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Figure 3.3: Skewness values for control subjects with moving window analysis 

 

 Skewness values for AD subjects and control subjects with the moving window 

analysis are lesser compared to the skewness values of EEG signal data sets of AD 

subjects and control subjects without moving window analysis. Mean skewness for AD 

subjects is 1.476, 1.4707 and 1.4733 with 5%, 15% and 25% overlap respectively. Mean 

skewness for control subjects is 1.41, 1.4087 and 1.4241 with 5%, 15% and 25% overlap 

respectively. Analysis rate for skewness with moving windows is also 25% with a false 

alarm of 6.25%. 

3.2.2 Kurtosis 

 

 Kurtosis is a statistical quantity which measures the complexity of an EEG data 

set. It also determines if the EEG signal has a peak or rather flat at the mean point of the 

signal [13]. Higher values of kurtosis indicate that the signal has a sharp peak at the mean 

point of an EEG signal data set and low values of kurtosis indicate that that the signal has 
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a flat nature at the mean point of the signal. The Kurtosis for a signal       is given by 

[13], 

  =
            

               
                                                             (3.2)   

Where   is the standard deviation and E is the expected value estimator of the signal 

    . 

 The Kurtosis for EEG signals from AD subjects and control subjects are 

calculated. The values for the AD subjects and control subjects are compared and shown 

in the Figure 3.4. 

 

Figure 3.4: Kurtosis values for AD subjects and control subjects 

 

 From the Figure 3.4, it is observed that the kurtosis for AD subject 2 and 16 are 

very high compared to the kurtosis values of the respective control subjects, and the 

kurtosis for AD subject 5 is very low compared to the kurtosis value of the respective 

age-matched control subject. AD subjects 1, 2, 3, 6, 10 and 16 have the kurtosis values 

higher than the mean kurtosis from the control subjects which is 9.2564 and 9.8855 for 

AD subjects. 
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3.2.2.1 Kurtosis with Moving Window Analysis  

 

The Kurtosis using moving window analysis is applied to the EEG signal data 

sets. Figures 3.5 and 3.6 show the kurtosis for EEG signal data sets with different overlap 

percentages. 

 

Figure 3.5: Kurtosis values for AD subjects with moving window analysis 

 

 

Figure 3.6: Kurtosis values for control subjects with moving window analysis 
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From Figures 3.5 and 3.6, it is observed that the kurtosis of the EEG signal data 

sets for AD subjects and control subjects with the moving window analysis are lower 

than the kurtosis values calculated without the moving window analysis. Kurtosis for AD 

subjects is 5.9463, 5.9527 and 5.9446 with 5%, 15% and 25% overlap respectively. 

Kurtosis for control subjects is 5.4458, 5.4706 and 5.5965 with 5%, 15% and 25% 

overlap respectively. 

3.3 Entropies 

 

 Entropy is the measure of randomness or uncertainty associated with a random 

variable [14]. Shannon entropy and energy entropy are non-linear methods employed for 

the feature extraction of EEG signals data sets for AD subjects and control subjects. 

Shannon entropy is a statistical quantity which measures the uncertainty of an EEG signal 

and the expected value of the information contained in an EEG signal data set [14]. In 

other words, it is the measure of the order in an EEG signal [4]. Signal order is the degree 

of randomness of the signal. Energy entropy is a statistical quantity which measures the 

distribution of the energy of an EEG signal. Both shannon and energy entropy of EEG 

signal data sets for AD subjects and control subjects are calculated. Figures 3.7 and 3.8 

show the comparison of the entropies values for AD subjects and control subjects. 
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Figure 3.7: Shannon entropy values for AD subjects and control subjects 

 

 

From Figure 3.7, it is observed that the shannon entropy value of AD subject 15 is 

very high compared to the shannon entropy value of the respective control subject. AD 

subjects 1, 2, 3, 4, 5, 9, 13 and 15 have a higher shannon entropy values compared to the 

mean shannon entropy value of the control subjects which is 11.4953 and 12.2306 for AD 

subjects. 

 

Figure 3.8: Energy entropy values for AD subjects and control subjects 
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 From Figure 3.8, it is observed that the energy entropy values are not much 

different for AD subjects and control subjects. AD subjects 1, 6, 7, 8, 10, 11, 12, 14 and 

16 have energy entropy values greater than the mean energy entropy value of control 

subjects which is -1673.1 and -1664.3 for AD subjects. 

