s 11+4 493 3.38 210  

Simpson's 12 3.8s 4.86 345984 1024 4.63 3.2s 11+4 493 3.38 210  

Runge-Kutta 8 1.3s 5.33 68343 1024 4.98 2.2s 8+5 81 66.74 

 

Table 5.3 Results from the Chen equations with and without the Micro-Integrator. 

 

Chen System 

 

 

Without the Micro-Integrator With the Micro-Integrator  

Seed AN =5000, fluc AN =40%,  Seed _res AN  =2, fluc _res AN = 30%   

 Integration time frame = 0-8 seconds, Set error limit = 0.005 ± 10% 

 

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Modified Euler 18 36s 4.72 1839110 1024 4.61 10s 13+16 2031 1.80 310  

Simpson 13 7.5s 5.12 648717 1024 4.58 3s 11+2 738 6.34 210  

Runge-Kutta 2 0.4s 5.00 7500 1024 4.97 1.3s 4+5 7 7.32 
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Table 5.4 Results from the Chua equations with and without the Micro-Integrator. 

 

Chua 

System 

Without the Micro-Integrator With the Micro-Integrator  

Seed AN =5000, fluc AN =40%,  Seed _res AN  =2, fluc _res AN = 30%   

 Integration time frame = 0-50 seconds, Set error limit = 0.005 ± 10%  

 

 

Loop 

Count 

CPU 

Time  

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Modified Euler 20 13s 4.92 80551 1024 5.19 1.5s 6+9 49 78.66 

Simpson 13 3.8s 4.97 78210 1024 5.41 1.8s 7+5 58 76.38 

Runge-Kutta 4 1.3s 5.21 46875 1024 4.64 1.9s 8+13 59 45.78 

 

Table 5.5 Results from the Hadley equations with and without the Micro-Integrator. 

 

Hadley 

System 

Without the Micro-Integrator With the Micro-Integrator  

Seed AN = 410 , fluc AN =30%,  Seed _res AN  =2, fluc _res AN = 30%   

 Integration time frame = 0-80 seconds, Set error limit = 0.005 ± 10%  

 

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time

±5% 

Loop 

Count _res AN    

Modified Euler 14 24s 5.31 1946160 1024 5.25 15s 14+5 2755 1.90 310  

Simpson 14 22s 4.89 1946160 1024 4.57 9s 13+5 2558 1.90 310  

Runge-Kutta 10 4s 5.45 155478 1024 4.73 1.2s 6+13 26 1.52 210  

 

Table 5.6 Results from the ACT equations with and without the Micro-Integrator. 

 

ACT System Without the Micro-Integrator With the Micro-Integrator  

Seed AN = 3 410  10to , fluc AN =40%,  Seed _res AN  =2, fluc _res AN = 30%   

 Integration time frame = 0-80 seconds, Set error limit = 0.005 ± 10%  

 

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Modified Euler 19 106s 5.22 2059814 1024 5.30 67s 13+7 2328 2.01 310  

Simpson 19 93s 4.55 1922492 1024 4.84 95s 13+9 2119 1.88 310  

Runge-Kutta 17 23s 4.69 11110 1024 5.41 1.6s 5+7 10 10.85 
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Table 5.7 Results from the Diffusionless Lorenz with and without the Micro-Integrator. 

 

Diffusionless  

Lorenz System 

Without the Micro-Integrator With the Micro-Integrator  

Seed AN =5000, fluc AN =30%,  Seed _res AN  =2, fluc _res AN = 30%   

 Integration time frame = 0-100 seconds, Set error limit = 0.005 ± 10%  

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Modified Euler 23 23s 4.60 633032 1024 4.61 2.5s 11+3 703 6.18 210  

Simpson 20 15s 4.52 538295 1024 4.83 3.6s 11+7 582 5.26 210  

Runge-Kutta 6 0.5s 5.04 5292 1024 5.07 1.9s 4+4 5 5.17 

 

 Tables 5.8 and 5.9 show the results from integrating the seven chaotic systems 

using Euler's method. These results were kept separate from the other results because 

Euler's method was far less efficient than the other methods and they couldn't be 

compared on the same integration time frame. The difference between Tables 5.8 and 5.9 

is that Table 5.9 contains values recorded for integrations using a larger time frame than 

Table 5.8. It is observable that the Micro-Integrator performance factors are higher on 

Table 5.9, this is evidence that the Micro-Integrator performance factor increases with an 

increase in the integration time frame. 

 

Table 5.8 Results from computing all the listed chaotic sets of partial differential 

equations with Euler's method with and without the Micro-Integrator. 

 

Euler's Table of Computations with and without the Micro-Integrator 

Without the Micro-Integrator With the Micro-Integrator  

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Lorenz 0-8s 17 47s 5.23 3722031 256 4.90 24s 18+6 30842 1.45 410  

Rossler 0-80s 16 10s 4.74 708401 256 4.81 5.2s 14+18 4923 2.77 310  

Chen 0-3s 17 29s 4.70 3284127 256 5.27 11s 17+5 22031 1.28 410  

Chua 0-25s 10 13s 5.29 1537732 256 4.75 9.6s 16+11 10970 6.00 310  

Hadley 0-20s 18 60s 4.81 3984762 256 4.59 25s 18+6 30842 1.56 410  

ACT 0-20s 18 11s 5.09 367756 256 4.86 9s 13+5 1378 1.44 310  

Diff Lorenz 0-50s 12 4.1s 4.70 432478 256 4.58 3.3s 15+8 3510 1.69 310  

 

 



 42 

Table 5.9 Results from integrating all the listed chaotic partial differential equations by 

Euler's method with and without the Micro-Integrator on an increased time window. 

 

Euler's Table of Computations with and without the Micro-Integrator 

Without the Micro-Integrator With the Micro-Integrator  

 

Loop 

Count 

CPU 

Time 

±5% 

True 

Error
310  

2N  1N  
True 

Error
310  

CPU 

Time 

±5% 

Loop 

Count _res AN    

Lorenz 0-8.1s 17 58s 5.01 6568290 256 4.57 29s 18+8 52123 2.57 410  

Rossler 0-120s 16 15s 4.74 1751544 256 4.80 60s 14+18 78696 6.84 310  

Chen 0-3.5s 21 91s 4.72 6206999 256 4.72 22s 18+5 44060 2.43 410  

Chua 0-35s 14 60s 4.54 7784767 256 5.28 60s 19+15 45803 3.04 410  

Hadley 0-35s 17 53s 5.43 6568290 256 4.84 48s 19+6 56312 2.57 410  

ACT 0-30s 23 121s 5.23 7480318 256 4.66 252s 18+6 30842 2.92 410  

Diff Lorenz 0-60s 18 40s 4.92 4926190 256 4.71 20s 17+7 40094 1.92 410  

 

Table 5.10 shows the importance of the error control algorithm, it has two major 

columns containing the error limits and actual errors obtained from integrating the Lorenz 

Equations with the Micro-Integrator, both with and without the error control algorithm. It 

can be confirmed from the Table that the error control algorithm brought the error to 

within an accuracy limit of ±10%. 

 

Table 5.10 Demonstrating the accuracy of the error control algorithm by computations 

with and without it for the Lorenz and Rossler systems with the Micro-Integrator. 

 

  

  

Without Error Control Algorithm  With Error Control Algorithm 

Set error limit Actual error Set error limit Actual error Accuracy 

Lorenz 

t=0-20s 

 

 

 

0.01 7.55 310  0.01 1.05 210  ±10% 

0.02 7.55 310  0.02 2.13 210  ±10% 

0.03 7.55 310  0.03 2.78 210  ±10% 

0.04 7.55 310  0.04 3.61 210  ±10% 

0.05 7.55 310  0.05 4.57 210  ±10% 

Rossler 

t=0-100s 

 

 

 

0.01 3.43 410  0.01 9.87 310  ±10% 

0.02 3.43 410  0.02 1.97 210  ±10% 

0.03 3.43 410  0.03 2.77 210  ±10% 

0.04 3.43 410  0.04 3.92 210  ±10% 

0.05 3.43 410  0.05 4.65 210  ±10% 
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5.3 Graphical Presentation of Results 

 This section contains the output graphs for all the chaotic systems in this study. 

Figures 5.1a to 5.7c contain plots of the output x  arrays for each of the chaotic systems. 

Figures 5.1a, 5.2a, 5.3a, 5.4a, 5.5a, 5.6a; and 5.7a were the outputs from integrating the 

chaotic systems without the Micro-Integrator using the Modified Euler's method with the 

same resolutions of 2000AN   and 4000BN 
 
for the A and B arrays plotted using the 

blue dotted line and the green solid lines respectively. The errors varied by Chaotic 

System. Figures 5.1b, 5.2b, 5.3b, 5.4b, 5.5b, 5.6b; and 5.7b were integrated using the 

same numerical method without the Micro-Integrator to an error limit of 0.005 bound to 

±10%. The resolution parameter used for the green solid line was twice that used for the 

blue dotted line. Figures 5.1c, 5.2c, 5.3c, 5.4c, 5.5c, 5.6c; and 5.7c were integrated with 

the Micro-Integrator using the same numerical method to an error limit of 0.005 bound to 

±10%. The Micro-Integrator resolution parameter used for the green solid line was twice 

that for the blue dotted line. 

  Figures 5.8a-d were plotted from solving the Chen equations without the Micro-

Integrator using the Euler, modified Euler, Simpson; and fourth order Runge-Kutta 

methods respectively for the same resolution parameters of 2000AN   and 4000BN  . 

This was done to test the relative efficiency of these numerical methods. Observations 

were recorded in section 5.4 and in the results. 

 The integrations done with the Micro-Integrator to meet an error limit of 0.005 

bound to ±10% produced output graphs that were visually indistinguishable for the 

different numerical methods. For the purpose of documentation, the results from using 

the modified Euler were included in this section. 

 

5.4 Observations 

 From the result tables, it could be observed that the integrations done using the 

Micro-Integrator required significantly less memory than those done without it. Also, the 

amount of CPU time required was much less for the integrations done with the Micro-

Integrator, even though it first integrates to an accuracy ten times the desired limit, before 

gradually reducing the resolution parameter to meet the exact accuracy limit. Also, the 

higher order numerical methods performed much better than the lower ones. 
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(c) With the Micro-Integrator 1024AN   

Figure 5.1 x vs t  for the Lorenz System. 
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(a) Without the Micro-Integrator 2000AN   
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(b) Without the Micro-Integrator 345984AN   
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(c) With the Micro-Integrator 1024AN   

Figure 5.2 x vs t  for the Rossler System. 
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(a) Without the Micro-Integrator 2000AN   
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(b) Without the Micro-Integrator 1839110AN   
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(c) With the Micro-Integrator 1024AN   

Figure 5.3 x vs t  for the Chen System. 
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(a) Without the Micro-Integrator 2000AN   
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(b) Without the Micro-Integrator 80551AN   
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(c) With the Micro-Integrator 1024AN   

Figure 5.4 x vs t  for the Chua System. 
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(a) Without the Micro-Integrator 2000AN   
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(b) Without the Micro-Integrator 1946160AN   
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(c) With the Micro-Integrator 1024AN   

Figure 5.5 x vs t  for the Hadley System. 
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(a) Without the Micro-Integrator 2000AN   
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(b) Without the Micro-Integrator 2059814AN   
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(c) With the Micro-Integrator 1024AN   

Figure 5.6 x vs t  for the ACT System. 
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(a) Without the Micro-Integrator 2000AN   
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(c) With the Micro-Integrator 1024AN   

 Figure 5.7 x vs t  for the Diffusionless Lorenz System. 
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(a) Using Euler's Method, 2000AN   

 

 

 

 

 

 

 

(b) Using the modified Euler's Method, 2000AN   

 

 

 

 

 

 

(c) Using Simpson's Method, 2000AN   

 

 

 

 

 

 
 
 
 
 

(d) Using Runge-Kutta's Method, 2000AN   

Figure 5.8 x vs. t for the Chen equations Without the Micro Integrator. 
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Based on the results and expectations, A hierarchy could be drawn as follows; Euler, 

modified Euler, Simpson, Runge-Kutta. This represents an order of increasing 

complexity, and computational efficiency. A quick glance at this is presented in Figures 

5.8a-d, from the graphs, the lag of the blue dotted line behind the green solid line shows 

how computationally efficient that algorithm was in carrying out that integration. The 

four integrations there were done for a specific value of the resolution parameter, yet 

some of the results were much more accurate than the others, this is evidence that certain 

numerical methods are more efficient than the others, and the hierarchy is correct. 

 

5.5 Table Data Presented in Plots 

5.5.1 Illustrating the Effectiveness of the Error Control Algorithms 

 The effectiveness of the error control algorithm as shown in Table 5.10 are 

represented graphically in Figures 5.9 and 5.10.  
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Figure 5.9 Illustrating the Effectiveness of the Error Control Algorithm using the Lorenz 

Equations. 
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Figure 5.10 Illustrating the Effectiveness of the Error Control Algorithm using the 

Rossler Equations. 

