Objective: The objective of this study is to develop and identify polymorphic microsatellite markers for fungus-gardening (attine) ants in the genus Trachymyrmex sensu lato. These ants are important ecosystem engineers and have been a model group for understanding complex symbiotic systems, but very little is understood about the intraspecific genetic patterns across most North American attine species. These microsatellite markers will help to better study intraspecific population genetic structure, gene flow, mating habits, and phylogeographic patterns in these species and potentially other congeners. Results: Using next-generation sequencing techniques, we identified 17 and 12 polymorphic microsatellite markers from T. septentrionalis and Mycetomoellerius (formerly Trachymyrmex) turrifex, respectively, and assessed the genetic diversity of each marker. We also analyzed the cross-amplification success of the T. septentrionalis markers in two other closely related Trachymyrmex species, and identified 10 and 12 polymorphic markers for T. arizonensis and T. pomonae, respectively.


© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/



Date of publication




Persistent identifier


Document Type


Included in

Biology Commons