3.3.1 Entropies with Moving Window Analysis 

 

 Shannon entropy and energy entropy of EEG signals data sets are also calculated 

using a moving window analysis and values of the entropies are shown in Figures 3.9-

3.12. 

 

Figure 3.9: Shannon entropy values for AD subjects with moving window analysis 
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Figure 3.10: Shannon entropy values for control subjects with moving window analysis 

 

Figure 3.11: Energy entropy values for AD subjects with moving window analysis 
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Figure 3.12: Energy entropy values for control subjects with moving window analysis 

 

 From the Figures 3.9-3.12, it is observed that the entropies values are lesser with 

the moving window analysis compared to the entropies values of EEG signal data sets 

without moving window analysis. Mean shannon entropy for AD subjects is 4.1501, 

4.3886 and 4.6676 and energy entropy is -573.9325, -611.2375 and -651.5833 with 5%, 

15% and 25% overlap respectively. Mean shannon entropy for control subjects is 4.1363, 

4.3568 and 4.6247 and energy entropy is -579.9821, -615.9793 and -654.8878 with 5%, 

15% and 25% overlap respectively. 

3.4 Fractal Analysis 

 

 Fractal is a term which applies to fluctuations or irregularities in time for a time 

series data [5]. When magnifying a fractal signal, the fractal value increases. For a non-

fractal signal or signal with very low complexity, the relationship between the fractal size 

and the magnification factor is a constant when plotted in a log-log scale. For a fractal 
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signal, the relationship is linear which indicates that as the magnification increases, the 

fractal value also increases. Fractal Dimension is a non-linear statistical parameter used 

for the measurement of the complexity of EEG signal data sets of AD subjects and 

control subjects [5]. The self-similarity of an EEG signal is a statistical quantity measured 

by the Hurst component of the rescaled range analysis. It is a non-linear fractal analysis 

method employed to estimate the fractal dimension from the Hurst component of the 

rescaled range analysis [15]. The algorithm behind the estimation of the fractal dimension 

of a signal in this tool is given below [5, 7]: 

The factors range, R and standard deviation, S are defined by, 

                                                                          (3.3) 

 

         ∑            
  

                                                    (3.4) 

 

        ∑      
                                                                 (3.5) 

 

        ∑            
 
                                                            (3.6) 

 

 

Where        is the time series,   is the time span and   is the integer-valued time. 

3.4.1 Hurst Component 

 

The Hurst component (H) is determined for time series data sets which exhibit 

self-similarity attribute by calculating the rescaled range over sub-regions of the data. 

Self-similarity is the similarity of the statistical properties for an entire data set and for 

the sub-regions of a data set. The Hurst component and the fractal dimension are related 

by the following expression. 

D = 2-H                                                                   (3.7) 
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3.4.2 Fractal Analysis Results 

 

The fractal dimensions for the EEG data sets are calculated using the Benoit 1.3 

computational package tool both with and without applying moving window analysis. 

Figures 3.17- 3.19 show the fractal dimensions of the processed EEG signal data sets of 

AD subjects and control subjects. 

 

Figure 3.13: Fractal dimension values for AD subjects and control subjects 

 

 From Figure 3.13, it is observed that AD subjects 8 and 10 have a fractal 

dimension value greater than the mean fractal dimension of control subjects which is 

1.8217 and 1.8110 for AD subjects. 
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Figure 3.14: Fractal dimension values for AD subjects with moving window analysis 

 

 

Figure 3.15: Fractal dimension values for control subjects with moving window analysis 

 

 

 From Figures 3.14 and 3.15, it is observed that the fractal dimension using 

moving window analysis give effective results compared to the fractal dimension without 

moving window analysis. Mean fractal dimension for AD subjects is 1.2644, 1.2630 and 
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1.2593 with 5%, 15% and 25% overlap respectively. Mean fractal dimension for control 

subjects is 1.2638, 1.2626 and 1.2594 with 5%, 15% and 25% overlap respectively. 

3.5 Summary 

 

In this chapter, the time-domain analysis of EEG signals using signal processing 

techniques namely Higher order moments calculation which include skewness and 

kurtosis calculation, Shannon entropy and energy entropy calculation and fractal 

dimension analysis were discussed. These techniques were also applied using a moving 

window analysis are also discussed. The results of the techniques discussed are the non-

linear features extracted from EEG signal data sets for AD subjects and control subjects. 