 

The pink line with diamond shaped points was obtained from plotting the errors achieved 

without the error control algorithm versus the set error limit. The green line with asterix 

points was obtained from plotting the errors achieved with the error control algorithm 

versus the set error limit. The blue line with circle shaped points is an ideal reference 

obtained by plotting the set error limits against each other. 

 

5.5.2 The Performance Measures of the Chaotic Systems 

 The Performance Measures of each of the chaotic systems as defined in Chapter 4 

are represented graphically in this subsection. Figure 5.11 shows those for the Lorenz 

Equations, Figure 5.12 shows those for the Rossler Equations, Figure 5.13 shows those 

for the Chen Equations, Figure 5.14 shows those for the Chua Equations, Figure 5.15 

shows those for the Hadley Equations, Figure 5.16 shows those for the ACT Equations; 

and Figure 5.17 shows those for the Diffusionless Lorenz Equations. 
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Figure 5.11 Performance Measures of the Lorenz System. 
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Figure 5.12 Performance Measures of the Rossler System. 
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      Figure 5.13 Performance Measures of the Chen System. 
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     Figure 5.14 Performance Measures of the Chua System. 
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        Figure 5.15 Performance Measures of the Hadley System. 
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        Figure 5.16 Performance Measures of the ACT System. 
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Figure 5.17 Performance Measures of the Diffusionless Lorenz System. 

 

5.5.3 Percentage Reduction in CPU time 

 The percentage reduction in CPU time recorded for integrating all the chaotic 

systems of Equations with and without the Micro-Integrator  as represented by the data in 

Tables 5.1 to 5.9 are shown graphically in Figure 5.18. The y axis is the percentage 

reduction in CPU time, ordered by the numerical methods used. All the cases apart from 

the Runge-Kutta showed reduction in CPU time with using the Micro-Integrator, while 

the Runge-Kutta showed an increase. 

 

5.5.4 The Performance Ratios 

 The performance ratios obtained from integrating all the chaotic systems of 

Equations for two different integration time frames by the Euler's method as represented  

by Tables 5.8 and 5.9 are shown graphically in Figure 5.19. The y axis is the base ten 

logarithm of each of the performance factors, and each of the chaotic systems are placed 

on the x axis for comparism. 
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Figure 5.18 Percentage Reduction in CPU time. 
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     Figure 5.19 Performance Ratios for the chaotic systems. 
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Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusion 

In the results obtained, the advantages of the Micro-Integrator were visible and 

have been quantified. In order to accurately gauge the differences in performances, an 

error control algorithm was introduced during this research to limit the error to within a 

certain percentage of a specified error limit. It was developed and used in the tests. 

A performance factor was also introduced to quantify the advantages gained from 

using the Micro-Integrator in terms of reduction in memory requirements. In at least 75% 

of the cases, the performance factors exceeded a memory ratio of 1000. It was observed 

that the numerical integration methods that were used in this research played a significant 

role in the performance of the Micro-Integrator algorithm. The less computationally 

efficient algorithms produced higher performance factors. 

It was also noted that CPU times were affected by the selection of the numerical 

integration algorithm, and the Micro-Integrator was very efficient in lowering CPU times. 

The performance factors seemed to be influenced by the time windows for integration. 

Higher time windows produced higher performance factors. 

 

6.2 Future Work 

 The Lyapunov coefficients for each of the chaotic systems showed some level of 

correlation with the time windows for integration, which in turn influenced the Micro-

Integrator's performance factors. This would indirectly suggest that the Micro-Integrator's 

performance factor has some dependence on the Lyapunov coefficients of the chaotic 

systems. There are more investigations to be done here, possibly more advanced versions 

of the Micro-Integrator algorithm would make it easier to explore this correlation. The 

Micro-Integrator algorithm could be made more advanced than it currently is, for 

instance, automatic selection of the conventional resolution parameter, alternate 

structures to its current error control algorithm, tests with simpler error calculation 

algorithms. More importantly, it could be applied to more sets of equations and put to use 

in practical situations, to solve practical memory problems in real time simulations. 
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Appendix A:  Interpolation Algorithm 

The interpolation algorithm as depicted in Figures A.1 to A.3, was executed in a 

Matlab code. Figures A.1 and A.2 are alternate graphical representations of the 

procedure, and Figure A.3 is its algorithm in a flow chart. It is designed to increment 

lower size arrays to match higher ones for better comparison. It uses the basic 

interpolation rule, it calculates the slope and multiplies it to the differential time interval 

under consideration and adds this product to the current value to find the next value. All 

the parameters here are the same as defined in the thesis, and 
iAx represents the 

interpolated array of Ax . 

 

Figure A.1 Graphical representation of the Interpolation concept. 

 

Figure A.2 Alternate Graphical representation of the Interpolation concept. 



 64 

 

Figure A.3 The Interpolation algorithm. 



 65 

Appendix B: The Matlab Codes 

 There were many Matlab codes used in this research, covering in excess of 300 

pages. For ease of documentation, only those used to integrate the Lorenz Equations were 

included in this Appendix. 

 

Appendix B-1: Lorenz Equations by Euler's Method without the Micro-Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This Program uses the Eulers Method to solve the Lorenz Non-linear 

Chaotic Partial Differential Equation Set%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 
clear all; 
close all; 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;  %lower time limit% 
tf=20; %upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 
y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for  i=1:N; 
     %The Integration%   
     dx1=(10*y(i)-10*x(i))*dt; 
     dy1=(28*x(i)-y(i)-x(i)*z(i))*dt; 
     dz1=(x(i)*y(i)-8*z(i)/3)*dt; 
%      dx=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt; 
%      dy=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+0.5*dx1)*(z(i)+(0.5*dz1)))*dt; 
%      dz=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt; 
     x(i+1)=x(i)+dx1;y(i+1)=y(i)+dy1;z(i+1)=z(i)+dz1; 
end; 
%plot of 2-D poincare map% 
figure(1) 
plot(x,y) 
title('2D Poincare Map - Lorenz Without Micro - Eulers Method') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 
figure(2) 
plot3(x,y,z) 
title('3D Poincare Map - Lorenz Without Micro - Eulers Method') 



 66 

Appendix B (Continued) 

xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=8.1;   %upper time limit% 
NVectA=[1000,2000,4000]; %Matrix of NA values% 
NVectB=2*NVectA;         %Matrix of NB values% 
%Loop to use all values in the NA and NB matrices% 
for k = 1:3; 
    NA=NVectA(k);%Selecting NA from the matrix% 
    NB=NVectB(k);%Selecting NB from the matrix% 
    tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
    tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
    xA=1:NA; %Primitive xA array% 
    yA=1:NA; %Primitive yA array% 
    zA=1:NA; %Primitive zA array% 
    xB=1:NB; %Primitive xB array% 
    yB=1:NB; %Primitive yB array% 
    zB=1:NB; %Primitive zB array% 
    dtA=(tf-ti)/NA;%time step A% 
    dtB=(tf-ti)/NB;%time step B% 
    xA(1)=xi; %allocating initial values% 
    yA(1)=yi; %allocating initial values% 
    zA(1)=zi; %allocating initial values% 
    starttime=cputime; 
for i=1:(NA-1); 
    %The Integration%     
    dxA1=(10*yA(i)-10*xA(i))*dtA; 
    dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA; 
    dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA; 
%     dxA=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA; 
%     dyA=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+0.5*dxA1)*(zA(i)+(0.5*dzA1)))*dtA; 
%     dzA=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA; 
    xA(i+1)=xA(i)+dxA1;yA(i+1)=yA(i)+dyA1;zA(i+1)=zA(i)+dzA1; 
end; 
    finishtime=cputime;usedtime=cputime-starttime; 
    xB(1)=xi; %allocating initial values% 
    yB(1)=yi; %allocating initial values% 
    zB(1)=zi; %allocating initial values% 
for i=1:(NB-1); 
    %The Integration%   
    dxB1=(10*yB(i)-10*xB(i))*dtB; 
    dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB; 
    dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB; 
%     dxB=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB; 
%     dyB=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+0.5*dxB1)*(zB(i)+(0.5*dzB1)))*dtB; 
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%     dzB=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB; 
xB(i+1)=xB(i)+dxB1;yB(i+1)=yB(i)+dyB1;zB(i+1)=zB(i)+dzB1; 
end; 
XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
%Plotting for the first set of NA and NB values from the input 

Matrices% 
if k==1 ;  
   figure (3) 
   plot(tA, xA, tB,xB) 
   title(['Lorenz Without Micro by Eulers Method,  NA=', num2str(NA), '  

NB=',num2str( NB), '  err=', num2str(err) ] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
end 
%Plotting for the second set of NA and NB values from the input 

Matrices% 
if k==2 ;  
   figure (4) 
   plot(tA,xA,'g',tB,xB,'r') 
   title(['Lorenz Without Micro by Eulers Method,  NA=', num2str(NA), '  

NB=',num2str( NB),  '  err=', num2str(err)] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
end 
%Plotting for the third set of NA and NB values from the input 

Matrices%  
   if k==3 ;  
   figure (5) 
   plot(tA,xA,tB,xB) 
   title(['Lorenz Without Micro by Eulers Method,  NA=', num2str(NA), '  

NB=',num2str( NB),  '  err=', num2str(err)] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
   end 
end 
start=cputime; 
%Re-Computing with the error limit% 
NA=10000;E=0.005;stpp=1; 
devEper=10;flucperNA=15; 
mark=0;devE=devEper*0.01; 
flucNA=flucperNA*0.01; 
KLoop=1;KLoopMax=40; 
while abs(stpp)>devE ; NB=2*NA; 
     tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
     tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
     xA=1:NA;%Primitive xA array% 
     yA=1:NA;%Primitive yA array% 
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     zA=1:NA;%Primitive zA array% 
     xB=1:NB;%Primitive xB array% 
          yB=1:NB;%Primitive yB array% 
     zB=1:NB;%Primitive zB array% 
     dtA=(tf-ti)/NA;%increment A% 
     dtB=(tf-ti)/NB;%increment B% 
     xA(1)=xi; %allocating initial values% 
     yA(1)=yi; %allocating initial values% 
     zA(1)=zi; %allocating initial values% 
for  i=1:(NA-1); 
     %The Integration% 
     dxA1=(10*yA(i)-10*xA(i))*dtA; 
     dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA; 
     dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA; 
%      dxA=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA; 
%      dyA=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+0.5*dxA1)*(zA(i)+(0.5*dzA1)))*dtA; 
%      dzA=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA; 
     xA(i+1)=xA(i)+dxA1;yA(i+1)=yA(i)+dyA1;zA(i+1)=zA(i)+dzA1; 
end; 
     xB(1)=xi; %allocating initial values% 
     yB(1)=yi; %allocating initial values% 
     zB(1)=zi; %allocating initial values% 
for  i=1:(NB-1); 
     %The Integration%    
     dxB1=(10*yB(i)-10*xB(i))*dtB; 
     dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB; 
     dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB; 
%      dxB=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB; 
%      dyB=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+0.5*dxB1)*(zB(i)+(0.5*dzB1)))*dtB; 
%      dzB=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB; 
     xB(i+1)=xB(i)+dxB1;yB(i+1)=yB(i)+dyB1;zB(i+1)=zB(i)+dzB1; 
end; 
XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
stpp=(err-E)/E; 

  
if  stpp<0; %  this implies the error is less than specification E 
    if mark==0  %  preset value needs to change to serve as flag error 

specification crossed 
        mark=1;  % one time here  
    end 
    if abs(stpp)> devE; % in which case the measured deviation is 

greater than specificied error deviation    
    NA=fix(  NA-flucNA*NA);  % decreasing NA should lower measured 

error getting it closer to E  
    end; 
end 
 if  stpp>0;%  this implies the error is lgreater than specification E 
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    if  mark==0;  %  Check if  flag has not been set to use NA increse 

rule on fast track   
        if abs(stpp)> devE;   %  only want ot increase NA if  measured 

deviaiton is greater than specified 
            %NA=NA+ fix(NA/log(NA)); 
            NA=fix(1.5*NA ); 

        end 

         
    end 
    if mark ==1  ;%   
    if abs(stpp)> devE;  %  error is greater than apecified  and flag 

has been set to stop rapid increase NA 
    NA=fix(  NA+flucNA*NA); 
    end 
    end 
end 
KLoop=KLoop+1; 
Kloop=KLoop-1 
if KLoop == KLoopMax 
    stop 
end 

  
end;  %  end on while condition  based on  abs(stpp)> devE; 
figure (6) 
    plot(tA, xA, tB,xB) 
    title(['Lorenz Without Micro by Eulers Method, With error control 

NA=', num2str(NA), '  NB=',num2str( NB),  '  err=', num2str(err)] ); 
    xlabel('time in seconds') 
    ylabel('XA') 
    grid         

     
cputime=cputime-start 
epsilon=err 

 