The features are compared for the best feature extraction technique of the time domain 

analysis of EEG signals. The techniques are tabulated in table 3.1 with their analysis, 

false alarm and inconclusive rates. Recognition % is the percentage of number of subjects 

the feature extraction technique could differentiate between an AD and the respective 

control subject. False alarm rate is the number of control subjects misinterpreted as an 

AD subject and inconclusive rate is the number of subjects which the technique could not 

give any differentiation. 
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Table 3.1: Recognition and false alarm rates of time domain analysis methods 

 
Time Domain Analysis 

method 

Recognition rate False Alarm rate Inconclusive rate 

Skewness 25 % 6.25 % 68.75 % 

Kurtosis 43.75 % 18.7 % 37.55 % 

Shannon Entropy 31.25 % 12.5 % 56.25 % 

Energy Entropy 31.25 % 18.75 % 50 % 

Fractal Dimension 25 % 12.5 % 62.5 % 

Skewness with Moving 

Windows 

25 % 6.25 % 68.75 % 

Kurtosis with Moving 

Windows 

18.75 % 12.5 % 31.25 % 

Shannon entropy with 

Moving Windows 

25 % 6.25 % 68.75 % 

Energy entropy with 

Moving Windows 

18.75 % 6.25 % 75 % 
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Chapter Four 

 Frequency and Frequency-Time Domain Analysis of EEG Signals 

 

4.1 Introduction 

 

EEG signal data sets of 18 AD subjects and 16 control subjects are analyzed by 

applying signal processing techniques such as the Wavelet Analysis, the Welch Power 

Spectrum and the Discrete Fourier Transform. These signal processing techniques are 

linear methods applied to extract the linear features of the EEG signals. 

4.2 Wavelet Analysis 

 

The Wavelet Transform is a signal processing tool which can be used for 

processing and analysis of EEG signals. As EEG signals are non-stationary i.e. their 

frequency components vary with time, the Wavelet Transform is applied.  

4.2.1 EEG Signal De-noising Using Wavelets 

 

 Wavelets are used for the de-noising or removing random noise from EEG signals. EEG 

signal de-noising is performed using the Discrete Wavelet Transform (DWT). The DWT 

is preferred to Continuous wavelet Transform (CWT) as CWT gives lot of redundant 

information of the EEG signals [16]. The process of de-noising includes EEG signal 

decomposition, wavelet detail coefficients thresholding and signal reconstruction.  

The Wavelet toolbox in MATLAB is used to implement the wavelet analysis of the EEG 

signals. 

EEG signal decomposition is performed in the wavelet toolbox by using the 

daubechies wavelet function „db5‟ at the level 3 decomposition. EEG signal is 
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decomposed into different frequency components at each level of decomposition. They 

are the approximation coefficients at level 3, A3 and detail coefficients at the levels from 

1 to 3 D1, D2 and D3.  

 There are different thresholding methods available like the default thresholding, 

the soft thresholding and the hard thresholding. After de-noising using the default 

threshold, the signal is smooth, but it may lose some useful signal components. After 

hard threshold de-noising, the restored signal is almost the same than the original signal 

hence it is not preferred. The Soft threshold de-noising eliminates noise effectively and 

has a very good retention of the useful signal components. First level detail coefficients 

are usually considered as noise. Hence D1 detail coefficients are thresholded using the 

soft thresholding. 

 The Signal to noise ratio is calculated for the original data and the de-noised data. 

The signal is decomposed  at level „3‟ by using the wavelet „db5‟.The first level detail 

coefficients, D1 is usually considered as noise for the signal decomposed. The noise is 

separated from the signal and SNR is calculated using the following formula. 

            (
∑       

∑      
)                                              (4.1) 

The de-noised EEG signal data sets for AD subjects and control subjects are 

analyzed with the signal processing techniques discussed in chapter one and the results 

are compared before and after EEG signal de-noising using wavelet analysis. The 

parameters, skewness, kurtosis, Shannon entropy, energy entropy and fractal dimension 

discussed in chapter one are applied for the de-noised EEG signals and the results 

showing the bar graphs are shown in chapter 5. 
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4.3 Welch Power Spectrum 

 

Welch Power Spectrum is used to estimate the power spectral density of EEG 

signals data sets for the extraction of features used in the classification of EEG signals. 

The Welch Power Spectrum is performed by analyzing EEG signals, and plotting the 

Power Spectral Densities (PSDs) in the MATLAB. The frequency components are 

studied and analyzed. 

 In Welch Power Spectrum analysis, an EEG signal data set is divided into an 

integer number of segments with default overlapping percentage between the segments of 

50%. For each segment, a modified periodogram is computed and the PSD estimates are 

averaged. By averaging the PSD estimates of the modified periodograms of the segments, 

the variance of the overall PSD estimate decreases. This is the advantage of Welch Power 

Spectrum method for the extraction of spectral components of EEG signal data sets. 

 The Welch Power Spectrum of EEG signal data sets for AD subjects and control 

subjects is implemented in MATLAB. The plots of the PSD estimates using the Welch 

Power Spectrum method are shown in the Appendix A. A sample Welch Power Spectrum 

plot is shown in Figure 4.6. 
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Figure 4.1: Welch PSD estimate for AD subject 1 and control subject 1 

4.3.1 Welch Power Spectrum with Moving Window Analysis 

 

 Welch Power Spectrum for EEG signal data sets is implemented using moving 

window analysis in which the data sets are segmented and the overlapping percentages 

between the segments are 5%, 15% and 25%. The plots for the Welch PSD estimates of 

the data are shown in Appendix B. A sample plot of Welch Power Spectrum with moving 

windows is shown in Figure 4.7. 

 Figure 4.2: Welch PSD estimate for AD subject 1 and control subject 1 with moving 

window analysis 
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4.4 Discrete Fourier Transform 

 

 Discrete Fourier Transform (DFT) is the signal processing technique used for the 

frequency domain analysis of EEG signals to extract the spectral frequency components 

from EEG signals. 

 The DFT is implemented in MATLAB using the Fast Fourier Transform (FFT) 

algorithm. The plots of the DFT of the EEG signal data sets for AD subjects and control 

subjects are shown in Appendix C. A sample DFT plot is shown in the Figure 4.8. 

 

 

Figure 4.3: The DFT for AD subject 1 and control subject 1 

 

4.5 Comparison of Spectral Analysis Methods 

 

 The DFT and the Welch Power Spectrum methods for spectral analysis give the 

frequency variations of EEG signals with the time which is defined as the frequency 

resolution. Due to the frequency variations, change occurs in the time domain of an EEG 

signal. These techniques give the frequency components but not the times at which these 
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frequency components exist. However, this is possible using wavelet analysis which 

provides both the frequency resolution and the time resolution. 

4.6 Summary 

 

 Frequency domain analysis for EEG signal data sets of AD subjects and control 

subjects employing the signal processing techniques of spectral analysis Wavelet 

analysis, Welch Power Spectrum and Discrete Fourier Transform were discussed in this 

chapter. The methods are compared for the best feature extraction technique in the 

frequency domain analysis which gives the frequency components of EEG signals. 

Frequency domain analysis methods used for analysis of EEG signals are tabulated with 

their analysis and false alarm rates in the Table 4.1. 

Table 4.1: Recognition and false alarm rates of frequency domain analysis methods 

Frequency Domain 

Analysis method 

Recognition rate False Alarm rate Inconclusive rate 

Wavelet Transform 9.36 % 6.25 % 84.39 % 

Welch Power Spectrum 50 % 12.5 %         37.5 % 

Discrete Fourier 

transform 

37.5 % 18.75 %         43.75 % 

Welch Power Spectrum 

with moving windows 

37.5 % 6.25 %         56.25 % 
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Chapter Five 

 Artifact Removal of EEG Signals 

 

5.1 Introduction 

 

 EEG signals are de-noised for the extraction of features which are easy to classify 

compared to the classification of features extracted from raw EEG signals. The influence 

of artifacts present in an EEG signal will make the task of analyzing it more difficult. 

5.2 Artifacts 

 

During EEG signals recording, some unwanted waveforms or artifacts are added 

to the signals [17]. There are three types of artifacts in EEG signals namely 

Electrooculogram (EOG), Electrocardiogram (ECG) and Electromyogram (EMG) signal 

artifacts. The most severe artifacts are due to eye blinks and eyeball movements during 

EEG signal recording [17].  During eye movement, the electric field around the eye 

changes, which produces an electric signal called EOG [11]. These are low frequency 

signals and are very sensitive to interferences. EMG signals are electrical currents 

generated during muscle contraction [18]. ECG signals are electrical currents generated 

in heart muscle during a heartbeat [19]. EOG signal artifacts are seen more below 4 Hz 

frequency, ECG signal artifacts around 1.2 Hz and EMG signal artifacts above 30 Hz 

[17].  

5.3 Artifact Removal 

 

Artifacts need to be removed from EEG signals. Frequencies above 40 Hz do not 

contain any brain activity and hence they are eliminated. A band pass filter is designed 

using the MATLAB signal processing toolbox, with a pass band frequencies in the range 