Appendix: B-2: Lorenz Equations by the Modified Euler's Method without the 

Micro-Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
%This Program uses the Modified Euler Method to solve the Lorenz Non-

linear Chaotic Partial Differential Equation Set without the Micro-

Integrator%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
clc; 
clear all; 
close all; 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
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zi=33.4; %initial value of z% 
ti=0;  %lower time limit% 
tf=22; %upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 

y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for  i=1:N; 
     %The Integration%  
     dx1=(10*y(i)-10*x(i))*dt; 
     dy1=(28*x(i)-y(i)-x(i)*z(i))*dt; 
     dz1=(x(i)*y(i)-8*z(i)/3)*dt; 
     dx2=(10*(y(i)+dy1)-10*(x(i)+dx1))*dt; 
     dy2=(28*(x(i)+dx1)-(y(i)+dy1)-(x(i)+dx1)*(z(i)+dz1))*dt; 
     dz2=((x(i)+dx1)*(y(i)+dy1)-8*(z(i)+dz1)/3)*dt; 
     dx=0.5*(dx1+dx2); 
     dy=0.5*(dy1+dy2); 
     dz=0.5*(dz1+dz2); 
     x(i+1)=x(i)+dx; 
     y(i+1)=y(i)+dy; 
     z(i+1)=z(i)+dz; 
end; 
%plot of 2-D poincare map% 
figure(1) 
plot(x,y) 
title('2D Poincare Map - Lorenz Without Micro - Modified Euler') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 
figure(2) 
plot3(x,y,z) 
title('3D Poincare Map - Lorenz Without Micro - Modified Euler') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=22;   %upper time limit% 
NVectA=[1000,2000,4000]; %Matrix of NA values% 
NVectB=2*NVectA;         %Matrix of NB values% 
%Loop to use all values in the NA and NB matrices% 
for k = 1:3;  
    NA=NVectA(k);%Selecting NA from the matrix% 
    NB=NVectB(k);%Selecting NB from the matrix% 
    tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
    tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
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    xA=1:NA; %Primitive xA array% 
    yA=1:NA; %Primitive yA array% 
    zA=1:NA; %Primitive zA array% 

    xB=1:NB; %Primitive xB array% 
    yB=1:NB; %Primitive yB array% 
    zB=1:NB; %Primitive zB array% 
    dtA=(tf-ti)/NA;%time step A% 
    dtB=(tf-ti)/NB;%time step B% 
    xA(1)=xi; %allocating initial values% 
    yA(1)=yi; %allocating initial values% 

    zA(1)=zi; %allocating initial values% 
    starttime=cputime; 
for i=1:(NA-1); 
    %The Integration%    
     dxA1=(10*yA(i)-10*xA(i))*dtA; 
     dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA; 
     dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA; 
     dxA2=(10*(yA(i)+dyA1)-10*(xA(i)+dxA1))*dtA; 
     dyA2=(28*(xA(i)+dxA1)-(yA(i)+dyA1)-(xA(i)+dxA1)*(zA(i)+dzA1))*dtA; 
     dzA2=((xA(i)+dxA1)*(yA(i)+dyA1)-8*(zA(i)+dzA1)/3)*dtA; 
     dxA=0.5*(dxA1+dxA2); 
     dyA=0.5*(dyA1+dyA2); 
     dzA=0.5*(dzA1+dzA2); 
     xA(i+1)=xA(i)+dxA; 
     yA(i+1)=yA(i)+dyA; 
     zA(i+1)=zA(i)+dzA; 
end; 
    finishtime=cputime;usedtime=finishtime-starttime; 
    xB(1)=xi; %allocating initial values% 
    yB(1)=yi; %allocating initial values% 
    zB(1)=zi; %allocating initial values% 
for i=1:(NB-1); 
    %The Integration%     
     dxB1=(10*yB(i)-10*xB(i))*dtB; 
     dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB; 
     dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB; 
     dxB2=(10*(yB(i)+dyB1)-10*(xB(i)+dxB1))*dtB; 
     dyB2=(28*(xB(i)+dxB1)-(yB(i)+dyB1)-(xB(i)+dxB1)*(zB(i)+dzB1))*dtB; 
     dzB2=((xB(i)+dxB1)*(yB(i)+dyB1)-8*(zB(i)+dzB1)/3)*dtB; 
     dxB=0.5*(dxB1+dxB2); 
     dyB=0.5*(dyB1+dyB2); 
     dzB=0.5*(dzB1+dzB2); 
     xB(i+1)=xB(i)+dxB; 
     yB(i+1)=yB(i)+dyB; 
     zB(i+1)=zB(i)+dzB; 
end; 
XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
%Plotting for the first set of NA and NB values from the input 

Matrices% 
if k==1 ;  
   figure (3) 
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   plot(tA, xA, tB,xB) 
   title(['Lorenz Without Micro by Modified Euler Method,  NA=', 

num2str(NA), '  NB=',num2str( NB), '  err=', num2str(err) ] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
end 
%Plotting for the second set of NA and NB values from the input 

Matrices% 
if k==2 ;  
   figure (4) 

   plot(tA,xA,'m--',tB,xB) 
   title(['Lorenz Without Micro by Modified Euler Method,  NA=', 

num2str(NA), '  NB=',num2str( NB),  '  err=', num2str(err)] ); 
   xlabel('time in seconds') 
   legend('integration time step=0.011','integration time step= 

0.0055') 
   ylabel('XA') 
   grid 
end 
%Plotting for the third set of NA and NB values from the input 

Matrices% 
   if k==3 ;  
   figure (5) 
   plot(tA,xA,tB,xB) 
   title(['Lorenz Without Micro by Modified Euler Method,  NA=', 

num2str(NA), '  NB=',num2str( NB),  '  err=', num2str(err),'  

cputime=', num2str(usedtime),'s' ] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
   end 
end 
start=cputime; 
%Re-Computing with the error limit% 
NA=10000;E=0.005;stpp=1; 
devEper=10;flucperNA=30; 
mark=0;devE=devEper*0.01; 
flucNA=flucperNA*0.01; 
KLoop=1;KLoopMax=40; 
while abs(stpp) > devE ;  
     NB=2*NA; 
     tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
     tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
     xA=1:NA;%Primitive xA array% 
     yA=1:NA;%Primitive yA array% 
     zA=1:NA;%Primitive zA array% 
     xB=1:NB;%Primitive xB array% 
     yB=1:NB;%Primitive yB array% 
     zB=1:NB;%Primitive zB array% 
     dtA=(tf-ti)/NA;%increment A% 
     dtB=(tf-ti)/NB;%increment B% 
     xA(1)=xi; %allocating initial values% 
     yA(1)=yi; %allocating initial values% 
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     zA(1)=zi; %allocating initial values% 
     starttime1=cputime; 
for  i=1:(NA-1); 
     %The Integration%  
     dxA1=(10*yA(i)-10*xA(i))*dtA; 
     dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA; 
     dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA; 
     dxA2=(10*(yA(i)+dyA1)-10*(xA(i)+dxA1))*dtA; 
     dyA2=(28*(xA(i)+dxA1)-(yA(i)+dyA1)-(xA(i)+dxA1)*(zA(i)+dzA1))*dtA; 
     dzA2=((xA(i)+dxA1)*(yA(i)+dyA1)-8*(zA(i)+dzA1)/3)*dtA; 
     dxA=0.5*(dxA1+dxA2); 

     dyA=0.5*(dyA1+dyA2); 
     dzA=0.5*(dzA1+dzA2); 
     xA(i+1)=xA(i)+dxA; 
     yA(i+1)=yA(i)+dyA; 
     zA(i+1)=zA(i)+dzA; 
end; 
     finishtime1=cputime; 
     usedtime1=finishtime1-starttime1; 
     xB(1)=xi; %allocating initial values% 
     yB(1)=yi; %allocating initial values% 
     zB(1)=zi; %allocating initial values% 
for  i=1:(NB-1); 
     %The Integration%    
     dxB1=(10*yB(i)-10*xB(i))*dtB; 
     dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB; 
     dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB; 
     dxB2=(10*(yB(i)+dyB1)-10*(xB(i)+dxB1))*dtB; 
     dyB2=(28*(xB(i)+dxB1)-(yB(i)+dyB1)-(xB(i)+dxB1)*(zB(i)+dzB1))*dtB; 
     dzB2=((xB(i)+dxB1)*(yB(i)+dyB1)-8*(zB(i)+dzB1)/3)*dtB; 
     dxB=0.5*(dxB1+dxB2); 
     dyB=0.5*(dyB1+dyB2); 
     dzB=0.5*(dzB1+dzB2); 
     xB(i+1)=xB(i)+dxB; 
     yB(i+1)=yB(i)+dyB; 
     zB(i+1)=zB(i)+dzB; 
end; 
XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
stpp=(err-E)/E; 

  
if  stpp<0; %  this implies the error is less than specification E 
    if mark==0  %  preset value needs to change to serve as flag error 

specification crossed 
        mark=1;  % one time here  
    end 
    if abs(stpp)> devE; % in which case the measured deviation is 

greater than specificied error deviation    
    NA=fix(  NA-flucNA*NA);  % decreasing NA should lower measured 

error getting it closer to E  
    end; 
end 
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if  stpp>0;%  this implies the error is lgreater than specification E 
    if  mark==0;  %  Check if  flag has not been set to use NA increse 

rule on fast track   
        if abs(stpp)> devE;   %  only want ot increase NA if  measured 

deviaiton is greater than specified 
            %NA=NA+ fix(NA/log(NA)); 
            NA=fix(1.5*NA ); 
        end 

         
    end 
    if mark ==1  ;%   

    if abs(stpp)> devE;  %  error is greater than apecified  and flag 

has been set to stop rapid increase NA 
    NA=fix(  NA+flucNA*NA); 
    end 
    end 
end 
KLoop=KLoop+1; 
Kloop=KLoop-1 
if KLoop == KLoopMax 
    stop 
end 

  
end;  %  end on while condition  based on  abs(stpp)> devE; 
figure (6) 
    plot(tA, xA,'--', tB,xB) 
    title(['Lorenz Without Micro by Modified Euler Method, With error 

control NA=', num2str(NA), '  NB=',num2str( NB),  '  err=', 

num2str(err)] ); 
    xlabel('time in seconds') 
    ylabel('XA') 
    grid         

     
cputime=cputime-start 
epsilon=err 

Appendix B-3: Lorenz Equations by Simpson's Method without the Micro-

Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This Program uses the Simpson's Method to solve the  Lorenz Non-linear 

Chaotic Partial Differential Equation Set With The Micro-Integrator%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all 
close all 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
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ti=0;  %lower time limit% 

tf=20; %upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 
y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for i=1:N; 
    %The Integration% 
    dx1=(10*y(i)-10*x(i))*0.5*dt; 
    dy1=(28*x(i)-y(i)-x(i)*z(i))*0.5*dt; 

    dz1=(x(i)*y(i)-8*z(i)/3)*0.5*dt; 
    xhf=x(i)+dx1; 
    yhf=y(i)+dy1; 
    zhf=z(i)+dz1; 
    dx2=(10*yhf-10*xhf)*0.5*dt; 
    dy2=(28*xhf-yhf-xhf*zhf)*0.5*dt; 
    dz2=(xhf*yhf-8*zhf/3)*0.5*dt; 
    xfl=xhf+dx2; 
    yfl=yhf+dy2; 
    zfl=zhf+dz2; 
    dx3=(10*yfl-10*xfl)*0.5*dt; 
    dy3=(28*xfl-yfl-xfl*zfl)*0.5*dt; 
    dz3=(xfl*yfl-8*zfl/3)*0.5*dt; 
    dx=(1/3)*(dx1+(4*dx2)+dx3); 
    dy=(1/3)*(dy1+(4*dy2)+dy3); 
    dz=(1/3)*(dz1+(4*dz2)+dz3); 
    x(i+1)=x(i)+dx; 
    y(i+1)=y(i)+dy; 
    z(i+1)=z(i)+dz; 
end; 
%plot of 2-D poincare map% 
figure(1) 
plot(x,y) 
title('Poincare Map -  Lorenz Without Micro - Simpson') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 
figure(2) 
plot3(x,y,z) 
title('3D Poincare Map -  Lorenz Without Micro - Simpson') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;  %lower time limit% 
tf=22; %upper time limit% 
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NVectA=[1000,2000,4000]; %Matrix of NA values% 
NVectB=2*NVectA;         %Matrix of NB values% 
%Loop to use all values in the NA and NB matrices% 
for k = 1:3;  
    NA=NVectA(k);%Selecting NA from the matrix% 
    NB=NVectB(k);%Selecting NB from the matrix% 
    tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
    tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
    xA=1:NA; %Primitive xA array% 
    yA=1:NA; %Primitive yA array% 
    zA=1:NA; %Primitive zA array% 
    xB=1:NB; %Primitive xB array% 
    yB=1:NB; %Primitive yB array% 
    zB=1:NB; %Primitive zB array% 
    dtA=(tf-ti)/NA;%time step A% 

    dtB=(tf-ti)/NB;%time step B% 
    xA(1)=xi; %allocating initial values% 
    yA(1)=yi; %allocating initial values% 
    zA(1)=zi; %allocating initial values% 
for i=1:(NA-1); 
    %The Integration%     
    dxA1=(10*yA(i)-10*xA(i))*0.5*dtA; 
    dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*0.5*dtA; 
    dzA1=(xA(i)*yA(i)-8*zA(i)/3)*0.5*dtA; 
    xAhf=xA(i)+dxA1; 
    yAhf=yA(i)+dyA1; 
    zAhf=zA(i)+dzA1; 
    dxA2=(10*yAhf-10*xAhf)*0.5*dtA; 
    dyA2=(28*xAhf-yAhf-xAhf*zAhf)*0.5*dtA; 
    dzA2=(xAhf*yAhf-8*zAhf/3)*0.5*dtA; 
    xAfl=xAhf+dxA2; 
    yAfl=yAhf+dyA2; 
    zAfl=zAhf+dzA2; 
    dxA3=(10*yAfl-10*xAfl)*0.5*dtA; 
    dyA3=(28*xAfl-yAfl-xAfl*zAfl)*0.5*dtA; 
    dzA3=(xAfl*yAfl-8*zAfl/3)*0.5*dtA; 
    dxA=(1/3)*(dxA1+(4*dxA2)+dxA3); 
    dyA=(1/3)*(dyA1+(4*dyA2)+dyA3); 
    dzA=(1/3)*(dzA1+(4*dzA2)+dzA3); 
    xA(i+1)=xA(i)+dxA; 
    yA(i+1)=yA(i)+dyA; 
    zA(i+1)=zA(i)+dzA; 
end; 
    xB(1)=xi; %allocating initial values% 
    yB(1)=yi; %allocating initial values% 
    zB(1)=zi; %allocating initial values% 
for i=1:(NB-1); 
    %The Integration%     
    dxB1=(10*yB(i)-10*xB(i))*0.5*dtB; 
    dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*0.5*dtB; 
    dzB1=(xB(i)*yB(i)-8*zB(i)/3)*0.5*dtB; 
    xBhf=xB(i)+dxB1; 
    yBhf=yB(i)+dyB1; 
    zBhf=zB(i)+dzB1; 
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    dxB2=(10*yBhf-10*xBhf)*0.5*dtB; 
    dyB2=(28*xBhf-yBhf-xBhf*zBhf)*0.5*dtB; 
    dzB2=(xBhf*yBhf-8*zBhf/3)*0.5*dtB; 
    xBfl=xBhf+dxB2; 
    yBfl=yBhf+dyB2; 
    zBfl=zBhf+dzB2; 
    dxB3=(10*yBfl-10*xBfl)*0.5*dtB; 
    dyB3=(28*xBfl-yBfl-xBfl*zBfl)*0.5*dtB; 
    dzB3=(xBfl*yBfl-8*zBfl/3)*0.5*dtB;  
    dxB=(1/3)*(dxB1+(4*dxB2)+dxB3); 
    dyB=(1/3)*(dyB1+(4*dyB2)+dyB3); 
    dzB=(1/3)*(dzB1+(4*dzB2)+dzB3); 
    xB(i+1)=xB(i)+dxB; 
    yB(i+1)=yB(i)+dyB; 
    zB(i+1)=zB(i)+dzB; 
end; 

XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
%Plotting for the first set of NA and NB values from the input 

Matrices% 
if k==1 ;  
   figure (3) 
   plot(tA, xA, tB,xB) 
   title(['Lorenz Without Micro by Simpsons Method,  NA=', num2str(NA), 

'  NB=',num2str( NB), '  err=', num2str(err) ] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
end 
%Plotting for the second set of NA and NB values from the input 

Matrices% 
if k==2 ;  
   figure (4) 
   plot(tA,xA,'--',tB,xB) 
   title(['Lorenz Without Micro by Simpsons Method,  NA=', num2str(NA), 

'  NB=',num2str( NB),  '  err=', num2str(err)] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
end 
%Plotting for the third set of NA and NB values from the input 

Matrices% 
   if k==3 ;  
   figure (5) 
   plot(tA,xA,tB,xB) 
   title(['Lorenz Without Micro by Simpsons Method,  NA=', num2str(NA), 

'  NB=',num2str( NB),  '  err=', num2str(err)] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
   end 
end 
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start=cputime; 
%Re-Computing with the error limit% 
NA=10000;E=0.005;stpp=1; 
devEper=10;flucperNA=30; 
mark=0;devE=devEper*0.01; 
flucNA=flucperNA*0.01; 
KLoop=1;KLoopMax=40; 
while abs(stpp) > devE ;  
     NB=2*NA; 
     tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
     tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
     xA=1:NA;%Primitive xA array% 
     yA=1:NA;%Primitive yA array% 
     zA=1:NA;%Primitive zA array% 
     xB=1:NB;%Primitive xB array% 
     yB=1:NB;%Primitive yB array% 
     zB=1:NB;%Primitive zB array% 

     dtA=(tf-ti)/NA;%increment A% 
     dtB=(tf-ti)/NB;%increment B% 
     xA(1)=xi; %allocating initial values% 
     yA(1)=yi; %allocating initial values% 
     zA(1)=zi; %allocating initial values% 
     starttime1=cputime; 
for  i=1:(NA-1); 
     %The Integration% 
    dxA1=(10*yA(i)-10*xA(i))*0.5*dtA; 
    dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*0.5*dtA; 
    dzA1=(xA(i)*yA(i)-8*zA(i)/3)*0.5*dtA; 
    xAhf=xA(i)+dxA1; 
    yAhf=yA(i)+dyA1; 
    zAhf=zA(i)+dzA1; 
    dxA2=(10*yAhf-10*xAhf)*0.5*dtA; 
    dyA2=(28*xAhf-yAhf-xAhf*zAhf)*0.5*dtA; 
    dzA2=(xAhf*yAhf-8*zAhf/3)*0.5*dtA; 
    xAfl=xAhf+dxA2; 
    yAfl=yAhf+dyA2; 
    zAfl=zAhf+dzA2; 
    dxA3=(10*yAfl-10*xAfl)*0.5*dtA; 
    dyA3=(28*xAfl-yAfl-xAfl*zAfl)*0.5*dtA; 
    dzA3=(xAfl*yAfl-8*zAfl/3)*0.5*dtA; 
    dxA=(1/3)*(dxA1+(4*dxA2)+dxA3); 
    dyA=(1/3)*(dyA1+(4*dyA2)+dyA3); 
    dzA=(1/3)*(dzA1+(4*dzA2)+dzA3); 
    xA(i+1)=xA(i)+dxA; 
    yA(i+1)=yA(i)+dyA; 
    zA(i+1)=zA(i)+dzA; 
end; 
     finishtime1=cputime; 
     usedtime1=finishtime1-starttime1; 
     xB(1)=xi; %allocating initial values% 
     yB(1)=yi; %allocating initial values% 
     zB(1)=zi; %allocating initial values% 
for  i=1:(NB-1); 
     %The Integration%    
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    dxB1=(10*yB(i)-10*xB(i))*0.5*dtB; 
    dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*0.5*dtB; 
    dzB1=(xB(i)*yB(i)-8*zB(i)/3)*0.5*dtB; 
    xBhf=xB(i)+dxB1; 
    yBhf=yB(i)+dyB1; 
    zBhf=zB(i)+dzB1; 
    dxB2=(10*yBhf-10*xBhf)*0.5*dtB; 
    dyB2=(28*xBhf-yBhf-xBhf*zBhf)*0.5*dtB; 
    dzB2=(xBhf*yBhf-8*zBhf/3)*0.5*dtB; 
    xBfl=xBhf+dxB2; 
    yBfl=yBhf+dyB2; 
    zBfl=zBhf+dzB2; 
    dxB3=(10*yBfl-10*xBfl)*0.5*dtB; 
    dyB3=(28*xBfl-yBfl-xBfl*zBfl)*0.5*dtB; 
    dzB3=(xBfl*yBfl-8*zBfl/3)*0.5*dtB; 
    dxB=(1/3)*(dxB1+(4*dxB2)+dxB3); 
    dyB=(1/3)*(dyB1+(4*dyB2)+dyB3); 
    dzB=(1/3)*(dzB1+(4*dzB2)+dzB3); 

    xB(i+1)=xB(i)+dxB; 
    yB(i+1)=yB(i)+dyB; 
    zB(i+1)=zB(i)+dzB; 
end; 
XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
stpp=(err-E)/E; 
%Plot for the correct Error Limit% 

  
if  stpp<0; %  this implies the error is less than specification E 
    if mark==0  %  preset value needs to change to serve as flag error 

specification crossed 
        mark=1;  % one time here  
    end 
    if abs(stpp)> devE; % in which case the measured deviation is 

greater than specificied error deviation    
    NA=fix(  NA-flucNA*NA);  % decreasing NA should lower measured 

error getting it closer to E  
    end; 
end 
if  stpp>0;%  this implies the error is lgreater than specification E 
    if  mark==0;  %  Check if  flag has not been set to use NA increse 

rule on fast track   
        if abs(stpp)> devE;   %  only want ot increase NA if  measured 

deviaiton is greater than specified 
            %NA=NA+ fix(NA/log(NA)); 
            NA=fix(1.5*NA ); 
        end 
    end 
    if mark ==1  ;%   
    if abs(stpp)> devE;  %  error is greater than apecified  and flag 

has been set to stop rapid increase NA 
    NA=fix(  NA+flucNA*NA); 
    end 
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    end 
end 
KLoop=KLoop+1; 
Kloop=KLoop-1 
if KLoop == KLoopMax 
    stop 
end 

  
end;  %  end on while condition  based on  abs(stpp)> devE; 
figure (6) 
    plot(tA, xA, tB,xB) 
    title(['Lorenz Without Micro by Simpsons Method, With error control 

NA=', num2str(NA), '  NB=',num2str( NB),  '  err=', num2str(err)] ); 
    xlabel('time in seconds') 
    ylabel('XA') 
    grid         
cputime=cputime-start 
epsilon=err 

 

Appendix B-4: Lorenz Equations by Runge-Kutta's Method without the Micro-

Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This Program uses the 4th Order Runge-Kutta Method to solve the Lorenz 

Non-linear Chaotic Partial Differential Equation Set%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 
clear all; 
close all; 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;  %lower time limit% 
tf=20; %upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 
y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for  i=1:N; 
     %The Integration% 
     dx1=(10*y(i)-10*x(i))*dt; 
     dy1=(28*x(i)-y(i)-x(i)*z(i))*dt; 
     dz1=(x(i)*y(i)-8*z(i)/3)*dt; 
     dx2=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt; 
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 dy2=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+(0.5*dx1))*(z(i)+(0.5*dz1)))*dt; 
     dz2=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt; 
     dx3=(10*(y(i)+(0.5*dy2))-10*(x(i)+(0.5*dx2)))*dt; 
     dy3=(28*(x(i)+(0.5*dx2))-(y(i)+(0.5*dy2))-

(x(i)+(0.5*dx2))*(z(i)+(0.5*dz2)))*dt; 
     dz3=((x(i)+(0.5*dx2))*(y(i)+(0.5*dy2))-8*(z(i)+(0.5*dz2))/3)*dt; 
     dx4=(10*(y(i)+(dy3))-10*(x(i)+(dx3)))*dt; 
     dy4=(28*(x(i)+(dx3))-(y(i)+(dy3))-(x(i)+(dx3))*(z(i)+(dz3)))*dt; 
     dz4=((x(i)+(dx3))*(y(i)+(dy3))-8*(z(i)+(dz3))/3)*dt; 
     dx=(1/6)*(dx1+2*(dx2+dx3)+dx4); 
     dy=(1/6)*(dy1+2*(dy2+dy3)+dy4); 
     dz=(1/6)*(dz1+2*(dz2+dz3)+dz4); 
     x(i+1)=x(i)+dx; 
     y(i+1)=y(i)+dy; 
     z(i+1)=z(i)+dz; 
end; 
%plot of 2-D poincare map% 
figure(1) 
plot(x,y) 
title('1D Poincare Map - Lorenz Without Micro - Runge-Kutta') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 

figure(2) 
plot3(x,y,z) 
title('3D Poincare Map - Lorenz Without Micro - Runge-Kutta') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=22;   %upper time limit% 
NVectA=[1000,2000,4000]; %Matrix of NA values% 
NVectB=2*NVectA;         %Matrix of NB values% 
for k = 1:3;  
    NA=NVectA(k);%Selecting NA from the matrix% 
    NB=NVectB(k);%Selecting NB from the matrix% 
    tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
    tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
    xA=1:NA; %Primitive xA array% 
    yA=1:NA; %Primitive yA array% 
    zA=1:NA; %Primitive zA array% 
    xB=1:NB; %Primitive xB array% 
    yB=1:NB; %Primitive yB array% 
    zB=1:NB; %Primitive zB array% 
    dtA=(tf-ti)/NA;%time step A% 
    dtB=(tf-ti)/NB;%time step B% 
    xA(1)=xi; %allocating initial values% 
    yA(1)=yi; %allocating initial values% 
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    zA(1)=zi; %allocating initial values% 
    starttime=cputime; 
for i=1:(NA-1); 
    %The Integration%  
    dxA1=(10*yA(i)-10*xA(i))*dtA; 
    dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA; 
    dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA; 
    dxA2=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA; 
    dyA2=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+(0.5*dxA1))*(zA(i)+(0.5*dzA1)))*dtA; 
    dzA2=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA; 
    dxA3=(10*(yA(i)+(0.5*dyA2))-10*(xA(i)+(0.5*dxA2)))*dtA; 
    dyA3=(28*(xA(i)+(0.5*dxA2))-(yA(i)+(0.5*dyA2))-

(xA(i)+(0.5*dxA2))*(zA(i)+(0.5*dzA2)))*dtA; 
    dzA3=((xA(i)+(0.5*dxA2))*(yA(i)+(0.5*dyA2))-

8*(zA(i)+(0.5*dzA2))/3)*dtA; 
    dxA4=(10*(yA(i)+(dyA3))-10*(xA(i)+(dxA3)))*dtA; 
    dyA4=(28*(xA(i)+(dxA3))-(yA(i)+(dyA3))-

(xA(i)+(dxA3))*(zA(i)+(dzA3)))*dtA; 
    dzA4=((xA(i)+(dxA3))*(yA(i)+(dyA3))-8*(zA(i)+(dzA3))/3)*dtA; 
    dxA=(1/6)*(dxA1+2*(dxA2+dxA3)+dxA4); 
    dyA=(1/6)*(dyA1+2*(dyA2+dyA3)+dyA4); 
    dzA=(1/6)*(dzA1+2*(dzA2+dzA3)+dzA4); 
    xA(i+1)=xA(i)+dxA; 
    yA(i+1)=yA(i)+dyA; 

    zA(i+1)=zA(i)+dzA; 
end; 
    finishtime=cputime;usedtime=finishtime-starttime; 
    xB(1)=xi; %allocating initial values% 
    yB(1)=yi; %allocating initial values% 
    zB(1)=zi; %allocating initial values% 
for i=1:(NB-1); 
    %The Integrator% 
    dxB1=(10*yB(i)-10*xB(i))*dtB; 
    dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB; 
    dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB; 
    dxB2=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB; 
    dyB2=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+(0.5*dxB1))*(zB(i)+(0.5*dzB1)))*dtB; 
    dzB2=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB; 
    dxB3=(10*(yB(i)+(0.5*dyB2))-10*(xB(i)+(0.5*dxB2)))*dtB; 
    dyB3=(28*(xB(i)+(0.5*dxB2))-(yB(i)+(0.5*dyB2))-

(xB(i)+(0.5*dxB2))*(zB(i)+(0.5*dzB2)))*dtB; 
    dzB3=((xB(i)+(0.5*dxB2))*(yB(i)+(0.5*dyB2))-

8*(zB(i)+(0.5*dzB2))/3)*dtB; 
    dxB4=(10*(yB(i)+(dyB3))-10*(xB(i)+(dxB3)))*dtB; 
    dyB4=(28*(xB(i)+(dxB3))-(yB(i)+(dyB3))-

(xB(i)+(dxB3))*(zB(i)+(dzB3)))*dtB; 
    dzB4=((xB(i)+(dxB3))*(yB(i)+(dyB3))-8*(zB(i)+(dzB3))/3)*dtB; 
    dxB=(1/6)*(dxB1+2*(dxB2+dxB3)+dxB4); 
    dyB=(1/6)*(dyB1+2*(dyB2+dyB3)+dyB4); 
    dzB=(1/6)*(dzB1+2*(dzB2+dzB3)+dzB4); 
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    xB(i+1)=xB(i)+dxB; 
    yB(i+1)=yB(i)+dyB; 
    zB(i+1)=zB(i)+dzB; 
end; 
XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
%Plotting for the first set of NA and NB values from the input 

Matrices% 
if k==1 ;  
   figure (3) 
   plot(tA, xA, tB,xB) 
   title(['Lorenz Without Micro by Runge-Kutta Method,  NA=', 

num2str(NA), '  NB=',num2str( NB), '  err=', num2str(err) ] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
end 
%Plotting for the second set of NA and NB values from the input 

Matrices% 
if k==2 ;  
   figure (4) 
   plot(tA,xA,tB,xB) 
   title(['Lorenz Without Micro by Runge-Kutta Method,  NA=', 

num2str(NA), '  NB=',num2str( NB),  '  err=', num2str(err)] ); 
   xlabel('time in seconds') 

   ylabel('XA') 
   grid 
end 
%Plotting for the third set of NA and NB values from the input 

Matrices% 
   if k==3 ;  
   figure (5) 
   plot(tA,xA,tB,xB) 
   title(['Lorenz Without Micro by Runge-Kutta Method,  NA=', 

num2str(NA), '  NB=',num2str( NB),  '  err=', num2str(err)] ); 
   xlabel('time in seconds') 
   ylabel('XA') 
   grid 
   end 

  
end 
start=cputime; 
%Re-Computing with the error limit% 
NA=10000;E=0.005;stpp=1; 
devEper=10;flucperNA=30; 
mark=0;devE=devEper*0.01; 
flucNA=flucperNA*0.01; 
KLoop=1;KLoopMax=40; 
while abs(stpp)>devE;NB=2*NA; 
     tA=(0:(NA-1))*(tf-ti)/(NA-1)+ti;%time vector% 
     tB=(0:(NB-1))*(tf-ti)/(NB-1)+ti;%time vector% 
     xA=1:NA;%Primitive xA array% 
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     yA=1:NA;%Primitive yA array% 
     zA=1:NA;%Primitive zA array% 
     xB=1:NA;%Primitive xB array% 
     yB=1:NA;%Primitive yB array% 
     zB=1:NA;%Primitive zB array% 
     dtA=(tf-ti)/NA;%increment A% 
     dtB=(tf-ti)/NB;%increment B% 
     xA(1)=xi; %allocating initial values% 
     yA(1)=yi; %allocating initial values% 
     zA(1)=zi; %allocating initial values% 
     starttime1=cputime; 
for  i=1:(NA-1); 
     %The Integration% 
     dxA1=(10*yA(i)-10*xA(i))*dtA; 
     dyA1=(28*xA(i)-yA(i)-xA(i)*zA(i))*dtA; 
     dzA1=(xA(i)*yA(i)-8*zA(i)/3)*dtA; 
     dxA2=(10*(yA(i)+(0.5*dyA1))-10*(xA(i)+(0.5*dxA1)))*dtA; 
     dyA2=(28*(xA(i)+(0.5*dxA1))-(yA(i)+(0.5*dyA1))-

(xA(i)+(0.5*dxA1))*(zA(i)+(0.5*dzA1)))*dtA; 
     dzA2=((xA(i)+(0.5*dxA1))*(yA(i)+(0.5*dyA1))-

8*(zA(i)+(0.5*dzA1))/3)*dtA; 
     dxA3=(10*(yA(i)+(0.5*dyA2))-10*(xA(i)+(0.5*dxA2)))*dtA; 
     dyA3=(28*(xA(i)+(0.5*dxA2))-(yA(i)+(0.5*dyA2))-

(xA(i)+(0.5*dxA2))*(zA(i)+(0.5*dzA2)))*dtA; 
     dzA3=((xA(i)+(0.5*dxA2))*(yA(i)+(0.5*dyA2))-

8*(zA(i)+(0.5*dzA2))/3)*dtA; 
     dxA4=(10*(yA(i)+(dyA3))-10*(xA(i)+(dxA3)))*dtA; 

     dyA4=(28*(xA(i)+(dxA3))-(yA(i)+(dyA3))-

(xA(i)+(dxA3))*(zA(i)+(dzA3)))*dtA; 
     dzA4=((xA(i)+(dxA3))*(yA(i)+(dyA3))-8*(zA(i)+(dzA3))/3)*dtA; 
     dxA=(1/6)*(dxA1+2*(dxA2+dxA3)+dxA4); 
     dyA=(1/6)*(dyA1+2*(dyA2+dyA3)+dyA4); 
     dzA=(1/6)*(dzA1+2*(dzA2+dzA3)+dzA4); 
     xA(i+1)=xA(i)+dxA; 
     yA(i+1)=yA(i)+dyA; 
     zA(i+1)=zA(i)+dzA; 
end; 
finishtime1=cputime; 
usedtime1=finishtime1-starttime1; 
     xB(1)=xi; %allocating initial values% 
     yB(1)=yi; %allocating initial values% 
     zB(1)=zi; %allocating initial values% 
for  i=1:(NB-1); 
     %The Integration% 
     dxB1=(10*yB(i)-10*xB(i))*dtB; 
     dyB1=(28*xB(i)-yB(i)-xB(i)*zB(i))*dtB; 
     dzB1=(xB(i)*yB(i)-8*zB(i)/3)*dtB; 
     dxB2=(10*(yB(i)+(0.5*dyB1))-10*(xB(i)+(0.5*dxB1)))*dtB; 
     dyB2=(28*(xB(i)+(0.5*dxB1))-(yB(i)+(0.5*dyB1))-

(xB(i)+(0.5*dxB1))*(zB(i)+(0.5*dzB1)))*dtB; 
     dzB2=((xB(i)+(0.5*dxB1))*(yB(i)+(0.5*dyB1))-

8*(zB(i)+(0.5*dzB1))/3)*dtB; 
     dxB3=(10*(yB(i)+(0.5*dyB2))-10*(xB(i)+(0.5*dxB2)))*dtB; 
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    dyB3=(28*(xB(i)+(0.5*dxB2))-(yB(i)+(0.5*dyB2))-

(xB(i)+(0.5*dxB2))*(zB(i)+(0.5*dzB2)))*dtB; 
     dzB3=((xB(i)+(0.5*dxB2))*(yB(i)+(0.5*dyB2))-

8*(zB(i)+(0.5*dzB2))/3)*dtB; 
     dxB4=(10*(yB(i)+(dyB3))-10*(xB(i)+(dxB3)))*dtB; 
     dyB4=(28*(xB(i)+(dxB3))-(yB(i)+(dyB3))-

(xB(i)+(dxB3))*(zB(i)+(dzB3)))*dtB; 
     dzB4=((xB(i)+(dxB3))*(yB(i)+(dyB3))-8*(zB(i)+(dzB3))/3)*dtB; 
     dxB=(1/6)*(dxB1+2*(dxB2+dxB3)+dxB4); 
     dyB=(1/6)*(dyB1+2*(dyB2+dyB3)+dyB4); 
     dzB=(1/6)*(dzB1+2*(dzB2+dzB3)+dzB4); 
     xB(i+1)=xB(i)+dxB; 
     yB(i+1)=yB(i)+dyB; 
     zB(i+1)=zB(i)+dzB; 
end; 
XAi=funcinterp(ti,tf,NA,NB,xA); 
YAi=funcinterp(ti,tf,NA,NB,yA); 
ZAi=funcinterp(ti,tf,NA,NB,zA); 
err=functerr(XAi,xB,YAi,yB,ZAi,zB); 
stpp=(err-E)/E; 
%Plot for the correct Error Limit% 

  
if  stpp<0; %  this implies the error is less than specification E 
    if mark==0  %  preset value needs to change to serve as flag error 

specification crossed 
        mark=1;  % one time here  
    end 
    if abs(stpp)> devE; % in which case the measured deviation is 

greater than specificied error deviation    
    NA=fix(  NA-flucNA*NA);  % decreasing NA should lower measured 

error getting it closer to E  
    end; 
end 

  
if  stpp>0;%  this implies the error is lgreater than specification E 
    if  mark==0;  %  Check if  flag has not been set to use NA increse 

rule on fast track   
        if abs(stpp)> devE;   %  only want ot increase NA if  measured 

deviaiton is greater than specified 
            %NA=NA+ fix(NA/log(NA)); 
            NA=fix(1.5*NA ); 
        end 

         
    end 
    if mark ==1  ;%   
    if abs(stpp)> devE;  %  error is greater than apecified  and flag 

has been set to stop rapid increase NA 
    NA=fix(  NA+flucNA*NA); 
    end 
    end 
end 
KLoop=KLoop+1; 
Kloop=KLoop-1 
if KLoop == KLoopMax 
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    stop 
end 

  
end;  %  end on while condition  based on  abs(stpp)> devE; 
figure (6) 
    plot(tA, xA, tB,xB) 
    title(['Lorenz Without Micro by Runge-Kutta Method, With error 

control NA=', num2str(NA), '  NB=',num2str( NB),  '  err=', 

num2str(err)] ); 
    xlabel('time in seconds') 
    ylabel('XA') 
    grid         

     
cputime=cputime-start 
epsilon=err 

 

Appendix B-5: Lorenz Equations by Euler's Method with the Micro-Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This Program uses the Eulers Method to solve the Lorenz Non-linear 

Chaotic Partial Differential Equation Set With The Micro-Integrator%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 
clear all; 
close all; 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;  %lower time limit% 
tf=20; %upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 
y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for  i=1:N; 
     %The Integration% 
     dx1=(10*y(i)-10*x(i))*dt; 
     dy1=(28*x(i)-y(i)-x(i)*z(i))*dt; 
     dz1=(x(i)*y(i)-8*z(i)/3)*dt; 
%      dx=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt; 
%      dy=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+0.5*dx1)*(z(i)+(0.5*dz1)))*dt; 
%      dz=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt; 
     x(i+1)=x(i)+dx1; 
     y(i+1)=y(i)+dy1; 
     z(i+1)=z(i)+dz1; 
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end; 
%plot of 2-D poincare map% 
figure(1) 
plot(x,y) 
title('2D Poincare Map - Lorenz With Micro - Eulers Method') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 
figure(2) 
plot3(x,y,z) 
title('3D Poincare Map - Lorenz With Micro - Eulers Method') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
clear 
start=cputime; 
%Computing with error/10% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=8.1;   %upper time limit% 
E1=0.005; %Error Limit% 
N_resI=2;%Initial micro resolution% 
EHR=E1/10;%error/10% 
NA=256;  %Resolution Parameter% 
clear xA yA zA xB yB zB    
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;     
xA=1:NA; %Primitive xA array% 
yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xB=1:NA; %Primitive xB array% 
yB=1:NA; %Primitive yB array% 
zB=1:NA; %Primitive zB array% 
dt=(tf-ti)/(NA-1);%increment% 
xA(1)=xi; %allocating initial values% 
yA(1)=yi; %allocating initial values% 
zA(1)=zi; %allocating initial values% 
xB(1)=xi; %allocating initial values% 
yB(1)=yi; %allocating initial values% 
zB(1)=zi; %allocating initial values% 
N_resA=N_resI;%Initial micro resolution% 
epsilon=2*E1; %defining epsilon% 
loop=1; %Initializing the first loop count parameter% 
%The Micro-Integrator% 
while epsilon > EHR %error constraint loop% 
starttime=cputime; 
   for  i=1:(NA-1); 
        u=xA(i);%creating the first dynamic variable % 
        v=yA(i);%creating the second dynamic variable% 
        w=zA(i);%creating the third dynamic variable % 
        delta = (t(i+1)-t(i))/(N_resA);  
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        for j=1:N_resA; 
            ui=u;vi=v;wi=w; 
            %The Integration% 
            du1=(10*v-10*u)*delta; 
            dv1=(28*u-v-u*w)*delta; 
            dw1=(u*v-8*w/3)*delta; 
%             du=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta; 
%             dv=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta; 
%             dw=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta; 
            u_new=ui+du1;v_new=vi+dv1;w_new=wi+dw1; 
            u=u_new;v=v_new;w=w_new; 
        end; 
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
  end; 
finishtime=cputime;usedtime=finishtime-starttime; 
N_resB=2*N_resA; 
for  i=1:(NA-1); 
     u=xB(i);%creating the first dynamic variable % 
     v=yB(i);%creating the second dynamic variable% 
     w=zB(i);%creating the third dynamic variable % 
     delta = (t(i+1)-t(i))/(N_resB); 
     for j=1:N_resB; 
            ui=u;vi=v;wi=w; 
            %The Integration% 
            du1=(10*v-10*u)*delta; 
            dv1=(28*u-v-u*w)*delta; 
            dw1=(u*v-8*w/3)*delta; 
%             du=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta; 
%             dv=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta; 
%             dw=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta; 
            u_new=ui+du1;v_new=vi+dv1;w_new=wi+dw1; 
            u=u_new;v=v_new;w=w_new; 
     end; 
     xB(i+1)=u;yB(i+1)=v;zB(i+1)=w; 
end; 
epsilon=functerr(xB,xA,yB,yA,zB,zA); 
N_resA=2*N_resA; 
loop=loop+1;    %Incremental setup for the loop count% 
loop_1=loop-1   %correcting the forward lag of +1 in the loop count% 
end; 
N_resA=0.5*N_resA; 
figure(3) 
plot( t, xA, t,xB) 
title (['Lorenz With Micro Eulers Method with error/10 NA=', 

num2str(NA), '  NresA=',num2str( N_resA),'  error=', num2str(epsilon)] 

); 
xlabel('time in seconds') 
ylabel('XA') 
grid 
%computing with actual error% 
E=E1;           %defining the error parameter% 
flucperNAres=30;%fluctuation in N_resA per loop% 
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devEper=10;     %percentage error deviation allowed% 
Kloop=1;        %Initializing the second loop count parameter% 
KloopMax=25;    %maximum number of loops before program termination% 
devE=devEper*0.01;flucNAres=flucperNAres*0.01; 
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E; 
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB; 
NAresAhold=N_resA;mark=0;X=1; 
while   abs(stpp)>devE; 
   if stpp>0; 
      N_resA= N_resA+fix(flucNAres*N_resA); 
   else 
      N_resA =N_resA-fix(flucNAres*N_resA); 
   end; 
clear xA yA zA  
xA=1:NA; %Primitive xA array%yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xA(1)=xi; %allocating initial values%yA(1)=yi; %allocating initial 

values%zA(1)=zi; %allocating initial values% 
  for  i=1:(NA-1); 
       u=xA(i);%creating the first dynamic variable % 
       v=yA(i);%creating the second dynamic variable% 
       w=zA(i);%creating the third dynamic variable % 
       delta=(t(i+1)-t(i))/(N_resA);  
       for j=1:N_resA; 
            ui=u;vi=v;wi=w; 
            %The Integration% 
            du1=(10*v-10*u)*delta; 
            dv1=(28*u-v-u*w)*delta; 
            dw1=(u*v-8*w/3)*delta; 
%             du=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta; 
%             dv=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta; 
%             dw=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta; 
            u_new=ui+du1;v_new=vi+dv1;w_new=wi+dw1; 
            u=u_new;v=v_new;w=w_new; 
        end; 
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
  end; 
  epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold);% here  the A 

array is smaller  
  Kloop=Kloop+1;    %Incremental setup for the loop count% 
  loop_2=Kloop-1    %correcting the forward lag of +1 in the loop 

count% 
  if Kloop >KloopMax; 
     stop 
  end 
stpp=(epsilon-E)/E; 
end; 
figure(4) 
plot( t, xA, t,xB) 
title (['Lorenz With Micro Eulers Method With error control  NA=', 

num2str(NA), '  NresA=',num2str( N_resA),'  error=', num2str(epsilon)] 

); 
xlabel('time in seconds') 
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ylabel('XA') 
grid 
cputime=cputime-start 
loop_1 
loop_2 
epsilon 

 

Appendix B-6: Lorenz Equations by the Modified Euler's Method with the Micro-

Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This Program uses the Modified Euler Method to solve the Lorenz Non-

linear Chaotic Partial Differential Equation Set With The Micro-

Integrator% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all 
close all 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;  %lower time limit% 
tf=20; %upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 
y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for  i=1:N; 
     %The Integration%   
     dx=(10*y(i)-10*x(i))*dt; 
     dy=(28*x(i)-y(i)-x(i)*z(i))*dt; 
     dz=(x(i)*y(i)-8*z(i)/3)*dt; 
     x(i+1)=x(i)+dx; 
     y(i+1)=y(i)+dy; 
     z(i+1)=z(i)+dz; 
     dx=0.5*((10*y(i)-10*x(i))+(10*y(i+1)-10*x(i+1)))*dt; 
     dy=0.5*((28*x(i)-y(i)-x(i)*z(i))+(28*x(i+1)-y(i+1)-

x(i+1)*z(i+1)))*dt; 
     dz=0.5*((x(i)*y(i)-8*z(i)/3)+(x(i+1)*y(i+1)-8*z(i+1)/3))*dt; 
     x(i+1)=x(i)+dx; 
     y(i+1)=y(i)+dy; 
     z(i+1)=z(i)+dz; 
end; 
%plot of 2-D poincare map% 
figure(1) 
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plot(x,y) 
title('Poincare Map - Lorenz With Micro - Modified Euler Method') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 
figure(2) 
plot3(x,y,z) 
title('3D Poincare Map - Lorenz With Micro - Modified Euler Method') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
clear 
start=cputime; 
%Computing with error/10% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=22;   %upper time limit% 
E1=0.005; %Error Limit% 
N_resI=2;%Initial micro resolution% 
EHR=E1/10;%error/10% 
NA=1024;  %Resolution Parameter% 
clear xA yA zA xB yB zB    
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;     
xA=1:NA; %Primitive xA array% 
yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xB=1:NA; %Primitive xB array% 
yB=1:NA; %Primitive yB array% 
zB=1:NA; %Primitive zB array% 
dt=(tf-ti)/(NA-1);%increment% 
xA(1)=xi; %allocating initial values% 
yA(1)=yi; %allocating initial values% 
zA(1)=zi; %allocating initial values% 
xB(1)=xi; %allocating initial values% 
yB(1)=yi; %allocating initial values% 
zB(1)=zi; %allocating initial values% 
N_resA=N_resI;%Initial micro resolution% 
epsilon=2*E1; %defining epsilon% 
loop=1; %Initializing the first loop count parameter% 
%The Micro-Integrator% 
while epsilon > EHR %error constraint loop% 
      starttime=cputime; 
   for  i=1:(NA-1); 
        u=xA(i);%creating the first dynamic variable % 
        v=yA(i);%creating the second dynamic variable% 
        w=zA(i);%creating the third dynamic variable % 
        delta = (t(i+1)-t(i))/(N_resA);  
        for j=1:N_resA; 
            ui=u;vi=v;wi=w; 
            %The Integration% 
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            du_new=(10*v-10*u)*delta; 
            dv_new=(28*u-v-u*w)*delta; 
            dw_new=(u*v-8*w/3)*delta; 
            u=ui+du_new; 
            v=vi+dv_new; 
            w=wi+dw_new; 
            du=du_new/2+(10*v-10*u)*delta/2; 
            dv=dv_new/2+(28*u-v-u*w)*delta/2; 
            dw=dw_new/2+(u*v-8*w/3)*delta/2; 
            u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
            u=u_new;v=v_new;w=w_new; 
        end; 
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
  end; 
    finishtime=cputime; 
    usedtime=finishtime-starttime;   
N_resB=2*N_resA; 
for  i=1:(NA-1); 
     u=xB(i);%creating the first dynamic variable % 
     v=yB(i);%creating the second dynamic variable% 
     w=zB(i);%creating the third dynamic variable % 
     delta = (t(i+1)-t(i))/(N_resB); 
     for j=1:N_resB; 
         ui=u;vi=v;wi=w; 
         %The Integration% 
         du_new=(10*v-10*u)*delta; 
         dv_new=(28*u-v-u*w)*delta; 
         dw_new=(u*v-8*w/3)*delta; 
         u=ui+du_new; 
         v=vi+dv_new; 
         w=wi+dw_new; 
         du=du_new/2+(10*v-10*u)*delta/2; 
         dv=dv_new/2+(28*u-v-u*w)*delta/2; 
         dw=dw_new/2+(u*v-8*w/3)*delta/2; 
         u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
         u=u_new;v=v_new;w=w_new; 
     end; 
     xB(i+1)=u;yB(i+1)=v;zB(i+1)=w; 
end; 
epsilon=functerr(xB,xA,yB,yA,zB,zA); 
N_resA=2*N_resA; 
loop=loop+1;    %Incremental setup for the loop count% 
loop_1=loop-1   %correcting the forward lag of +1 in the loop count% 
end; 
N_resA=0.5*N_resA; 
figure(3) 
plot( t, xA, t,xB) 
title (['Lorenz With Micro Modified Euler Method with error/10 NA=', 

num2str(NA), '  NresA=',num2str( N_resA),'  error=', num2str(epsilon),'  

cputime=', num2str(usedtime),'s' ] ); 
xlabel('time in seconds') 
ylabel('XA') 
grid 
%computing with actual error% 
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E=E1;           %defining the error parameter% 
flucperNAres=30;%fluctuation in N_resA per loop% 
devEper=10;     %percentage error deviation allowed% 
Kloop=1;        %Initializing the second loop count parameter% 
KloopMax=25;    %maximum number of loops before program termination% 
devE=devEper*0.01;flucNAres=flucperNAres*0.01; 
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E; 
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB; 
NAresAhold=N_resA;mark=0;X=1; 
while   abs(stpp)>devE; 

     
   if stpp>0; 
      N_resA= N_resA+fix(flucNAres*N_resA); 
   else 
      N_resA =N_resA-fix(flucNAres*N_resA); 
   end; 
clear xA yA zA  
xA=1:NA; %Primitive xA array%yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xA(1)=xi; %allocating initial values% 
yA(1)=yi; %allocating initial values% 
zA(1)=zi; %allocating initial values% 
  for  i=1:(NA-1); 
       u=xA(i);%creating the first dynamic variable % 
       v=yA(i);%creating the second dynamic variable% 
       w=zA(i);%creating the third dynamic variable % 
       delta=(t(i+1)-t(i))/(N_resA);  
       for j=1:N_resA; 
           ui=u;vi=v;wi=w; 
           %The Integration% 
           du_new=(10*v-10*u)*delta; 
           dv_new=(28*u-v-u*w)*delta; 
           dw_new=(u*v-8*w/3)*delta; 
           u=ui+du_new; 
           v=vi+dv_new; 
           w=wi+dw_new; 
           du=du_new/2+(10*v-10*u)*delta/2; 
           dv=dv_new/2+(28*u-v-u*w)*delta/2; 
           dw=dw_new/2+(u*v-8*w/3)*delta/2; 
           u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
           u=u_new;v=v_new;w=w_new; 
        end; 
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
  end; 
  epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold);% here  the A 

array is smaller  
  Kloop=Kloop+1;    %Incremental setup for the loop count% 
  loop_2=Kloop-1    %correcting the forward lag of +1 in the loop 

count% 
  if Kloop >KloopMax; 
     stop 
  end 
stpp=(epsilon-E)/E; 
end; 



 94 

Appendix B (Continued) 

figure(4) 
plot( t, xA, t,xB) 
title (['Lorenz With Micro Modified Euler Method With error control  

NA=', num2str(NA), '  NresA=',num2str( N_resA),'  error=', 

num2str(epsilon) ] ); 
xlabel('time in seconds') 
ylabel('XA') 
grid 
cputime=cputime-start 
loop_1 
loop_2 
epsilon 

 

Appendix B-7: Lorenz Equations by Simpson's Method with the Micro-Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This Program uses the Simpson's Method to solve the Lorenz Non-linear 

Chaotic Partial Differential Equation Set With The Micro-Integrator%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all 
close all 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;  %lower time limit% 
tf=20; %upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 
y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for i=1:N; 
    %The Integration% 
    dx1=(10*y(i)-10*x(i))*0.5*dt; 
    dy1=(28*x(i)-y(i)-x(i)*z(i))*0.5*dt; 
    dz1=(x(i)*y(i)-8*z(i)/3)*0.5*dt; 
    xhf=x(i)+dx1; 
    yhf=y(i)+dy1; 
    zhf=z(i)+dz1; 
    dx2=(10*yhf-10*xhf)*0.5*dt; 
    dy2=(28*xhf-yhf-xhf*zhf)*0.5*dt; 
    dz2=(xhf*yhf-8*zhf/3)*0.5*dt; 
    xfl=xhf+dx2; 
    yfl=yhf+dy2; 
    zfl=zhf+dz2;    
    dx=(1/6)*((10*y(i)-10*x(i))+(4*(10*yhf-10*xhf))+(10*yfl-

10*xfl))*dt; 
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    dy=(1/6)*((28*x(i)-y(i)-x(i)*z(i))+(4*(28*xhf-yhf-

xhf*zhf))+(28*xfl-yfl-xfl*zfl))*dt; 
    dz=(1/6)*((x(i)*y(i)-8*z(i)/3)+(4*(xhf*yhf-8*zhf/3))+(xfl*yfl-

8*zfl/3))*dt; 
    x(i+1)=x(i)+dx; 
    y(i+1)=y(i)+dy; 
    z(i+1)=z(i)+dz; 
end; 
%plot of 2-D poincare map% 
figure(1) 
plot(x,y) 
title('Poincare Map - Lorenz With Micro - Simpson') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 
figure(2) 
plot3(x,y,z) 
title('3D Poincare Map - Lorenz With Micro - Simpson') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
clear 
start=cputime; 
%Computing with error/10% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=22;   %upper time limit% 
E1=0.005; %Error Limit% 
N_resI=2;%Initial micro resolution% 
EHR=E1/10;%error/10% 
NA=1024; %Resolution Parameter% 
clear xA yA zA xB yB zB    
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;     
xA=1:NA; %Primitive xA array% 
yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xB=1:NA; %Primitive xB array% 
yB=1:NA; %Primitive yB array% 
zB=1:NA; %Primitive zB array% 
dt=(tf-ti)/(NA-1);%increment% 
xA(1)=xi; %allocating initial values% 
yA(1)=yi; %allocating initial values% 
zA(1)=zi; %allocating initial values% 
xB(1)=xi; %allocating initial values% 
yB(1)=yi; %allocating initial values% 
zB(1)=zi; %allocating initial values% 
N_resA=N_resI;%Initial micro resolution% 
epsilon=2*E1; %defining epsilon% 
loop=1; %Initializing the first loop count parameter% 
%The Micro-Integrator% 
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while epsilon > EHR %error constraint loop% 
      starttime=cputime; 
    for i=1:(NA-1); 
        u=xA(i);%creating the first dynamic variable % 
        v=yA(i);%creating the second dynamic variable% 
        w=zA(i);%creating the third dynamic variable % 
        delta = (t(i+1)-t(i))/(N_resA);  

                 
        for j=1:N_resA;% microintegrator loop  
            ui=u;vi=v;wi=w; 
            %The Integration% 
            du1=(10*v-10*u)*0.5*delta; 
            dv1=(28*u-v-u*w)*0.5*delta; 
            dw1=(u*v-8*w/3)*0.5*delta; 
            uhf=u+du1; 
            vhf=v+dv1; 
            whf=w+dw1; 
            du2=(10*vhf-10*uhf)*0.5*delta; 
            dv2=(28*uhf-vhf-uhf*whf)*0.5*delta; 
            dw2=(uhf*vhf-8*whf/3)*0.5*delta; 
            ufl=uhf+du2; 
            vfl=vhf+dv2; 
            wfl=whf+dw2;    
            du=(1/6)*((10*v-10*u)+(4*(10*vhf-10*uhf))+(10*vfl-

10*ufl))*delta; 
            dv=(1/6)*((28*u-v-u*w)+(4*(28*uhf-vhf-uhf*whf))+(28*ufl-

vfl-ufl*wfl))*delta; 
            dw=(1/6)*((u*v-8*w/3)+(4*(uhf*vhf-8*whf/3))+(ufl*vfl-

8*wfl/3))*delta; 
            u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
            u=u_new;v=v_new;w=w_new;         
        end; 
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
    end; 
    finishtime=cputime; 
    usedtime=finishtime-starttime;   
  N_resB=2*N_resA; 
for  i=1:(NA-1); 
     u=xB(i);%creating the first dynamic variable % 
     v=yB(i);%creating the second dynamic variable% 
     w=zB(i);%creating the third dynamic variable % 
     delta=(t(i+1)-t(i))/(N_resB); 
     for j=1:N_resB;% microintegrator loop  
         ui=u;vi=v;wi=w; 
         %The Integration% 
         du1=(10*v-10*u)*0.5*delta; 
         dv1=(28*u-v-u*w)*0.5*delta; 
         dw1=(u*v-8*w/3)*0.5*delta; 
         uhf=u+du1; 
         vhf=v+dv1; 
         whf=w+dw1; 
         du2=(10*vhf-10*uhf)*0.5*delta; 
         dv2=(28*uhf-vhf-uhf*whf)*0.5*delta; 
         dw2=(uhf*vhf-8*whf/3)*0.5*delta; 
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         ufl=uhf+du2; 
         vfl=vhf+dv2; 
         wfl=whf+dw2;    
         du=(1/6)*((10*v-10*u)+(4*(10*vhf-10*uhf))+(10*vfl-

10*ufl))*delta; 
         dv=(1/6)*((28*u-v-u*w)+(4*(28*uhf-vhf-uhf*whf))+(28*ufl-vfl-

ufl*wfl))*delta; 
         dw=(1/6)*((u*v-8*w/3)+(4*(uhf*vhf-8*whf/3))+(ufl*vfl-

8*wfl/3))*delta; 
         u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
         u=u_new;v=v_new;w=w_new;    
     end; 
        xB(i+1)=u;yB(i+1)=v;zB(i+1)=w; 
end; 
epsilon=functerr(xB,xA,yB,yA,zB,zA); 
N_resA=2*N_resA; 
loop=loop+1;    %Incremental setup for the loop count% 
loop_1=loop-1   %correcting the forward lag of +1 in the loop count% 
end; 
N_resA=0.5*N_resA; 
figure(3) 
plot(t,xA,t,xB) 
title(['Lorenz With Micro Simpsons Method with error/10 NA=', 

num2str(NA), '  NresA=',num2str( N_resA),'  error= ', 

num2str(epsilon),'  cputime=', num2str(usedtime),'s' ] ); 
xlabel('time in seconds') 
ylabel('XA') 
grid 
%computing with actual error% 
E=E1;           %defining the error parameter% 
flucperNAres=30;%fluctuation in N_resA per loop% 
devEper=10;     %percentage error deviation allowed% 
Kloop=1;        %Initializing the second loop count parameter% 
KloopMax=25;    %maximum number of loops before program termination% 
devE=devEper*0.01;flucNAres=flucperNAres*0.01; 
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E; 
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB; 
NAresAhold=N_resA;mark=0;X=1; 
while   abs(stpp)>devE; 
   if stpp>0; 
      N_resA= N_resA+fix(flucNAres*N_resA);  
   else 
      N_resA =N_resA-fix(flucNAres*N_resA); 
   end; 
clear xA yA zA  
xA=1:NA; %Primitive xA array% 
yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xA(1)=xi; %allocating initial values% 
yA(1)=yi; %allocating initial values% 
zA(1)=zi; %allocating initial values% 
  for  i=1:(NA-1); 
       u = xA(i);%creating the first dynamic variable % 
       v = yA(i);%creating the second dynamic variable% 
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      w = zA(i);%creating the third dynamic variable % 
       delta=(t(i+1)-t(i))/(N_resA);  
       for j=1:N_resA; 
           ui=u;vi=v;wi=w; 
           %The Integration% 
           du1=(10*v-10*u)*0.5*delta; 
           dv1=(28*u-v-u*w)*0.5*delta; 
           dw1=(u*v-8*w/3)*0.5*delta; 
           uhf=u+du1; 
           vhf=v+dv1; 
           whf=w+dw1; 
           du2=(10*vhf-10*uhf)*0.5*delta; 
           dv2=(28*uhf-vhf-uhf*whf)*0.5*delta; 
           dw2=(uhf*vhf-8*whf/3)*0.5*delta; 
           ufl=uhf+du2; 
           vfl=vhf+dv2; 
           wfl=whf+dw2;    
           du=(1/6)*((10*v-10*u)+(4*(10*vhf-10*uhf))+(10*vfl-

10*ufl))*delta; 
           dv=(1/6)*((28*u-v-u*w)+(4*(28*uhf-vhf-uhf*whf))+(28*ufl-vfl-

ufl*wfl))*delta; 
           dw=(1/6)*((u*v-8*w/3)+(4*(uhf*vhf-8*whf/3))+(ufl*vfl-

8*wfl/3))*delta; 
           u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
           u=u_new;v=v_new;w=w_new; 
        end;  
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
  end; 
epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold); 
 Kloop=Kloop+1;    %Incremental setup for the loop count% 
 loop_2=Kloop-1    %correcting the forward lag of +1 in the loop count% 
   if Kloop >KloopMax; 
     stop 
   end 
stpp=(epsilon-E)/E  ; 
end; 
figure(4) 
plot(t,xA,t,xB) 
title(['Lorenz With Micro Simpsons Method With error control  NA=', 

num2str(NA), '  NresA=',num2str( N_resA),'  error=', 

num2str(epsilon)]); 
xlabel('time in seconds') 
ylabel('XA') 
grid 
cputime=cputime-start 
loop_1 
loop_2 
epsilon 
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Integrator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
%This Program uses the 4th Order Runge-Kutta Method to solve the Lorenz 

Non-linear Chaotic Partial Differential Equation Set With The Micro-

Integrator%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
clc; 
clear all; 
close all; 
%Pre-Integration Program Inputs% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=40; %Upper time limit% 
N=40000; %Resolution parameter% 
dt=(tf-ti)/N;%integration step% 
x=0:N; %primitive x array% 
y=0:N; %primitive y array% 
z=0:N; %primitive z array% 
x(1)=xi; %allocating initial values% 
y(1)=yi; %allocating initial values% 
z(1)=zi; %allocating initial values% 
for  i=1:N; 
     %The Integration%                                                       
     dx1=(10*y(i)-10*x(i))*dt;                                                           
     dy1=(28*x(i)-y(i)-x(i)*z(i))*dt;                                                    
     dz1=(x(i)*y(i)-8*z(i)/3)*dt;                                                        
     dx2=(10*(y(i)+(0.5*dy1))-10*(x(i)+(0.5*dx1)))*dt;                                   
     dy2=(28*(x(i)+(0.5*dx1))-(y(i)+(0.5*dy1))-

(x(i)+(0.5*dx1))*(z(i)+(0.5*dz1)))*dt;    
     dz2=((x(i)+(0.5*dx1))*(y(i)+(0.5*dy1))-8*(z(i)+(0.5*dz1))/3)*dt;                    
     dx3=(10*(y(i)+(0.5*dy2))-10*(x(i)+(0.5*dx2)))*dt;                                   
     dy3=(28*(x(i)+(0.5*dx2))-(y(i)+(0.5*dy2))-

(x(i)+(0.5*dx2))*(z(i)+(0.5*dz2)))*dt;    
     dz3=((x(i)+(0.5*dx2))*(y(i)+(0.5*dy2))-8*(z(i)+(0.5*dz2))/3)*dt;                    
     dx4=(10*(y(i)+(dy3))-10*(x(i)+(dx3)))*dt;                                           
     dy4=(28*(x(i)+(dx3))-(y(i)+(dy3))-(x(i)+(dx3))*(z(i)+(dz3)))*dt;                    
     dz4=((x(i)+(dx3))*(y(i)+(dy3))-8*(z(i)+(dz3))/3)*dt;                                
     dx=(1/6)*(dx1+2*(dx2+dx3)+dx4);                                                     
     dy=(1/6)*(dy1+2*(dy2+dy3)+dy4);                                                     
     dz=(1/6)*(dz1+2*(dz2+dz3)+dz4);                                                     

     x(i+1)=x(i)+dx;                                                                     
     y(i+1)=y(i)+dy;                                                                     
     z(i+1)=z(i)+dz; 
end; 
%plot of 2-D poincare map% 
figure(1) 
plot(x,y) 
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title('Poincare Map - Lorenz With Micro - Runge-Kutta -4th Order') 
xlabel('x') 
ylabel('y') 
grid 
%plot of 3-D poincare map% 
figure(2) 
plot3(x,y,z) 
title('3D Poincare Map - Lorenz With Micro - Runge-Kutta -4th Order') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
clear 
start=cputime; 
%Computing with error/10% 
xi=-11.2;%initial value of x% 
yi=-8.4; %initial value of y% 
zi=33.4; %initial value of z% 
ti=0;    %lower time limit% 
tf=22;   %upper time limit% 
E1=0.005; %Error Limit% 
N_resI=2; %Initial micro resolution% 
EHR=E1/10;%error/10% 
NA=1024;  %Resolution Parameter% 
clear xA yA zA xB yB zB    
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti;     
xA=1:NA; %Primitive xA array% 
yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xB=1:NA; %Primitive xB array% 
yB=1:NA; %Primitive yB array% 
zB=1:NA; %Primitive zB array% 
dt=(tf-ti)/(NA-1);%increment% 
xA(1)=xi; %allocating initial values% 
yA(1)=yi; %allocating initial values% 
zA(1)=zi; %allocating initial values% 
xB(1)=xi; %allocating initial values% 
yB(1)=yi; %allocating initial values% 
zB(1)=zi; %allocating initial values% 
N_resA=N_resI;%Initial micro resolution% 
epsilon=2*E1; %defining epsilon% 
loop=1; %Initializing the first loop count parameter% 
%The Micro-Integrator% 
while epsilon > EHR %error constraint loop% 
      starttime=cputime; 
    for i=1:(NA-1); 
        u = xA(i);%creating the first dynamic variable % 
        v = yA(i);%creating the second dynamic variable% 
        w = zA(i);%creating the third dynamic variable % 
        delta = (t(i+1)-t(i))/(N_resA);  
        for j=1:N_resA;% microintegrator loop  
            ui=u;vi=v;wi=w; 
            %The Integration% 
            du1=(10*v-10*u)*delta; 
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            dv1=(28*u-v-u*w)*delta; 
            dw1=(u*v-8*w/3)*delta; 
            du2=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta; 
            dv2=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta; 
            dw2=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta; 
            du3=(10*(v+(0.5*dv2))-10*(u+(0.5*du2)))*delta; 
            dv3=(28*(u+(0.5*du2))-(v+(0.5*dv2))-

(u+(0.5*du2))*(w+(0.5*dw2)))*delta; 
            dw3=((u+(0.5*du2))*(v+(0.5*dv2))-8*(w+(0.5*dw2))/3)*delta; 
            du4=(10*(v+(dv3))-10*(u+(du3)))*delta; 
            dv4=(28*(u+(du3))-(v+(dv3))-(u+(du3))*(w+(dw3)))*delta; 
            dw4=((u+(du3))*(v+(dv3))-8*(w+(dw3))/3)*delta; 
            du=(1/6)*(du1+2*(du2+du3)+du4); 
            dv=(1/6)*(dv1+2*(dv2+dv3)+dv4); 
            dw=(1/6)*(dw1+2*(dw2+dw3)+dw4); 
            u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
            u=u_new;v=v_new;w=w_new;             
        end; 
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
   end; 
    finishtime=cputime; 
    usedtime=finishtime-starttime;   
  N_resB=2*N_resA; 
for  i=1:(NA-1); 
     u=xB(i);%creating the first dynamic variable % 
     v=yB(i);%creating the second dynamic variable% 
     w=zB(i);%creating the third dynamic variable % 
     delta=(t(i+1)-t(i))/(N_resB); 
     for j=1:N_resB;% microintegrator loop  
         ui=u;vi=v;wi=w; 
         %The Integration% 
         du1=(10*v-10*u)*delta; 
         dv1=(28*u-v-u*w)*delta; 
         dw1=(u*v-8*w/3)*delta; 
         du2=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta; 
         dv2=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta; 
         dw2=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta; 
         du3=(10*(v+(0.5*dv2))-10*(u+(0.5*du2)))*delta; 
         dv3=(28*(u+(0.5*du2))-(v+(0.5*dv2))-

(u+(0.5*du2))*(w+(0.5*dw2)))*delta; 
         dw3=((u+(0.5*du2))*(v+(0.5*dv2))-8*(w+(0.5*dw2))/3)*delta; 
         du4=(10*(v+(dv3))-10*(u+(du3)))*delta; 
         dv4=(28*(u+(du3))-(v+(dv3))-(u+(du3))*(w+(dw3)))*delta; 
         dw4=((u+(du3))*(v+(dv3))-8*(w+(dw3))/3)*delta; 
         du=(1/6)*(du1+2*(du2+du3)+du4); 
         dv=(1/6)*(dv1+2*(dv2+dv3)+dv4); 
         dw=(1/6)*(dw1+2*(dw2+dw3)+dw4); 
         u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
         u=u_new;v=v_new;w=w_new; 
     end; 
        xB(i+1)=u;yB(i+1)=v;zB(i+1)=w; 
end; 
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epsilon=functerr(xB,xA,yB,yA,zB,zA); 
N_resA=2*N_resA; 
loop=loop+1;    %Incremental setup for the loop count% 
loop_1=loop-1   %correcting the forward lag of +1 in the loop count% 
end; 
N_resA=0.5*N_resA; 
figure(3) 
plot(t,xA,t,xB) 
title(['Lorenz With Micro Runge-Kutta 4th Order with error/10 NA=', 

num2str(NA), '  NresA=',num2str( N_resA),'  error= ', num2str(epsilon)] 

); 
xlabel('time in seconds') 
ylabel('XA') 
grid 
%computing with actual error% 
E=E1;           %defining the error parameter% 
flucperNAres=30;%fluctuation in N_resA per loop% 
devEper=10;     %percentage error deviation allowed% 
Kloop=1;        %Initializing the second loop count parameter% 
KloopMax=25;    %maximum number of loops before program termination% 
devE=devEper*0.01;flucNAres=flucperNAres*0.01; 
t=(0:(NA-1))*(tf-ti)/(NA-1)+ti; stpp=(epsilon-E)/E; 
xB1=xB;yB1=yB;zB1=zB;xAhold=xB;yAhold=yB;zAhold=zB; 
NAresAhold=N_resA;mark=0;X=1; 
while   abs(stpp)>devE; 

     
   if stpp>0; 
      N_resA= N_resA+fix(flucNAres*N_resA);  
   else 
      N_resA =N_resA-fix(flucNAres*N_resA); 
   end; 
clear xA yA zA  
xA=1:NA; %Primitive xA array% 
yA=1:NA; %Primitive yA array% 
zA=1:NA; %Primitive zA array% 
xA(1)=xi; %allocating initial values% 
yA(1)=yi; %allocating initial values% 
zA(1)=zi; %allocating initial values% 
  for  i=1:(NA-1); 
       u = xA(i);%creating the first dynamic variable % 
       v = yA(i);%creating the second dynamic variable% 
       w = zA(i);%creating the third dynamic variable % 
       delta=(t(i+1)-t(i))/(N_resA);  
       for j=1:N_resA; 
           ui=u;vi=v;wi=w; 
           %The Integration% 
           du1=(10*v-10*u)*delta; 
           dv1=(28*u-v-u*w)*delta; 
           dw1=(u*v-8*w/3)*delta; 
           du2=(10*(v+(0.5*dv1))-10*(u+(0.5*du1)))*delta; 
           dv2=(28*(u+(0.5*du1))-(v+(0.5*dv1))-

(u+(0.5*du1))*(w+(0.5*dw1)))*delta; 
           dw2=((u+(0.5*du1))*(v+(0.5*dv1))-8*(w+(0.5*dw1))/3)*delta; 
           du3=(10*(v+(0.5*dv2))-10*(u+(0.5*du2)))*delta; 
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           dv3=(28*(u+(0.5*du2))-(v+(0.5*dv2))-

(u+(0.5*du2))*(w+(0.5*dw2)))*delta; 
           dw3=((u+(0.5*du2))*(v+(0.5*dv2))-8*(w+(0.5*dw2))/3)*delta; 
           du4=(10*(v+(dv3))-10*(u+(du3)))*delta; 
           dv4=(28*(u+(du3))-(v+(dv3))-(u+(du3))*(w+(dw3)))*delta; 
           dw4=((u+(du3))*(v+(dv3))-8*(w+(dw3))/3)*delta; 
           du=(1/6)*(du1+2*(du2+du3)+du4); 
           dv=(1/6)*(dv1+2*(dv2+dv3)+dv4); 
           dw=(1/6)*(dw1+2*(dw2+dw3)+dw4); 
           u_new=ui+du;v_new=vi+dv;w_new=wi+dw; 
           u=u_new;v=v_new;w=w_new; 
        end;  
        xA(i+1)=u;yA(i+1)=v;zA(i+1)=w; 
  end; 

   
epsilon=functerr(xA, xAhold, yA,yAhold, zA,zAhold); 
 Kloop=Kloop+1;    %Incremental setup for the loop count% 
 loop_2=Kloop-1    %correcting the forward lag of +1 in the loop count% 
   if Kloop >KloopMax; 
     stop 
   end 
stpp=(epsilon-E)/E  ; 
end; 
figure(4) 
plot(t,xA,t,xB) 
title(['Lorenz With Micro Runge-Kutta 4th Order With error control  

NA=', num2str(NA), '  NresA=',num2str( N_resA),'  error=', 

num2str(epsilon)]); 
xlabel('time in seconds') 
ylabel('XA') 
grid 
cputime=cputime-start 
loop_1 
loop_2 
epsilon 
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Appendix C: Principal Subroutines 

Appendix C-1: The Interpolation Subroutine 
 
function XB=funcinterp(to,tf,NA,NB,XA) 

  
pB=1:NB; %array 1 to size B% 
pA=1:NA; %array 1 to size A% 
XB(1) = XA(1); %defining the first values% 
XB(NB)=XA(NA); %defining the last values% 
tB=ones(size(pB)); %array of ones of size B% 
tA=ones(size(XA)); %array of ones of size A% 
tB=to*tB+(tf-to)/(NB-1)*(pB-tB); 
tA=to*tA+(tf-to)/(NA-1)*(pA-tA); 
i=1; %Initial value before iterations% 
for k=1:(NB-1); 
   while  tB(k)> tA(i+1); 
          i=i+1; %iteration increment% 
   end; 
          slope=(XA(i+1)-XA(i))/(tA(i+1)-tA(i)); %slope calculation% 
          XB(k)=XA(i)+slope*(tB(k)-tA(i));  %interpolation rule% 
end 

  

 

Appendix C-2: The Error Calculation Subroutine 

function Err=functerr(xB,xA,yB,yA,zB,zA) 

  
%%%%%   Error estimation  ********* two arrays*** no loop in this 

version, no corrective step on micro-loop 
gX=[xA,xB]; %creates a concatonated array of x values% 
gY=[yA,yB]; %creates a concatonated array of y values% 
gZ=[zA,zB]; %creates a concatonated array of z values% 

  
gXmax=max(abs(gX)) %maximum x value% 
gYmax=max(abs(gY)) %maximum y value% 
gZmax=max(abs(gZ)) %maximum z value% 

  
gXmean=mean(abs(xA-xB)) %mean absolute x difference% 
gYmean=mean(abs(yA-yB)) %mean absolute y difference% 
gZmean=mean(abs(zA-zB)) %mean absolute z difference% 

  
eps_x = gXmean/gXmax; %values normalized by maximum in x set% 
eps_y = gYmean/gYmax; %values normalized by maximum in y set% 
eps_z = gZmean/gZmax; %values normalized by maximum in z set% 

  
epsilonV=[eps_x,eps_y,eps_z]; %combined error set% 

  
epsilon = max(epsilonV)  %maximum error% 
g=0.5*max(size(xA)) %size of 'A' arrays% 
Err=epsilon; %error% 
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